
Excited states and scattering
phase shifts from lattice QCD

Colin Morningstar
Carnegie Mellon University

Workshop of the APS Topical Group on Hadron Physics

Baltimore, MD

April 9, 2015



Overview

goals:
comprehensive survey of QCD stationary states in finite volume
hadron scattering phase shifts, decay widths, matrix elements
focus: large 323 anisotropic lattices, mπ ∼ 240 MeV

extracting excited-state
energies
single-hadron and
multi-hadron operators
the stochastic LapH method
level identification issues
results for I = 1, S = 0, T+

1u channel
100× 100 correlator matrix, all needed 2-hadron operators

other channels
I = 1 P-wave ππ scattering phase shifts and width of ρ
future work
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Temporal correlations from path integrals

stationary-state energies from N×N Hermitian correlation matrix

Cij(t) = 〈0|Oi(t+t0) Oj(t0) |0〉
judiciously designed operators Oj create states of interest

Oj(t) = Oj[ψ(t), ψ(t),U(t)]

correlators from path integrals over quark ψ,ψ and gluon U fields

Cij(t) =

∫
D(ψ,ψ,U) Oi(t + t0) Oj(t0) exp

(
−S[ψ,ψ,U]

)∫
D(ψ,ψ,U) exp

(
−S[ψ,ψ,U]

)
involves the action

S[ψ,ψ,U] = ψ K[U] ψ + SG[U]

K[U] is fermion Dirac matrix
SG[U] is gluon action
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Integrating the quark fields

integrals over Grassmann-valued quark fields done exactly
meson-to-meson example:∫

D(ψ,ψ) ψaψb ψcψd exp
(
−ψKψ

)
=

(
K−1

ad K−1
bc − K−1

ac K−1
bd

)
det K.

baryon-to-baryon example:∫
D(ψ,ψ) ψa1ψa2ψa3 ψb1

ψb2
ψb3

exp
(
−ψKψ

)
=

(
−K−1

a1b1
K−1

a2b2
K−1

a3b3
+ K−1

a1b1
K−1

a2b3
K−1

a3b2
+ K−1

a1b2
K−1

a2b1
K−1

a3b3

− K−1
a1b2

K−1
a2b3

K−1
a3b1
− K−1

a1b3
K−1

a2b1
K−1

a3b2
+ K−1

a1b3
K−1

a2b2
K−1

a3b1

)
det K
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Monte Carlo integration

correlators have form

Cij(t) =

∫
DU det K[U] K−1[U] · · ·K−1[U] exp (−SG[U])∫

DU det K[U] exp (−SG[U])

resort to Monte Carlo method to integrate over gluon fields
use Markov chain to generate sequence of gauge-field
configurations

U1,U2, . . . ,UN

most computationally demanding parts:
including det K in updating
evaluating K−1 in numerator
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Lattice QCD

Monte Carlo method using computers requires hypercubic
space-time lattice
quarks reside on sites, gluons reside on links between sites
for gluons, 8 dimensional integral on each link

path integral dimension 32NxNyNzNt

268 million for 323×256 lattice

Metropolis method with global
updating proposal

RHMC: solve Hamilton equations
with Gaussian momenta
det K estimates with integral over
pseudo-fermion fields

systematic errors
− discretization
− finite volume
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Excited states from correlation matrices

in finite volume, energies are discrete (neglect wrap-around)

Cij(t) =
∑

n

Z(n)
i Z(n)∗

j e−Ent, Z(n)
j = 〈0| Oj |n〉

not practical to do fits using above form
define new correlation matrix C̃(t) using a single rotation

C̃(t) = U† C(τ0)−1/2 C(t) C(τ0)−1/2 U

columns of U are eigenvectors of C(τ0)−1/2 C(τD) C(τ0)−1/2

choose τ0 and τD large enough so C̃(t) diagonal for t > τD

effective energies
m̃eff
α (t) =

1
∆t

ln

(
C̃αα(t)

C̃αα(t + ∆t)

)
tend to N lowest-lying stationary state energies in a channel

2-exponential fits to C̃αα(t) yield energies Eα and overlaps Z(n)
j
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Building blocks for single-hadron operators

building blocks: covariantly-displaced LapH-smeared quark fields
stout links Ũj(x)

Laplacian-Heaviside (LapH) smeared quark fields

ψ̃aα(x) = Sab(x, y) ψbα(y), S = Θ
(
σ2

s + ∆̃
)

