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Glueball spectrum from an anisotropic lattice study
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The spectrum of glueballs below 4 GeV in the SU~3! pure-gauge theory is investigated using Monte Carlo
simulations of gluons on several anisotropic lattices with spatial grid separations ranging from 0.1 to 0.4 fm.
Systematic errors from discretization and finite volume are studied, and the continuum spin quantum numbers
are identified. Care is taken to distinguish single glueball states from two-glueball and torelon-pair states. Our
determination of the spectrum significantly improves upon previous Wilson action calculations.
@S0556-2821~99!07013-7#

PACS number~s!: 12.38.Gc, 11.15.Ha, 12.39.Mk
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I. INTRODUCTION

Gluon self-coupling in quantum chromodynamics~QCD!
suggests the existence of glueballs, bound states of ma
gluons. Incontrovertible experimental evidence for their e
istence remains elusive, however. A primary reason for
is the difficulty in extracting the properties of glueballs fro
the QCD Lagrangian. Investigating glueball physics requi
an intimate knowledge of the confining QCD vacuum, a
such knowledge cannot be obtained using standard pertu
tive techniques. Numerical simulations of the theory on
space-time lattice currently provide the most reliable me
of studying glueballs. However, correlation functions of g
onic exitations are notoriously difficult quantities to measu
in Monte Carlo simulations, requiring large-scale compu
resources when applying standard stochastic techniques
cently, the use of spatially coarse, temporally fine lattic
and improved actions was demonstrated to dramatically
crease the efficiency of glueball simulations@1#.

The objective in this paper is to apply the techniques
Ref. @1# to substantially improve our knowledge of the glu
ball spectrum in pure SU~3! gauge theory. Detailed informa
tion on this spectrum is important for validating models
confined gluons and may help focus experimental searc
for candidate glueball resonances. We also view this ca
lation as a necessary first step before attempting to inc
the effects of quarks. Note that unlike the quenched appr
mation for mesons and baryons, the pure glue theory
physical quantum field theory with a unitaryS matrix. First,
we perform six simulations for spatial lattice spacings ra
ing from 0.1 to 0.4 fm to determine the energies of t
lowest-lying stationary states in all of the symmetry chann
allowed on a cubic lattice. In many channels, we also de
mine the energies of the first-excited states. Our goal is t
to extract the masses of as many low-lying glueballs as p
sible from the 141 measurements which were made. S
the spectrum of glue defined in a box with periodic bound
conditions includes not only single glueball states, but a
states consisting of several glueballs and/or torelons~gluon
excitations which wrap around the toroidal lattice!, a means
of identifying the single glueballs must be employed to pru
0556-2821/99/60~3!/034509~13!/$15.00 60 0345
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away all of the other unwanted states. An additional sm
volume simulation is done to assist in this identification a
to study the systematic errors from finite volume. Final
discretization errors are treated by extrapolating the ener
to the continuum limit and determining the continuum sp
quantum numbers. The end result is a nearly complete
vey of the glueball spectrum in the pure gauge theory be
4 GeV. We find a total of 13 glueballs; two other tentati
candidates are also located. With the exception of the li
glueballs in the 011 sector, our results significantly improv
upon those from previous studies@2–4# of the complete low-
lying glueball spectrum.

This paper is organized as follows. The details of t
simulations, including the construction of the glueball ope
tors, the generation of the gauge-field configurations, the
traction of energies from Monte Carlo estimates of the c
relation functions, and the lattice spacing determinations
terms of the hadronic scaler 0, are described in Sec. II. All of
our energy estimates in terms of the inverse temporal lat
spacing are presented in this section. In Sec. III, the diff
entiation of single glueball states from two-glueball a
torelon-pair states is discussed. Systematic errors from fi
volume are studied in Sec. IV. The removal of lattice spac
errors, including the extrapolations to the continuum lim
and the identification of the continuum spin quantum nu
bers, is described in Sec. V. We also discuss the problem
cal scalar states in this section and cite ongoing efforts
reduce their discretization errors. Section VI presents a
cussion of the spectrum, and our findings are summari
with an outline of future work in the concluding Sec. VII.

II. SIMULATION DETAILS

Our glueball mass determinations rely on numerical sim
lations of gluons on a Euclidean space-time lattice with s
tial and temporal spacingsas andat , respectively. The glu-
ons are described by the improved actionSII used in Ref.@1#.
The couplings in the action depend on two parameters,b and
j, and are determined using a combination of~tree-level!
perturbation theory and mean-field theory, implemented
renormalizing the spatial link variablesU j (x)˜U j (x)/us ,
©1999 The American Physical Society09-1
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whereus is given by the fourth root of the average plaque
@5#. The temporal link variables are not renormalized. T
lattice anisotropyas /at is given by j at the tree level in
perturbation theory. This action is intended for use withat

!as , hasO(as
4 ,at

2 ,asas
2) discretization errors, whereas is

the QCD coupling, and couples only nearest-neighbor t
slices, ensuring the free-gluon propagator has no spur
modes. In all cases, glueball effective masses are see
converge monotonically from above. This is a very desira
feature since it validates the use of variational technique
minimize excited-state contributions to the glueball corre
tion functions. Such techniques are crucial for precise gl
ball mass extractions.

On a simple cubic lattice, zero-momentum stationary g
states are characterized by their transformation properties
der the octahedral point groupO, combined with parity and
charge conjugation operations.O has 24 elements~which are
all proper rotations! that fall into five conjugacy classes; th
single-valued irreducible representations are labeledA1 , A2 ,
E, T1, and T2, ~Schönfliess notation@6#! and have dimen-
sions 1, 1, 2, 3, and 3, respectively@7#. The inclusion of
parity results in the symmetry group known asOh5O
^ Ci , whereCi denotes a two-element group consisting
the identity operation and spatial inversion. The conventio
labels for the irreducible representations ofOh are obtained
from those ofO by appending a subscriptg for representa-
tions corresponding to states which are even under parity
u for odd parity representations. However, we shall us
slightly different notation. Instead of the subscriptsg andu,
we use superscripts1 and 2, respectively, to indicate the
eigenvalueP of parity. Glueball states are also eigenstates
charge conjugation. We denote the eigenvalue of cha
conjugation parity byC, as usual, and introduce an addition
superscript in the representation labels. We refer to the
symmetry group of zero-momentum glueball states on
simple cubic lattice asOh

C or OPC; the irreducible represen
tations are labeledA1

PC , A2
PC , EPC, T1

PC , and T2
PC . For

convenience, we useR when referring to these labels in ge
eral. Note that when we use one of these labels to identi
particular state, we refer to the lowest-lying zero-moment
state in the symmetry channel indicated by the representa
label. The first-excited state in a particular symmetry chan
will be denoted by the representation label with an aster

The mass of a glueballG having spinJ, parity P, and
charge-conjugation parityC can be extracted from the large
t behavior of a lattice-regulated correlation functionC(t)
5^0uF̄ (R)(t)F̄ (R)(0)u0&, whereR is any irreducible repre-
sentation ofOh

C occurring in the subduced representati

JPC↓Oh
C , andF̄ (R)(t)5F (R)(t)2^0uF (R)(t)u0& is a gauge-

invariant, translationally invariant, vacuum-subtracted, r
operator capable of creating a glueball from the QC
vacuumu0&. As the temporal separationt becomes large, this
correlator tends to a single decaying exponen
lim

t˜`
C(t)5Z exp(2mGt), wheremG is the energy of the

lowest-lying state which can be created by the opera
F̄ (R)(t). To determinemG , the correlatorC(t) must be cal-
culated for large enought such that it is well approximated
03450
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by its asymptotic form. Unfortunately, stochastic fluctuatio
in C(t) remain roughly constant witht while the signal falls
rapidly and, hence, the use of a glueball operator for wh
C(t) attains its asymptotic form as quickly as possible
crucial for reliably extractingmG . The energies of excited
states in representationR can be obtained from the large-t
behavior of a matrix of correlation functionsCi j (t)
5^0uF̄ i

(R)(t)F̄ j
(R)(0)u0&, where each of the glueball opera

tors F̄ i
(R)(t) transforms asR under all symmetry operations

Again, it is very important to use operators for which th
matrix elementsCi j (t) attain their expected asymptoti
forms for t as small as possible.

