
Strong-coupling spectrum in the Hamiltonian

limit of the SU(2) Wilson action

in 2+1 dimensions

1 Monte Carlo simulations

Results are presented in Tables 1-8 for the energies, multiplied by ξas, for the glue in the
presence of a static quark and antiquark separated by R lattice spacings along an axis of the
lattice. Simulations were done using the anisotropic 2 + 1-dimensional Wilson SU(2) gauge-
field action (without tadpole improved couplings) at strong coupling β = 1/2. Results
are from simulations on an 82 × 320 lattice, while the results for ξ → ∞ were obtained
by extrapolating the results linearly in 1/ξ. The rows labeled by SC indicate the results
from strong coupling perturbation theory. Note that as and at are the spatial and temporal
lattice spacings, respectively, and ξ is the aspect ratio as/at. States labeled by S and
A are symmetric and antisymmetric, respectively, under reflections in the molecular axis.
States with a subscript g and u are symmetric and antisymmetric, respectively, under the
combined operations of charge conjugation and spatial inversion about the midpoint between
the quark and the antiquark. The strong-coupling perturbation theory results were done
in the Hamiltonian formulation. The transfer-matrix method is needed to determine the
relationship between our simulation results and the spectrum obtained in the Hamiltonian
approach[1]. The transfer matrix T is related to the Hamiltonian H by

T = C exp
[
−atH + O(a2

t )
]
. (1)

2 Strong-coupling perturbation theory

We begin by replacing space (but not time) by a discrete cubic lattice with spacing a. The
gauge field is defined on the links connecting the sites of the lattice. Each directed link may
be occupied by a bit of chromoelectric flux, similar to a dipole with coloured ends. The
coloured ends are described by a representation of SU(N) colour. The colour content of
the two ends are not independent. If one end is in the R representation, then the other
end must be in the complex conjugate representation R. The link can be pictured as a line
of chromoelectric flux whose terminals transform as a particle-antiparticle pair. We shall
describe this situation by saying that the link (x, i) starting at site x and extending in the
direction i is in the state (R, R). However, this does not completely specify the state of the
link. We must also specify the directions of the colours in the representation space. Thus,
the link is completely specified by a vector Vab where a and b transform as indices in the
(R, R) representation of SU(N)× SU(N).

The most elementary flux is the one in the fundamental (N, N) or (N, N) representa-
tion. From such elementary fluxes, all others can be constructed in the same way that all
irreducible representations of SU(N) can be built out of N and N . Let us introduce a flux
operator Ujk(x, i). The index j is associated with the flux end at x and acts in the funda-
mental N representation. The index k is associated with the other end at x+ aî and acts in
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Table 1: Results for R = 3 in the Sg channel.

ξ Sg S ′
g S ′′

g S ′′′
g S ′′′′

g

25 9.3609(11) 15.3377(33) 15.6145(35) 15.6222(30) 15.8982(38)
40 9.22344(60) 15.1036(24) 15.3849(22) 15.3894(15) 15.6698(24)
55 9.1607(13) 15.0030(47) 15.2800(28) 15.2842(30) 15.5637(51)
∞ 8.9941(19) 14.7183(67) 15.0016(55) 15.0019(51) 15.2873(73)
SC 8.99554 14.72049 15.00000 15.00000 15.27951

Table 2: Results for R = 3 in the Au channel.

ξ Au A′
u A′′

u A′′′
u

25 15.3360(30) 15.6172(33) 15.6190(35) 15.8972(35)
40 15.1032(24) 15.3812(16) 15.3863(19) 15.6654(23)
55 14.9991(43) 15.2788(35) 15.2839(45) 15.5617(55)
∞ 14.7168(63) 14.9922(56) 15.0011(65) 15.2800(72)
SC 14.72049 15.00000 15.00000 15.27951

Table 3: Results for R = 3 in the Ag and Su channels.

ξ Ag A′
g Su S ′

u

25 15.4935(33) 15.7387(25) 15.4914(24) 15.7400(28)
40 15.2582(16) 15.5115(20) 15.2612(20) 15.5155(18)
55 15.1519(36) 15.4058(40) 15.1555(33) 15.4037(39)
∞ 14.8666(57) 15.1309(55) 14.8764(50) 15.1335(55)
SC 14.87500 15.12500 14.87500 15.12500

Table 4: Results for R = 4.

