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ABSTRACT

The two largest U.S. wireless ISPs have recently moved to-
wards usage-based pricing to better manage the growing de-
mand on their networks. Yet usage-based pricing still re-
quires ISPs to over-provision capacity for demand at peak
times of the day. Time-dependent pricing (TDP) addresses
this problem by considering when a user consumes data,
in addition to how much is used. We present the architec-
ture, implementation, and a user trial of an end-to-end TDP
system called TUBE. TUBE creates a price-based feedback
control loop between an ISP and its end users. On the ISP
side, it computes TDP prices so as to balance the cost of
congestion during peak periods with that of offering lower
prices in less congested periods. On mobile devices, it pro-
vides a graphical user interface that allows users to respond
to the offered prices either by themselves or using an “au-
topilot” mode. We conducted a pilot TUBE trial with 50
iPhone or iPad 3G data users, who were charged according
to our TDP algorithms. Our results show that TDP bene-
fits both operators and customers, flattening the temporal
fluctuation of demand while allowing users to save money
by choosing the time and volume of their usage.

Categories and Subject Descriptors: C.2.3[Computer-

Communication Networks]: Network Operations—Network

Management
General Terms: Economics, Human Factors, Management

Keywords: Time-dependent pricing, User trial, Wireless

1. INTRODUCTION

While researchers have proposed different plans for pric-
ing data usage for many years, wireless ISPs have tradition-
ally used only flat-rate, usage-based, or simple day/night
charging. However, the recent rapid growth in demand for
data [2] is forcing them to explore new ways to match rev-
enues to costs. Dynamic time-dependent pricing (TDP) is
one way to do so. With TDP, an ISP can offer lower prices
in less-congested periods, incentivizing users to shift their
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usage from peak to off-peak periods. In fact, many appli-
cations today, e.g., movie or software downloads and cloud
data synchronization, have significant delay tolerances and
can be deferred to low usage periods if proper incentives are
provided. Other applications can tolerate shorter, but still
useful, delays. These deferrals can reduce the peak traffic:
our partner ISP data shows that the demand in peak hours
can be ten times that in off-peak hours. Even within ten
minutes, demand can vary by a factor of two. TDP leverages
this traffic pattern to help ISPs reduce the cost of peak-load
provisioning for their networks, while allowing users to save
money by choosing the time of their usage.

Implementing such a TDP plan requires architecting and
prototyping a fully functional system that enables ISPs to of-
fer prices acceptable to both themselves and end users. Ad-
ditionally, it requires developing simple and intuitive GUIs
that let users view and respond to the offered prices. In
this paper, we present the design, implementation, and pilot
trial evaluation of the TUBE (Time-dependent Usage-based
Broadband price Engineering) system for mobile data [18].

1.1 Matching Price to Cost

The proliferation of high-speed LTE, smartphones, tablets,
bandwidth-hungry apps, and cloud-based services has brought
about an explosive growth in wireless Internet usage. The
heavy tail of this usage distribution, which largely drives
ISPs’ operational costs, has led to the demise of ‘flat rate’
unlimited data plans in countries like the U.S. [5, 24, 28].
ISPs are now pursuing measures such as tiered usage pric-
ing, overage charges, aggressive throttling, and service dis-
continuation to alleviate congestion on their networks [1].
By the spring of 2012, both AT&T and Verizon Wireless
had announced updates to their mobile data usage policies,
effectively imposing usage-based pricing of about $10/GB
[6]. But as Clark [3] observed:

The fundamental problem with simple usage fees is
that they impose usage costs on users regardless of
whether the network is congested or not.

Moreover, usage-based fees fail to address ISPs’ real prob-
lem. Heavy users typically congest the network at the same
time, resulting in large demand peaks that force ISPs to
over-provision network capacity and incur costs accordingly.
Solving this problem requires a viable economic model and
system capability for charging users by not only how much
data they consume but also when they do so. This idea of
‘responsive pricing’ was advocated by Mackie-Mason et al.
[14] as early as 1995 when the commercial Internet was still
evolving:



We argue that a feedback signal in the form of a vari-
able price for network service is a workable tool to
aid network operators in controlling Internet traffic.
We suggest that these prices should vary dynamically
based on the current utilization of network resources.

The general concept of congestion pricing has been stud-
ied in the energy, transportation, telephone, ATM, and IP
network research communities for several decades. Only re-
cently, however, has congestion-dependent pricing become
realistic for mobile data. For example, Uninor in India
and MTN in Uganda already offer congestion- and location-
dependent pricing for voice calls [25].

1.2 Opportunities and Challenges

Time-dependent pricing for mobile data is a natural step
in the transition from simple usage pricing to congestion-
dependent pricing. Unlike voice calls, many mobile apps
have different degrees of time sensitivity and do not re-
quire real-time data transfers or user interactivity. Time-
dependent pricing can exploit these features to create ef-
fective price incentives for users to flatten their temporal
demand profile by adjusting prices to user response. But
TDP for mobile data also presents several new technological
and social challenges:

e How can ISPs compute price incentives that they are
willing to offer and users are ready to accept?
e Can we develop economic models that can be easily
estimated from real data?
What are the key system design challenges?
How can we assess the benefits of TDP?
Will real users respond to TDP favorably?