3d gauge-covariant Laplacian ∆̃ in terms of Ũ

displaced quark fields:

qA
aαj = D(j)ψ̃(A)

aα , qA
aαj = ψ̃

(A)

aα γ4 D(j)†

displacement D(j) is product of smeared links:

D(j)(x, x′) = Ũj1(x) Ũj2(x+d2) Ũj3(x+d3) . . . Ũjp(x+dp)δx′, x+dp+1

to good approximation, LapH smearing operator is

S = VsV†s
columns of matrix Vs are eigenvectors of ∆̃
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Extended operators for single hadrons

quark displacements build up orbital, radial structure

Φ
AB
αβ(p, t) =

∑
x eip·(x+ 1

2 (dα+dβ))δab qB
bβ(x, t) qA

aα(x, t)

Φ
ABC
αβγ(p, t) =

∑
x eip·xεabc qC

cγ(x, t) qB
bβ(x, t) qA

aα(x, t)

group-theory projections onto irreps of lattice symmetry group

Ml(t) = c(l)∗
αβ Φ

AB
αβ(t) Bl(t) = c(l)∗

αβγ Φ
ABC
αβγ(t)

definite momentum p, irreps of little group of p
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Importance of smeared fields

effective masses of
3 selected nucleon
operators shown
noise reduction of
displaced-operators
from link smearing
nρρ = 2.5, nρ = 16
quark-field
smearing
σs = 4.0, nσ = 32
reduces
excited-state
contamination
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Early results on small 163 and 243 lattices

Bob Sugar in 2005: “You’ll never see more than 2 levels”
I = 1, S = 0 energies on 243 lattice, mπ ∼ 390 MeV in 2010
use of single-meson operators only
shaded region shows where two-meson energies expected
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Early results on small lattices

kaons on 163 lattice, mπ ∼ 390 MeV in 2008
use of single-meson operators only
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Early results on small lattices

N, ∆ baryons on 163 lattice, mπ ∼ 390 MeV in 2008
use of single-baryon operators only
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Early results on small lattices

Σ, Λ, Ξ baryons on 163 lattice, mπ ∼ 390 MeV in 2008
use of single-baryon operators only
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Two-hadron operators

our approach: superposition of products of single-hadron
operators of definite momenta

cI3aI3b
paλa; pbλb

BIaI3aSa
paΛaλaia BIbI3bSb

pbΛbλbib

fixed total momentum p = pa + pb, fixed Λa, ia,Λb, ib
group-theory projections onto little group of p and isospin irreps
restrict attention to certain classes of momentum directions

on axis ±x̂, ±ŷ, ±ẑ
planar diagonal ±x̂± ŷ, ±x̂± ẑ, ±ŷ± ẑ
cubic diagonal ±x̂± ŷ± ẑ

crucial to know and fix all phases of single-hadron operators for
all momenta

each class, choose reference direction pref
each p, select one reference rotation Rp

ref that transforms pref into p

efficient creating large numbers of two-hadron operators
generalizes to three, four, . . . hadron operators
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Quark propagation

quark propagator is inverse K−1 of Dirac matrix
rows/columns involve lattice site, spin, color
very large Ntot × Ntot matrix for each flavor

Ntot = NsiteNspinNcolor

for 323 × 256 lattice, Ntot ∼ 101 million

not feasible to compute (or store) all elements of K−1

solve linear systems Kx = y for source vectors y

translation invariance can drastically reduce number of source
vectors y needed
multi-hadron operators and isoscalar mesons require large
number of source vectors y
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Quark line diagrams

temporal correlations involving our two-hadron operators need
slice-to-slice quark lines (from all spatial sites on a time slice to all
spatial sites on another time slice)
sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!
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Stochastic estimation of quark propagators

do not need exact inverse of Dirac matrix K[U]

use noise vectors η satisfying E(ηi) = 0 and E(ηiη
∗
j ) = δij

Z4 noise is used {1, i,−1,−i}
solve K[U]X(r) = η(r) for each of NR noise vectors η(r), then
obtain a Monte Carlo estimate of all elements of K−1

K−1
ij ≈

1
NR

NR∑
r=1

X(r)
i η

(r)∗
j

variance reduction using noise dilution
dilution introduces projectors

P(a)P(b) = δabP(a),
∑

a

P(a) = 1, P(a)† = P(a)

define
η[a] = P(a)η, X[a] = K−1η[a]

to obtain Monte Carlo estimate with drastically reduced variance

K−1
ij ≈

1
NR

NR∑
r=1

∑
a

X(r)[a]
i η

(r)[a]∗
j
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Stochastic LapH method

introduce ZN noise in the LapH subspace

ραk(t), t = time, α = spin, k = eigenvector number

four dilution schemes:

P(a)
ij = δij a = 0 (none)

P(a)
ij = δijδai a = 0, 1, . . . ,N−1 (full)

P(a)
ij = δijδa,Ki/N a = 0, 1, . . . ,K−1 (interlace-K)

P(a)
ij = δijδa,i mod k a = 0, 1, . . . ,K−1 (block-K)

apply dilutions to
time indices (full for fixed src, interlace-16 for relative src)
spin indices (full)
LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)
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The effectiveness of stochastic LapH

comparing use of lattice noise vs noise in LapH subspace
ND is number of solutions to Kx = y
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Quark line estimates in stochastic LapH

each of our quark lines is the product of matrices

Q = D(j)SK−1γ4SD(k)†

displaced-smeared-diluted quark source and quark sink vectors:

%[b](ρ) = D(j)VsP(b)ρ

ϕ[b](ρ) = D(j)SK−1γ4 VsP(b)ρ

estimate in stochastic LapH by (A,B flavor, u, v compound:
space, time, color, spin, displacement type)

Q(AB)
uv ≈ 1

NR
δAB

NR∑
r=1

∑
b

ϕ[b]
u (ρr) %[b]

v (ρr)∗

occasionally use γ5-Hermiticity to switch source and sink

Q(AB)
uv ≈ 1

NR
δAB

NR∑
r=1

∑
b

%[b]
u (ρr) ϕ[b]

v (ρr)∗

defining %(ρ) = −γ5γ4%(ρ) and ϕ(ρ) = γ5γ4ϕ(ρ)
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Source-sink factorization in stochastic LapH

baryon correlator has form

Cll = c(l)
ijk c(l)∗

ijk
QA

iiQ
B
jjQ

C
kk

stochastic estimate with dilution

Cll ≈
1

NR

∑
r

∑
dAdBdC

c(l)
ijk c(l)∗

ijk

(
ϕ

(Ar)[dA]
i %

(Ar)[dA]∗
i

)
×

(
ϕ

(Br)[dB]
j %

(Br)[dB]∗
j

)(
ϕ

(Cr)[dC]
k %

(Cr)[dC]∗
k

)
define baryon source and sink

B(r)[dAdBdC]
l (ϕA, ϕB, ϕC) = c(l)

ijk ϕ
(Ar)[dA]
i ϕ

(Br)[dB]
j ϕ

(Cr)[dC]
k

B(r)[dAdBdC]
l (%A, %B, %C) = c(l)

ijk %
(Ar)[dA]
i %

(Br)[dB]
j %

(Cr)[dC]
k

correlator is dot product of source vector with sink vector

Cll ≈
1

NR

∑
r

∑
dAdBdC

B(r)[dAdBdC]
l (ϕA, ϕB, ϕC)B(r)[dAdBdC]

l
(%A, %B, %C)∗
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Correlators and quark line diagrams

baryon correlator

Cll ≈
1

NR

∑
r

∑
dAdBdC

B(r)[dAdBdC]
l (ϕA, ϕB, ϕC)B(r)[dAdBdC]

l
(%A, %B, %C)∗

express diagrammatically

meson correlator
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More complicated correlators

two-meson to two-meson correlators (non isoscalar mesons)
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Quantum numbers in toroidal box

periodic boundary conditions in
cubic box

not all directions equivalent⇒
using JPC is wrong!!

label stationary states of QCD in a periodic box using irreps of
cubic space group even in continuum limit

zero momentum states: little group Oh

A1a,A2ga,Ea, T1a, T2a, G1a,G2a,Ha, a = g, u
on-axis momenta: little group C4v

A1,A2,B1,B2,E, G1,G2

planar-diagonal momenta: little group C2v

A1,A2,B1,B2, G1,G2

cubic-diagonal momenta: little group C3v

A1,A2,E, F1,F2,G

include G parity in some meson sectors (superscript + or −)
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Spin content of cubic box irreps

numbers of occurrences of Λ irreps in J subduced

J A1 A2 E T1 T2

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1
5 0 0 1 2 1
6 1 1 1 1 2
7 0 1 1 2 2