ξ Sg S ′
g S ′′

g S ′′′
g S ′′′′

g

25 12.4813(16) 18.3963(45) 18.6205(35) 18.6480(40) 18.8300(35)
40 12.29884(96) 18.1177(30) 18.3389(20) 18.3711(23) 18.5585(26)
55 12.2148(17) 17.9944(55) 18.2117(39) 18.2455(48) 18.4284(47)
∞ 11.9936(28) 17.6566(86) 17.8703(63) 17.9098(74) 18.1000(70)
SC 11.99405 17.65849 17.87500 17.90849 18.09151
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Table 5: Results for R = 4.

ξ S(v)
g S(vi)

g Au A′
u

25 18.8712(35) 19.0835(48) 18.3940(40) 18.6160(35)
40 18.5945(23) 18.8083(28) 18.1158(29) 18.3373(24)
55 18.4663(55) 18.6813(72) 17.9872(61) 18.2161(45)
∞ 18.1315(72) 18.3483(93) 17.6504(84) 17.8777(68)
SC 18.12500 18.34151 17.65849 17.87500

Table 6: Results for R = 4.

ξ A′′
u A′′′

u A′′′′
u A(v)

u

25 18.6515(30) 18.8287(33) 18.8678(38) 19.0797(50)
40 18.3668(21) 18.5524(23) 18.5865(24) 18.8029(33)
55 18.2384(45) 18.4263(47) 18.4650(54) 18.6796(55)
∞ 17.8930(62) 18.0915(66) 18.1226(75) 18.3442(91)
SC 17.90849 18.09151 18.12500 18.34151

Table 7: Results for R = 4.

ξ Ag A′
g A′′

g A′′′
g

25 18.5220(35) 18.7368(40) 18.7377(38) 18.9542(35)
40 18.2433(22) 18.4561(22) 18.4609(21) 18.6797(25)
55 18.1174(46) 18.3353(52) 18.3374(41) 18.5524(45)
∞ 17.7795(67) 17.9935(74) 18.0018(66) 18.2198(69)
SC 17.78349 18.00000 18.00000 18.21651

Table 8: Results for R = 4.

ξ Su S ′
u S ′′

u S ′′′
u

25 18.5212(40) 18.7347(48) 18.7410(35) 18.9530(33)
40 18.2450(20) 18.4584(24) 18.4646(18) 18.6835(20)
55 18.1179(47) 18.3324(45) 18.3399(39) 18.5534(51)
∞ 17.7832(71) 17.9973(78) 18.0048(61) 18.2295(65)
SC 17.78349 18.00000 18.00000 18.21651
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the complex conjugate representation N . Finally, Ujk must be a unitary matrix. Note that

Uij(x, k) and Uij(x + ak̂,−k) are not independent since they describe the same undirected

link. In fact, U(x + ak̂,−k) = U †(x, k) = U−1(x, k).
The simplest state of a link is the one in which the flux is absent. We say in this case

that the flux is in the singlet representation. We shall denote this state by |0〉 and require
unit normalization. A state of elementary flux is created by applying U(x, k) to |0〉. Higher
dimensional representations are obtained by applying the U operator repeatedly. A complete
basis of states can be generated by applying the U to |0〉. Note that we can consider the
matrix representations of U in higher representations. In such cases, we denote the operator
by U (R). When the superscript is absent, the fundamental representation is to be assumed.

Note that U
(R)
ab �= U

(R)
ab = U

(R)†
ba . We shall label the (unit normalized) basis states of a given

link (x, i) by |(x, i);R; ab〉. We find that

|(x, i);R; ab〉 =
√

dR U
(R)
ab (x, i) |0〉, (2)

where dR is the dimension of the R representation. The main tool in constructing these
states is the Clebsch-Gordan series:

U
(R1)
AB U

(R2)
ab =

∑
R,α,β

〈R1, A;R2, a|R, α〉 U
(R)
αβ 〈R, β|R1, B;R2, b〉. (3)

