Excited States from the Stochastic LapH Method

Colin Morningstar

Carnegie Mellon University

MENU2013, Rome, Italy

October 3, 2013

Outline

- goals
 - comprehensive survey of spectrum of QCD stationary states in finite volume
 - hadron scattering phase shifts, decay widths, matrix elements
 - focus: large 32^3 lattices, $m_\pi \sim 240$ MeV, all 2-hadron operators
- extracting excited-state energies
- single-hadron and multi-hadron operators
- preliminary results in ρ -channel: I = 1, S = 0, $T_{1\mu}^+$
 - used 56×56 matrix of correlators
 - 12 single-hadron operators in first pass, more later
 - " $\pi\pi$ ", " $\eta\pi$ ", " $\phi\pi$ ", " $K\overline{K}$ " operators
- Ievel identification
- preliminary results using 59×59 matrix of correlators in the bosonic $I = \frac{1}{2}$, S = 1, T_{1u}
- the stochastic LapH method

Dramatis Personae

Brendan Fahy CMU

You-Cyuan Jhang CMU

David Lenkner CMU

C. Morningstar CMU

John Bulava Trinity, Dublin

Justin Foley U Utah

Jimmy Juge U Pacific, Stockton

Ricky Wong UC San Diego

- Thanks to NSF Teragrid/XSEDE:
 - Athena+Kraken at NICS
 - Ranger+Stampede at TACC

Excited states from correlation matrices

- excited-state energies from $N \times N$ Hermitian correlation matrix $C_{ij}(t) = \langle 0 | O_i(t+t_0) \overline{O}_j(t_0) | 0 \rangle$
- estimate C_{ij}(t) with Monte Carlo method in lattice QCD
- in finite volume, energies are discrete

$$C_{ij}(t) = \sum_{n} Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \qquad Z_j^{(n)} = \langle 0 | O_j | n \rangle$$

(no wrap-around)

- for *t* large such that only lowest *N* energies contribute, can solve for E_n , $Z_j^{(n)}$ using C(t) at two time separations
- *N* principal correlators $\lambda_{\alpha}(t, \tau_0)$ are eigenvalues of

 $C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2}$

• large time separation: $\lim_{t\to\infty} \lambda_{\alpha}(t,\tau_0) = e^{-(t-\tau_0)E_{\alpha}}$ to extract *N* lowest-lying stationary state energies in a channel

Excited states from correlation matrices (continued)

- simpler method: define new correlation matrix $\widetilde{C}(t)$ using a single rotation $\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$
- columns of U are eigenvectors of $C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2}$
- choose τ_0 and τ_D large enough such that $\widetilde{C}(t)$ remains diagonal for $t > \tau_D$
- produces results similar to principal correlator method
- avoids unpalatable eigenvector "pinning"
- effective masses $\widetilde{m}_{\alpha}^{\text{eff}}(t) = \frac{1}{\Delta t} \ln \left(\frac{\widetilde{C}_{\alpha\alpha}(t)}{\widetilde{C}_{\alpha\alpha}(t + \Delta t)} \right)$

tend to N lowest-lying stationary state energies in a channel

• exponential fits to $\tilde{C}_{\alpha\alpha}(t)$ yield energies E_{α} and overlaps $Z_i^{(n)}$

Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group O_h

 $A_{1a}, A_{2ga}, E_a, T_{1a}, T_{2a}, G_{1a}, G_{2a}, H_a, a = g, u$ • on-axis momenta: little group C_{4v}

 $A_1,A_2,B_1,B_2,E,\quad G_1,G_2$

• planar-diagonal momenta: little group $C_{2\nu}$

 $A_1,A_2,B_1,B_2,\quad G_1,G_2$

• cubic-diagonal momenta: little group $C_{3\nu}$

 $A_1, A_2, E, \quad F_1, F_2, G$

● include G parity in some meson sectors (superscript + or −)

C. Morningstar

Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_j(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

 $\widetilde{\psi}_{a\alpha}(x) = \mathcal{S}_{ab}(x, y) \ \psi_{b\alpha}(y), \qquad \mathcal{S} = \Theta\left(\sigma_s^2 + \widetilde{\Delta}\right)$

