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Glueball spectrum from an anisotropic lattice study
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The spectrum of glueballs below 4 GeV in the (SUpure-gauge theory is investigated using Monte Carlo
simulations of gluons on several anisotropic lattices with spatial grid separations ranging from 0.1 to 0.4 fm.
Systematic errors from discretization and finite volume are studied, and the continuum spin quantum numbers
are identified. Care is taken to distinguish single glueball states from two-glueball and torelon-pair states. Our
determination of the spectrum significantly improves upon previous Wilson action calculations.
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[. INTRODUCTION away all of the other unwanted states. An additional small-
volume simulation is done to assist in this identification and
Gluon self-coupling in quantum chromodynami€CD)  to study the systematic errors from finite volume. Finally,
suggests the existence of glueballs, bound states of maingiscretization errors are treated by extrapolating the energies
gluons. Incontrovertible experimental evidence for their ex-f0 the continuum limit and determining the continuum spin
istence remains elusive, however. A primary reason for thig§luantum numbers. The end result is a nearly complete sur-
is the difficulty in extracting the properties of glueballs from V€Y of the glueball spectrum in the pure gauge theory below
the QCD Lagrangian. Investigating glueball physics requiregt GeV. We find a total of 13 glueballs; two other tentative
an intimate know|edge of the Conﬁning QCD vacuum, andcand|date.s are also located. With the .eXC-e-puon Of the I|ght
such knowledge cannot be obtained using standard perturbglueballs in the 0™ sector, our results significantly improve
tive techniques. Numerical simulations of the theory on auPon those from previous studig-4] of the complete low-
space-time lattice currently provide the most reliable mean&/ing glueball spectrum. _
of studying glueballs. However, correlation functions of glu-  This paper is organized as follows. The details of the
onic exitations are notoriously difficult quantities to measureSimulations, including the construction of the glueball opera-
in Monte Carlo simulations, requiring large-scale computertors. the generation of the gauge-field configurations, the ex-
resources when applying standard stochastic techniques. Réaction of energies from Monte Carlo estimates of the cor-
cently, the use of spatially coarse, temporally fine latticegelation functions, and the lattice spacing determinations in
and improved actions was demonstrated to dramatically interms of the hadronic scafg, are described in Sec. II. All of
crease the efficiency of glueball simulatiois. our energy estimates in terms of the inverse temporal Iqttlce
The objective in this paper is to apply the techniques ofSPacing are pfesented in this section. In Sec. lll, the differ-
Ref.[1] to substantially improve our knowledge of the glue- €ntiation of single glueball states from two-glueball and
ball spectrum in pure S@3) gauge theory. Detailed informa- torelon-pair stat_es is discussed. Systematic errors from f|_n|te
tion on this spectrum is important for validating models of volume are studied in Sec. IV. The removal of lattice spacing
confined gluons and may help focus experimental searchéytors, including the extrapolations to the continuum limit
for candidate glueball resonances. We also view this calcu@nd the identification of the continuum spin quantum num-
lation as a necessary first step before attempting to includBers, is described in Sec. V. We also discuss the problemati-
the effects of quarks. Note that unlike the quenched approxic@l scalar states in this section and cite ongoing efforts to
mation for mesons and baryons’ the pure g|ue theory is Epduge their discretization errors. SQCtI_On VI pl’esentS a.d|S'
physical quantum field theory with a unita§matrix. First, —cussion of the spectrum, and our findings are summarized
we perform six simulations for spatial lattice spacings rangWith an outline of future work in the concluding Sec. VII.
ing from 0.1 to 0.4 fm to determine the energies of the
lowest-lying statio_nary states in all of the symmetry channels Il. SIMULATION DETAILS
allowed on a cubic lattice. In many channels, we also deter-
mine the energies of the first-excited states. Our goal is then Our glueball mass determinations rely on numerical simu-
to extract the masses of as many low-lying glueballs as podations of gluons on a Euclidean space-time lattice with spa-
sible from the 141 measurements which were made. Sincéal and temporal spacings anda;, respectively. The glu-
the spectrum of glue defined in a box with periodic boundaryons are described by the improved act®nused in Ref[1].
conditions includes not only single glueball states, but alsdrhe couplings in the action depend on two paramej@iesnd
states consisting of several glueballs and/or torelghson &, and are determined using a combination(vée-leve)
excitations which wrap around the toroidal latlica means perturbation theory and mean-field theory, implemented by
of identifying the single glueballs must be employed to prunerenormalizing the spatial link variabled;(x)—U;(x)/us,
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whereus is given by the fourth root of the average plaquette

[5]. The temporal link variables are not renormalized. The /—7 //—‘—_7
lattice anisotropyag/a; is given by ¢ at the tree level in -
perturbation theory. This action is intended for use vath
<a,, hasO(a?,a’,a.a?) discretization errors, where, is « « > >
the QCD coupling, and couples only nearest-neighbor time / / 1 Y I
slices, ensuring the free-gluon propagator has no spurious * 7
modes. In all cases, glueball effective masses are seen to
converge monotonically from above. This is a very desirable {? >

feature since it validates the use of variational techniques to

minimize excited-state contributions to the glueball correla- <7;—Z/---:,-—7
tion functions. Such techniques are crucial for precise glue- L, —
ball mass extractions.

On a simple cubic lattice, zero-momentum stationary glu
states are characterized by their transformation properties u%)
der the octahedral point grou®, combined with parity and
charge conjugation operatior®.has 24 elementavhich are
all proper rotationsthat fall into five conjugacy classes; the
single-valued irreducible representations are labglgdA,,

E, T,, and T,, (Schanfliess notation6]) and have dimen-
sions 1, 1, 2, 3, and 3, respectively]. The inclusion of

FIG. 1. The Wilson loop shapes used in making the basic glue-
all operators.

by its asymptotic form. Unfortunately, stochastic fluctuations
in C(t) remain roughly constant withwhile the signal falls
rapidly and, hence, the use of a glueball operator for which
C(t) attains its asymptotic form as quickly as possible is
crucial for reliably extractingng. The energies of excited

parity resilts in the symmetry group known & =0 states in representatidR can be obtained from the large-