The Clebsch-Gordan coefficients satisfy

∑
α1,α2

〈R, α|R1, α1;R2, α2〉〈R1, α1;R2, α2|R, β〉 = δαβ if R appears in R1 ⊗ R2. (4)

Also, note the important relation:

〈0|U (R)
αβ |0〉 = δR1, (5)

which is nonzero only when R is the identity representation.
As examples of the Clebsch-Gordan coefficients, we have the following in SU(2):

〈2a; 2b|1〉 = 〈2a; 2b|1〉 =
√

1
2

δab, (6)

〈2a; 2b|1〉 = 〈2a; 2b|1〉 =
√

1
2

εba, (7)

〈2a, 2b|3k〉 =
√

1
2
(σk)ab, (8)

〈2a, 2b|3k〉 =
√

1
2
(σk)ba, (9)

〈3a; 3b|3k〉 =
√

1
2

εkab, (10)

〈2a; 2b|3k〉 =
√

1
2
(σk)bcεca, (11)

〈2a; 2b|3k〉 =
√

1
2

εbc(σk)ca, (12)

where σk denotes the standard Hermitian Pauli spin matrices and εab and εabc are the fully
antisymmetric Levi-Civita tensors on 2 and 3 indices, respectively, with ε12 = 1 and ε123 = 1.
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Note that we must proceed with some care in SU(2) since the 2 representation is equivalent
to the fundamental 2 representation:

U
(2)
ab = U †

ba = εaa′Ua′b′εbb′ . (13)

Hence,

Uij U †
kl = 1

2
δilδkj +

1
2
σa
il σb

kj U
(3)
ab , (14)

Uij Ukl = 1
2
εkiεlj − 1

2
σa
kmεmiεjnσb

nl U
(3)
ab . (15)

Note that (σk)ilεlj = (σk)jlεli.
On a given link, the space of states spanned by |R; ab〉 for fixed R is a d2

R dimensional
subspace. The projection operator onto this subspace is denoted PR and is given by

PR =
∑
ab

|R; ab〉〈R; ab|,

= dR

∑
ab

U
(R)
ab |0〉〈0|U (R)†

ba . (16)

Using Eqs. 5 and 14 we can easily show that

〈0|U †
ijP2Ukl|0〉 = 1

2
δilδjk, (17)

〈0|U †
ijUklP1U

†
rsUtu|0〉 = 1

4
δilδjkδruδst, (18)

〈0|U †
ijUklP3U

†
rsUtu|0〉 = 1

12
(2δksδjt − δjkδst) (2δiuδlr − δilδru) . (19)

In SU(3), we have

〈1|3i; 3j〉 =
√

1
3

δij, (20)

〈8, α|3i, 3j〉 =
√

1
2

λα
ij, (21)

〈3i|3j; 3k〉 =
√

1
2

εijk, (22)

〈6{kl}|3i; 3j〉 = 1
2
(δikδjl + δilδjk), (23)

where λa are the standard Gell-Mann matrices. Note that

∑
a

σa
ij σa

kl = 2 δilδjk − δijδkl, (24)

∑
a

λa
ij λa

kl = 2 δilδjk − 2
3

δijδkl. (25)

The complete set of states for the lattice is the tensor product formed from the space
of states of each link. However, not every state in this space of states is physically allowed.
The allowable states are those which are locally gauge invariant.

The Wilson gluon Hamiltonian on a spatial lattice (time is continuous) is given by

Hglue =
g2

2a

∑
la

Ea
l Ea

l +
1

ag2

∑
p

Tr(2− Up − U †
p), (26)
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where l refers to the links of the lattice, and p refers to the plaquettes of the lattice, and Up

means the product of the four link variables around the plaquette p. Ea
l is essentially the

conjugate momentum to Ul, satisfying the equal-time commutation relation

[Ea
l , Ul′ ] = δll′ Ul T a, (27)

where T a = σa/2 in SU(2) and T a = λa/2 in SU(3). The strong-coupling eigenstates are the
eigenvectors of

∑
l E

a
l Ea

l . For our strong-coupling perturbation theory calculations, discard
the irrelevant constant in Hglue and define

2a

g2
H = H0 − xHint, (28)

H0 =
∑
l

Ea
l Ea

l , (29)