Such operators can be constructed by exploiting lin
smearing and variational techniques as previously descr
in Ref. @1#. For each irreducible representationR, glueball
operators on a given time-slice are constructed in a sequ
of three steps. First, a set of six smearing schemes is app
to the spatial link variables. Each scheme is a sequenc
single-link and double-link mappings which depend on p
rametersls and l f , respectively. We use the same s
schemes described in Ref.@1#. Second, a set of basic rea
operatorsfa

(R)(t) is constructed using linear combinations
gauge-invariant, path-ordered products of the smeared
matrices about various closed spatial loops; each such li
combination is invariant under spatial translations and tra
form according to the irreducible representationR. The loop
shapes employed in our calculation, shown in Fig. 1,
chosen for their ease of computation; all orientations of th
operators can be computed very efficiently by first stor
the untraced products of links around the 12 spa
plaquettes stemming from each site on a time slice and t
tracing the appropriate products of these objects. Both sin
and double windings around the paths are used; this all
us to double the number of raw operators with only a sm
increase in computational effort. For each symmetry chan
exceptA2

21 , four irreducible combinations are then chos
and applied to the smeared links from each of the
schemes, yielding a total of 24 basic operators in each ch
nel. For theA2

21 , only the last shape in Fig. 1 can be us
and produces a total of 12 basic operators. Last, the glue
operatorsF (R)(t) are formed from linear combinations of th
basic operators,F (R)(t)5(ava

(R)fa
(R)(t), where the coeffi-

FIG. 1. The Wilson loop shapes used in making the basic g
ball operators.
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GLUEBALL SPECTRUM FROM AN ANISOTROPIC . . . PHYSICAL REVIEW D60 034509
cientsva
(R) are determined using the variational method. T

involves first obtaining Monte Carlo estimates of the lar
correlation matrix

C̃ab~ t !5(
t

^0uf̄a
(R)~t1t !f̄b

(R)~t!u0&, ~1!

where f̄a
(R)(t)5fa

(R)(t)2^0ufa
(R)(t)u0&. In practice, this

vacuum subtraction is only performed for theA1
11 channel

as the expectation value vanishes identically in all other s
tors. The coefficientsva

(R) are then chosen to minimize th
effective mass

m̃~ tD!52
1

tD
lnF (

ab
va

(R)vb
(R)C̃ab~ tD!

(
ab

va
(R)vb

(R)C̃ab~0!
G , ~2!

where the time separation for optimization is fixed totD
51. Other values oftD are used as consistency checks. L
v(R) denote a column vector whose elements are the opt
values of the coefficientsva

(R) . This vector satisfies the ei
genvalue equation

C̃~ tD!v(R)5e2tDm̃(tD)C̃~0!v(R), ~3!

and the eigenvectorv0
(R) corresponding to the lowest effec

tive massm̃0(tD) yields the coefficientsv0a
(R) for the operator

F0
(R)(t) which, under ordinary circumstances, best overla

the lowest-lying glueballG0 in the channel of interest. A
sequence of operatorsF1

(R)(t),F2
(R)(t), . . . which predomi-

nantly overlap excited glueball states can also be constru
using the higher-mass eigenvectors of Eq.~3!.

Monte Carlo estimates of the correlator matrix eleme
given in Eq.~1! were obtained for all 20 irreducible repre
sentations in five simulations using an input aspect ratio
rameterj55. The values for the couplingb, mean-link pa-
rameterus , smearing weightsls and l f , and the lattice
sizes used in these runs are listed in Table I. An additio
run at a smaller lattice spacing (;0.12 fm) and usingj

TABLE I. The glueball simulation parameters. Values for t
couplingb, input aspect ratio parameterj, the mean-link paramete
us

4 , the single-link smearing weightls , the two-link smearing
weight l f , and the lattice sizes are listed. Results for the hadro
scaler 0 in terms of the lattice spacingas are also given. The ap
proximate spatial lattice spacingsas are determined assumingr 0

21

5410(20) MeV.

b j us
4 ls l f Lattice r 0 /as as /r 0 as ~fm!

1.7 5 0.295 0.1 0.5 63330 1.224~1! 0.8169~9! 0.39
1.9 5 0.328 0.1 0.5 63330 1.375~2! 0.727~1! 0.35
2.2 5 0.378 0.1 0.5 83340 1.761~2! 0.5680~5! 0.27
2.4 5 0.409 0.1 0.5 83340 2.180~6! 0.459~1! 0.22
2.5 5 0.424 0.1 0.5 103350 2.455~6! 0.407~1! 0.20
3.0 3 0.500 0.4 0.5 153345 4.130~24! 0.2421~14! 0.12
03450
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53 was done for theA1
11 , E11, andT2

11 representations
only. A smaller-as measurement helped to obtain a reliab
continuum-limit extrapolation for the troublesomeA1

11

state. The input parameters for this run are also given
Table I. All computations were carried out on DEC Alph
and Sun Ultrasparc workstations. Configuration ensemb
were generated using Cabibbo-Marinari~CM! pseudo-heat-
bath and SU~2! subgroup over-relaxation~OR! methods.
Link variables were updated in serial order on the latti
Three compound sweeps were performed between mea
ments, where a compound sweep is one CM updating sw
followed by nOR OR sweeps. The measurements were av
aged into bins ofnmb, andnbins bins were obtained. For the
b53.0, j53 run, nOR55, nmb550, andnbins580. For the
b52.5, j55 run,nOR55, nmb520, andnbins5318. For all
of the other simulations,nOR53, nmb5100, andnbins5100.
Crude checks for residual autocorrelations were done
over-binning by factors of 2 and 4; in all cases, statisti
error estimates remained unchanged.

In the final analysis phase, the glue energiesmG were
extracted using a two-step procedure. First, the large co
lation matrices in each channel were reduced to smalle
33 matricesCAB(t) for A,B50,1,2 using the variationa
coefficients of the three lowest mass eigenstates of Eq.~3!:

CAB~ t !5(
t

^0uF̄A
(R)~t1t !F̄B

(R)~t!u0&. ~4!