®C;, whereC; denotes a two-element group consisting ofbeha\ﬁ?é) Of_(";) matrix of correlation - functions;;(t)
the identity operation and spatial inversion. The conventionaF (0| ®i™ (1) ®;™(0)|0), where each of the glueball opera-
labels for the irreducible representations@f are obtained tors ®®)(t) transforms a®R under all symmetry operations.
from those ofO by appending a subscrigtfor representa- Again, it is very important to use operators for which the
tions corresponding to states which are even under parity angiatrix elementsC;;(t) attain their expected asymptotic
u for odd parity representations. However, we shall use dorms fort as small as possible.
slightly different notation. Instead of the subscrigtandu, Such operators can be constructed by exploiting link-
we use superscripts and —, respectively, to indicate the smearing and variational techniques as previously described
eigenvalueP of parity. Glueball states are also eigenstates ofn Ref. [1]. For each irreducible representati®&® glueball
charge conjugation. We denote the eigenvalue of chargesperators on a given time-slice are constructed in a sequence
conjugation parity byC, as usual, and introduce an additional of three steps. First, a set of six smearing schemes is applied
superscript in the representation labels. We refer to the fullo the spatial link variables. Each scheme is a sequence of
symmetry group of zero-momentum glueball states on a&ingle-link and double-link mappings which depend on pa-
simple cubic lattice a@ff or OPS; the irreducible represen- rameters\g and A\, respectively. We use the same six
tations are labeled\[, A5, EPC, TP¢, and T5C. For  schemes described in Réfl]. Second, a set of basic real
convenience, we uge when referring to these labels in gen- operators(;&&R)(t) is constructed using linear combinations of
eral. Note that when we use one of these labels to identify gauge-invariant, path-ordered products of the smeared link
particular state, we refer to the lowest-lying zero-momentunmatrices about various closed spatial loops; each such linear
state in the symmetry channel indicated by the representatioepmbination is invariant under spatial translations and trans-
label. The first-excited state in a particular symmetry channeform according to the irreducible representatiriThe loop
will be denoted by the representation label with an asteriskshapes employed in our calculation, shown in Fig. 1, are
The mass of a gluebalt having spinJ, parity P, and  chosen for their ease of computation; all orientations of these
charge-conjugation parit¢ can be extracted from the large- operators can be computed very efficiently by first storing
t behavior of a lattice-regulated correlation functi@ft)  the untraced products of links around the 12 spatial
—(0|®®(t)®(0)|0), whereR is any irreducible repre- Plaquettes stemming from each site on a time slice and then
sentation ofOﬁ occurring in the subduced representationtrac'ng the appropriate products of these objects..Bo_th single
3PC10C, and®®(1) = bR (1) — (0] dR(1)|0) is a gauge- and double windings around the paths are used; this allows

) . lationally i . b q s to double the number of raw operators with only a small
Invariant, translationally invariant, vacuum-subtracted, reaj, aase in computational effort. For each symmetry channel
operator capable of creating a glueball from the QCD

. - ~“exceptA, , four irreducible combinations are then chosen
vacuum|0). As the temporal separatidgrbecomes large, this

comelator tends to  a  sinale decaving e onent'aland applied to the smeared links from each of the six
X Ny ) ying — exp '&schemes, yielding a total of 24 basic operators in each chan-
lim,__C(t)=Zexp(~mgt), wheremg is the energy of the

nel. For theA, *, only the last shape in Fig. 1 can be used
lowest-lying state which can be created by the operatoand produces a total of 12 basic operators. Last, the glueball
®(R)(t). To determinemg, the correlatoiC(t) must be cal-  operatorsb(®(t) are formed from linear combinations of the
culated for large enoughsuch that it is well approximated basic operatorsp®(t)== v{P ¢P(t), where the coeffi-
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TABLE I. The glueball simulation parameters. Values for the =3 was done for thé\f* ,ETT, and T2+Jr representations
coupling3, input aspect ratio parametgythe mean-link parameter  onjy, A smallera, measurement helped to obtain a reliable
Us, the single-link smearing weighks, the two-link smearing  continyum-limit extrapolation for the troublesoma; *
weight\, and the lattice sizes are listed. Results for the hadronicstate_ The input parameters for this run are also given in
scalery in terms of the lattice spacing are also given. The ap- Table I. All computations were carried out on DEC Alpha
proximate spatial lattice spacings are determined assuming * and Sun Ultrasparc workstations. Configuration ensembles
=410(20) MeV. were generated using Cabibbo-Marin&BM) pseudo-heat-
bath and S(R) subgroup over-relaxatiofOR) methods.

4 .
A& U s M latice Tola Mo 3 (M | ik variables were updated in serial order on the lattice.
1.7 5 0.295 0.1 0.5 $x30 1.2241) 0.81699) 0.39 Three compound sweeps were performed between measure-
1.9 5 0.328 0.1 0.5 $x30 1.37%52) 0.7271) 0.35 ments, where a compound sweep is one CM updating sweep
22 5 0.378 0.1 05 B<40 1.7612) 0.568@5 0.27 followed by ngg OR sweeps. The measurements were aver-
2.4 5 0.409 0.1 0.5 B<40 2.1806) 0.4591) 0.22 aged into bins ofh,,,, andny,s bins were obtained. For the

25 5 0424 0.1 05 Bx50 2.45%6) 0.4071)  0.20 B=3.0, £=3 run,Npr=5, Npy=>50, andny;,s=80. For the

3.0 3 0500 0.4 0.5 PXx45 4.13024) 0.242114) 0.12 B=2.5, §=5 run,nog="5, Np,= 20, andny;,s=318. For all

of the other simulationg)gr= 3, n,,p= 100, andn;,s= 100.

Crude checks for residual autocorrelations were done by

cientsv(® are determined using the variational method. Thisover-binning by factors of 2 and 4; in all cases, statistical

involves first obtaining Monte Carlo estimates of the large€rror estimates remained unchanged.

correlation matrix In the final analysis phase, the glue energies were

extracted using a two-step procedure. First, the large corre-

~ B —R) —R) lation matrices in each channel were reduced to smaller 3
Caﬁ(t)_ET (0[ b (T+0) ¢ (1)]0), 1) X3 matricesCug(t) for A,B=0,1,2 using the variational

coefficients of the three lowest mass eigenstates of q.

where ¢ (t)=¢P(t)—(0]¢P(1)|0). In practice, this
vacuum subtraction is only performed for tA§ © channel Cas(t)=>, (0N (r+t)®P(7)|0). (4)
as the expectation value vanishes identically in all other sec- T

tors. The coefficients? are then chosen to minimize the

. Second, the expected lariéunctional forms were fit to the
effective mass

elements of these optimized correlators. To obtain an esti-
mate of the energyng, (in terms ofa, 1Y of the lowest-lying

1 2 V&R)V%R)éaﬁ(tD) state in each channel, a single exponential was fit to the
ﬁ](tD): — t_|n “p , 2 ground-state correlatd@q(t) for t=tyin, - - - tmax:
P > vIRVRT (0 —mg ta a—mg (T—t)
< Ve UB aB Coo(t)=Zpgle” Mo + e~ Met " Y (5

where the time separation for optimization is fixedttp ~ WhereT was the temporal extent of the periodic lattice. To
—1. Other values ofp, are used as consistency checks. Letdetermine the energiesg of the excited states and another
v(®) denote a column vector whose elements are the optimaistimate oimg , theM x M optimized correlator matrix was
values of the coefficients?) . This vector satisfies the ei- also fit fort=t,,, . . . {tma USing the form

genvalue equation -

a(tD)V(R)zeitDFh(tD)AC(O)V(R), (3) CAB(t): pZO ZApZBp{e_mGpt+ e_mGp(T_t)}, (6)

and the eigenvectng) corresponding to the lowest effec- ¢, \ —2,3. Various fit regiong,, to t,, were used to
(R

tive massmy(tp) yields the coefficients{Y for the operator  check for consistency in the extracted values for the masses.
(I)gR)(t) which, under ordinary circumstances, best overlapBest-fit values were obtained using the correlggéanethod.
the lowest-lying glueballG, in the channel of interest. A Error estimates were calculated using a 1024-point bootstrap

sequence of operato@(lR)(t),CD(zR)(t), ... which predomi- procedure; in all cases, error estimates were nearly symmet-
nantly overlap excited glueball states can also be constructgit about the central best-fit values and were thus averaged to
using the higher-mass eigenvectors of ). simplify presentation. Our fits are far too numerous to list