Hint =
1

2

∑
p

Tr
(
Up + U †

p

)
, (30)

where x = 4/g4 is the small expansion parameter. Now in SU(2), TrUp = TrU †
p which

simplifies Hint slightly.
Our goal is to determine the spectrum of SU(2) glue in the presence of a static quark-

antiquark pair in 2+1 dimensions. The first step is to determine the energy of the vacuum
state (without the quark-antiquark) as a function of x. At zero-th order, the vacuum state
is simply |0〉, the state in which all links are in their ground state. Since H0|0〉 = 0, E (0)

vac = 0.
At first order in perturbation theory,

E (1)
vac = −x〈0|Hint|0〉 = 0. (31)

At second order in perturbation theory,

E (2)
vac = x2

∑
m�=0

|〈m|Hint|0〉|2
E (0)

0 − E (0)
m

. (32)

The strong-coupling states |m〉 which contribute to this sum are those in which the links of
a single plaquette have been excited to their first-excited state and combined in a gauge-
invariant manner. There are Nplaq such states, where Nplaq is the number of plaquettes
in the lattice. Each state has the same energy: E (0)

m = 4CF = 4(3/4) = 3, where CF =
(N2 − 1)/(2N) is the quadratic Casimir in SU(N). So to evaluate E (2)

vac, we can concentrate
on a single plaquette, as shown below.

✲

✻ ✻
✲

1

2

3 4

The normalized state |m〉 is

Tr[U(3)U(2)U †(4)U †(1)] |0〉. (33)
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To check the normalization, we use Eqs. 5 and 14 as follows:

〈0| Tr[U(3)U(2)U †(4)U †(1)] Tr[U(1)U(4)U †(2)U †(3)] |0〉
= 〈0| Uab(3)Ubc(2)U

†
cd(4)U

†
da(1)Uij(1)Ujk(4)U

†
kl(2)U

†
li(3) |0〉,

=
1

2
δaiδdj

1

2
δckδbl

1

2
δaiδbl

1

2
δckδdj,

=
1

16
δiiδjjδkkδll,

= 1. (34)

Hence, substituting in Hint, we find

E (2)
vac = −x2

3
Nplaq

∣∣∣〈0| Tr[U(3)U(2)U †(4)U †(1)] Tr[U(1)U(4)U †(2)U †(3)] |0〉
∣∣∣2

= −x2

3
Nplaq. (35)

To summarize,

Evac = −x2

3
Nplaq. (36)

Now place a static quark and antiquark on the lattice, separated by a distance La along
an axis of the lattice. Since the quark and antiquark are static, we need not worry about
their spins or their fermionic nature; they can be treated simply as colour sources. We now
wish to find the energy of the lowest-lying stationary state of the glue in the presence of this
pair. At zero-th order in perturbation theory, the lowest-lying state is one in which the L
links connecting the quark and the antiquark have been excited into their first-excited state,
while all other links are in their ground state. Hence,

E (0)

QQ
− E (0)

vac = CFL =
3

4
L. (37)

We shall denote this state by |ΩL〉. Once again, the contribution at first-order in perturba-
tion theory is again zero. The second-order contribution requires a little bit of work. The
intermediate states which contribute at second order can be divided up into the following
classes, as shown in Table 9: (a) those in which a single plaquette, disconnected from the line
connecting the quark and the antiquark, is excited into the fundamental representation; (b)
those in which L− 1 of the links connecting the quark and antiquark are in the fundamental
representation, while the one remaining link along the molecular axis (in the p-th position)
is in its ground state and the three links which form a staple around the p-th link are all
in the fundamental representation; (c) those similar to (b), except that the p-th link is in
the adjoint representation; (d) those in which L + 4 links are excited into the fundamental
representation as shown in Table 9.

Each intermediate state in class (a) contributes the same as it would in the vacuum:
−x2/3.

To determine the contribution from diagrams in class (b), it suffices to examine the case
for a specific L, say L = 3. We first label the links as shown below:
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Table 9: Contributions to EQQ from various classes of diagrams at second-order in perturba-
tion theory. Lattice sites are indicated by the dots. Links in the fundamental representation
are indicated by simple line segments connecting neighbouring sites. Links in the adjoint
representation are depicted by a line segment with an open circle connecting neighbouring
sites. All other links are in their ground states. E (2)

QQ
is obtained by multiplying each con-

tribution by the corresponding multiplicity, summing the results, then multiplying by x2.