How can we minimize user interaction from the client
side?

Answering each of these questions requires significant effort
in conducting consumer surveys, developing analytical mod-
els, building a system prototype, and finally running trials
with real users. The aim and scope of such an undertaking
echoes those of the Berkeley INDEX project for usage-based
wireline pricing [27] and the work in [21] for voice calls. Yet
the present context of wireless TDP introduces new require-
ments, challenges, and opportunities, including the follow-
ing:

Dynamic TDP: To compute time-dependent prices, ISPs
must estimate the amount of usage that will be shifted to
lower-price periods as a function of the prices offered. How-
ever, this estimation should change over time: as an ISP
offers time-dependent prices and observes the resulting net-
work demand, it must adjust and improve its estimates of
user reaction to the prices offered to better reflect the us-
age observed. These changes in user behavior estimates then
prompt changes in the prices offered, forming a feedback loop
interaction shown in Fig. 1.

User behavior estimation: Given the prices offered
over a day, users will shift different amounts of different
types of traffic to lower-price periods. For instance, some
users may wait for five minutes but not an hour to stream
movies. Similarly, a user may wait to refresh a personalized
news magazine, but not to download urgent email attach-
ments. The ISP’s model of user behavior must therefore
account for this heterogeneity in users’ reactions to the of-
fered prices. It must also be readily adjustable to observed
changes in aggregate demand across users.
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Figure 1: Feedback-loop schematic of TUBE.

User experience: When prices are published to users’
mobile devices, each user optimizes her behavior to satisfy
her goals, e.g., spending less than a certain monthly budget.
Most users, however, will not manually optimize their usage
to do so. Thus, TDP requires an “autopilot” mode that can
automatically schedule usage for users. To make the system
scalable to multiple users and prevent privacy violations,
this autopilot should operate separately from the ISP.

1.3 TUBE Contributions

While prototyping and deploying TUBE in a trial with
3G data users, we focus on five main features:

A fully functional system for offering TDP for mo-
bile data. Deploying TDP as a new mobile data pricing
plan requires taking this idea from economic theory to a fully
integrated system. We build a model for dynamic TDP that
incorporates evolving user behavior, populate the model pa-
rameters from user surveys, design a supporting architec-
ture, implement a prototype, and, finally, run a pilot trial
with real users.

An architecture using feedback control. TUBE cre-
ates a feedback loop between the ISP server, which com-
putes the prices to offer users, and the users who respond
to the offered prices. The ISP offers prices on a day-ahead
basis: at any given time, users know the prices for the next
twenty-four hours. Day-ahead prices provide some certainty
for users to plan ahead, while allowing ISPs to adjust prices
each day according to revised user behavior estimates.*

User behavior models and optimized price compu-
tation. We propose an economic model of user behavior, as
well as an algorithm for dynamically estimating relevant pa-
rameters from aggregate demand. The model helps predict
usage for subsequent TDP periods, allowing the ISP to op-
timize its prices. These prices balance the cost of handling
high demand relative to capacity with that of offering price
discounts to users.

An user interface design. We study psychological as-
pects of user interaction and offer an autopilot mode for
scheduling apps that minimizes “human-in-the-loop” issues.
Users are thus able to optimize their usage with respect to
the time-dependent prices independent of the ISP.

A realistic evaluation with real users. We recruited
50 iPhone/iPad 3G users on our university campus as trial
participants. We charged participants according to TDP by
deploying the TUBE prototype on our server and participant
devices. Our results indicate that users indeed respond to
prices: when offered monetary discounts, they will shift their
demand from peak- to off-peak periods and even consume
more in off-peak periods.

The overall TUBE architecture and the details of our user

LOf course, the prices need not be offered a full day ahead
of time; TUBE allows ISPs to choose any time-window size.
Pricing for sudden increases in demand due to special events
can also be accommodated.
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Figure 2: TUBE architecture showing the user-side
and ISP-side components and interaction.

behavior modeling and price computation are described in
Section 2. Section 3 next discusses our prototype implemen-
tation on the server and user devices, and Section 4 discusses
the setup, logistics, and results of our pilot trial. Section
5 points out limitations of our work and future directions,
while Section 6 discusses related work in this field. Finally,
Section 7 concludes the paper.

2. ARCHITECTURE AND DESIGN

The TUBE architecture consists of two main components,
as shown in Fig. 2. One component resides on the ISP server
and computes the prices offered to users, while the other
resides on user devices.

The ISP-side component of Fig. 2 measures individual us-
age and determines the prices offered to the end users.?
These prices optimize the ISP’s profit given its evolving es-
timates of user behavior.

At regular intervals, the user device pulls the price in-
formation over a secure connection and displays the prices
computed on the ISP server. The usage monitor in the de-
vice measures the timing and volume of each application’s
usage. If activated by the users, the autopilot mode uses
these measurements to schedule applications on their behalf.

In this section, we first discuss our guiding design princi-
ples (Section 2.1). Next, we consider two important modules
on the ISP server: how TUBE estimates user behavior (Sec-
tion 2.2) and how it optimizes the TDP prices (Section 2.3).
Finally, we discuss our GUI designs (Section 2.4) and an
autopilot algorithm (Section 2.5) that runs on user devices.