Monte Carlo estimates of the correlator matrix elementdere; additional details are available from the authors upon
given in Eq.(1) were obtained for all 20 irreducible repre- request.
sentations in five simulations using an input aspect ratio pa- Our final estimates of the glue energies in termsagf
rameteré=>5. The values for the coupling, mean-link pa- for the £&=5 simulations are presented in Table II; energy
rameterug, smearing weights\g and A\;, and the lattice estimates from th&€=3 run are listed in Table Ill. In order
sizes used in these runs are listed in Table |. An additionalo convert these results into physical units, the lattice spac-
run at a smaller lattice spacing-0.12 fm) and usingé ings a; must be determined for each simulation. The had-
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TABLE Il. Glue energy estimates in terms afl for the five Ill. GLUEBALL IDENTIFICATION

&=5 simulations. The levels are labeled by the irreducible repre- . . - ..
sentations of the cubic point group under which their corresponding The spectrum in a box with periodic boundary conditions

stationary states transform. First-excited states in a representatidicludes not only single glueball states, but also states con-

are indicated by an asterisk. sisting of several glueballs and/or toreldigbuon excitations
which wrap around the toroidal latticeWe expect that the
B=17 B=19 pB=22 p=24 p=25 operators used in our correlators will couple most strongly to

the single glueball states, but we cannot be certain that mix-
ings with the multi-glueball and torelon states will be negli-
gible. Recall that the asymptotic behavior of the correlation
function associated with an operatd(t) is dominated by
the lowest-lying eigenstate which mixes widh. If a multi-
glueball or torelon state has a lower energy than the lightest
glueball in a given symmetry channel, then the possibility
exists that the energy we extract from the asymptotic decay
of the correlator will be that of the multi-glueball or torelon
state. Thus, a means of differentiating the single glueball
states from all other states is required.

First, given mass estimates of the lowest-lying few glue-
2 balls, one can easily determine the approximate locations in
E*l 1.382) 116714 0.8745 0.6984) 0.6117) a given symmetry channel of the two-glueball states having
E7+ 1.855) 1.493) 1.0899)  0.8906)  0.78213) zero total momentum. If the simulation results in that chan-
T 1562)  1.422) 1.1539) 087313 0.821) nel lie significantly below the two-glueball energy estimates,

T," 1.29714) 1.14810) 0.8825 0.6954) 0.6193) one can almost certainly rule out a multi-glueball interpreta-
TE* 1602 1.392) 1.0879) 0.8805) 0.7719) tion.

A" 05785 0.4754) 0.3623) 0.3033) 0.2884)
AP**t 1192) 0.923) 0.6916) 0.5694) 0.5117)
A" 1432 1.2713) 1.01812 0.8248) 0.71314)
E*T 0.9248) 0.8446) 0.6674) 0.5383) 0.4724)
E*** 1292  1.09312 0.8787) 0.7239) 0.6528)
T;7 1552 1.322) 1.002) 0.8344) 0.7288)
TPt 1733 1522) 1.234  0.90915 0.82313
T;,% 11038 0.9187) 0.6864) 0.5422) 0.4773)
T3T 1412  1.22812 0.9385 0.7308) 0.66Q6)
A/t 1312 1.065 0.75614) 0.60911) 0.5237)
A*~* 1.8§9) 1474 1.082  0.8369) 0.722)
AT — 1.635  1.292) 1.03612 0.931)

Al — 1675  1.322) 1.06214) 0.941) Second, one can study the manner in which each energy
A~ — 1.292)  0.99911) 0.7947) 0.70014) level changes as the lattice volume is varied. The energy of a
E*™ — 1.523) 1.20737) 0.9298) 0.821) single glueball state depends on the lattice volume in a mark-
T;~ 118613 1.0538) 0.8194) 0.6525) 0.5905) edly different way from that of a multi-glueball or torelon
T *T 1.553) 1.29714) 1.0258) 0.7949) 0.732) state.

T, — 1.33016) 0.98317) 0.8014) 0.7017) A third possibility is to include additional operators in the
TS _ 1.452) 1.103)  0.92915 0.831) correlation matrices which are expected to couple much
A]” 1837 1615  1.354200 1.043)  0.981) more strongly with the two-glueball and torelon states. The
A~ _ 1.656) 1.20118) 0.963)  0.822) construction of operators yvh|ch best _ovgrlap the Iowest—ly|r]g
E - 1593 1.382) 1.09411) 0.8746) 0.781) eigenstates of mtgrest using the variational method then in-
TIT 1724) 1.462) 1073 0.8775 0.7609) volves not only single glueball operators, but also the new

two-glueball and torelon operators. The coefficients obtained
from the variational optimization can be used to estimate the
mixings of the additional operators with the low-lying eigen-
states of interest. If the mixings of the additional two-
ronic scale parameter, [8] defined in terms of the force gjueball and torelon operators with an eigenstate are very
between static quarks bﬁ/rde(F)/dr],:r():l.GS, where small, a single glueball interpretation is assured; in such a
case, the addition of the new operators does not affect the
extracted energy. If the mixings are significant, the addition

T, 1.633) 1.41(2) 1.1148) 0.8866) 0.771)

V(F) is the static-quark potential, is a useful quantity for this

puraos;a. -Il;hﬁ v_aluelzst_foro n ter(rjnst: ofa_s c((j)r[r)espondlng to thof the two-glueball and torelon operators will lower the ex-
each giueball simuiation were determinéd by measuring g teq energy, ruling out a single glueball interpretation.

static-quark potential in separate simulations. The results are Ideally, it would be best to apply all three of these meth-
listed in Table I. Further details concerning the calculation of,4g However, for this initial scan of the glueball spectrum,
ro/as are given in Ref[1]. Note that in computingo/as, e decided for reasons of simplicity to rely mainly on the
the input valuet was used for the aspect ratia/a;. The first method. Having obtained the lowest-lying one or two
consequences of doing so are discussed in Sec. V A. states in each symmetry channel, we determined the approxi-
mate locations of the two-glueball and torelon states. Simu-
TABLE lIl. Glue energy estimates in units @ * from the 8 lation results lying near or above these thresholds were then

=3.0, £=3 simulation. excluded from further consideration. In other words, we used
the two-glueball and torelon thresholds as filters to remove
AFT 0.3184) possibly extraneous states. One additional simulation was
E** 0.4763) done to study systematic errors from finite volume. This run
T 0.4763) also served to confirm the single glueball nature of the states

lying well below the two-glueball and torelon thresholds.
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Note that the levels lying near or above these thresholds TABLE IV. The little groups of p=2m(n,,n,,n,)/L on a
cannot be ruled out as single glueball states; rather, one caimple cubic lattice with periodic boundary conditions. Note that
say only that the interpretation of such states requires addism,n#0 andl#m, m#n, andl #n.

tional information.