- 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$q^A_{a\alpha j} = D^{(j)} \widetilde{\psi}^{(A)}_{a\alpha}, \qquad \overline{q}^A_{a\alpha j} = \overline{\widetilde{\psi}}^{(A)}_{a\alpha} \gamma_4 D^{(j)}$$

• displacement D^(j) is product of smeared links:

 $D^{(j)}(x,x') = \widetilde{U}_{j_1}(x) \ \widetilde{U}_{j_2}(x+d_2) \ \widetilde{U}_{j_3}(x+d_3) \dots \widetilde{U}_{j_p}(x+d_p) \delta_{x', \ x+d_{p+1}}$

to good approximation, LapH smearing operator is

 $S = V_s V_s^{\dagger}$

• columns of matrix V_s are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

• quark displacements build up orbital, radial structure

C. Morningstar

Testing single-hadron operators

• meson effective masses on (24³|390) ensemble

8

Testing single-hadron operators (con't)

- (left and center) pion energies on (32³|240) ensemble
- (right) nucleon and Δ baryons

Two-hadron operators

 our approach: superposition of products of single-hadron operators of definite momenta

 $c_{\boldsymbol{p}_a\lambda_a; \boldsymbol{p}_b\lambda_b}^{I_aI_{3a}S_a} B_{\boldsymbol{p}_a\Lambda_a\lambda_ai_a}^{I_bI_{3b}S_b} B_{\boldsymbol{p}_a\Lambda_a\lambda_ai_a}^{I_bI_{3b}S_b}$

- fixed total momentum $\boldsymbol{p} = \boldsymbol{p}_a + \boldsymbol{p}_b$, fixed $\Lambda_a, i_a, \Lambda_b, i_b$
- group-theory projections onto little group of p and isospin irreps
- restrict attention to certain classes of momentum directions
 - on axis $\pm \hat{x}$, $\pm \hat{y}$, $\pm \hat{z}$
 - planar diagonal $\pm \widehat{x} \pm \widehat{y}, \ \pm \widehat{x} \pm \widehat{z}, \ \pm \widehat{y} \pm \widehat{z}$
 - cubic diagonal $\pm \widehat{x} \pm \widehat{y} \pm \widehat{z}$
- crucial to know and fix all phases of single-hadron operators for all momenta
 - each class, choose reference direction p_{ref}
 - each p, select one reference rotation R_{ref}^{p} that transforms p_{ref} into p
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Testing our two-meson operators

- (left) $K\pi$ operator in $T_{1u} I = \frac{1}{2}$ channels
- (center and right) comparison with localized ππ operators

 $\begin{aligned} &(\pi\pi)^{A_{1g}^+}(t) &= \sum_{\mathbf{x}} \pi^+(\mathbf{x},t) \ \pi^+(\mathbf{x},t), \\ &(\pi\pi)^{T_{1u}^+}(t) &= \sum_{\mathbf{x},k=1,2,3} \Big\{ \pi^+(\mathbf{x},t) \ \Delta_k \pi^0(\mathbf{x},t) - \pi^0(\mathbf{x},t) \ \Delta_k \pi^+(\mathbf{x},t) \Big\} \end{aligned}$

• less contamination from higher states in our $\pi\pi$ operators

Ensembles and run parameters

- plan to use three Monte Carlo ensembles
 - $(32^3|240)$: 412 configs $32^3 \times 256$, $m_\pi \approx 240$ MeV, $m_\pi L \sim 4.4$
 - $(24^3|240)$: 584 configs $24^3 \times 128$, $m_\pi \approx 240$ MeV, $m_\pi L \sim 3.3$
 - $(24^3|390)$: 551 configs $24^3 \times 128$, $m_\pi \approx 390$ MeV, $m_\pi L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta = 1.5$ such that $a_s \sim 0.12$ fm, $a_t \sim 0.035$ fm
- strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- work in $m_u = m_d$ limit so SU(2) isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi = 0.10$ and $n_{\xi} = 10$
- LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - $N_{\nu} = 112$ for 24^3 lattices
 - $N_{\nu} = 264$ for 32^3 lattices
- source times:
 - 4 widely-separated t₀ values on 24³
 - 8 t₀ values used on 32³ lattice