2.1 Design Guidelines

Our design choices stem from the following principles:

Separating functionality: The ISP server estimates
users’ reactions to prices and solves a large-scale nonlinear
optimization to compute the prices offered to users. Since
user devices have limited computing power, we run this price
calculation on a central server. To allow users to view the
prices and automatically respond by scheduling their usage,
we implement a user interface on their individual devices.

Scaling up the system: To maintain scalability, our
behavior estimation algorithm requires only aggregate, and
not individual, usage data. We formulate the price calcula-
tion as a convex optimization problem, which can be rapidly
solved for many TDP periods.

Protecting user privacy: TUBE requires neither moni-
toring of users’ application source/destination addresses, nor

2 Although the behavior estimation requires only aggregate
data, ISPs can of course keep track of individual usage data
in order to calculate users’ monthly bills.

any Deep Packet Inspection (DPI). The only data exchanged
between a user device and ISP servers are the prices and
usage in each period, which are secured with TLS/SSL con-
nections.

Empowering user control: The user interface displays
the prices offered and corresponding device usage, allowing
users to educate themselves about their data consumption
and schedule their usage according to the prices offered. To
facilitate this educational component, we use simple and in-
tuitive GUI designs.

2.2 Estimating User Behavior

In order to set time-dependent prices, ISPs monitor users’
traffic patterns, i.e., the volume of traffic at different times,
with and without TDP. This data is then used to estimate
users’ willingness to shift their traffic in exchange for a mon-
etary discount. The estimates are used to calculate the time-
dependent prices for the next day, linking the prices and user
behavior in the system’s feedback loop (Figs. 1 and 2).

In this section, we first discuss a parameterized model of
user behavior and use consumer survey results to initial-
ize the parameter values. We then provide an algorithm to
update these user behavior estimates and evaluate its effec-
tiveness on simulated data.

2.2.1 Modeling Delay Tolerances

Users’ willingness to wait for data usage depends on the
type of session under consideration: for instance, iTunes
downloads can often be more readily delayed than streaming
YouTube videos. Thus, we view each user as a set of appli-
cation sessions, e.g., streaming, browsing, and file transfer
sessions. Sessions are assumed to have a fixed minimum
bandwidth requirement, which is particularly appropriate
for streaming sessions.

In general, users’ willingness to defer any given application
session depends on two factors: the monetary reward for
deferring the session and the time for which the session is
deferred. For instance, users may wait for 1 hour to watch
a video in exchange for $2, but may not wait if offered only
$1. At the same time, users may not wait more than one
hour, even if offered the $2 reward.

In order to quantify users’ willingness to defer applica-
tion sessions, we introduce the concept of waiting functions.
These functions give the probability that users will defer an
application session for a given amount of time 7 in exchange
for a discount d, e.g., d $/GB from some baseline metered
price. Since different users and applications may have dis-
tinct waiting functions, we choose a parameterized form of
the waiting functions, with different parameters correspond-
ing to different levels of user patience. These parameters
thus quantify the various price-delay tradeoffs correspond-
ing to different users and application sessions.

The chosen form of the waiting functions should be de-
creasing in the time deferred, 7, and concave and increasing
in the discount offered d: users will be less likely to defer as
the time deferred increases but will be more likely to defer
if offered a larger monetary reward. While many functional
forms are reasonable, we choose the simple form

_ 4
Ap(T +1)P7

where p is a parameter measuring patience, the patience in-
dex, and A, is an appropriate normalization constant. A

wy(d, 7) = (1)
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Figure 3: Patience indices from survey results.

larger p indicates less patience, while p = 0 indicates indif-
ference to the time deferred 7: as 7 increases, willingness to
wait w, drops off faster for larger p. The normalization con-
stant is chosen so that the w,(d, 7) could represent the prob-
ability that users will defer for 7 amount of time, given the
discount d. Thus, we generally choose A\, = Zf;ll wy(D, 1),
where D denotes the maximum possible discount offered in
each period and w, (D, 7) is the unnormalized value of (1).3
The summation of 7 from 1 to n — 1 represents the possible
times deferred (1 period, 2 periods, etc.) up to one day, or
n periods. We expect that users will not have significant
incentive to delay their traffic for more than one day.

2.2.2 Initializing Patience Indices

In this section, we give reasonable estimates of the pa-
tience indices p used in (1) to model users’ willingness to
delay their data consumption. In practice, such estimates
may be achieved with a calibration period of pilot trials in
which the ISP offers a wide variety of prices to users and
observes their responses. In the present work, we take a
different approach with initial market surveys in the U.S.
and India. We conducted two U.S. surveys, one in February
2011 and one in November 2011, each with 130 participants
from 25 states. The India survey included 546 participants
from 5 large cities.

In each survey, we asked the respondents whether they
would delay a given application type, e.g., YouTube videos
or software updates, for specified time intervals. Partici-
pants were told that waiting would reduce their bill by two-
thirds in the first U.S. and India surveys and by one-third
in the second U.S. survey. The time interval choices ranged
from 5 minutes (e.g., for YouTube videos) to 48 hours (e.g.,
for software updates). The survey questions are given in [8].