(ny,ny,ny) Little group
A. Two-glueball states (0,0,0) Oy,

In order to identify the genuine single glueball states, we ~ (0.0n) Cay
first determined the approximate locations of the two-particle (0n,n) Cay
states using the mass estimates of the lightest few glueballs. ~ (n.n.n) Cav
In estimating these locations, we assumed that the energy of ~ (0.m,n) Cs
a two-glueball state was given by (m,m,n) Cs

(I,m,n) C,

Exe= P+ M+ Vp*+m3, ™
We determined the lowest-lying two-glueball states in
wherem; is the rest mass of the glueball having momentumeach symmetry channel by repeating the following sequence

p and m, is the rest mass of the other glueball which hasof steps for each allowed momentum vecﬁ)rand each
momentum—p. Note that on a periodic lattice havirys choice of two glueball&; andG,. For the moment, assume
sites in each of the three spatial directions, the allowed mothat G1 and G are distinguishable. Note th&; and G,
menta are discretﬁ=2w(nx,ny,nz)/L, wherel = a.N, and refer to the |rredu0|bleIreprese.ntatlc.)rjﬂﬁ , thle little group
Ny, Ny, andn, are integers satisfying-Ng/2<n;<N/2. forzero momentum. First, we identified the little groufp)
The above energy estimates neglect all interactions betwearf p. Second, the charactex$®? and x(®2 of the represen-
the two glueballs; this should not introduce serious errottationsG,; andG, were subduced into the little group, yield-
since we expect these interactions to be short ranged, beingg the characterg(® | L(p), which were then decomposed
mediated by scalar glueball exchange at large distancefto the irreducible representations of the little group:
Equgﬂon(?) also assumes that the rest masses and dISpe'I’S'I NG) | L(p)=3 C(Gj)X('“). Next, for eachu, such that
relations of the propagating glueballs are unaffected by finit€ ¢, e (Gy) .
volume and finite lattice spacing errors. We have verified,, 7 0 @nd each, such that, = #0, we formed a direct
this assumption in the case of the scalar glueball ripr producty(#1#2) to obtain the character corresponding to the
+n§+ n2<9 on an §x40 lattice at3=2.4 and¢=5. two-glueball state. Since the total momentum of this two-
To facilitate our discussion of the two-glueball states, weglueball state is zero, it can be characterized by the irreduc-
first point out some features of single, propagating glueballible representations 0Of;. A representation ofO; was
in a finite box with periodic boundary conditions. Here, glue-formed by constructing a set of coset representatives and
ball states are characterized by their transformation propegpplying the method of induction, and the induced character
ties underOIC€, the simple cubic crystallographic space x*1®#210f was finally decomposed into the irreducible
groupO} extended to include charge conjugation. The groupepresentations @y . WhenG; andG, were indistinguish-
Of, is isomorphic to the semi-direct product of the group ofable, the above procedure was modified to include Bose
pure (discretg translations and the group of pufdiscret¢ ~ Symmetrization.
rotations and reflections about a given center. Thus, a propa- This procedure was carried out using the rest energies

gating glueball state may be classified by its momenfum obtained in theB=2.5, £&=5 simulation. The lowest-lying

and by its transformation properties under the subgroup ofl‘i_";%'lgll\’/etﬁl]leia}:seilg Z?grr]] SyThm,fjr?]/' Cr:?rnln?r: alzee glsstegrén
OXC which leavesp invariant (the little group ofp). The : ve's, along wi Igher ying 'eve's,

little groups corresponding to various momentum orienta shown as dashed line segments in the shaded region in Fig.
. ; . . . 2. Any energy lying well below the shaded region in this
tions are listed in Table IV. Hence, the irreducible represen y gy yihg 9

. : . . ~figure can be safely interpreted as a single glueball state
tations of the little group may be used to identify propagatmg(these are indicated by the solid black boxedtates lying

glueball states. The little group varies with the momentumgyy helow(the black-outiined gray-filled boxgsr above
orientation. Thl_s means that the partitioning o_f the phyS|ca(the open boxasthe two-glueball thresholds must be re-
glueball states into the irreducible representations of the Ii%arded with caution. Again, we remind the reader that we
tlc.e syrr_]metliy groups ;j|ffers d.((ajpenﬁgn% oln tge”m\?vrrr}]entu annot rule out a single glueball interpretation for these lev-
orientation. For éxample, consider t giuebal. €N els; additional information is needed to determine the nature
at rest, three of the five polarizations of this glueball appeaps these states. Since it is not our intent in this paper to
in the T, representation o0y, the little group ofp  obtain such information, we exclude these levels from the
=(0,0,0), and two of its polarizations occur in the" spectrum of single glueball states for the time being.
representation. Whep=(0,0p) for p#0, the five polariza-

tions of the 2 glueball(which are no longer eigenstates of B. Torelon pairs
parity) split across theA; , By , B; , andE™ representa- Torelons are gluonic excitations which wind around the
tions of the little groupCffv. periodic boundaries of the lattice. They may be classified

034509-5



COLIN J. MORNINGSTAR AND MIKE PEARDON PHYSICAL REVIEW D60 034509

TABLE V. The lowest lying state consisting of two free glue- 1.0

. — -
balls in each symmetry channel for tie=2.5, £&=5 simulation. [ e - i
Each state is comprised of a glueball having a momenpum | “ o i
=2m(ny,ny,n,)/L, whereL=10a, and another glueball having 08 b5 O mmg
> : = g‘ 27 20, B
momentum-—p. B e o
: o .o! i m )}
Channel Glueballs e.Ny ,Ny) 06 =5 T
4 B i . 2-: — : T
At (AT A 0.0.0 o IR N
++ ++ = - 1o ! !
Az (AfETT) (0,0, & == : :
E** (AT AT 0,09 oal = ° 5 5 -
T (A[ AT 0,1,2 ; ! ;
T (AT AT 0,1, - i : i
A* (AT ASY (0,0,0 0z | i | -
A" (AT, 0,0, ' i ; i
E" (A["\ T, 0,0,9 ; i i
T, " (Af T ETH) 0,00 i ; ;
T, (A7 T,E™) 0,0,9 00 T A ETTAAET TAAET TLAAETT,
Al (AL, 1) 0,1,2 o - - -
A; " (A7, T10) 0,11 FIG. 2. Comparison of the pure-glue spectrum obtained from
Ef (A7, T7) 0,1,2 the 8=2.5, ¢£=5 simulation to the approximate locations of the two
T (A7, TT) 0,0,0 glueball states. The boxes are the simulation results; the standard
T~ APt TH- (0,0, deviations in these mass estimates are indicated by the vertical
2 ( 1 11 ) 1 M . . .
AT~ (A7, TH) ©,0,1 heights of the boxes. The dotted line segments shown in the upper
Al“ (AL ’T%") ©, 1,1 shaded region indicate the approximate locations of states consist-
2 ot T ing of two free glueballs having zero total momentum. All energies
E (Al ’Tl ) (Ov O, :D H -1 h . f h A .
- e ©.0. 1 are in terms ofa; *. The representations of the cubic point group
Tlﬁ (A}H’ L) v which label the states are indicated along the horizontal axis. The
T2 (A1, T1 ) 0,01 most likely JPC interpretations of the states are also shown.