C. Morningstar

First results

- correlator software last_laph completed summer 2013
 - testing of all flavor channels for single and two-mesons completed
- first focus on the resonance-rich ρ -channel: $I = 1, S = 0, T_{1\mu}^+$
- experiment: $\rho(770)$, $\rho(1450)$, $\rho(1570)$, $\rho_3(1690)$, $\rho(1700)$
- first results: 56×56 matrix of correlators (24³|390) ensemble
 - 12 single-hadron (quark-antiquark) operators
 - 17 "ππ" operators
 - 14 " $\eta\pi$ " operators, 3 " $\phi\pi$ " operators
 - 10 "KK" operators
- inclusion of all possible 2-meson operators
- 3-meson operators currently neglected
- still finalizing analysis code

$I = 1, S = 0, T_{1u}^+$ channel

- effective masses $\widetilde{m}^{\text{eff}}(t)$ for levels 0 to 15
- dashed lines show energies from single exponential fits

$I = 1, S = 0, T_{1u}^+$ energy extraction, continued

- effective masses $\widetilde{m}^{\text{eff}}(t)$ for levels 16 to 31
- dashed lines show energies from single exponential fits

$I = 1, S = 0, T_{1u}^+$ energy extraction, continued

- effective masses $\widetilde{m}^{\text{eff}}(t)$ for levels 32 to 47
- dashed lines show energies from single exponential fits

Level identification

- level identification inferred from Z overlaps with probe operators
- analogous to experiment: infer resonances from scattering cross sections
- keep in mind:
 - probe operators \overline{O}_i act on vacuum, create a "probe state" $|\Phi_i\rangle$, Z's are overlaps of probe state with each eigenstate

- have limited control of "probe states" produced by probe operators
 - ideal to be ρ , single $\pi\pi$, and so on
 - use of small-a expansions to characterize probe operators
 - use of smeared guark, gluon fields
 - field renormalizations
- mixing is prevalent
- identify by dominant probe state(s) whenever possible

Level identification

overlaps for various operators

Small-*a* expansion of probes

- illustrate problem with real scalar field $\varphi(x)$
- consider three operators Φ_j for j = 1, 2, 3 defined by

$$\Phi_j(x) = \frac{1}{2a} \Big(\varphi(x + \widehat{j}) - \varphi(x - \widehat{j}) \Big).$$

this is forward-backward finite difference approx to derivative

- carry T₁ irrep of the octahedral point group O
- classical small-*a* expansion:

$$\Phi_j(x) \approx \partial_j \varphi(x) + \frac{1}{6} a^2 \partial_j^3 \varphi(x) + O(a^4).$$

- first term $\partial_j \varphi(x)$ is spin J = 1
- second term contains both J = 1 and J = 3
- radiative corrections modify relative weights (calculate in lattice perturbation theory, but difficult)

Small-*a* expansion of probes

link variables in terms of continuum gluon field

 $U_{\mu}(x) = \mathcal{P} \exp\left\{ ig \int_{x}^{x+\hat{\mu}} d\eta \cdot A(\eta) \right\},\,$

• classical small-*a* expansion of displaced quark field:

 $U_j(x)U_k(x+\widehat{j})\psi_{\alpha}(x+\widehat{j}+\widehat{k}) = \exp(a\mathcal{D}_j) \exp(a\mathcal{D}_k) \psi_{\alpha}(x).$

- where $D_j = \partial_j + igA_j$ is covariant derivative
- must take smearing of fields into account
- radiative corrections of expansion coefficients (hopefully small due to smearing)
- work in progress for our probe operators

J^{PG} of continuum probe operators

isovector meson continuum probe operators

$$M_{\mu j_1 j_2 \cdots} = \chi^d \Gamma_\mu \mathcal{D}_{j_1} \mathcal{D}_{j_2} \cdots \psi^u, \qquad \qquad \chi = \overline{\psi} \gamma_4$$

• where $\Gamma_0 = 1$ and $\Gamma_k = \gamma_k$ (analogous table inserting $\gamma_4, \gamma_5, \gamma_4\gamma_5$)