We first use the survey responses to find the fraction of
users willing to wait for each of these time intervals. Given
these fractions, we then compute their discrete derivative
with respect to time (i.e., the differences between the frac-
tions divided by the interval duration) to find the waiting
function values for each traffic class at the survey-specified
discount. Figure 3 shows the resulting patience indices for
three different traffic classes. As expected, in all three sur-
veys, participants are much more likely to wait for software
updates or movie downloads than YouTube streaming, re-
flecting streaming’s more “immediate” utility to users.

2.2.3 Updating Patience Indices

We now give an algorithm for ISPs to update their es-
timates of (1)’s user patience indices for different applica-
tions. We assume that the ISP has several days of aggregate
(cross-user and cross-application) usage data and the corre-
sponding prices offered in each period.

The main idea of our algorithm is to compare the ob-

3For instance, D may be the baseline metered price.

Algorithm 1: Waiting function estimation

Data: Prices offered and TDP traffic pattern.

Result: Estimated waiting functions.

Compute the S;, to obtain n linear equations for the A;x;

Solve for n — 2 of the A;, such that for each period j, at least

one Ajy is not solved for;

Substitute these expressions back into the original equations for

Si, so that only one equation, linear in the A;x, remains;

// This equation is a function of parameters p; and p;
and the offered discounts.

Use the TIP and TDP data for this function to estimate (e.g.,

with nonlinear least-squares) all the u; and p; parameters it

contains;

// These p; and p; values give the waiting functions.

served usage data with a baseline usage trace, taken for time-
independent prices (TIP). We assume that changes between
the baseline usage and observed usage with TDP are due to
the time-dependent prices offered. These changes can then
be expressed in terms of the waiting function parameters
and volume of different application types; we can use stan-
dard curve-fitting methods to estimate the optimal waiting
function parameters. The following discussion details this
procedure, which is summarized in Algorithm 1.

Since the baseline traces have only aggregate usage data,
the ISP does not know the usage for each application. Yet
for our purposes, grouping sessions by application type has
an important disadvantage: depending on the user, a given
application may correspond to different patience indices. We
therefore group applications by traffic class, defined as a
group of sessions with the same patience index, rather than
application type. After choosing a number of traffic classes,
we must estimate both the patience index and the fraction
of traffic corresponding to each traffic class.

Our estimation algorithm relies on calculating the ex-
pected amount of traffic deferred from a given period ¢ to
another period k in terms of the waiting function parame-
ters.* Thus, the amount of traffic in period i without any
traffic shifting is simply the average amount of traffic in pe-
riod ¢ under TIP. Given a set of discounts d;, 1 = 1,2,...,n,
offered over one day, the expected amount of traffic deferred
from period i to period k # i is then

A= Y3 S pgwy, (ds k—l,), @

Jj=1

where Y; is the TIP usage in period ¢, and |k — 4|, is un-
derstood to be modulo n, representing the time difference
between period 7 and the nearest period k after period i. If
k < 1, period k will occur on the day after period i. There
are m traffic classes, with the jth traffic class having pa-
tience index p; and taking up a proportion p; of the traffic.
Denoting by S; the difference between the TIP and TDP
traffic in period ¢, we see that each S; = Zk# Aix — Ags.
Each of the n S; values is a linear combination of the
n(n — 1)/2 A;;, variables. One equation may be eliminated,
since we assume the sum of the S; is zero (no traffic is lost
with TDP). We can thus reduce this system of n — 1 linear
equations for the S; to one equation, by solving for n — 2 of
the A;r in terms of other A;, variables. The ISP can then
estimate the parameters p; and p; using Algorithm 1.

4For simplicity, we assume that the average traffic volume
over each day remains the same when TDP is introduced,
i.e., that no traffic is lost due to TDP.
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Table 1: Actual and estimated parameter values in
a simulation of waiting function estimation.

Since baseline TIP demand may change over time, we use
the following procedure to adjust the baseline. The ISP
estimates the waiting functions using TDP data from several
days, e.g. one month, and uses these estimates to solve
for the demand under TIP, Y;, in each period i. The n
equations (2) are linear in the Y;, and all other variables are
known upon choosing a set of discounts offered and traffic
observed.> We then estimate the Y; values.

To illustrate Algorithm 1, we consider a simple example
with two traffic classes and three periods. Actual parameter
values are given in Table 1. Our simulation takes a set of
given discounts and computes the traffic if waiting functions
are perfectly followed, adding noise to these results. Table
1 shows the p; and p; values estimated by nonlinear least
squares. The maximum percent difference between actual
and estimated waiting function values p1w,, + (1 — p1)w,p,,
measured on a 1000-point grid of discounts and times de-
ferred, remains small at under 12%.

2.3 Optimizing Prices

We now describe how to use the estimated waiting func-
tions to calculate time-dependent prices over the next day.
An ISP wishes to set prices that balance two types of costs:
that of exceeding the maximum capacity, and that of of-
fering discounts to users in less-congested time periods. We
take the “maximum capacity” to mean the maximum amount
of traffic that can be handled by the network with an ac-
ceptable amount of congestion. Thus, demand may “exceed
capacity” in the sense that over a certain capacity, user re-
sponse time due to congestion becomes unacceptably high.