according to their behavior under a set of discigjesym-  discard from consideration, even for tg ~ state since a
metries of the S(B) pure gauge theory. The gauge action isstate of two torelons of opposite center charge and total zero
invariant under multiplication of every link in the direc- momentum must be symmetric under charge conjugation.
tion (©=0,1,2,3) at a giveu coordinate by the same mem- Fortunately, a torelon pair can be easily detected in a finite-
ber ofZ3, the center of S(B). The torelon is an eigenstate of volume study since their energy depends strongly-oAn
the transfer matrix which transforms nontrivially under suchadditional simulation was done to measure the changes in all
symmetry operations. For example, the spectrum of glue on anergy levels as the lattice volume was reduced. The results
periodic lattice contains a torelon eigenstate which picks up af this simulation are presented in the next section. No en-
phase exp(zi/3) and a state which picks up a phaseergy reductions of sufficient magnitude were found to sug-
exp(—2i/3) under the multiplication of every link in the  gest that any of our states could be interpreted as a torelon
direction at a givenx coordinate by the center member pair.
exp(2mi/3). In fact, there are three such pairs of modes cor-
responding to the, y, andz directions. These torelons can IV. FINITE VOLUME ERRORS
also have a center-of-mass momentum in the two spatial di-
rections transverse to their flux direction. For latge tore- . X o
lon at rest has an energy given approximatelyotty, where atic errors in our results from finite _vglume: a run_,at
o is the string tension from the static-quark potential &g~ ~ 24 §é=50na 640 lattice. The original gx 40 lattice
the spatial extent of the lattice. We have confirmed this in 4'aS & spatial V(_)Ilume of (1.76 frh) assuming thatas
simulation on an 8x 24 lattice at3=2.4, £=3. Hence, the ~0.22 fm fromr, "=410(20) MeV. The additional simu-
torelon mass is strongly dependent on the volume of thdation measures the changes in the glueball masses as the
lattice. volume is reduced from (1.76 frifp (1.32 fmy. The input

Our glueball operators, being closed Wilson loops whichParameters used in this small-volume run were the same as
do not wrap around the lattice, are invariant under these cel0se used in the larger volume simulation.
ter symmetry transformations. This means that the glueball _Let Mg denote the energy of a sta@ on the original
operators cannot create a single torelon state, but the creati® < 40 lattice, andng denote the energy db as measured
of torelon pairs of opposite center charge is possible. If theén the smaller 8x40 lattice. The fractional change in the
two torelons of opposite charge do not substantially interactgnergy is defined bys=1-mg/mg. The results for these
then the lowest energy of such a state isl 2 which has the fractional changes are shown in Fig. 3. Each point shows the
value 0.9 when placed in Fig. 2. This lies sufficiently high to fractional change in the energy of a staBespecified by

An additional simulation was done to measure the system-
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FIG. 3. Finite-volume effects on the results of tBe=2.4, ¢ 0.0 0.2 0'2’ 0.6 08
=5 simulation. Each point shows the fractional chanfie=1 (a/ry)
—mé/mG in the energy of a stationary sta® wheremg is the ) )
energy ofG as measured on ar'8 40 lattice, andng is the energy FIG. 4. Mass estimates of tmf: ++ glueballs in terms of
of G as measured on a smalle? 640 lattice. The stat& corre-  against the lattice spaC|ngig(/ro) . The solid symbols indicate re-
sponding to a given point is specified by combining the representa3Ults from the¢=5 simulations, and the open symbols on the right-
tion label below the point along the horizontal axis with A€ hand side of the vertical dashed line indicate results fromé&he
value shown to its left along the vertical axis. The solid lines indi- =3 Simulations. The solid curves are best fits to the+ ?mulatlon
cate 55=0, the dotted lines above the solid lines indicatg  'esults for each state using(as) from Eq. (10) for the A; * and

=0.02, and the dotted lines below the solid lines indicage= AT levels andpo(ay) from Eq.(9) for all other levels. The open
—0.02. symbols on the left-hand side of the vertical dashed line show the

extrapolations to the continuum limit using the best-fit forms.

combining the representation label below the point on thgeyels remaining after the analysis of Sec. Il and then de-
horizontal axis with thePC value shown to its left on the duce their continuum Spin content.

vertical axis. The solid lines indicat®; =0, the dotted lines

above the solid lines indicai®;=0.02, and the dotted lines A. Continuum limit extrapolations

below the solid lines indicaté;= —0.02. The largest effects ) ) 1. )
from finite volume occur in thé\* ** and T * ~ states. All The glueball mass estimates in termsayf-, listed in

other changes are statistically consistent with zero, indicatingoan?::eslégl’éer?aCOT:S'Zﬁ?e\év'it: %igﬁteméng's%rf; zfret:h:hgsvi-
that systematic errors in these results from finite volume are_ _. 0/ds P . ; \
Figs. 4-7. In these figures, the dimensionless products of

negligible. T.hese results gonﬂrm the+s+|nglg glueball nature Of:) and the glueball mass estimates are shown as functions of
all states, with the exception of thg ™™, lying well below

A (as/rg)2. The solid symbols indicate the results from the
the two-glueball thrgsholdé&he black boxe+s+|n. Fig. 2 Al- =5 simulations. The open symbols appearing to the right of
though the change in the energy of ths is not very

I it is suffici turth ‘v of this level. F the vertical dashed lines indicate results from g% 3.0, ¢
arge, it is sufficient to warrant further study of this level. For _ 5 run, as well a=3 results for theA; * and A% **

this reason, we withhold judgment on whether or not thISchannels previously obtained in REE]. To remove discreti-

level is absmglte; gltueballl. '\lI)OtIEI’tthhat rrp?;’:ed thefﬁltaées Ié"ngzation errors from our glueball mass estimates, the results for
near or above the two-giueball thresho gray-filed an each level in these figures must be extrapolated to the con-

open boxes in Fig. Pshow very little finite volume depen- tinuum limit ag/ry—0. The discretization errors can then be

Qence, suggesting that these states might actually b(_a IOngéen as the deviations of the findagresults from these lim-
lived glueball resonances. Further study would be required tﬂing values

resolve this issue. From perturbation theory, the leading discretization errors
in our action are expected to li¥a?,a?,a.a?). The agree-
ment of theA; *, A**" E**, T, ", and T, ~ glueball
masses extracted usidg=3 and£=5 (see Figs. 12 and 14
There are two aspects to the removal of systematic errori Ref. [1]) suggests that th®(a?) errors are negligible.
from finite lattice spacing: extrapolation of the results to theSome evidence for the smallness of tm{asag) errors
continuum limit as—0, and the identification of the con- comes from our earlier glueball simulatiof&| which used
tinuum spin quantum numbers. In this section, we first carrythe one-loop improved ischer-Weisz actiofil0]. After tad-
out thea;—0 extrapolations of the candidate single-glueballpole improvement, the radiative corrections to the couplings

V. LATTICE SPACING ERRORS
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FIG. 5. Mass estimatesolid symbol$ of the PC=— + glue-

balls in terms ofr, against the lattice spacing{/ro)?. The solid
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FIG. 7. Mass estimatesolid symbol$ of the PC=— — glue-

curves are best fits apo(as) from Eq. (9) to the results for each balls in terms ofr, against the lattice spacing{/r,)?. The solid

state; the open symbols are the continuum limit extrapolations.

curves are best fits apy(as) from Eq. (9) to the results for each

state; the open symbols are the continuum limit extrapolations.

in this action were found to be very small. For these reaso”?)hysically motivated fashion, such as by comparing the spa-

we expect that theD(a?,asaZ) errors will be negligible

compared to th@(ag) errors.