Second, the expected large-t functional forms were fit to the
elements of these optimized correlators. To obtain an e
mate of the energymG0

~in terms ofat
21) of the lowest-lying

state in each channel, a single exponential was fit to
ground-state correlatorC00(t) for t5tmin , . . . ,tmax:

C00~ t !5Z00$e
2mG0

t1e2mG0
(T2t)%, ~5!

whereT was the temporal extent of the periodic lattice. T
determine the energiesmGp

of the excited states and anoth

estimate ofmG0
, theM3M optimized correlator matrix was

also fit for t5tmin , . . . ,tmax using the form

CAB~ t !5 (
p50

M21

ZApZBp$e
2mGp

t1e2mGp
(T2t)%, ~6!

for M52,3. Various fit regionstmin to tmax were used to
check for consistency in the extracted values for the mas
Best-fit values were obtained using the correlatedx2 method.
Error estimates were calculated using a 1024-point boots
procedure; in all cases, error estimates were nearly symm
ric about the central best-fit values and were thus average
simplify presentation. Our fits are far too numerous to l
here; additional details are available from the authors u
request.

Our final estimates of the glue energies in terms ofat
21

for the j55 simulations are presented in Table II; ener
estimates from thej53 run are listed in Table III. In order
to convert these results into physical units, the lattice sp
ings at must be determined for each simulation. The ha

ic
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COLIN J. MORNINGSTAR AND MIKE PEARDON PHYSICAL REVIEW D60 034509
ronic scale parameterr 0 @8# defined in terms of the force

between static quarks by@r 2dV(rW)/dr# r 5r 0
51.65, where

V(rW) is the static-quark potential, is a useful quantity for th
purpose. The values forr 0 in terms ofas corresponding to
each glueball simulation were determined by measuring
static-quark potential in separate simulations. The results
listed in Table I. Further details concerning the calculation
r 0 /as are given in Ref.@1#. Note that in computingr 0 /as ,
the input valuej was used for the aspect ratioas /at . The
consequences of doing so are discussed in Sec. V A.

TABLE II. Glue energy estimates in terms ofat
21 for the five

j55 simulations. The levels are labeled by the irreducible rep
sentations of the cubic point group under which their correspond
stationary states transform. First-excited states in a represent
are indicated by an asterisk.

b51.7 b51.9 b52.2 b52.4 b52.5

A1
11 0.578~5! 0.475~4! 0.362~3! 0.303~3! 0.288~4!

A1*
11 1.19~2! 0.92~3! 0.697~6! 0.569~4! 0.511~7!

A2
11 1.43~2! 1.27~3! 1.018~12! 0.824~8! 0.713~14!

E11 0.924~8! 0.844~6! 0.667~4! 0.538~3! 0.472~4!

E* 11 1.29~2! 1.093~12! 0.878~7! 0.723~9! 0.652~8!

T1
11 1.55~2! 1.32~2! 1.00~2! 0.834~4! 0.728~8!

T1*
11 1.73~3! 1.52~2! 1.23~4! 0.909~15! 0.823~13!

T2
11 1.103~8! 0.918~7! 0.686~4! 0.542~2! 0.477~3!

T2*
11 1.41~2! 1.228~12! 0.938~5! 0.730~8! 0.660~6!

A1
21 1.31~2! 1.06~5! 0.756~14! 0.605~11! 0.522~7!

A1*
21 1.86~9! 1.47~4! 1.08~2! 0.836~9! 0.72~2!

A2
21 — 1.63~5! 1.29~2! 1.036~12! 0.93~1!

E21 1.38~2! 1.167~14! 0.874~5! 0.698~4! 0.611~7!

E* 21 1.85~5! 1.49~3! 1.085~9! 0.890~6! 0.782~13!

T1
21 1.56~2! 1.42~2! 1.155~9! 0.873~13! 0.82~1!

T2
21 1.297~14! 1.148~10! 0.882~5! 0.695~4! 0.619~3!

T2*
21 1.60~2! 1.39~2! 1.087~9! 0.880~5! 0.771~9!

A1
12 — 1.67~5! 1.32~2! 1.062~14! 0.94~1!

A2
12 — 1.29~2! 0.999~11! 0.796~7! 0.700~14!

E12 — 1.52~3! 1.207~37! 0.929~8! 0.82~1!

T1
12 1.186~13! 1.053~8! 0.819~4! 0.652~5! 0.590~5!

T1*
12 1.55~3! 1.297~14! 1.025~8! 0.794~9! 0.73~2!

T2
12 — 1.330~16! 0.983~17! 0.801~4! 0.701~7!

T2*
12 — 1.45~2! 1.10~3! 0.929~15! 0.83~1!

A1
22 1.83~7! 1.61~5! 1.354~20! 1.04~3! 0.98~1!

A2
22 — 1.65~6! 1.201~18! 0.96~3! 0.82~2!

E22 1.59~3! 1.38~2! 1.094~11! 0.875~6! 0.78~1!

T1
22 1.72~4! 1.46~2! 1.07~3! 0.877~5! 0.760~9!

T2
22 1.63~3! 1.41~2! 1.114~8! 0.886~6! 0.77~1!

TABLE III. Glue energy estimates in units ofat
21 from the b

53.0, j53 simulation.

A1
11 0.318~4!

E11 0.476~3!

T2
11 0.476~3!
03450
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III. GLUEBALL IDENTIFICATION

The spectrum in a box with periodic boundary conditio
includes not only single glueball states, but also states c
sisting of several glueballs and/or torelons~gluon excitations
which wrap around the toroidal lattice!. We expect that the
operators used in our correlators will couple most strongly
the single glueball states, but we cannot be certain that m
ings with the multi-glueball and torelon states will be neg
gible. Recall that the asymptotic behavior of the correlat
function associated with an operatorF(t) is dominated by
the lowest-lying eigenstate which mixes withF. If a multi-
glueball or torelon state has a lower energy than the ligh
glueball in a given symmetry channel, then the possibi
exists that the energy we extract from the asymptotic de
of the correlator will be that of the multi-glueball or torelo
state. Thus, a means of differentiating the single glueb
states from all other states is required.

First, given mass estimates of the lowest-lying few glu
balls, one can easily determine the approximate location
a given symmetry channel of the two-glueball states hav
zero total momentum. If the simulation results in that cha
nel lie significantly below the two-glueball energy estimate
one can almost certainly rule out a multi-glueball interpre
tion.

Second, one can study the manner in which each ene
level changes as the lattice volume is varied. The energy
single glueball state depends on the lattice volume in a m
edly different way from that of a multi-glueball or torelo
state.

A third possibility is to include additional operators in th
correlation matrices which are expected to couple mu
more strongly with the two-glueball and torelon states. T
construction of operators which best overlap the lowest-ly
eigenstates of interest using the variational method then
volves not only single glueball operators, but also the n
two-glueball and torelon operators. The coefficients obtain
from the variational optimization can be used to estimate
mixings of the additional operators with the low-lying eige
states of interest. If the mixings of the additional tw
glueball and torelon operators with an eigenstate are v
small, a single glueball interpretation is assured; in suc
case, the addition of the new operators does not affect
extracted energy. If the mixings are significant, the addit
of the two-glueball and torelon operators will lower the e
tracted energy, ruling out a single glueball interpretation.

Ideally, it would be best to apply all three of these me
ods. However, for this initial scan of the glueball spectru
we decided for reasons of simplicity to rely mainly on th
first method. Having obtained the lowest-lying one or tw
states in each symmetry channel, we determined the app
mate locations of the two-glueball and torelon states. Sim
lation results lying near or above these thresholds were t
excluded from further consideration. In other words, we us
the two-glueball and torelon thresholds as filters to remo
possibly extraneous states. One additional simulation
done to study systematic errors from finite volume. This r
also served to confirm the single glueball nature of the sta
lying well below the two-glueball and torelon threshold

-
g
ion
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GLUEBALL SPECTRUM FROM AN ANISOTROPIC . . . PHYSICAL REVIEW D60 034509
Note that the levels lying near or above these thresho
cannot be ruled out as single glueball states; rather, one
say only that the interpretation of such states requires a
tional information.