Suppose that there are n periods in a day, each lasting one
unit (e.g., hour or half-hour) of time. We assume that the
ISP’s network has a bottleneck link of capacity C; in period
i, defined as the link capacity less any background traffic or
excess capacity “cushion.” The cost of exceeding capacity is
assumed to be piecewise-linear and convex; we denote the
cost in period i as g(y; — C;), where y; is the predicted usage
with TDP discounts d; in period i. For ease of notation, j € ¢
indexes all traffic classes j in period i. Moreover, the time
between periods ¢ and k is given by |i — k|, as in (2).

We can now calculate the costs of exceeding capacity I't
and offering discounts I's as

rl—zg@ =SS (e —il,)
=1

jei  k#i

Y YR > pw; (diyli— kl,) — Ci) 3)

k=1,k#i  j€k

Fz :Zdz ZYkZMj’wj (di,|i—k‘n) . (4)

i=1 k#i  jek

5Noise in the data results in different Y; for different sets of
discounts; the ISP can use an average of these Y;.

Algorithm 2: Price determination.

Data: Estimated waiting functions.
Result: Optimized TDP prices.
Start with a set of discounts for the next n periods, determined
with initial waiting function estimates;
while TDP is offered do
for k=1 —ndo
Choose the discount for the nth period after period k so
as to minimize I'y + 'z in (3-4).
if Kk == n then
Run the waiting function estimation (Algorithm 1)
to find updated waiting function parameters.
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Figure 4: Static TDP vs. dynamic TDP.

The ISP attempts to minimize I'; + I'2 with respect to the
discount variables d;, ¢ = 1,2,...,n [10]. For our trial,
TUBE offers day-ahead pricing: when TDP is first intro-
duced, the ISP publishes a full day of time-dependent prices
to users. After each subsequent period, a new price for the
period one day ahead of the current one is published. We
thus have the online price determination in Algorithm 2.

To test the efficacy of TUBE’s feedback loop, we com-
pare simulated results of our feedback loop with results with
static TDP, i.e., time-dependent prices that do not change
from day to day. Figure 4 shows the results over three days.
We see that the peak periods under static TDP are about
8 MB above the maximum capacity, while those under dy-
namic TDP are only 4 MB above the maximum capacity.
The ISP underestimates users’ reaction to TDP in setting
the static prices; thus, many users shift to lower-price peri-
ods, resulting in a new peak period. Dynamic TDP, how-
ever, adjusts to this underestimation by correcting the prices
offered, thus flattening out the peak usage.

2.4 Graphical User Interface

Users react to the prices offered through our GUIs, which
are designed to be simple and intuitive. We include the
following components in our design:

Price display: Users check the prices for the next 24
hours on the GUI home screen. Each price is color-coded
by its discount rate, e.g., red (< 10%), orange (10 — 19%),
yellow (20 — 29%), green (> 30%). Since users likely will
not open our application to check each period’s price, we
also embed a colored price indicator on the status bar at the
top right corner of the device screen.

Self-education: Users can view their top 5 bandwidth
consuming applications to better understand their mobile
data usage. The device stores usage and price history for
the last three months so that the users can look up their
past usage and prices by day, week, and month. The push
notifier running on the ISP server informs users when they
consume significant amounts of data in high-price periods.

User control: The device learns each application’s us-
age pattern over time, enabling it to schedule applications in
the autopilot mode so as to keep users from exceeding their



specified budget. Users can also override the scheduling de-
cisions computed by the autopilot algorithm (e.g., parental
control on certain applications).

2.5 Autopilot Mode

The autopilot algorithm schedules the top five applica-
tions by usage, identified from the usage monitor in Fig. 2,
to keep users below their specified monthly budget. The user
ranks these applications by delay tolerance, and we provide
default rankings if the user does not provide them. We de-
note the delay tolerances by v;, where j = 1,...,5 indexes
the applications and a larger v; indicates a higher delay tol-
erance. For privacy reasons, these delay tolerances, as well
as usage statistics for each application, are not shared with
the ISP server. The behavior estimation (Algorithm 1) nei-
ther requires nor utilizes this data.

Usage Prediction: To schedule application usage, we
first predict usage in each period using triple exponential
smoothing (TES), which incorporates trend, periodic, and
smoothing factors into the next day’s usage prediction. We
use a variation of the traditional TES equations [15, 23] to
incorporate periodicity over one day and over one week.

Application Scheduling: The full scheduling algorithm
is presented in Algorithm 3 and outlined below. At the be-
ginning of each day, we calculate a daily budget from the
amount of money the user has left to spend, divided by the
number of days left in the month. For flexibility, we scale
up the budget by a factor that increases with the number
of days remaining in the month: even if the user consumes
a large amount of data on the current day, she can remain
within the monthly budget by reducing usage in the remain-
ing days. This scaling can be, for example, exponential. We
then compare the daily budget to the expected amount spent
over one day, as calculated from the predicted usage. If the
expected amount spent is larger than the daily budget, we
use Algorithm 3 to schedule usage so that users are predicted
to remain within their daily budget. The algorithm begins
with the most delay tolerant app, and defers it from some
period k to period k + 1. Here k is chosen so as to save
the most money. If the user is still predicted to exceed her
budget, the same app is deferred from another period k' to
period k' + 1.