In assumingag/a;= ¢ (where £ is the input anisotropy
parameter in the actignwe introduceO(«y) errors in our
estimates of the glueball masses multipliedrgy(Note that

tial and temporal length scales extracted from appropriate
correlation functions. We can also use perturbation theory to
adjust the couplings in our action to remove these errors
order by order inag. However, we estimated the errors
caused by imposings/a;= ¢ (see belowand found them to

these errors do not enter into ratios of the glueball massespe too small to warrant the additional complexity of another

Such errors can be avoided by instead sefip/@; in a more

12

11

10

FIG. 6. Mass estimatesolid symbol$ of the PC=+ — glue-
balls in terms ofr, against the lattice spacing{/ro)?. The solid
curves are best fits apg(as) from Eq. (9) to the results for each
state; the open symbols are the continuum limit extrapolations.
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ag/a;-setting scheme or the effort required to calculate the
one-loop corrections to the action. A simpler approach is to
incorporate theD(ag) anisotropy errors into our continuum
limit extrapolations. Unfortunately, their dependenceagiis

not well known and, as we shall see, they are generally
smaller than the much more rapidly varyilﬁya‘s‘) errors.
Detecting their effects in a fit to about five data pointsdgr
from 0.2 to 0.4 fm is not feasible. Thus, we decided to adopt
the following approach: to extrapolate assumtha;‘) er-
rors only and then include a systematic uncertainty in our
continuume-limit results from th®(«,) anisotropy errors.

One way to estimate this uncertainty is to compare mea-
surements of the static-quark potential extracted from Wilson
loops taken along the different spatial and temporal axes of
the lattice[11]. The anisotropy errors can be quantified by
definingag/a; in terms of these different potentials and com-
paring the result t&. If we denote the determination of the
aspect ratio from the potentials bgs/a;]y and defineZ, by
the relation[as/a;]y=2Z;¢, then the deviation oZ, from
unity gives us a measure of the fractional error from assum-
ing ag/a;=¢. The effect of these errors is to modify the
multiplicative ry/a; factors used to convert the simulation
results given in terms of, * into units ofr,* suitable for
extrapolation. Using the functional dependenceyf; on ¢
from a fit to the static-quark potential, we determine that
(Z¢—1)/2 gives us an estimate of the fractional uncertainty
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in our continuum limit results from the aspect ratio errors.One possibility is that the critical point might enhance the
Without mean-link improvemeng, can deviate from unity perturbativeO(as) errors; another is that it may induce an
by as much as 30%. When the action includes mean-linko(a2) error which would not otherwise be present. We fit
factors, the corrections are found to be small, typically a fewseveral simple functions to th&, * mass results and found
percent. For example, for the=2.4, £=5 run, we obtained that the following two functions worked very well:
Z,=0.9818);, for p=3.0, {=3, an estimate ofZ,

=0.99(1) was found. If we assign a conservative 2% error a;‘ a§ a‘s‘
from Z,, then this amounts to a 1% systematic uncertainty ¢1(as)=roMg+cs—; —| dz— +d;— |[In(asA)] ™,
in our continuum-limit results from the anisotropy errors. Mo Mo To
Another way to estimate the errors due to the aspect ratio (10
is from the perturbative calculation &, using the aniso- ) 4 6
tropic Wilson action(the analogous calculation usigy has _ s s s
not yet been done Modifying the results from Ref(12] to ¢2(a5)_r°mG+C2r_(2)+C4_g+C6§’ (1)

include tadpole improvement factors and writing the mean-
link parametens=1— au{?)(£) + O(a?), one finds wherergmg, Cq4, Cg, dy, andd, are the best-fit parameters.
@ ) Equation (11) is simply a cubic polynomial in d/rg)?.
Ze=1+ag{2m[c (&) —c, (H)]+u7(§)}+0(a5), (8)  Equation(10) incorporates the expected leading dependence
) on the QCD couplingas(ag)~—1/In(asA) up to O(a‘s‘).
where the values foc,(¢) andc,(¢) can be obtained from \/arious estimates of the QCD scale parametgg suggest
Fig. 1 in Ref.[12]. From this equatio_n, one sees that Whe”thatroAM—S~O.6. Hence, we used,A =0.5 and verified that
{=3-5 andas~0.2, the aspect ratio receives less than ayyr continuum limit estimates were insensitive to the choice
2% correction; if the tadpole improvement facug?)(f) IS  of roA in the range from about 0.3 to 0.8. Both andd,
OmittEd, a Ial’ge 30% correction is found. For the improved[erms were needed to achieve this insensitivity_
actionS;;, we expect that these values should be somewhat The best-fit curves using E¢LO) are shown in Fig. 4. The
smaller. Again, we can assign a conservative 2% erra@iin pest fit to theA; * results hasy?/Np=0.57, and for the
tp obtain a 1% systematic uncertainty in our continuum eSa**++  we find y2/Npe=0.35. The extrapolation of these
t|m1e_1tes. _ His to extranolate to th curves to the continuum limit yields,m(A; *)=4.21(7)
tinufr;lﬁrrggpﬁgﬁ% our approach is to extrapolate to the conz . fom(Af++)=6-50(44)-2 Using Eq.(11), we 22‘?‘”
rom(A; 7)=4.30(8) with y“/Npe=0.53 androm(Al ")
4 =6.52(54) with y*/Npe=0.35. Since p;(as) was more
_ s closely connected to a perturbative analysis, we chose the
¢0(a5)_rome+c4rg' © estimgtes obtained using E(LO) for our fi)rllal results, but
added the differences between the two extrapolations as a

WhereromG andc4 are the best-fit parameters, and then addsystematic error. After including an additional 1% anisot-
a 1% systematic uncertainty from ti@a.) anisotropy er- ropy error, we end up withrom(A; ")=4.21(12) and
rors. Equation(9) worked well in all cases except for the rom(A} " ")=6.50(45).

Al " andAj " levels. The best-fit curves using E@) are Note that theA; * estimate differs slightly from our ear-
shown in Figs. 4—7; the extrapolations of these curves to théer estimate of 3.98(15) given in Refl]. Our previous
continuum limit are indicated in these figures by the operextrapolation suffered from the absence of a mass measure-
symbols on the left-hand sides of the vertical dashed linesment at a lattice spacing smaller than 0.2 fm; the need for
Note that the extrapolation uncertainties shown in these plotsuch a measurement to obtain a reliable continuum limit es-
do not yet include the systematic anisotropy error. timate for this level was acknowledged in REE]. The cur-