J G1 G2 H J G1 G2 H
1
2 1 0 0 9

2 1 0 2
3
2 0 0 1 11

2 1 1 2
5
2 0 1 1 13

2 1 2 2
7
2 1 1 1 15

2 1 1 3
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Common hadrons

irreps of commonly-known hadrons at rest

Hadron Irrep Hadron Irrep Hadron Irrep

π A−1u K A1u η, η′ A+
1u

ρ T+
1u ω, φ T−1u K∗ T1u

a0 A+
1g f0 A+

1g h1 T−1g

b1 T+
1g K1 T1g π1 T−1u

N,Σ G1g Λ,Ξ G1g ∆,Ω Hg
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Ensembles and run parameters

plan to use three Monte Carlo ensembles
(323|240): 412 configs 323 × 256, mπ ≈ 240 MeV, mπL ∼ 4.4
(243|240): 584 configs 243 × 128, mπ ≈ 240 MeV, mπL ∼ 3.3
(243|390): 551 configs 243 × 128, mπ ≈ 390 MeV, mπL ∼ 5.7

anisotropic improved gluon action, clover quarks (stout links)
QCD coupling β = 1.5 such that as ∼ 0.12 fm, at ∼ 0.035 fm
strange quark mass ms = −0.0743 nearly physical (using kaon)
work in mu = md limit so SU(2) isospin exact
generated using RHMC, configs separated by 20 trajectories

stout-link smearing in operators ξ = 0.10 and nξ = 10

LapH smearing cutoff σ2
s = 0.33 such that

Nv = 112 for 243 lattices
Nv = 264 for 323 lattices

source times:
4 widely-separated t0 values on 243

8 t0 values used on 323 lattice
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Use of XSEDE resources

use of XSEDE resources crucial
Monte Carlo generation of gauge-field configurations:
∼ 200 million core hours
quark propagators: ∼ 100 million core hours
hadrons + correlators: ∼ 40 million core hours
storage: ∼ 300 TB

Kraken at NICS Stampede at TACC
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Status report

correlator software last_laph completed summer 2013
testing of all flavor channels for single and two-mesons completed
fall 2013
testing of all flavor channels for single baryon and meson-baryons
completed summer 2014

small-a expansions of all operators completed
first focus on the resonance-rich ρ-channel: I = 1, S = 0, T+

1u

results from 63× 63 matrix of correlators (323|240) ensemble
10 single-hadron (quark-antiquark) operators
“ππ” operators
“ηπ” operators, “φπ” operators
“KK” operators

inclusion of all possible 2-meson operators
3-meson operators currently neglected
still finalizing analysis code sigmond
next focus: the 20 bosonic channels with I = 1, S = 0

C. Morningstar Excited States 30



Operator accounting

numbers of operators for I = 1, S = 0, P = (0, 0, 0) on 323 lattice

(322|240) A+
1g A+

1u A+
2g A+

2u E+
g E+

u T+
1g T+

1u T+
2g T+

2u
SH 9 7 13 13 9 9 14 23 15 16
“ππ” 10 17 8 11 8 17 23 30 17 27
“ηπ” 6 15 10 7 11 18 31 20 21 23
“φπ” 6 15 9 7 12 19 37 11 23 23
“KK” 0 5 3 5 3 6 9 12 5 10
Total 31 59 43 43 43 69 114 96 81 99

(322|240) A−1g A−1u A−2g A−2u E−g E−u T−1g T−1u T−2g T−2u
SH 10 8 11 10 12 9 21 15 19 16
“ππ” 3 7 7 3 8 11 22 12 12 15
“ηπ” 26 15 10 12 24 21 25 33 28 30
“φπ” 26 15 10 12 27 22 26 38 30 32
“KK” 11 3 4 2 11 5 12 5 12 6
Total 76 48 42 39 82 68 106 103 101 99
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Operator accounting

numbers of operators for I = 1, S = 0, P = (0, 0, 0) on 243 lattice

(242|390) A+
1g A+

1u A+
2g A+

2u E+
g E+

u T+
1g T+

1u T+
2g T+

2u
SH 9 7 13 13 9 9 14 23 15 16
“ππ” 6 12 2 6 8 9 15 17 10 12
“ηπ” 2 10 8 4 8 11 21 14 14 13
“φπ” 2 10 8 4 8 11 23 3 14 13
“KK” 0 4 1 4 1 4 8 10 4 6
Total 19 43 32 31 34 44 81 67 57 60

