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OverviewOverview
! �New� approach to extracting physical observables from 

stochastically-determined correlation functions
" Use of Bayesian statistical inference

! Advantages of new approach:
" Uses all of your simulation data
" Incorporates uncertainties associated with choice of fit ranges and 

systematic effects
" Incorporates prior knowledge from physical constraints and other

calculations
! Work in progress

" In collaboration with P. Lepage, P. Mackenzie, K. Hornbostel, 
and B. Clark

" Still struggling with integration techniques
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OutlineOutline
! Standard analysis applied to three example correlation functions

" Few parameters
" Temporal range limited � information discarded

! Exploiting information in correlation functions at small temporal 
separations
" More parameters
" Instabilities

! Bayesian statistics: overcoming the instabilities
" Bayes� theorem
" Bayesian regression and parameter estimation
" Choosing the prior
" Integration challenges

! Conclusions and outlook
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Extracting physicsExtracting physics
! Correlation functions C(t) computed directly in Monte Carlo 

simulations
! Physical observables (masses, couplings, matrix elements) must be 

inferred from C(t)
" Energies En from single correlator (neglecting boundaries)

" Extrapolations to continuum or chiral limit
! Maximize likelihood:

! Illustrate method using three examples
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Example 1 Example 1 ---- excellent plateausexcellent plateaus
Effective masses for static potential in compact U(1) in 2+1 dimensions
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Example 1 Example 1 �� standard analysisstandard analysis
! Allow temporal separation t to increase to tmin where excited-state 

contamination is sufficiently suppressed
! Simulation data for t<tmin discarded
! Fit C(t) to single exponential in range tmin to tmax
! For N correlators, do simultaneous fits to N functions, each a sum of N 

exponentials

! For excellent data
" choice of tmin and tmax easily guided by fit quality Q
" results, including bootstrap error, reasonably insensitive to minor 

changes in fit range
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Example 1 Example 1 �� standard analysis (continued)standard analysis (continued)
! Typical fit results
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Example 1 Example 1 �� standard analysis (continued)standard analysis (continued)
! Fits to single correlator

0.130431(40)0.392010

0.130406(36)0.24209

0.130407(32)0.31208

0.130431(30)0.17207

0.130445(29)0.16206

0.130469(23)0.06205

0.130530(27)0204

0.130659(22)0203

0.130907(25)0202

E0Qtmaxtmin
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Example 2 Example 2 �� fair plateausfair plateaus
Effective masses for static potential in compact U(1) in 2+1 dimensions
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Example 2 Example 2 �� standard analysisstandard analysis
! Typical fits for single correlator
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Example 2 Example 2 �� standard analysis (continued)standard analysis (continued)
! Fits to single correlator

0.5456(33)0.76148

0.5489(22)0.65147

0.5475(12)0.67146

0.54742(74)0.77145

0.54936(41)0.05144

0.55203(27)0143

E0Qtmaxtmin
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Example 3 Example 3 �� questionable plateausquestionable plateaus
Effective masses for static potential in compact U(1) in 2+1 dimensions
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Example 3 Example 3 �� standard analysis standard analysis 
! Which fit should I choose?
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Example 3 Example 3 �� standard analysis (continued)standard analysis (continued)
! Fits to single correlator

0.838(37)0.32107

0.841(15)0.52106

0.8733(67)0.12105

0.8853(31)0.06104

0.8902(13)0.03103

0.90147(74)0102

0.91630(39)0101

E0Qtmaxtmin
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Example 3 Example 3 �� standard analysis (continued)standard analysis (continued)
! Simultaneous fits to several correlators � which to choose?