As discussed in Refl1], our results for theA; © and  rent study includes a new measurement at a lattice spacing
A% "* levels remain problematical. These levels have largéear 0.1 fm; the inclusion of this new measurement is re-
finite-lattice-spacing errors which do not obey E@). There ~ sponsible for the slight difference in the two extrapolations.
is growing evidence that these large discretization errors arblote that our improved estimate 4.21(12) agrees very well
due to the presence of a critical end point of a line of phasavith the value 4.33(5) obtained by extrapolating existing
transitions (not corresponding to any physical transition Wilson action data for the scalar glueball mass. Unfortu-
found in QCD in the fundamental-adjoint coupling plane nately, the mass of thaj " is very poorly determined be-
[13-15. It has been conjectured that this critical point de-cause a measurement of thg¢ "~ * mass was not obtained in
fines the continuum limit of @* scalar field theory14]. As  the 8=3.0, £&=3 simulation.
one nears this critical point, the coherence length in the sca- Recently, we have demonstrated that the discretization er-
lar channel becomes large, which means that the mass gapriors in the SU3) scalar glueball mass can be dramatically
this channel becomes small; all other observables, includingeduced by simulating with an action which includes an ad-
glueball masses, appear to be affected to a much lesser editional two-plaquette interactiofil5]. With such an action,
tent. The effect of this critical point on the functional form of we should be able to substantially improve upon our deter-
the discretization errors in the scalar glueball mass is nominations of the scalar-channel glueball masses in the near
well known, and so we must proceed somewhat empiricallyfuture. A study in SW2) lattice gauge theory16] has also
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TABLE VI. Number of times each irreducible representation of degenerat&* ~* andT§ ~* states most likely correspond to
the octaheqlral grou@ occurs in t_he subduced representation® aJ=2 state as well, although as noted in Sec. III, the prox-
of the rotation grougs(3) restricted to subgroup. imity of these levels to the two-glueball threshold leaves
their status somewhat uncertain. Also, we cannot statistically
rule out the possibility that, in combination with two states in
the T, © representation, they are associated witld-a5
glueball. We cannot rule out an accompanying degenerate
level in theA; © channel. If such a state exists, then these
could be the levels corresponding tdd&4 or aJ=8 glue-
ball.

The T; ~ state must correspond toda=1 glueball, and
the degeneratd; ~, T "~ , andT, ~ levels correspond to a
J=3 glueball. A glueball havingl=2 is the most likely
interpretation for the degenera®~ and T3~ states.
However, we cannot rule out the possibility of accompany-
ing levels in theT; ~ and A, ~ channels. Taking all possi-
bilities into account, the alternate interpretations are
=5,7,11. The very high lyindA; ~ can be interpreted as a
J=0 glueball, butJ=4,6,8 ... cannot be excluded.

Finally, consider thé> C= — — sector. The most probable
shown that lattice-spacing errors in the scalar glueball can bgcenario is as follows: th&, ~ corresponds to =1 glue-
reduced by using the mean spatial and temporal links in Lanpg|| the degeneratE ™~ andT, ~ are the five polarizations
dau gauge for the values of the link variable renormalizatiory 4 j=» glueball, and the\, ~ is aJ=3 state. Of course,

parametersls andu,, respectively. we cannot rule out the presumably higher-lying
S =6,7,9,11. .. interpretations for thé\, ~ . Another possi-
B. Spin identification bility is that theE~~, T; ~, and T, ~ are degenerate, in
The last step in our calculation of the glueball spectrum iswhich case they could correspond taJ&5 glueball. Even
to identify the continuum spin content of each level. This isless likely is that all four levels are degenerate. In this case,
done by matching the observed patterns of degeneracies @me could interpret them as a single7 or J=11 state, or
the levels from differentO; representations to those ex- as accidentally degenerafe=3 andJ=2 glueballs. How-
pected for the various continuud?® states. For example, a €ver, all higher-spin interpretations would require a degener-
J=0 state occurs only in thé, representation oD, aJ  ate ground state in either the, ~ or T, = channel. Our
=2 state occurs in both the and T, representations, and a correlator fits suggest that these degeneracies are missing,
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state ofJ=3 gets split across tha,, T,, andT, represen- makingJ=5,6,7 ... interpretations unlikely.
tations. The numbers of times that the irreducible represen-
tations of the octahedral group occur in the subduced rep- VI. RESULTS AND DISCUSSION

resentations) | O of the rotation grougSQO(3) restricted to ) )

the subgroupO are listed in Table VI. Given the values in  OUr final results for the glueball spectrum in termsrgf

this table and either the continuum limit estimates in Figs &€ given in Table VII. In this table, we assumed the most

4-7 or the results shown in Fig. 2, we can then deduce thgkely spin interpretations as descnbed_m the previous sec-

continuum spin quantum numbers. tion and accordingly combined the continuum I|m|§ extrapo-
Consider first th®C=+ + sector. TheA] * state is not Iathns(shown as open symbols on the left-hand sides of the

a\éertlcal dashed lines in Figs. 43and then added the 1%
anisotropy error, to obtain final estimates for the glueball

aJ=0 state. TheE** and T, * states are degenerate, im- ) o .
lying that they correspond to the five polarizations af a masses in terms mfo._ The coml.alna.'uons used to obtain these
P estimates are also indicated in Figs. 4—7 by JR& labels

- *++ ;
=2 glueball TheAl state IS seen 0 have+rlo degeneratenear the left vertical axes. Wherever applicable, we have also
partners, suggestingla=0 excited state. Th&, ~ state can

indicated in Table VII any alternative spin interpretations
correspond td=3,6,7,9 .. .. For all pfthes$J values, there  \yhich cannot be ruled out. These final estimates are also
should be an accompanying level in tfi¢ © channel, and shown in Fig. 8. The ®** and 2~ states are shown as
such a level is observed. We conclude thatAje andT] *  dashed open boxes to indicate that their interpretations as
states correspond most likely toJe=3 state, but the less glueballs are tentative. Our concern about the" 0 state

degenerate with any other level; hence, it can be identified

likely J=6,7.,9 ... interpretations cannot be ruled out. The stems from its non-negligible finite volume effects; for the
J=3 assignment is also supported by model predictions, disz* ~* state, its nearness to the two-glueball threshold in our
cussed in Sec. VI. simulations is worrisome. Note that our estimates

In the PC=—+ sector, theA; " and A}~ " states are r,m(0**)=4.21(12) androm(2**)=5.85(6) agree very
easily identified withJ=0 states, and the degener&e* well with 4.33(5) and 6.Q1), respectively, obtained by ex-
and T, * states must correspond toJa=2 glueball. The trapolating the Wilson action simulation results from Refs.
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TABLE VII. Final continuum-limit glueball mass estimates TABLE VIII. Glueball mass ratios.
mg . When a uniqud interpretation for a state cannot be made, the
other possibilities are indicated in the second column. States whosa(2**)/m(0* ") 1.39(4)
interpretation requires further study are indicated by a dagger. In(0~*)/m(0* ™) 1.50(4)
column 3, the first error is the statistical uncertainty from them(o* ++)/m(0* ™) 1.54(11)
continuum-limit extrapolation and the second is the estimated unm(1+-)/m(0*+) 1.70(5)
certainty from the anisotropy. In the final column, the first error m(2=*)/m(0*+) 1.79(5)

comes from the combined uncertaintiesryjmg, the second from

+- ++
the uncertainty i, 1=410(20) MeV. 28* ,Zl)r;]n(q(()OJ) 22?%2;

Jre OtherJ FoMg mg (MeV) m(0~") /m(2"") 1.081(12)

o+ 4.21(11)(4) 1730(50) (80)

21 5.85(2)(6) 2400(25) (120 in Table VIII are calculated using the empirical fact that
O*++ 6.33(1© 2590(40) (130 correlations between different symmetry channels were
o 6.50 (44)(7)  2670(180(130 found to be negligible. Note that the pseudoscalar glueball is
1 7.18(4)(7) 2940(30) (140 clearly resolvedat the 7o level) to be heavier than the ten-
2°7 7.55(3)(8) 3100(30) (150 sor.