(242|390) A−1g A−1u A−2g A−2u E−g E−u T−1g T−1u T−2g T−2u
SH 10 8 11 10 12 9 20 15 19 16
“ππ” 1 5 6 2 3 7 18 8 10 9
“ηπ” 19 9 4 6 13 12 11 18 15 14
“φπ” 18 9 4 6 14 12 11 19 15 15
“KK” 7 2 2 2 6 4 9 4 8 4
Total 55 33 27 26 48 44 69 64 67 58
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I = 1, S = 0, T+
1u channel

effective energies m̃eff(t) for levels 0 to 24
energies obtained from two-exponential fits
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I = 1, S = 0, T+
1u energy extraction, continued

effective energies m̃eff(t) for levels 25 to 49
energies obtained from two-exponential fits
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Level identification

level identification inferred from Z overlaps with probe operators
analogous to experiment: infer resonances from scattering cross
sections
keep in mind:

probe operators Oj act on vacuum, create a “probe state” |Φj〉,
Z’s are overlaps of probe state with each eigenstate

|Φj〉 ≡ Oi|0〉, Z(n)
j = 〈Φj|n〉

have limited control of “probe states” produced by probe operators
ideal to be ρ, single ππ, and so on
use of small−a expansions to characterize probe operators
use of smeared quark, gluon fields
field renormalizations

mixing is prevalent
identify by dominant probe state(s) whenever possible
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Level identification

overlaps for various operators
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Identifying quark-antiquark resonances

resonances: finite-volume “precursor states”
probes: optimized single-hadron operators

analyze matrix of just single-hadron operators O[SH]
i (12× 12)

perform single-rotation as before to build probe operators
O′[SH]

m =
∑

i v′(m)∗
i O[SH]

i

obtain Z′ factors of these probe operators

Z′(n)
m = 〈0| O′[SH]

m |n〉
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Staircase of energy levels

stationary state energies I = 1, S = 0, T+
1u channel on (323 × 256)

anisotropic lattice

Levels
0

1

2

3

4

m
/m

K

single-hadron dominated

two-hadron dominated

significant mixing

T1up
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Summary and comparison with experiment

right: energies of qq-dominant states as ratios over mK for
(323|240) ensemble (resonance precursor states)
left: experiment
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Issues

address presence of 3 and 4 meson states
in other channels, address scalar particles in spectrum

scalar probe states need vacuum subtractions
hopefully can neglect due to OZI suppression

infinite-volume resonance parameters from finite-volume
energies

Luscher method too cumbersome, restrictive in applicability
need for new hadron effective field theory techniques
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Bosonic I = 1, S = 0, A−1u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1, S = 0, E+
u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1, S = 0, T−1g channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1, S = 0, T−1u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1
2 , S = 1, T1u channel

kaon channel: effective energies m̃eff(t) for levels 0 to 8
results for 323 × 256 lattice for mπ ∼ 240 MeV
two-exponential fits
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Bosonic I = 1
2 , S = 1, T1u channel

effective energies m̃eff(t) for levels 9 to 17
results for 323 × 256 lattice for mπ ∼ 240 MeV
two-exponential fits
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Bosonic I = 1
2 , S = 1, T1u channel

effective energies m̃eff(t) for levels 18 to 23
dashed lines show energies from single exponential fits
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Bosonic I = 1
2 , S = 1, T1u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Scattering phase shifts from finite-volume energies

correlator of two-particle operator σ in finite volume

Bethe-Salpeter kernel

C∞(P) has branch cuts where two-particle thresholds begin
momentum quantization in finite volume: cuts→ series of poles
CL poles: two-particle energy spectrum of finite volume theory
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Phase shift from finite-volume energies (con’t)

finite-volume momentum sum is infinite-volume integral plus
correction F

define the following quantities: A, A′, invariant scattering
amplitude iM
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Phase shifts from finite-volume energies (con’t)

subtracted correlator Csub(P) = CL(P)− C∞(P) given by

sum geometric series

Csub(P) = A F(1− iMF)−1 A′.

poles of Csub(P) are poles of CL(P) from det(1− iMF) = 0
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Phase shifts from finite-volume energies (con’t)

work in spatial L3 volume with periodic b.c.
total momentum P = (2π/L)d, where d vector of integers
masses m1 and m2 of particle 1 and 2
calculate lab-frame energy E of two-particle interacting state in
lattice QCD
boost to center-of-mass frame by defining:

Ecm =
√

E2 − P2, γ =
E

Ecm
,

q2
cm =

1
4

E2
cm −

1
2

(m2
1 + m2

2) +
(m2

1 − m2
2)2

4E2
cm

,

u2 =
L2q2

cm

(2π)2 , s =

(
1 +

(m2
1 − m2

2)