A. Two-glueball states

In order to identify the genuine single glueball states,
first determined the approximate locations of the two-part
states using the mass estimates of the lightest few glueb
In estimating these locations, we assumed that the energ
a two-glueball state was given by

E2G'ApW 21m1
21ApW 21m2

2, ~7!

wherem1 is the rest mass of the glueball having moment
pW and m2 is the rest mass of the other glueball which h
momentum2pW . Note that on a periodic lattice havingNs
sites in each of the three spatial directions, the allowed m
menta are discretepW 52p(nx ,ny ,nz)/L, whereL5asNs and
nx , ny , and nz are integers satisfying2Ns/2,nj<Ns/2.
The above energy estimates neglect all interactions betw
the two glueballs; this should not introduce serious er
since we expect these interactions to be short ranged, b
mediated by scalar glueball exchange at large distan
Equation~7! also assumes that the rest masses and dispe
relations of the propagating glueballs are unaffected by fi
volume and finite lattice spacing errors. We have verifi
this assumption in the case of the scalar glueball fornx

2

1ny
21nz

2,9 on an 83340 lattice atb52.4 andj55.
To facilitate our discussion of the two-glueball states,

first point out some features of single, propagating glueb
in a finite box with periodic boundary conditions. Here, glu
ball states are characterized by their transformation pro
ties underOh

1C , the simple cubic crystallographic spac
groupOh

1 extended to include charge conjugation. The gro
Oh

1 is isomorphic to the semi-direct product of the group
pure ~discrete! translations and the group of pure~discrete!
rotations and reflections about a given center. Thus, a pr
gating glueball state may be classified by its momentumpW
and by its transformation properties under the subgroup
Oh

1C which leavespW invariant ~the little group ofpW ). The
little groups corresponding to various momentum orien
tions are listed in Table IV. Hence, the irreducible repres
tations of the little group may be used to identify propagat
glueball states. The little group varies with the moment
orientation. This means that the partitioning of the physi
glueball states into the irreducible representations of the
tice symmetry groups differs depending on the moment
orientation. For example, consider the 211 glueball. When
at rest, three of the five polarizations of this glueball app
in the T2

11 representation ofOh
C , the little group of pW

5(0,0,0), and two of its polarizations occur in theE11

representation. WhenpW 5(0,0,p) for pÞ0, the five polariza-
tions of the 211 glueball~which are no longer eigenstates
parity! split across theA1

1 , B1
1 , B2

1 , and E1 representa-
tions of the little groupC4v

C .
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We determined the lowest-lying two-glueball states
each symmetry channel by repeating the following seque
of steps for each allowed momentum vectorpW and each
choice of two glueballsG1 andG2. For the moment, assum
that G1 and G2 are distinguishable. Note thatG1 and G2

refer to the irreducible representations ofOh
C , the little group

for zero momentum. First, we identified the little groupL(pW )
of pW . Second, the charactersx (G1) andx (G2) of the represen-
tationsG1 andG2 were subduced into the little group, yield
ing the charactersx (Gj )↓L(pW ), which were then decompose
into the irreducible representationsm of the little group:
x (Gj )↓L(pW )5(mcm

(Gj )x (m). Next, for each m1 such that

cm1

(G1)
Þ0 and eachm2 such thatcm2

(G2)
Þ0, we formed a direct

productx (m1^ m2) to obtain the character corresponding to t
two-glueball state. Since the total momentum of this tw
glueball state is zero, it can be characterized by the irred
ible representations ofOh

C . A representation ofOh
C was

formed by constructing a set of coset representatives
applying the method of induction, and the induced charac
x (m1^ m2)↑Oh

C was finally decomposed into the irreducib
representations ofOh

C . WhenG1 andG2 were indistinguish-
able, the above procedure was modified to include B
symmetrization.

This procedure was carried out using the rest energ
obtained in theb52.5, j55 simulation. The lowest-lying
two-glueball states in each symmetry channel are listed
Table V. These levels, along with all higher lying levels, a
shown as dashed line segments in the shaded region in
2. Any energy lying well below the shaded region in th
figure can be safely interpreted as a single glueball s
~these are indicated by the solid black boxes!. States lying
slightly below~the black-outlined gray-filled boxes! or above
~the open boxes! the two-glueball thresholds must be r
garded with caution. Again, we remind the reader that
cannot rule out a single glueball interpretation for these l
els; additional information is needed to determine the nat
of these states. Since it is not our intent in this paper
obtain such information, we exclude these levels from
spectrum of single glueball states for the time being.

B. Torelon pairs

Torelons are gluonic excitations which wind around t
periodic boundaries of the lattice. They may be classifi

TABLE IV. The little groups of pW 52p(nx ,ny ,nz)/L on a
simple cubic lattice with periodic boundary conditions. Note th
l ,m,nÞ0 andlÞm, mÞn, and lÞn.

(nx ,ny ,nz) Little group

(0,0,0) Oh

(0,0,n) C4v

(0,n,n) C2v

(n,n,n) C3v

(0,m,n) Cs

(m,m,n) Cs

( l ,m,n) C1
9-5
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COLIN J. MORNINGSTAR AND MIKE PEARDON PHYSICAL REVIEW D60 034509
according to their behavior under a set of discreteZ3 sym-
metries of the SU~3! pure gauge theory. The gauge action
invariant under multiplication of every link in them direc-
tion (m50,1,2,3) at a givenm coordinate by the same mem
ber ofZ3, the center of SU~3!. The torelon is an eigenstate o
the transfer matrix which transforms nontrivially under su
symmetry operations. For example, the spectrum of glue o
periodic lattice contains a torelon eigenstate which picks u
phase exp(2pi/3) and a state which picks up a pha
exp(22pi/3) under the multiplication of every link in thex
direction at a givenx coordinate by the center memb
exp(2pi/3). In fact, there are three such pairs of modes c
responding to thex, y, andz directions. These torelons ca
also have a center-of-mass momentum in the two spatia
rections transverse to their flux direction. For largeL, a tore-
lon at rest has an energy given approximately bysL, where
s is the string tension from the static-quark potential andL is
the spatial extent of the lattice. We have confirmed this i
simulation on an 83324 lattice atb52.4, j53. Hence, the
torelon mass is strongly dependent on the volume of
lattice.

Our glueball operators, being closed Wilson loops wh
do not wrap around the lattice, are invariant under these c
ter symmetry transformations. This means that the glue
operators cannot create a single torelon state, but the cre
of torelon pairs of opposite center charge is possible. If
two torelons of opposite charge do not substantially inter
then the lowest energy of such a state is 2sL, which has the
value 0.9 when placed in Fig. 2. This lies sufficiently high

TABLE V. The lowest lying state consisting of two free glue
balls in each symmetry channel for theb52.5, j55 simulation.

Each state is comprised of a glueball having a momentumpW

52p(nx ,ny ,nz)/L, whereL510as , and another glueball having

momentum2pW .

Channel Glueballs (nx ,ny ,nz)

A1
11 (A1

11 ,A1
11) ~0, 0, 0!

A2
11 (A1

11 ,E11) ~0, 0, 1!
E11 (A1

11 ,A1
11) ~0, 0, 1!

T1
11 (A1

11 ,A1
11) ~0, 1, 2!