J^{PG}	O_h^G irrep	Basis operator
0++	A_{1g}^+	<i>M</i> ₀
1-+	T_{1u}^+	<i>M</i> ₁
1	T_{1u}^{-}	<i>M</i> ₀₁
0+-	A_{1g}^-	$M_{11} + M_{22} + M_{33}$
1+-	T_{1g}^{-}	$M_{23} - M_{32}$
2+-	E_g^{\perp}	$M_{11} - M_{22}$
	T_{2g}^{-}	$M_{23} + M_{32}$
0++	A_{1g}^{+}	$M_{011} + M_{022} + M_{033}$
1+-	T_{1g}^{-}	$M_{023} - M_{032}$
2++	E_g^+	$M_{011} - M_{022}$
	T_{2g}^+	$M_{023} + M_{032}$

C. Morningstar

J^{PG} of continuum probe operators (continued)

isovector meson continuum probe operators

 $M_{\mu j_1 j_2 \cdots} = \chi^d \Gamma_\mu \mathcal{D}_{j_1} \mathcal{D}_{j_2} \cdots \psi^u, \qquad \chi = \overline{\psi} \gamma_4$

• where $\Gamma_0 = 1$ and $\Gamma_k = \gamma_k$ (analogous table inserting $\gamma_4, \gamma_5, \gamma_4\gamma_5$)

J^{PG}	O_h^G irrep	Basis operator
0	A_{1u}^-	$M_{123} + M_{231} + M_{312} - M_{321} - M_{213} - M_{132}$
1-+	T_{1u}^{+}	$M_{111} + M_{122} + M_{133}$
1-+	T_{1u}^{+}	$2M_{111} + M_{221} + M_{331} + M_{212} + M_{313}$
1	T_{1u}^-	$M_{221} + M_{331} - M_{212} - M_{313}$
2	E_u^-	$M_{123} + M_{213} - M_{231} - M_{132}$
	T_{2u}^{-}	$M_{221} - M_{331} + M_{313} - M_{212}$
2-+	E_u^+	$M_{123} + M_{213} - 2M_{321} - 2M_{312} + M_{231} + M_{132}$
	T_{2u}^{+}	$M_{221} - M_{331} - 2M_{122} + 2M_{133} - M_{313} + M_{212}$
3-+	A_{2u}^{+}	$M_{123} + M_{231} + M_{312} + M_{213} + M_{321} + M_{132}$
	T_{1u}^{+}	$2M_{111} - M_{221} - M_{331} - M_{212} - M_{313} - M_{122} - M_{133}$
	T_{2u}^+	$M_{331} - M_{212} + M_{313} - M_{122} + M_{133} - M_{221}$

C. Morningstar

Identifying resonances

- resonances: finite-volume "precursor states"
- probes: optimized single-hadron operators
 - analyze matrix of just single-hadron operators $O_i^{[SH]}$ (12 × 12)
 - perform single-rotation as before to build probe operators $O'^{[SH]}_m = \sum_i v'^{(m)*}_i O^{[SH]}_i$
- obtain Z' factors of these probe operators

 $Z_m^{\prime(n)} = \langle 0 | \ O_m^{\prime[SH]} \ | n \rangle$

List of tentative level identifications

Level	Dominant Probe	Level	Dominant Probe
0	$\rho(770)$	16	$\omega(782)\pi(140)$ (PD)
1	$\pi(140)\pi(140)$ (OA)	17	$\phi(1020)\pi(140)$ (PD)
2	<i>K</i> (497) <i>K</i> ^c (497) (OA)	18	$\phi(1020)\pi(140)$ (PD)
3	$\pi(140)\pi(140)$ (PD)	20	$K(497)K^{c}(497)$ (CD)
4	$\omega(782)\pi(140 \text{ (OA)})$	21	$K(497)K^{c}(497)$ (CD)
5	$K(497)K^{c}(497)$ (PD)	22	$\rho(770)\rho(770)$ (OA)
6	$\phi(1020)\pi(140)$ (OA)	30	$\eta(547)\rho(770)$ (PD)
7	$\pi(140)\pi(140)$ (CD) (12)	31	$\rho(1690)$
8	$\rho(1450)$	36	$h_1(1170)\pi(140)$ (OA)
9	$\eta(547)\rho(770)$ (OA)	40	$\rho(1700)$
11	$\pi(140)a_1(1260)$ (AR)	41	$\eta(547)b_1(1235)$ (AR)
12	$\pi(140)\pi(140)$ (CD) (7)	46	$\rho(?)$
13	$\rho(1570)$	48	$\rho(?)$
14	$K^*(892)K^c(497)$ (OA)		