12/14/01 Cairns, Australia 16

Alternative approachAlternative approach
! Simulation data is expensive         discarding small time information 

painful
! Keep small time information         must retain many exponentials
! Problem:

" Encounter fitting instabilities
" Huge uncertainties in parameter estimates

! Source of the problem
" Unconstrained fits allow physically insensible or impossible 

parameter values
! Solution of the problem

" Introduction of constraints 
! Bayesian statistics allows introduction of constraints in natural way
! Bayesian approach now widely used

" economics, medical research, astrophysics, condensed matter 
physics,�



12/14/01 Cairns, Australia 17

The Reverend Thomas The Reverend Thomas BayesBayes
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The Reverend Thomas The Reverend Thomas BayesBayes
! Presbyterian minister � born 1702 London, England

� died April 17, 1761 Tunbridge Wells
! His theory of probability described in

" �Essay towards solving a problem in the doctrine of chances�
published in 1763 in Philosophical Transactions of the Royal 
Society

" Submitted posthumously by Richard Price 
� I now send you an essay which I have found among the papers of our deceased friend Mr Bayes, and which, in my opinion, 

has great merit... In an introduction which he has writ to this Essay, he says, that his design at first in thinking on the subject 
of it was, to find out a method by which we might judge concerning the probability that an event has to happen, in given 
circumstances, upon supposition that we know nothing concerning it but that, under the same circumstances, it has happened 
a certain number of times, and failed a certain other number of times.

! Theorem presented by Bayes was restricted to binomial distribution 
(but generality recognized by Bayes)

! Ideas in the theorem conceived by James Bernoulli in 1713
! Bayes� theorem generalized beyond binomial distribution by Laplace 

in 1774 (most likely independently)
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Frequentist Frequentist versus versus BayesBayes
! Standard (frequentist) statistical methods were developed later than 

Bayesian methods
" Linear regression � Francis Galton in late 1800�s
" Goodness of fit, correlation � Karl Pearson circa 1900
" Field blossoms in roaring 1920�s and during the Great Depression

� Fisher, Neyman, Pearson
" Flurry of research and applications during WWII

! Bayesian methods much older, but largely ignored (or actively 
opposed) until the 1950�s
" Championed by prominent non-statisticians, most notably 

physicist H. Jeffreys, economist A.Bowley
" Popularity grows in 1970�s with advent of computers
" Beginning of the holy wars�.
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Bayes� Bayes� theoremtheorem
! P(A) = probability of event A
! P(A|B) = conditional probability of B given A
! P(A,B) = probability of both A and B

P(A,B) = P(A)  P(B|A) = P(B)  P(A|B)
! Rearrange to obtain Bayes� theorem:

! Include event C then theorem generalizes to

! Applies to probability distributions also
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Bayesian regressionBayesian regression
! Application of Bayes� theorem to curve fitting

! Probability of model parameters given the data and prior knowledge

prior informationI

modelM

dataD

posterior likelihood

priormarginal distribution of data 
given prior knowledge



12/14/01 Cairns, Australia 22

Bayesian regression (continued)Bayesian regression (continued)
! Alternative form

! Bayesian regression uses the posterior distribution for all statistical 
inference

! Estimate model parameters using your favorite statistic with the 
posterior distribution
" Measures of central tendency: mode, mean, median
" Measures of dispersion: variance, skewness, kurtosis

! Example: mean value and variance of a model parameter  uj
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LikelihoodLikelihood
! The likelihood is the same as in the standard analysis

covariance matrix 
of data

data
model prediction
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The Bayesian priorThe Bayesian prior
! Constraints are incorporated using the prior probability distribution
! Role of the prior

" Use prior knowledge about the system to limit parameter search to 
the set of feasible solutions

" Filters out the improbable solutions from the feasible solutions
! The prior incorporates information accumulated from

" Past experience (previous experiments, calculations)
" Opinions of subject-area experts
" Theoretical constraints

! Considerations in prior construction
" Computational ease
" Symmetries, limiting cases
" Avoid putting in more information than you truly know!
" Results do and should depend on prior
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The Bayesian prior (continued)The Bayesian prior (continued)
! One common method of constructing a prior:

" Let a monkey throw balls into bins!       maximum entropy
! True Bayesian approach:

" Use past experience and your physical knowledge of  the system
! Can you use the data?