T2
11 (A1

11 ,A1
11) ~0, 1, 1!

A1
21 (A1

21 ,A1
11) ~0, 0, 0!

A2
21 (A1

11 ,T2
11) ~0, 0, 1!

E21 (A1
11 ,T2

11) ~0, 0, 1!
T1

21 (A1
11 ,E11) ~0, 0, 1!

T2
21 (A1

11 ,E11) ~0, 0, 1!
A1

12 (A1
11 ,T1

12) ~0, 1, 2!
A2

12 (A1
11 ,T1

12) ~0, 1, 1!
E12 (A1

11 ,T1
12) ~0, 1, 1!

T1
12 (A1

11 ,T1
12) ~0, 0, 0!

T2
12 (A1

11 ,T1
12) ~0, 0, 1!

A1
22 (A1

11 ,T1
12) ~0, 0, 1!

A2
22 (A1

11 ,T1
12) ~0, 1, 1!

E22 (A1
11 ,T1

12) ~0, 0, 1!
T1

22 (A1
11 ,T1

12) ~0, 0, 1!
T2

22 (A1
11 ,T1

12) ~0, 0, 1!
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discard from consideration, even for theA1
12 state since a

state of two torelons of opposite center charge and total z
momentum must be symmetric under charge conjugat
Fortunately, a torelon pair can be easily detected in a fin
volume study since their energy depends strongly onL. An
additional simulation was done to measure the changes i
energy levels as the lattice volume was reduced. The res
of this simulation are presented in the next section. No
ergy reductions of sufficient magnitude were found to su
gest that any of our states could be interpreted as a tor
pair.

IV. FINITE VOLUME ERRORS

An additional simulation was done to measure the syste
atic errors in our results from finite volume: a run atb
52.4, j55 on a 63340 lattice. The original 83340 lattice
has a spatial volume of (1.76 fm)3, assuming thatas

;0.22 fm from r 0
215410(20) MeV. The additional simu

lation measures the changes in the glueball masses a
volume is reduced from (1.76 fm)3to (1.32 fm)3. The input
parameters used in this small-volume run were the sam
those used in the larger volume simulation.

Let mG denote the energy of a stateG on the original
83340 lattice, andmG

S denote the energy ofG as measured
on the smaller 63340 lattice. The fractional change in th
energy is defined bydG512mG

S /mG . The results for these
fractional changes are shown in Fig. 3. Each point shows
fractional change in the energy of a stateG specified by

FIG. 2. Comparison of the pure-glue spectrum obtained fr
theb52.5, j55 simulation to the approximate locations of the tw
glueball states. The boxes are the simulation results; the stan
deviations in these mass estimates are indicated by the ver
heights of the boxes. The dotted line segments shown in the u
shaded region indicate the approximate locations of states con
ing of two free glueballs having zero total momentum. All energ
are in terms ofat

21 . The representations of the cubic point grou
which label the states are indicated along the horizontal axis.
most likely JPC interpretations of the states are also shown.
9-6
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GLUEBALL SPECTRUM FROM AN ANISOTROPIC . . . PHYSICAL REVIEW D60 034509
combining the representation label below the point on
horizontal axis with thePC value shown to its left on the
vertical axis. The solid lines indicatedG50, the dotted lines
above the solid lines indicatedG50.02, and the dotted line
below the solid lines indicatedG520.02. The largest effect
from finite volume occur in theA1*

11 andT1*
12 states. All

other changes are statistically consistent with zero, indica
that systematic errors in these results from finite volume
negligible. These results confirm the single glueball nature
all states, with the exception of theA1*

11 , lying well below
the two-glueball thresholds~the black boxes in Fig. 2!. Al-
though the change in the energy of theA1*

11 is not very
large, it is sufficient to warrant further study of this level. F
this reason, we withhold judgment on whether or not t
level is a single glueball. Note that most of the states ly
near or above the two-glueball thresholds~the gray-filled and
open boxes in Fig. 2! show very little finite volume depen
dence, suggesting that these states might actually be l
lived glueball resonances. Further study would be require
resolve this issue.

V. LATTICE SPACING ERRORS

There are two aspects to the removal of systematic er
from finite lattice spacing: extrapolation of the results to t
continuum limit as˜0, and the identification of the con
tinuum spin quantum numbers. In this section, we first ca
out theas˜0 extrapolations of the candidate single-glueb

FIG. 3. Finite-volume effects on the results of theb52.4, j
55 simulation. Each point shows the fractional changedG51
2mG

S /mG in the energy of a stationary stateG, wheremG is the
energy ofG as measured on an 83340 lattice, andmG

S is the energy
of G as measured on a smaller 63340 lattice. The stateG corre-
sponding to a given point is specified by combining the represe
tion label below the point along the horizontal axis with thePC
value shown to its left along the vertical axis. The solid lines in
cate dG50, the dotted lines above the solid lines indicatedG

50.02, and the dotted lines below the solid lines indicatedG5
20.02.
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levels remaining after the analysis of Sec. III and then
duce their continuum spin content.

A. Continuum limit extrapolations

The glueball mass estimates in terms ofat
21 , listed in

Table II, were combined with the determinations of the ha
ronic scaler 0 /as presented in Table I. The results are show
in Figs. 4–7. In these figures, the dimensionless product
r 0 and the glueball mass estimates are shown as function
(as /r 0)2. The solid symbols indicate the results from thej
55 simulations. The open symbols appearing to the righ
the vertical dashed lines indicate results from theb53.0, j
53 run, as well asj53 results for theA1

11 and A1*
11

channels previously obtained in Ref.@1#. To remove discreti-
zation errors from our glueball mass estimates, the results
each level in these figures must be extrapolated to the c
tinuum limit as /r 0˜0. The discretization errors can then b
seen as the deviations of the finite-as results from these lim-
iting values.

From perturbation theory, the leading discretization err
in our action are expected to beO(at

2 ,as
4 ,asas

2). The agree-
ment of theA1

11 , A1*
11 , E11, T2

11 , and T1
12 glueball

masses extracted usingj53 andj55 ~see Figs. 12 and 14
in Ref. @1#! suggests that theO(at

2) errors are negligible.
Some evidence for the smallness of theO(asas

2) errors
comes from our earlier glueball simulations@9# which used
the one-loop improved Lu¨scher-Weisz action@10#. After tad-
pole improvement, the radiative corrections to the couplin

a-

-

FIG. 4. Mass estimates of thePC511 glueballs in terms ofr 0

against the lattice spacing (as /r 0)2. The solid symbols indicate re
sults from thej55 simulations, and the open symbols on the rig
hand side of the vertical dashed line indicate results from thj
53 simulations. The solid curves are best fits to the simulat
results for each state usingw1(as) from Eq. ~10! for the A1

11 and
A1*

11 levels andw0(as) from Eq.~9! for all other levels. The open
symbols on the left-hand side of the vertical dashed line show
extrapolations to the continuum limit using the best-fit forms.
9-7
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COLIN J. MORNINGSTAR AND MIKE PEARDON PHYSICAL REVIEW D60 034509
in this action were found to be very small. For these reaso
we expect that theO(at

2 ,asas
2) errors will be negligible

compared to theO(as
4) errors.