Summary and comparison with experiment

- left: energies of $\overline{q}q$ -dominant states as ratios over m_N for $(24^3|390)$ ensemble (resonance precursor states)
- right: experiment

Issues

- address presence of 3 and 4 meson states
- in other channels, address scalar particles in spectrum
 - scalar probe states need vacuum subtractions
 - hopefully can neglect due to OZI suppression
- infinite-volume resonance parameters from finite-volume energies
 - Luscher method too cumbersome, restrictive in applicability
 - need for new hadron effective field theory techniques

- also have results for the kaon channel: $I = \frac{1}{2}$, S = 1, T_{1u}
- experiment: $K^*(892)$, $K^*(1410)$, $K^*(1680)$, $K^*_3(1780)$
- first results: 59×59 matrix of correlators ($24^3|390$) ensemble
 - 10 single-hadron (quark-antiquark) operators
 - 25 "Kπ" operators
 - 12 " $K\eta$ " operators, 12 " $K\phi$ " operators

- effective masses $\widetilde{m}^{\text{eff}}(t)$ for levels 0 to 14
- dashed lines show energies from single exponential fits

C. Morningstar

- effective masses $\widetilde{m}^{\text{eff}}(t)$ for levels 15 to 29
- dashed lines show energies from single exponential fits

C. Morningstar

- effective masses $\widetilde{m}^{\text{eff}}(t)$ for levels 30 to 44
- dashed lines show energies from single exponential fits

C. Morningstar

• preliminary estimates of Z overlaps for various operators:

The scalar isoscalar sector

• 5 × 5 correlator matrix mixing glueball *G*, two $\pi\pi$, an $\eta\eta$, and a $\overline{q}q$ operator for (24³|390) ensemble

C. Morningstar

Quark line diagrams

- temporal correlations involving our two-hadron operators need
 - slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
 - sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!

Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix *K*[*U*]
- use noise vectors η satisfying $E(\eta_i) = 0$ and $E(\eta_i \eta_i^*) = \delta_{ij}$
- Z_4 noise is used $\{1, i, -1, -i\}$
- solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

- variance reduction using noise dilution
- dilution introduces projectors

$$\begin{split} P^{(a)}P^{(b)} &= \delta^{ab}P^{(a)}, \qquad \sum_{a} P^{(a)} = 1, \qquad P^{(a)\dagger} = P^{(a)} \\ \bullet \mbox{ define } & \eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]} \end{split}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{a} X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

C. Morningstar

Stochastic LapH method

• introduce Z_N noise in the LapH subspace

 $\rho_{\alpha k}(t), \quad t = time, \ \alpha = spin, \ k = eigenvector number$

four dilution schemes:

 $\begin{array}{ll} P_{ij}^{(a)} = \delta_{ij} & a = 0 & (\text{none}) \\ P_{ij}^{(a)} = \delta_{ij}\delta_{ai} & a = 0, 1, \dots, N-1 & (\text{full}) \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,Ki/N} & a = 0, 1, \dots, K-1 & (\text{interlace-}K) \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,i \mod k} & a = 0, 1, \dots, K-1 & (\text{block-}K) \end{array}$

- apply dilutions to
 - time indices (full for fixed src, interlace-16 for relative src)
 - spin indices (full)
 - LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)