If the user can no longer save money by delaying by one
period, the algorithm checks whether the user would pre-
fer to delay sessions for this application by two periods, or
would prefer deferring the application of next-highest delay
tolerance by one period. It continues in this fashion until
the expected amount spent is lower than the daily budget.
On any given day, the user is prohibited from exceeding the
weekly budget, which is calculated analogously to the daily
budget but over one week’s duration.

3. SYSTEM IMPLEMENTATION

In this section, we discuss the implementation details of
TUBEOpt and TUBEApp, the two main components of the
TUBE system. Figure 5 shows the modules in both TUBE-
Opt, which resides on the ISP server, and TUBEApp, which

resides on user devices.

3.1 TUBEOpt

We implemented TUBEOpt on a Linux system with an
Intel Xeon 2.0 GHz CPU and 8GB of RAM. It provides a
web-based API so that any device supporting web can ex-

Algorithm 3: Autopilot app. scheduling algorithm

Data: Prices offered and predicted usage.

Result: Usage schedule.

Initialize h = 1;

// h is the number of periods deferred.

Calculate predicted amount spent using the prices p; and
predicted usage u; in each period i;

while projected spending exceeds the daily budget do

// Choose the app k with highest delay tolerance.

k < argmax; {l/i : 3 22;01 Ui jtq > 0s.t.pjpn < pj};

// Choose the period |l which will save the most
money .

| = argmax; {ij;& Uk,j+q i Pith < pj};

Block app k from period I to Il + h — 1, inclusive;

// Users can choose whether or not a notification
is sent at the beginning of period [+ h to say
that the app is no longer blocked.

Update the projected usage values;

h <+ h+1;

Recalculate the predicted amount spent;

if app k does not have the lowest delay tolerance then
if the user prefers to defer the app with next-highest
delay tolerance by 1 period rather than defer app k by
h + 1 periods then

h + 1;

vy < 0
The user will exceed the budget under all allowable
scheduling constraints;

change data with the server. Figure 5a shows TUBEOpt’s
component diagram, including the price optimization com-
ponents discussed in Sections 2.2 and 2.3; the shaded blocks
are part of our current implementation. All of the blocks
represent dynamic modules and can be reloaded on the fly.

In the following discussion, we detail TUBEOpt’s scala-
bility of usage monitoring and the computational overhead
for its user behavior estimation and price computation.

3.1.1 Improving Scalability of Usage Monitoring

To measure individual usage, we assigned a unique IP ad-
dress to each user and created a Netfilter rule. When
TUBEOpt records the usage, it retrieves the byte and packet
counts from each rule. Unfortunately, this approach scales
linearly with the number of users; each user requires one
rule, and the computational cost increases linearly with the
number of rules. While ipset can improve performance by
combining multiple rules into one hash table, its use here is
limited, as usage with ipset is tracked for the hash table,
not for the individual rules. To improve scalability, we there-
fore implemented a separate kernel module that hooks the
LOCAL_IN of the IPSEC/VPN interface (ipsec0). It cre-
ates a hash table and records the usage for each IP address,
requiring only O(1) running time.

3.1.2 Computational Overhead

We next examine the computational overhead of using
Matlab and Python to estimate user behavior and compute
the optimized TDP prices. TUBE requires the runtime of
these codes to be relatively short, since each period’s price
computation should finish before the next TDP period, at
which time the server advertises the newly computed price.
Therefore, we evaluate the overhead of these two computa-
tions as we increase the optimization complexity.

We measure the computational overhead (the total run-
time in Matlab) as we increase the number of periods from
12 to 144 (2 hour to 10 minute periods). Table 2 shows



User Device

(C REST API

om)
Delegation Pricing Policy Container

Price Optimizer

z Mechanism
5 Pricing Plans
§ s User Behavior
s g‘ : ToP Estimation
o Autopilot |
> ) Measurement 1y
{ 1 t

Pricing Policy Enforcer Plugins Push Notifier) (" Usage Monitoring Plugins

1%} [92]

5 S o (|5 S 5 Fc
28 252 = ([28 S |28 52
) T 5 3 7 & c lES
o T X X c o 3
a @ i G @ a e

(a) TUBEOpt design

Graphical User Interface
(T N
hops || gzoe 1 Pree | sigtctar || B
Displ Display Display Displ. Displ
play isplay isplay
N L) T L) L) L) r

(/" Daemon \ (_H

Price
Budget
Dispatcher Price DB Hue\pg:r

Budget

Settings
Display

Popup
Display

Enforcer

uojeoIUNWWOY

N I (Usage DB Task
Manager Manager
Usage Dulled St :‘;pl
| | cheduler Allow/Block | —>

—

~

Autopilot Algorithm Delegation

( (
Usage Session
Tracker | | Recorder Budget

(b) TUBEApp design

App PPI | scheduter

Autopilot
- J

4
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Number of Periods 12 24 48 96 144 Tyvpe Status bar | App usage Daemon | Code size
Behavior Estimation | 12.76 | 200.0 | 959.6 | 1967 | 15040 P PP USA8€ | support | (# lines)
Price Calculation 1.67 1.69 1.70 1.81 1.84 iPhone No No Partial 25K
Table 2: Runtime of the behavior estimation and Al.ldmld Yes Yes Yes 54K

. . . Windows Yes Yes Yes 5.3K
price calculation in seconds.