In assumingas /at5j ~where j is the input anisotropy
parameter in the action!, we introduceO(as) errors in our
estimates of the glueball masses multiplied byr 0. ~Note that
these errors do not enter into ratios of the glueball mass!
Such errors can be avoided by instead settingas /at in a more

FIG. 5. Mass estimates~solid symbols! of the PC521 glue-
balls in terms ofr 0 against the lattice spacing (as /r 0)2. The solid
curves are best fits ofw0(as) from Eq. ~9! to the results for each
state; the open symbols are the continuum limit extrapolations.

FIG. 6. Mass estimates~solid symbols! of the PC512 glue-
balls in terms ofr 0 against the lattice spacing (as /r 0)2. The solid
curves are best fits ofw0(as) from Eq. ~9! to the results for each
state; the open symbols are the continuum limit extrapolations.
03450
s,

s.

physically motivated fashion, such as by comparing the s
tial and temporal length scales extracted from appropr
correlation functions. We can also use perturbation theor
adjust the couplings in our action to remove these err
order by order inas . However, we estimated the erro
caused by imposingas /at5j ~see below! and found them to
be too small to warrant the additional complexity of anoth
as /at-setting scheme or the effort required to calculate
one-loop corrections to the action. A simpler approach is
incorporate theO(as) anisotropy errors into our continuum
limit extrapolations. Unfortunately, their dependence onas is
not well known and, as we shall see, they are gener
smaller than the much more rapidly varyingO(as

4) errors.
Detecting their effects in a fit to about five data points foras
from 0.2 to 0.4 fm is not feasible. Thus, we decided to ad
the following approach: to extrapolate assumingO(as

4) er-
rors only and then include a systematic uncertainty in
continuum-limit results from theO(as) anisotropy errors.

One way to estimate this uncertainty is to compare m
surements of the static-quark potential extracted from Wils
loops taken along the different spatial and temporal axe
the lattice@11#. The anisotropy errors can be quantified
definingas /at in terms of these different potentials and com
paring the result toj. If we denote the determination of th
aspect ratio from the potentials by@as /at#V and defineZj by
the relation@as /at#V5Zjj, then the deviation ofZj from
unity gives us a measure of the fractional error from assu
ing as /at5j. The effect of these errors is to modify th
multiplicative r 0 /at factors used to convert the simulatio
results given in terms ofat

21 into units of r 0
21 suitable for

extrapolation. Using the functional dependence ofr 0 /at on j
from a fit to the static-quark potential, we determine th
(Zj21)/2 gives us an estimate of the fractional uncertai

FIG. 7. Mass estimates~solid symbols! of the PC522 glue-
balls in terms ofr 0 against the lattice spacing (as /r 0)2. The solid
curves are best fits ofw0(as) from Eq. ~9! to the results for each
state; the open symbols are the continuum limit extrapolations.
9-8
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GLUEBALL SPECTRUM FROM AN ANISOTROPIC . . . PHYSICAL REVIEW D60 034509
in our continuum limit results from the aspect ratio erro
Without mean-link improvement,Zj can deviate from unity
by as much as 30%. When the action includes mean-
factors, the corrections are found to be small, typically a f
percent. For example, for theb52.4, j55 run, we obtained
Zj50.987(8); for b53.0, j53, an estimate of Zj

50.99(1) was found. If we assign a conservative 2% er
from Zj , then this amounts to a 1% systematic uncertai
in our continuum-limit results from the anisotropy errors.

Another way to estimate the errors due to the aspect r
is from the perturbative calculation ofZj using the aniso-
tropic Wilson action~the analogous calculation usingSII has
not yet been done!. Modifying the results from Ref.@12# to
include tadpole improvement factors and writing the me
link parameterus512asus

(2)(j)1O(as
2), one finds

Zj511as$2p@ct~j!2cs~j!#1us
(2)~j!%1O~as

2!, ~8!

where the values forct(j) andcs(j) can be obtained from
Fig. 1 in Ref.@12#. From this equation, one sees that wh
j5325 andas;0.2, the aspect ratio receives less than
2% correction; if the tadpole improvement factorus

(2)(j) is
omitted, a large 30% correction is found. For the improv
actionSII , we expect that these values should be somew
smaller. Again, we can assign a conservative 2% error inZj

to obtain a 1% systematic uncertainty in our continuum
timates.

To summarize, our approach is to extrapolate to the c
tinuum limit using

w0~as!5r 0mG1c4

as
4

r 0
4

, ~9!

wherer 0mG andc4 are the best-fit parameters, and then a
a 1% systematic uncertainty from theO(as) anisotropy er-
rors. Equation~9! worked well in all cases except for th
A1

11 andA1*
11 levels. The best-fit curves using Eq.~9! are

shown in Figs. 4–7; the extrapolations of these curves to
continuum limit are indicated in these figures by the op
symbols on the left-hand sides of the vertical dashed lin
Note that the extrapolation uncertainties shown in these p
do not yet include the systematic anisotropy error.

As discussed in Ref.@1#, our results for theA1
11 and

A1*
11 levels remain problematical. These levels have la

finite-lattice-spacing errors which do not obey Eq.~9!. There
is growing evidence that these large discretization errors
due to the presence of a critical end point of a line of ph
transitions ~not corresponding to any physical transitio
found in QCD! in the fundamental-adjoint coupling plan
@13–15#. It has been conjectured that this critical point d
fines the continuum limit of af4 scalar field theory@14#. As
one nears this critical point, the coherence length in the s
lar channel becomes large, which means that the mass g
this channel becomes small; all other observables, includ
glueball masses, appear to be affected to a much lesse
tent. The effect of this critical point on the functional form
the discretization errors in the scalar glueball mass is
well known, and so we must proceed somewhat empirica
03450
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One possibility is that the critical point might enhance t
perturbativeO(as) errors; another is that it may induce a
O(as

2) error which would not otherwise be present. We
several simple functions to theA1

11 mass results and foun
that the following two functions worked very well:

w1~as!5r 0mG1c4

as
4

r 0
4

2S d2

as
2

r 0
2

1d4

as
4

r 0
4 D @ ln~asL!#21,

~10!

w2~as!5r 0mG1c2

as
2

r 0
2

1c4

as
4

r 0
4

1c6

as
6

r 0
6

, ~11!

wherer 0mG , c4 , c6 , d2, andd4 are the best-fit parameters
Equation ~11! is simply a cubic polynomial in (as /r 0)2.
Equation~10! incorporates the expected leading depende
on the QCD couplingas(as);21/ln(asL) up to O(as

4).
Various estimates of the QCD scale parameterLMS suggest
that r 0LMS;0.6. Hence, we usedr 0L50.5 and verified that
our continuum limit estimates were insensitive to the cho
of r 0L in the range from about 0.3 to 0.8. Bothd2 and d4
terms were needed to achieve this insensitivity.