Quark line estimates in stochastic LapH

each of our quark lines is the product of matrices

 $\mathcal{Q} = D^{(j)} \mathcal{S} K^{-1} \gamma_4 \mathcal{S} D^{(k)\dagger}$

• displaced-smeared-diluted quark source and quark sink vectors:

$$\begin{aligned} \varrho^{[b]}(\rho) &= D^{(j)} V_s P^{(b)} \rho \\ \varphi^{[b]}(\rho) &= D^{(j)} \mathcal{S} K^{-1} \gamma_4 V_s P^{(b)} \rho \end{aligned}$$

 estimate in stochastic LapH by (A, B flavor, u, v compound: space, time, color, spin, displacement type)

$$\mathcal{Q}_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_b \varphi_u^{[b]}(\rho^r) \ \varrho_v^{[b]}(\rho^r)^*$$

• occasionally use γ_5 -Hermiticity to switch source and sink

$$\mathcal{Q}_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_{b} \overline{\varrho}_u^{[b]}(\rho^r) \ \overline{\varphi}_v^{[b]}(\rho^r)^*$$

defining $\overline{\varrho}(\rho) = -\gamma_5 \gamma_4 \varrho(\rho)$ and $\overline{\varphi}(\rho) = \gamma_5 \gamma_4 \varphi(\rho)$

C. Morningstar

Source-sink factorization in stochastic LapH

baryon correlator has form

$$C_{l\bar{l}} = c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \mathcal{Q}_{l\bar{i}}^{A} \mathcal{Q}_{j\bar{j}}^{B} \mathcal{Q}_{k\bar{k}}^{C}$$

stochastic estimate with dilution

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \left(\varphi_i^{(Ar)[d_A]} \varrho_{\bar{l}}^{(Ar)[d_A]*}\right) \\ \times \left(\varphi_j^{(Br)[d_B]} \varrho_{\bar{j}}^{(Br)[d_B]*}\right) \left(\varphi_k^{(Cr)[d_C]} \varrho_{\bar{k}}^{(Cr)[d_C]*}\right)$$

• define baryon source and sink

$$\begin{array}{lll} \mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varphi^{A},\varphi^{B},\varphi^{C}) & = & c_{ijk}^{(l)} \; \varphi_{i}^{(Ar)[d_{A}]} \varphi_{j}^{(Br)[d_{B}]} \varphi_{k}^{(Cr)[d_{C}]} \\ \mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varrho^{A},\varrho^{B},\varrho^{C}) & = & c_{ijk}^{(l)} \; \varrho_{i}^{(Ar)[d_{A}]} \varrho_{j}^{(Br)[d_{B}]} \varrho_{k}^{(Cr)[d_{C}]} \end{array}$$

correlator is dot product of source vector with sink vector

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^*$$

C. Morningstar

Correlators and quark line diagrams

baryon correlator

$$\begin{split} C_{l\bar{l}} &\approx \frac{1}{N_R} \sum_{r} \sum_{\substack{d_A d_B d_C \\ d_A d_B d_C}} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^* \\ \bullet \text{ express diagrammatically} \end{split}$$

meson correlator

C. Morningstar

More complicated correlators

two-meson to two-meson correlators (non isoscalar mesons)

C. Morningstar

References

- S. Basak et al., Group-theoretical construction of extended baryon operators in lattice QCD, Phys. Rev. D 72, 094506 (2005).
- S. Basak et al., *Lattice QCD determination of patterns of excited baryon states*, Phys. Rev. D **76**, 074504 (2007).
- C. Morningstar et al., Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD, Phys. Rev. D 83, 114505 (2011).
- C. Morningstar et al., *Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD*, Phys. Rev. D **88**, 014511 (2013).

Conclusion and future work

- goal: comprehensive survey of energy spectrum of QCD stationary states in a finite volume
- stochastic LapH method works very well
 - allows evaluation of all needed quark-line diagrams
 - source-sink factorization facilitates large number of operators
 - last_laph software completed for evaluating correlators
- showed first results in ρ -channel: I = 1, S = 0, T_{1u}^+ using 56×56 matrix of correlators
- preliminary results using 59 × 59 matrix of correlators in the bosonic $I = \frac{1}{2}$, S = 1, T_{1u}
- Iarge number of channels to study over the next year!
- first peek: results on (32³|240) ensemble look even better so far!!
- study various scattering phase shifts also planned
- infinite-volume resonance parameters from finite-volume energies → need new effective field theory techniques