Number of Application Types
Number of Periods 2 4 8
12 0.21 12.99 21.52
24 3.33 47.08 75.47
48 15.99 | 197.22 215.42

Table 3: Runtime of the behavior estimation (mins).

the measured running time of the behavior estimation and
price calculation. Even with 144 periods, the price calcu-
lation is quite fast (1.84 seconds); the estimation algorithm
performs adequately (4.2 hours), as it runs only once a day
for day-ahead TDP.

We also measure the effect of adding multiple traffic classes
to the behavior estimation algorithm. Table 3 shows the al-
gorithm running time on our Intel Xeon server. The com-
putation with 48 periods and 8 application types still takes
less than 4 hours (215.42 minutes), which is more than fast
enough, as the estimation runs once a day. Our estimation
uses one month of simulated data, which was generated by
perturbing the usage predicted from given waiting functions
by up to 50%. The running times were averaged across five
computations with random data and starting points. With
more powerful hardware and optimized code, significant fur-
ther acceleration can be achieved.

3.2 TUBEApp

We implemented TUBEApp on the iOS, Android, and
Windows platforms, although all trial participants were i0OS
users due to these devices’ popularity on our campus. We
therefore focus our discussion on the iOS implementation.
We consider both the manual and autopilot modes, as shown
in Fig. 5b’s design and Fig. 6’s GUI screenshots. Due to
the 10S platform’s closed nature, implementing the shaded
blocks in Fig. 5b, e.g., monitoring each application’s usage,
requires jailbreaking the devices. We demo our app in [26].

3.2.1 OS Limitations

The Windows, Android, and iOS platforms each have var-
ious limitations; the iOS platform offers the most restric-
tions. While all platforms support showing the prices offered
and the device’s aggregate data usage, TUBEApp’s autopi-
lot mode additionally requires 1) measuring the volume of

Table 4: TUBEApp on different platforms.

each application’s usage, 2) displaying the price for the cur-
rent period on a status bar, and 3) allowing and blocking
bandwidth for individual applications. These features heav-
ily depend on the openness of the platform.

Table 4 shows the TUBEApp features supported on each
platform before hacking the device, as well as the code size
for implementing the full TUBEApp. In particular, for the
iOS platform, we hook several internal functions to track
the usage per application, run a daemon process to dispatch
and show TDP prices, and block applications. The iOS im-
plementation thus requires 25K lines of code, while the An-
droid and Windows implementations need only 5.4K and
5.3K lines, respectively.

3.2.2  Enhancing the User Experience

The autopilot mode minimizes user interactions by esti-
mating device usage patterns and scheduling applications
for the user. To inform users of the autopilot actions, we
send pop-up notifications when usage is blocked, as shown in
Fig. 7’s iPhone screenshots. The warning and blocking pop-
ups are displayed when the user’s usage reaches the expected
daily and weekly budgets (Fig. 7a and b, respectively).

To ensure that the autopilot’s implementation is practical,
we measure its energy usage. TUBEApp with autopilot run-
ning consumes only 4% more battery power than the device
without our TUBEApp installed, indicating that autopilot
does not drain too much power.

4. TRIAL DESIGN AND RESULTS

We conducted a small scale pilot trial of the TUBE sys-
tem at Princeton University from May 2011 to January 2012.
This section provides an overview of the trial goals, setup,
and limitations, followed by a discussion of some key con-
clusions drawn from the trial data.

4.1 Goals and Structure

The goals of our trial are to demonstrate the TUBE sys-
tem’s functionality and benefits, and to provide an initial
verification of TUBE’s deployment feasibility with real users.
Throughout the trial, we effectively acted as a resale ISP,
paying the participants’ regular 3G data bills to AT&T while
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charging them according to our TUBE algorithms. To as-
sess the benefits of TDP, we divide the trial into two phases:
first, we simply monitor the usage patterns without TDP
(i.e., collect TIP data). We then offer TDP and study its
impact in the second phase of the trial. The following as-
pects of the trial are addressed in this section:

Baseline Traffic Statistics: Section 4.4.1 reports on
three months of TIP usage statistics from our trial partici-
pants. We ask if the sample population has a representative
mix of heavy and light users and bandwidth-hungry appli-
cations, so as to realistically assess the benefits of TDP.

Price Sensitivity: In Section 4.4.2, we examine users’
price sensitivity to static TDP patterns: if we offer low and
high price periods alternately, will users defer their traffic
to use more in the lower-price period? This question tests
TDP’s basic premise that users will delay their traffic in
exchange for a monetary discount.