The best-fit curves using Eq.~10! are shown in Fig. 4. The
best fit to theA1

11 results hasx2/NDF50.57, and for the
A1*

11 , we find x2/NDF50.35. The extrapolation of thes
curves to the continuum limit yieldsr 0m(A1

11)54.21(7)
and r 0m(A1*

11)56.50(44). Using Eq.~11!, we obtain
r 0m(A1

11)54.30(8) with x2/NDF50.53 andr 0m(A1*
11)

56.52(54) with x2/NDF50.35. Sincew1(as) was more
closely connected to a perturbative analysis, we chose
estimates obtained using Eq.~10! for our final results, but
added the differences between the two extrapolations a
systematic error. After including an additional 1% aniso
ropy error, we end up withr 0m(A1

11)54.21(12) and
r 0m(A1*

11)56.50(45).
Note that theA1

11 estimate differs slightly from our ear
lier estimate of 3.98(15) given in Ref.@1#. Our previous
extrapolation suffered from the absence of a mass meas
ment at a lattice spacing smaller than 0.2 fm; the need
such a measurement to obtain a reliable continuum limit
timate for this level was acknowledged in Ref.@1#. The cur-
rent study includes a new measurement at a lattice spa
near 0.1 fm; the inclusion of this new measurement is
sponsible for the slight difference in the two extrapolation
Note that our improved estimate 4.21(12) agrees very w
with the value 4.33(5) obtained by extrapolating existi
Wilson action data for the scalar glueball mass. Unfor
nately, the mass of theA1*

11 is very poorly determined be
cause a measurement of theA1*

11 mass was not obtained i
the b53.0, j53 simulation.

Recently, we have demonstrated that the discretization
rors in the SU~3! scalar glueball mass can be dramatica
reduced by simulating with an action which includes an a
ditional two-plaquette interaction@15#. With such an action,
we should be able to substantially improve upon our de
minations of the scalar-channel glueball masses in the n
future. A study in SU~2! lattice gauge theory@16# has also
9-9
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COLIN J. MORNINGSTAR AND MIKE PEARDON PHYSICAL REVIEW D60 034509
shown that lattice-spacing errors in the scalar glueball can
reduced by using the mean spatial and temporal links in L
dau gauge for the values of the link variable renormalizat
parametersus andut , respectively.

B. Spin identification

The last step in our calculation of the glueball spectrum
to identify the continuum spin content of each level. This
done by matching the observed patterns of degeneracie
the levels from differentOh

C representations to those e
pected for the various continuumJPC states. For example,
J50 state occurs only in theA1 representation ofO, a J
52 state occurs in both theE andT2 representations, and
state ofJ53 gets split across theA2 , T1, andT2 represen-
tations. The numbers of times that the irreducible repres
tations of the octahedral groupO occur in the subduced rep
resentationsJ↓O of the rotation groupSO(3) restricted to
the subgroupO are listed in Table VI. Given the values i
this table and either the continuum limit estimates in Fi
4–7 or the results shown in Fig. 2, we can then deduce
continuum spin quantum numbers.

Consider first thePC511 sector. TheA1
11 state is not

degenerate with any other level; hence, it can be identifie
a J50 state. TheE11 and T2

11 states are degenerate, im
plying that they correspond to the five polarizations of aJ
52 glueball. TheA1*

11 state is seen to have no degener
partners, suggesting aJ50 excited state. TheA2

11 state can
correspond toJ53,6,7,9, . . . . For all oftheseJ values, there
should be an accompanying level in theT1

11 channel, and
such a level is observed. We conclude that theA2

11 andT1
11

states correspond most likely to aJ53 state, but the less
likely J56,7,9, . . . interpretations cannot be ruled out. Th
J53 assignment is also supported by model predictions,
cussed in Sec. VI.

In the PC521 sector, theA1
21 and A1*

21 states are
easily identified withJ50 states, and the degenerateE21

and T2
21 states must correspond to aJ52 glueball. The

TABLE VI. Number of times each irreducible representation
the octahedral groupO occurs in the subduced representationsJ↓O
of the rotation groupSO(3) restricted to subgroupO.

J A1 A2 E T1 T2

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1
5 0 0 1 2 1
6 1 1 1 1 2
7 0 1 1 2 2
8 1 0 2 2 2
9 1 1 1 3 2
10 1 1 2 2 3
11 0 1 2 3 3
12 2 1 2 3 3
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degenerateE* 21 andT2*
21 states most likely correspond t

a J52 state as well, although as noted in Sec. III, the pro
imity of these levels to the two-glueball threshold leav
their status somewhat uncertain. Also, we cannot statistic
rule out the possibility that, in combination with two states
the T1

21 representation, they are associated with aJ55
glueball. We cannot rule out an accompanying degene
level in theA1

21 channel. If such a state exists, then the
could be the levels corresponding to aJ54 or aJ58 glue-
ball.

The T1
12 state must correspond to aJ51 glueball, and

the degenerateA2
12 , T1*

12 , andT2
12 levels correspond to a

J53 glueball. A glueball havingJ52 is the most likely
interpretation for the degenerateE12 and T2*

12 states.
However, we cannot rule out the possibility of accompan
ing levels in theT1

12 and A2
12 channels. Taking all possi

bilities into account, the alternate interpretations areJ
55,7,11. The very high lyingA1

12 can be interpreted as
J50 glueball, butJ54,6,8, . . . cannot be excluded.

Finally, consider thePC522 sector. The most probabl
scenario is as follows: theT1

22 corresponds to aJ51 glue-
ball, the degenerateE22 andT2

22 are the five polarizations
of a J52 glueball, and theA2

22 is a J53 state. Of course
we cannot rule out the presumably higher-lyingJ
56,7,9,11, . . . interpretations for theA2

22 . Another possi-
bility is that the E22, T1

22 , and T2
22 are degenerate, in

which case they could correspond to aJ55 glueball. Even
less likely is that all four levels are degenerate. In this ca
one could interpret them as a singleJ57 or J511 state, or
as accidentally degenerateJ53 and J52 glueballs. How-
ever, all higher-spin interpretations would require a degen
ate ground state in either theT1

22 or T2
22 channel. Our

correlator fits suggest that these degeneracies are mis
makingJ55,6,7 . . . interpretations unlikely.

VI. RESULTS AND DISCUSSION

Our final results for the glueball spectrum in terms ofr 0
are given in Table VII. In this table, we assumed the m
likely spin interpretations as described in the previous s
tion and accordingly combined the continuum limit extrap
lations~shown as open symbols on the left-hand sides of
vertical dashed lines in Figs. 4–7! and then added the 1%
anisotropy error, to obtain final estimates for the glueb
masses in terms ofr 0. The combinations used to obtain the
estimates are also indicated in Figs. 4–7 by theJPC labels
near the left vertical axes. Wherever applicable, we have
indicated in Table VII any alternative spin interpretatio
which cannot be ruled out. These final estimates are a
shown in Fig. 8. The 0* 11 and 2* 21 states are shown a
dashed open boxes to indicate that their interpretations
glueballs are tentative. Our concern about the 0* 11 state
stems from its non-negligible finite volume effects; for th
2* 21 state, its nearness to the two-glueball threshold in
simulations is worrisome. Note that our estimat
r 0m(011)54.21(12) andr 0m(211)55.85(6) agree very
well with 4.33(5) and 6.0(1), respectively, obtained by ex
trapolating the Wilson action simulation results from Re
9-10
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@2,3,17,18# to the continuum limit. Several glueball mass r
tios are presented in Table VIII. We can determine th
ratios very accurately since, as noted earlier, they are
contaminated by anisotropy errors. The uncertainties gi

TABLE VII. Final continuum-limit glueball mass estimate
mG . When a uniqueJ interpretation for a state cannot be made, t
other possibilities are indicated in the second column. States w
interpretation requires further study are indicated by a dagger
column 3, the first error is the statistical uncertainty from t
continuum-limit extrapolation and the second is the estimated
certainty from the anisotropy. In the final column, the first er
comes from the combined uncertainties inr 0mG , the second from
the uncertainty inr 0

215410(20) MeV.

JPC OtherJ r0mG mG (MeV)

011 4.21~11!~4! 1730 ~50! ~80!