" Strictly speaking           no
" Use a handful of bins to aid prior construction, then discard
" Use of data � empirical Bayes method

! Prior: both an opportunity and a nuisance
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Our choice of prior for Examples 1Our choice of prior for Examples 1��33
! Fit to Ncor correlators using the model function Mi(u)

! To ensure positivity of the coefficients and to order the energies, use

! Actual parameters are

! Form of the prior

! Each example requires specification of



12/14/01 Cairns, Australia 27

Our choice of prior (continued)Our choice of prior (continued)
! No prior for first Ncor energies
! Energies of excited-state contamination taken to be most likely 

equally spaced above the Ncor-th level 
! Due to variational construction of our operators:

" correlator j dominated by Ej exponential 
" all other coefficients small, taken to be most likely all equal

! Parameters in the prior:

! Typical values:  Γ = 0.9(2), γ = 0.05(5), ε = 0.2(1)
! Increase Nesc until energies of interest stabilize
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Example 1 Example 1 �� Bayesian analysis comparisonBayesian analysis comparison
! Nesc = 30
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Example 1 Example 1 �� comparison (continued)comparison (continued)
! Nesc = 20
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Example 2 Example 2 �� Bayesian analysis comparisonBayesian analysis comparison
! Nesc = 30
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Example 2 Example 2 �� sensitivity to priorsensitivity to prior
! Reference prior parameters:

" Γ = 0.9 +/- 0.2,  γ = 0.05 +/- 0.05,  ε = 0.2 +/- 0.1
" Nesc = 50,  fit range t = 0 .. 14

0.472(59)Γ = γ = 0.7(7)

0.5412(29)Γ = 0.8(3), γ = 0.1(1)

0.5469(12)ε = 0.10(5)

0.5450(15)ε = 0.30(15)

0.5446(16)Reference
E0Change in prior
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Example 2 Example 2 �� continuedcontinued
! Nesc = 30
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Example 3 Example 3 �� Bayesian analysis comparisonBayesian analysis comparison
! ε = 0.10(5) and Nesc = 60
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Example 3 Example 3 �� continued continued 
! ε = 0.10(5) and Nesc = 50
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Comments on prior parametersComments on prior parameters
! Poor fits if ε set too large
! Care needed to set range of coefficients since allowing their ranges to 

be too large amplifies errors
! Results insensitive to moderate changes in prior parameter
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Two viewpointsTwo viewpoints
! Cautious viewpoint:

" use prior information to constrain excited-state contamination to 
help extract the parameter of interest

" example: ground state energy from single correlator

! Aggressive shoot-for-the-moon viewpoint:
" use prior information to help extract more information from the 

data than otherwise possible
" example: ground and first-excited state energies from a single 

correlator
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Bayesian toolsBayesian tools
! Robustness: How can I tell if my prior has an undue impact on the 

results?
" sensitivity analysis

� sensitivity of results to reasonable modifications of prior
" comparison of prior and posterior marginal distributions

! Model assessment: How can I tell if my model is providing adequate 
fit to the data?
" cross-validation, model averaging,�

! Model selection: Which model(s) should I choose for final 
presentation of the results?
" use of Bayes factors: 

� relative probabilities of two models M1 and M2
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Fly in the ointment?Fly in the ointment?
! Errors shown in this talk assume strongly-peaked posterior
! Parameter estimates and errors require integrations over the 

parameters
" Monte Carlo integrations techniques needed
" Problems with autocorrelations due to �ridges�
" Currently under investigation



12/14/01 Cairns, Australia 39

ConclusionConclusion
! Bayesian regression techniques are an alternative method for 

extracting physical observables from stochastically-determined 
correlation functions

! Uses all of your data
! Parameter errors can more easily incorporate systematics
! Takes into account prior knowledge of the system from theoretical 

considerations and/or previous experience
! Not a cure for bad data