Multiplicity Intermediate state Contribution

(a) Nplaq − 2L − 4 � � � � � � �

�

�

�

�

−1

3

(b) 2L � � � � � � �

� �

−1

6

(c) 2L � � � � � � �

� �

❡ − 3

14

(d) 4 � � � � � � ��

� �

−1

3
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✲ ✲

✻ ✻
✲

✲
1 2 3

4

5 6

The normalized starting and intermediate states are (ignoring the colour sources):

|Ω3;αβ〉 =
√
2 [U(1)U(2)U(3)]αβ |0〉, (38)

|bαβ〉 =
√
2

[
U(1)U(5)U(4)U †(6)U(3)

]
αβ

|0〉. (39)

Now

H0|Ω3;αβ〉 =
3

4
L |Ω3;αβ〉, (40)

H0|bαβ〉 =
3

4
(L + 2) |bαβ〉, (41)

and

〈brs|Hint|Ω3;αβ〉 = 2〈0|
[
U †(3)U(6)U †(4)U †(5)U †(1)

]
sr

×Tr
[
U(5)U(4)U †(6)U †(2)

]
[U(1)U(2)U(3)]αβ |0〉,

= 2〈0|U †
st(3)Utu(6)U

†
uv(4)U

†
vw(5)U

†
wr(1)

×Uij(5)Ujk(4)U
†
kl(6)U

†
li(2)Uαµ(1)Uµν(2)Uνβ(3)|0〉,

= 2 1
2
δwµδαr

1
2
δlνδiµ

1
2
δsβδtν

1
2
δukδvj

1
2
δvjδwi

1
2
δtlδuk,

= 1
2
δαrδsβ. (42)

Then ∑
rs

|〈brs|Hint|Ω3;αβ〉|2 =
1

4

∑
rs

δαrδsβδαrδsβ =
1

4
, (43)

and the contribution to the energy is −x2/6.
We can now repeat the above steps for the diagrams in class (c). First, we find

H0|cαβ〉 =
[
3

4
(L + 2) + 2

]
|cαβ〉, (44)

since the quadratic Casimir for the adjoint representation is CA = N in SU(N). Next, we
need to determine the intermediate state. This requires some Clebsch-Gordanry to ensure
a gauge-invariant state. However, we can circumvent this by noting that since our starting
state is gauge-invariant and Hint is gauge-invariant, then matrix elements with intermediate
states which are not gauge-invariant will vanish. Hence, we can sum over all intermediate
states, not just the physical intermediate states. This then eliminates the need to determine
how the colour indices are matched at the lattice sites in the intermediate states. In other
words, we can proceed using link projectors. Let PR(l) denote the projection operator into
the irreducible representation R associated with link l. This operator is given by

PR(l) =
∑
αβ

|l;R;αβ〉〈l;R;αβ|, (45)

= dR

∑
αβ

U
(R)
αβ (l)|0〉 〈0|U (R)†

βα (l). (46)
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Then, using Eqs. 17 and 19,

∑
rs

|〈crs|Hint|Ω3;αβ〉|2 = 〈Ω3;αβ| Hint P2(1)P3(2)P2(3)P2(5)P2(4)P2(6) Hint |Ω3;α′β′〉,

= 2〈0|
[
U †(3)U †(2)U †(1)

]
βα

Tr
[
U(2)U(6)U †(4)U †(5)

]

×P2(1)P3(2)P2(3)P2(5)P2(4)P2(6) Tr
[
U(5)U(4)U †(6)U †(2)

]

× [U(1)U(2)U(3)]α′β′ |0〉,
= 2〈0|U †

να(1)P2(1)Uα′τ (1) U †
µν(2)Uab(2)P3(2)U

†
li(2)Uτρ(2)

× U †
βµ(3)P2(3)Uρβ′(3) U †

df (4)P2(4)Ujk(4)