211 5.85~2!~6! 2400 ~25! ~120!
021 6.33~7!~6! 2590 ~40! ~130!
0* 11 6.50 (44)(7)† 2670 ~180!~130!
112 7.18~4!~7! 2940 ~30! ~140!
221 7.55~3!~8! 3100 ~30! ~150!
312 8.66~4!~9! 3550 ~40! ~170!
0* 21 8.88~11!~9! 3640 ~60! ~180!
311 6,7,9, . . . 8.99~4!~9! 3690 ~40!~180!
122 3,5,7, . . . 9.40~6!~9! 3850 ~50! ~190!
2* 21 4,5,8, . . . 9.50 (4)(9)† 3890 ~40!~190!
222 3,5,7, . . . 9.59~4!~10! 3930 ~40! ~190!
322 6,7,9, . . . 10.06~21!~10! 4130 ~90!~200!
212 5,7,11, . . . 10.10~7!~10! 4140 ~50!~200!
012 4,6,8, . . . 11.57~12!~12! 4740 ~70!~230!

FIG. 8. The mass spectrum of glueballs in the pure SU~3! gauge
theory. The masses are given in terms of the hadronic scaler 0 along
the left vertical axis and in terms of GeV along the right vertic
axis ~assumingr 0

215410 MeV). The mass uncertainties indicate
by the vertical extents of the boxes donot include the uncertainty in
settingr 0. The locations of states whose interpretation requires
ther study are indicated by the dashed open boxes.
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in Table VIII are calculated using the empirical fact th
correlations between different symmetry channels w
found to be negligible. Note that the pseudoscalar glueba
clearly resolved~at the 7s level! to be heavier than the ten
sor.

All of the glueball states shown in Fig. 8 are stable agai
decay to lighter glueballs. In thePC511 sector, the
threshold for decay into two identical 011 glueballs having
zero total momentum is twice the mass of the scalar glueb
Although this lies below the mass of the 311 glueball, Bose
symmetrization prohibits oddL partial waves, whereL is the
relative orbital angular momentum, so that the 311 glueball
cannot decay into two identical scalar glueballs. In thePC
521 sector, the lowest-lying two-glueball state consists
011 and 211 glueballs in a relativeP wave; all of our
glueballs in this sector have masses below the sum of
scalar and tensor glueball masses. States of total zero
mentum and comprised of the 011 and 112 glueballs with
relative orbital angular momentumL are the lowest-lying
two-glueball states in thePC512 sector whenL is even
and in thePC522 sector whenL is odd. Only the 012

glueball has sufficient mass to decay into two such glueba
however, this decay is forbidden becauseL51 is required to
make a state of zero total angular momentum.

To convert our glueball masses into physical units,
value of the hadronic scaler 0 must be specified. We use
r 0

215410(20) MeV from Ref.@1# to obtain the scale shown
on the right-hand vertical axis of Fig. 8. This estimate w
obtained by combining Wilson action calculations ofa/r 0
with values of the lattice spacinga determined using
quenched simulation results of various physical quantit
such as the masses of ther and f mesons, the decay con
stant f p , and the 1P-1S splittings in charmonium and bot
tomonium. Note that the errors shown in Fig. 8 do not
clude the uncertainty inr 0

21. For the lowest-lying glueballs
we obtain m(011)51730(50)(80) MeV and m(211)
52400(25)(120) MeV, where the first error comes from t
uncertainty inr 0mG and the second error comes from th
uncertainty inr 0

21. A great deal of care should be taken
making direct comparisons with experiment since these
ues neglect the effects of light quarks and mixings w
nearby conventional mesons. It is this mixing which h
made the search for an incontrovertible experimental sig
so difficult. A glueball having exoticJPC will not mix with
conventional hadrons and would be ideal for establishing
existence of glueballs. Unfortunately, our results indic

se
In

n-
r

l

r-

TABLE VIII. Glueball mass ratios.

m(211)/m(011) 1.39(4)
m(021)/m(011) 1.50(4)
m(0* 11)/m(011) 1.54(11)
m(112)/m(011) 1.70(5)
m(221)/m(011) 1.79(5)
m(312)/m(011) 2.06(6)
m(0* 21)/m(011) 2.11(6)
m(021) /m(211) 1.081(12)
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that the lightest such state, the 212 glueball, has a mas
greater than 4 GeV.

Kuti has recently pointed out@19# that the glueball spec
trum shown in Fig. 8 can be qualitatively understood
terms of interpolating operators of minimal dimension whi
can create glueball states. With the expectation that hig
dimensional operators create higher mass states, the au
in Ref. @20#, following an approach suggested in Re
@21,22#, constructed all operators of dimension 4, 5, and
capable of creating glueballs from the QCD vacuum. Su
operators are gauge-invariant combinations of the chro
electric and chromomagnetic fields; operators equivalent
total derivative or related to a conserved current are
cluded. The lowest dimensional operators capable of crea
glueballs are of dimension four and have the fo
TrFmnFab , where Fmn is the gauge field strength tenso
these operators create glueballs withJPC5011,211,021

and 221. The dimension-5 operators of the for
TrFmnDdFab , whereDm is the covariant derivative, produc
only two new glueball states havingJPC5111 and 311. At
dimension 6, operators of the form TrFmnFabFds produce
JPC5061,166,266, and 362; operators of the form
TrFmn$Da ,Db%Fds produceJPC5121,321, and 461. Of
course, this ordering should not be taken too quantitativ
but we find that the method provides a reasonably satis
tory explanation of the observed spectrum, especially gi
the simplicity of the approach. Of the lightest six states
resolve, four have the quantum numbers expected from
dimension-4 interpolating operators. The method also
plains the absence of any low-lying 062 and 121 glueballs.

The spectrum of Fig. 8 can also be reasonably well
plained in terms of a simple constituent gluon model
which the fundamental gluon field is replaced by the Hart
modes of a constituent field with residual perturbative int
actions; the Hartree modes are taken to be the modes
free gluon inside a spherical cavity with confining bounda
conditions. Such a~bag! model has been recently revisited
Ref. @19#. Using values foras and the bag pressure appr
b
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priate for heavy-quark spectroscopy and the static-quark
tential, remarkable agreement with the observed levels
Fig. 8 was found.

VII. CONCLUSION

In this paper, we used numerical simulations of gluons
spatially coarse, temporally fine lattices to significantly im
prove our knowledge of the glueball spectrum in SU~3!
Yang-Mills theory. This is an important step towards und
standing glueballs in the real world. Six simulations for sp
tial grid separations ranging from 0.1 to 0.4 fm were p
formed on DEC Alpha and Sun Ultrasparc workstation
Care was taken to differentiate single glueball states fr
unwanted two-glueball and torelon-pair states. An additio
small-volume simulation assisted in the identification of t
single glueball states and demonstrated the smallness of
tematic errors from finite volume. The simulation resu
were extrapolated to the continuum limit and the continu
spin quantum numbers were identified. The end res
shown in Fig. 8, was a nearly complete survey of the glueb
spectrum in the pure glue theory below 4 GeV. A total of
glueballs were found, and two other tentative candida
were also located.

In the future, we plan to improve our determinations
the scalar-channel glueballs by simulating with an action t
includes an additional two-plaquette interaction. We also
tend to extend our anisotropic lattice technology to inclu
quarks. With the help of femto-universe techniques, we h
ultimately to investigate the properties of glueballs in reali
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