E2
cm

)
d

E related to S matrix (and phase shifts) by

det[1 + F(s,γ,u)(S− 1)] = 0,

where F matrix defined next slide
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Phase shifts from finite-volume energies (con’t)

F matrix in JLS basis states given by

F(s,γ,u)
J′mJ′L′S′a′; JmJLSa =

ρa

2
δa′aδS′S

{
δJ′JδmJ′mJδL′L

+W(s,γ,u)
L′mL′ ; LmL

〈J′mJ′ |L′mL′ , SmS〉〈LmL, SmS|JmJ〉
}
,

total angular mom J, J′, orbital mom L,L′, intrinsic spin S, S′

a, a′ channel labels
ρa = 1 distinguishable particles, ρa = 1

2 identical

W(s,γ,u)
L′mL′ ; LmL

=
2i

πγul+1Zlm(s, γ, u2)

∫
d2Ω Y∗L′mL′

(Ω)Y∗lm(Ω)YLmL (Ω)

Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions Zlm

defined next slide
F(s,γ,u) diagonal in channel space, mixes different J, J′

recall S diagonal in angular momentum, but off-diagonal in
channel space
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RGL shifted zeta functions

compute Zlm using

Zlm(s, γ, u2) =
∑
n∈Z3

Ylm(z)
(z2 − u2)

e−Λ(z2−u2)

+δl0γπeΛu2
(

2uD(u
√

Λ)− Λ−1/2
)

+
ilγ

Λl+1/2

∫ 1

0
dt
(π

t

)l+3/2
eΛtu2 ∑

n∈Z3
n 6=0

eπin·sYlm(w) e−π
2w2/(tΛ)

where

z = n− γ−1[ 1
2 + (γ − 1)s−2n · s

]
s,

w = n− (1− γ)s−2s · ns, Ylm(x) = |x|l Ylm(x̂)

D(x) = e−x2
∫ x

0
dt et2

(Dawson function)

choose Λ ≈ 1 for convergence of the summation
integral done Gauss-Legendre quadrature, Dawson with Rybicki
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P-wave I = 1 ππ scattering

for P-wave phase shift δ1(Ecm) for ππ I = 1 scattering
define

wlm =
Zlm(s, γ, u2)

γπ3/2ul+1

d Λ cot δ1

(0,0,0) T+
1u Re w0,0

(0,0,1) A+
1 Re w0,0 + 2√

5
Re w2,0

E+ Re w0,0 − 1√
5
Re w2,0

(0,1,1) A+
1 Re w0,0 + 1

2
√

5
Re w2,0 −

√
6
5 Im w2,1 −

√
3

10 Re w2,2,

B+
1 Re w0,0 − 1√

5
Re w2,0 +

√
6
5 Re w2,2,

B+
2 Re w0,0 + 1

2
√

5
Re w2,0 +

√
6
5 Imw2,1 −

√
3

10 Re w2,2

(1,1,1) A+
1 Re w0,0 + 2

√
6
5 Im w2,2

E+ Re w0,0 −
√

6
5 Im w2,2
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Finite-volume ππ I = 1 energies

ππ-state energies for various d2

dashed lines are non-interacting energies, shaded region above
inelastic thresholds
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Pion dispersion relation

boost to cm frame requires aspect ratio on anisotropic lattice
aspect ratio ξ from pion dispersion

(atE)2 = (atm)2 +
1
ξ2

(
2πas

L

)2

d2

slope below equals (π/(16ξ))2, where ξ = as/at

0 1 2 3 4 5 6 7 8
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0.000
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I = 1 ππ scattering phase shift and width of the ρ

preliminary results 323×256, mπ≈240 MeV
additional collaborator: Ben Hoerz (Dublin)
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Conclusion

goal: comprehensive survey of energy spectrum of QCD
stationary states in a finite volume
stochastic LapH method works very well

allows evaluation of all needed quark-line diagrams
source-sink factorization facilitates large number of operators
last_laph software completed for evaluating correlators

analysis software sigmond urgently being developed
analysis of 20 channels I = 1, S = 0 for (243|390) and (323|240)
ensembles nearing completion
can evaluate and analyze correlator matrices of unprecedented
size 100× 100 due to XSEDE resources
study various scattering phase shifts also planned
infinite-volume resonance parameters from finite-volume
energies −→ need new effective field theory techniques
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