× U †
fa(5)P2(5)Uij(5) Ubd(6)P2(6)U

†
kl(6)|0〉,

= 2 1
2
δντδαα′ 1

12
(2δaiδντ − δνaδiτ ) (2δµρδbl − δµbδlρ)

1
2
δββ′δµρ

1
2
δdkδfj

1
2
δfjδai

1
2
δblδdk,

= 3
4
δαα′δββ′ . (47)

Hence, the contribution from class (c) of intermediate states is −3x2/14.
To calculate the contributions from class (d), we use the same labelling of links as for (b)

and (c), but now we ignore link 1. Our starting state is now

|Ω1;αβ〉 =
√
2 Uαβ(3)|0〉, (48)

and the zero-th order energy of the intermediate states is (3/4)(L + 4). Then,

∑
rs

|〈drs|Hint|Ω1;αβ〉|2 = 〈Ω1;αβ|Hint P2(2)P2(3)P2(4)P2(5)P2(6) Hint|Ω1;α′β′〉,

= 2〈0|U †
βα(3)Tr

[
U †(2)U(5)U(4)U †(6)

]
P2(2)P2(3)

×P2(4)P2(5)P2(6) Tr
[
U(6)U †(4)U †(5)U(2)

]
Uα′β′(3)|0〉,

= 2〈0|U †
ab(2)P2(2)Uli(2) U †

βα(3)P2(3)Uα′β′(3)

× Ucd(4)P2(4)U
†
jk(4) Ubc(5)P2(5)U

†
kl(5) U †

da(6)P2(6)Uij(6)|0〉,
= 2 1

2
δaiδbl

1
2
δββ′δαα′ 1

2
δckδdj

1
2
δblδck

1
2
δdjδai,

= δαα′δββ′ .

Thus, the contribution to the energy is −x2/3. Combining all contributions, we find

EQQ − Evac =
(
3

4
− 2

21
x2

)
L. (49)

Now we turn to the first several excited states. At zero-th order in perturbation theory,
the first excited energy is

E (0)

1,QQ
− E (0)

vac =
3

4
(L + 2). (50)

This energy level is L(L + 1)-fold degenerate. In other words, there are L(L + 1) states
in which the quark and the antiquark are joined by a line of flux (in the fundamental
representation) having length (L + 2)a. In each of these states, the path of the flux joining
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the quark-antiquark pair is a straight line with a staple of width a. The staple can extend in
either of the two transverse directions (we shall refer to these two directions as left or right)
and can have any length from a to La. We shall refer to these states using the notation
|Ω(d)

L+2(x1, x2)〉 where the superscript d = r, l indicates the right or left direction of the staple,
and x1 and x2 indicate the beginning and ending of the staple as measured from the start
of the path.

To determine the energy levels at first-order in perturbation theory, we must diagonalize
Hint within the L(L + 1)-dimensional subspace spanned by the degenerate zero-th order
strong-coupling states. To facilitate this, consider the following link labelling scheme shown
below:

✲ ✲

✻ ✻
✲

✲

✻ ✻
✲ ✲

1 2 3

54 6

8 97 10

Now consider the following states (ignoring the colour sources at the ends):

|Ω(l)
5 (a, 2a)〉 =

√
2 U(1)U(8)U(5)U †(9)U(3) |0〉,

|Ω(l)
5 (0, 2a)〉 =

√
2 U(7)U(4)U(5)U †(9)U(3) |0〉,

|Ω(l)
5 (a, 3a)〉 =

√
2 U(1)U(8)U(5)U(6)U †(10) |0〉.

Now

〈Ω(l)
5 (0, 2a)| Hint |Ω(l)

5 (a, 2a)〉 = 2 〈0|
[
U †(3)U(9)U †(5)U †(4)U †(7)

]
βα

× Tr
[
U(7)U(4)U †(8)U †(1)

] [
U(1)U(8)U(5)U †(9)U(3)

]
α′β′ |0〉,

= 2 〈0| U †
li(1)Uα′r(1) U †

βµ(3)Uuβ′(3) U †
ρτ (4)Ujk(4) U †

νρ(5)Ust(5)