3:; 8.66(4)(9) 3550(40) (170 Al of the glueball states shown in Fig. 8 are stable against
OH 8.88(11)(9) 3640(60) (180 decay to lighter glueballs. In th&®C=+ + sector, the
s 679... 8.99(4)(9) 3690(40)(180 threshold for decay into two identical'0 glueballs having

1* . 354 ... 9.40(6)(9) 3850(50) (190 zero total momentum is twice the mass of the scalar glueball.
2r7 A58 9.50 (4)(9)  3890(40)(190 Although this lies below the mass of the 3 glueball, Bose
2" 357 ... 9.59(4)(10) 3930(40) (190 symmetrization prohibits odd partial waves, where is the

3 6,7.9... 10.06(21)(10)  4130(90)(200 relative orbital angular momentum, so that the3glueball

2" 5711... 10.10(7)(10) 4140(50)(200 cannot decay into two identical scalar glueballs. In Bh@

0"~ 46,48. .. 11.57(12)(12)  4740(70)(230 = —+ sector, the lowest-lying two-glueball state consists of

0"* and 2'* glueballs in a relativeP wave; all of our
glueballs in this sector have masses below the sum of the
[2,3,17,1§ to the continuum limit. Several glueball mass ra- scalar and tensor glueball masses. States of total zero mo-
tios are presented in Table VIIl. We can determine thesgnentum and comprised of the"d and 1"~ glueballs with
ratios very accurately since, as noted earlier, they are ngglative orbital angular momenturh are the lowest-lying
contaminated by anisotropy errors. The uncertainties 9iVeﬂN0-quebaII states in th®C= + — sector wherL is even
and in thePC= — — sector wherL is odd. Only the 0~

12 - glueball has sufficient mass to decay into two such glueballs;
however, this decay is forbidden becalisel is required to
make a state of zero total angular momentum.
14 To convert our glueball masses into physical units, the
value of the hadronic scale, must be specified. We used
ro -=410(20) MeV from Ref[1] to obtain the scale shown
13 on the right-hand vertical axis of Fig. 8. This estimate was
obtained by combining Wilson action calculations afr
with values of the lattice spacin@ determined using
I quenched simulation results of various physical quantities,
4 | g m— such as the masses of theand ¢ mesons, the decay con-
stantf ., and the P-1S splittings in charmonium and bot-
| tomonium. Note that the errors shown in Fig. 8 do not in-
2 ¢ clude the uncertainty imgl. For the lowest-lying glueballs,
we obtain m(0"*)=1730(50)(80) MeV andm(2*™)
=2400(25)(120) MeV, where the first error comes from the
—+ — — — uncertainty inromg and the second error comes from the

PC uncertainty inrgl. A great deal of care should be taken in

FIG. 8. The mass spectrum of glueballs in the puréSigauge making direct comparisons wlth experiment since _these yal-
theory. The masses are given in terms of the hadronic sgalleng ~ U€S neglect the effects of light quarks and mixings with
the left vertical axis and in terms of GeV along the right vertical N€arby conventional mesons. It is this mixing which has
axis (assuming 5 *=410 MeV). The mass uncertainties indicated made the search for an incontrovertible experimental signal
by the vertical extents of the boxes dotinclude the uncertainty in S0 difficult. A glueball having exotid”® will not mix with
settingr,. The locations of states whose interpretation requires furconventional hadrons and would be ideal for establishing the
ther study are indicated by the dashed open boxes. existence of glueballs. Unfortunately, our results indicate

10 r

m (GeV)
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that the lightest such state, the 2 glueball, has a mass priate for heavy-quark spectroscopy and the static-quark po-
greater than 4 GeV. tential, remarkable agreement with the observed levels of
Kuti has recently pointed outl9] that the glueball spec- Fig. 8 was found.

trum shown in Fig. 8 can be qualitatively understood in

terms of interpolating operators of minimal dimension which VII. CONCLUSION

can create glueball states. With the expectation that higher . . . .
dimensional operators create higher mass states, the authorsln_ this paper, we used numencal _5|mu|at|o_ns .O.f gluong on
in Ref. [20], following an approach suggested in Refs. spatially coarse, temporally fine lattices to significantly im-

[21,22, constructed all operators of dimension 4, 5, and gProve our knowledge of the glueball spectrum in (SU

capable of creating glueballs from the QCD vacuum. Sucﬁ(ang—MilIs theory. This is an important step towards under-

operators are gauge-invariant combinations of the chromos-.tand'.ng glueba!ls in the real world. Six simulations for spa-
al grid separations ranging from 0.1 to 0.4 fm were per-

electric and chromomagnetic fields; operators equivalent to .
total derivative or related to a conserved current are eX_ormed on DEC Alpha and Sun Ultrasparc workstations.

cluded. The lowest dimensional operators capable of creatin§are was taken to differentiate smglg glueball stateg _from
glueballs are of dimension four and have the form nwanted two-glueball and torelon-pair states. An additional

TIF,Fug. WhereF, is the gauge field strength tensor; small—volume simulation assisted in the identification of the
these operators create glueballs witRC=0"+* 2"+ 0+ single glueball states and demonstrated the smallness of sys-
and 2 *. The dimension-5 operators of’ thé form tematic errors from finite volume. The simulation results

TrF ,,DsF .5, WhereD , is the covariant derivative, produce \;ve“rqe eﬁgﬁfuorlnatii;?bgz ngilgu;jj@nltli?g dan'?;ge;r?;tlpeuslﬁ
only two new glueball states havilg©=1""* and 3" *. At pin q ' '

: . shown in Fig. 8, was a nearly complete survey of the glueball
j‘JEi”OSﬂ” 1(3,iozpf£ato; dOf ,;th € ) foégnefgtgﬁgﬁ';?" tﬂreOdquCr?n spectrum in the pure glue theory below 4 GeV. A total of 13

PC_ At At f glueballs were found, and two other tentative candidates
TrF,,{D,,Dg}F 5, producel”“=1"73"" and 4 . Of were also located.

course, this ordering should not be taken too quantitatively, In the future, we plan to improve our determinations of

but we find that the method provides a reasonably Sat'Sfa(ihe scalar-channel glueballs by simulating with an action that

:ﬁ;ysei;plﬁg?tlz? t?]fett;e Orl())saec?]/egfstﬁ]eecﬁiruméstsspiic's?geg“\:vee%cludes an additional two-plaquette interaction. We also in-
plcity pp : Y tend to extend our anisotropic lattice technology to include

rgsolve., four have the.quantum numbers expected from th8uarks. With the help of femto-universe techniques, we hope
dimension-4 interpolating operators. The method also ex-

olains the absence of any low-lying0 and T * glueballs. ultimately to investigate the properties of glueballs in reality.

The spectrum of Fig. 8 can also be reasonably well ex-
plained in terms of a simple constituent gluon model in
which the fundamental gluon field is replaced by the Hartree We would like to thank Peter Lepage, Julius Kuti, Mike
modes of a constituent field with residual perturbative inter-Teper, Ron Horgan and Chris Michael for helpful discus-
actions; the Hartree modes are taken to be the modes ofsions. We are grateful to W. Korsdtiuniversity of Ken-
free gluon inside a spherical cavity with confining boundarytucky) for access to computing resources in the early stages
conditions. Such &ag model has been recently revisited in of the project. This work was supported by the U.S. DOE,
Ref. [19]. Using values forag and the bag pressure appro- Grant No. DE-FG03-97ER40546.
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