× U †
τα(7)Uij(7) U †

kl(8)Urs(8) Uµν(9)U
†
tu(9) |0〉,

= 2 1
2
δlrδα′i

1
2
δββ′δuµ

1
2
δρkδjτ

1
2
δνtδsρ

1
2
δτjδiα

1
2
δksδrl

1
2
δµuδtν ,

= 1
2
δαα′δββ′ . (51)

Similarly for |Ω(l)
5 (a, 3a)〉. Hence, we find

〈Ω(d)
L+2(x1, x2)| Hint |Ω(d′)

L+2(x
′
1, x′

2)〉 =
1

2
δdd′

[
δx1x′

1

(
δx2,x′

2−a + δx2,x′
2+a

)

+ δx2x′
2

(
δx1,x′

1−a + δx1,x′
1+a

)]
. (52)

This is the matrix to be diagonalized. For small L, the easiest way to proceed is by brute-
force diagonalization. Results for L = 3 and L = 4 are given in Tables 10 and 11. We again
label states which are symmetric (antisymmetric) under reflections in the molecular axis
by S (A) and add the subscript g and u for states which are symmetric and antisymmetric,
respectively, under the combined operations of charge conjugation and spatial inversion about
the midpoint between the quark and the antiquark.
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Table 10: Low-lying energy spectrum for L = 3. Energies in terms of the lattice spacing as

are obtained by multiplying the results below by g2/8. Note that x = 4/g4 and β = 4/g2.
Thus, in terms of β, the results below must be multiplied by 1/(2β) and x = β2/4.

Sg 9− 8
7

x2

S ′
g, Au 15− 2

√
5 x

Su, Ag 15− 2 x
S ′′
g , S ′′′

g , A′
u, A′′

u 15
S ′
u, A′

g 15 + 2 x

S ′′′′
g , A′′′

u 15 + 2
√
5 x

Table 11: Low-lying energy spectrum for L = 4. Energies in terms of the lattice spacing as

are obtained by multiplying the results below by g2/4. Note that x = 4/g4 and β = 4/g2.
Thus, in terms of β, the results below must be multiplied by 1/β and x = β2/4.

Sg 6− 16
21

x2

S ′
g, Au 9−

(
1 +

√
3
)

x

Su, Ag 9−√
3 x

S ′′
g , A′

u 9− x

S ′′′
g , A′′

u 9−
(
1−√

3
)

x

S ′
u S ′′

u, A′
g, A′′

g 9

S ′′′′
g , A′′′

u 9 +
(
1−√

3
)

x

S(5)
g , A′′′′

u 9 + x

S ′′′
u , A′′′

g 9 +
√
3 x

S(6)
g , A(5)

u 9 +
(
1 +

√
3
)

x

3 Comparison of results

The spectra for R = 3 and R = 4 calculated using the Monte Carlo method are compared
to the expectations from strong-coupling theory in Figs. 1-4. Energies are shown in terms
of a−1

s , the inverse spatial lattice spacing. The results are in excellent agreement.
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Figure 1: Comparison of the spectrum calculated using the Monte Carlo method (open
squares) with the expectations from strong-coupling perturbation theory (the horizontal
lines). The energies shown are in terms of a−1

s , the inverse spatial lattice spacing, for R = 3
and β = 0.5 in the Hamiltonian limit.
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Figure 2: Comparison of the spectrum calculated using the Monte Carlo method (the error
bars) with the expectations from strong-coupling perturbation theory (the horizontal lines).
The energies shown are in terms of a−1

s , the inverse spatial lattice spacing, for R = 3 and
β = 0.5 in the Hamiltonian limit. This is a close-up of the first band lying above the ground
state.
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Figure 3: Comparison of the spectrum calculated using the Monte Carlo method (open
squares) with the expectations from strong-coupling perturbation theory (the horizontal
lines). The energies shown are in terms of a−1

s , the inverse spatial lattice spacing, for R = 4
and β = 0.5 in the Hamiltonian limit.
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Figure 4: Comparison of the spectrum calculated using the Monte Carlo method (the error
bars) with the expectations from strong-coupling perturbation theory (the horizontal lines).
The energies shown are in terms of a−1

s , the inverse spatial lattice spacing, for R = 4 and
β = 0.5 in the Hamiltonian limit. This is a close-up of the first band lying above the ground
state.
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