Effectiveness of GUI Design: Section 4.4.3 analyzes
the effectiveness of displaying numerical values versus color
codes (red: high, orange: medium, green: low) to indicate
TDP prices on the user device.

Benefits of Optimized TDP: Finally, Section 4.4.4
studies whether TUBE’s optimized prices benefit ISPs in
reducing peak-to-average ratios of network usage.

4.2 Trial Setup

We recruited 50 users (27 iPhones and 23 iPads) of AT&T’s
3G Corporate Data Plan as our trial participants. They were
faculty and staff from 14 academic and administrative divi-
sions. During the trial, we acted as a resale ISP, charging
participants after every billing cycle according to TUBE’s
TDP. We excluded measurements from development devices
to avoid bias.

To record participants’ usage, we separated their 3G traf-
fic from that of other AT&T customers using an Access Point
Name (APN) setup, which tunneled the participant’s 3G
traffic from the AT&T core to the TUBE servers in our lab
(Fig. 8). Participants installed and used the TUBEApp on
their iOS devices. WiFi usage, voice calls, and SMS were
not included in the trial traffic as they are not 3G data.

4.3 Trial Limitations

We were limited by logistics to recruiting only AT&T data
plan users with iOS devices, out of which 16 were jailbro-
ken (JB) and 34 were non-jailbroken (non-JB) devices. The
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non-JB devices gave us less flexibility in experimentation,
and hence ran a TUBEApp with limited features. In par-
ticular, only users with JB devices could see the current
price/discount directly from the home screen’s status bar
(circled in Fig. 7’s screenshots) without manually launching
the TUBEApp, and the autopilot algorithm only runs on JB
devices. On non-JB devices, we used push notifications to
alert participants during high-price periods.

Since our trial included only 50 participants, even peak
traffic from trial users did not congest our lab’s access link.
To demonstrate TDP’s benefits, we simulated congestion
conditions by logically scaling up the traffic volume in TUBE-
Opt’s price computation.®

4.4 Results and Evaluation

Following Section 4.1’s outline, we now present the trial
results. In many cases, we use Wilcoxon’s signed rank test
[12] against the null hypothesis that a set of values is sym-

51f users had experienced real congestion due to this scaled
traffic, we expect they would have been even more willing
to delay their traffic to off-peak periods.



metrically distributed with mean zero. In our case, we ap-
ply the test to the difference between the changes in usage
in high- and low-price periods. A higher probability of a
symmetric distribution then indicates a lack of response to
the price signals, as the expected change in usage is likely
the same for both high and low prices.

4.4.1 Baseline Traffic Statistics

Question: Do our participants include both heavy and
light bandwidth users? Which applications use the most data?

Method: We measured usage for both iPad and iPhone
users from July to September and used tcpdump to record
application-specific traffic.

Results: Our participants are a mix of light- and heavy-
bandwidth users. Video streaming applications accounted
for most of the traffic, corroborating the reported trends of
growing demand for mobile video.

Figure 9a shows the CDF of total traffic per user for up-
loads and downloads from July to September 2011. While
90% of the users uploaded less than 0.5GB, some users had
large download volumes: 20% of users consumed 2.1 — 5.3
GB over three months.

Figure 9b shows the distribution of total traffic by ap-
plication type for the three month period, normalized with
respect to the number of iPhone, JB, and non-JB iPad users.
Not surprisingly, iPads show a higher usage than iPhones for
most application types, and a large part of the mobile traffic
for all device types comes from movie streaming.

4.4.2 Price Sensitivity

Question: Do users wait to use mobile data in return for
a monetary discount?

Method: We conducted a three week experiment on iPad
and iPhone trial participants in October 2011, in which we
offered a basic TDP pattern of consecutive high, high, and
low price periods, repeated throughout the day. The high-
price periods offered approximately a 10% discount, while
the low-price periods offered a 40% discount on the baseline
price of $10/GB. If monetary incentives do induce usage
deferrals, we expect that average usage should decrease in
high-price and increase in low-price periods.

To measure users’ response to prices, we sent messages
at ten minute intervals during high-price periods if the user
exceeded 2 MB of usage in the previous ten minutes. We
first analyzed the data for each user by calculating the per-
centage change in usage for each one-hour time period when
compared to the mean usage in that same period before
TDP (i.e., under TIP pricing). We then weighted these per-
cent changes by the proportion of TDP usage in that period
to account for diurnal variations. This gives the weighted
average percent change in usage under TDP for high- and
low-price periods.

Results: We found that users did shift their traffic from
high- to low-price periods under TDP. For most users, the
average usage decreased in high-price periods relative to the
changes in low-price periods.

Figure 10 shows the weighted average percent change in
usage for iPad users for high- and low-price periods. The
reference line indicates an equal change in both types of
periods. Each dot on the scatter plot represents values for
an individual user, and its size is proportional to the user’s
TDP usage volume. With the given static TDP pattern,
usage increased more in low-price periods relative to high-

price periods for almost all users. Interestingly, about half
of the users decreased their overall usage in both high- and
low-price periods, while the other half increased their usage
in both periods.

We further verify these results by using Wilcoxon’s test on
the differences between each user’s percent change in high-
and low-price periods. We find only a 0.56% probability
that the null hypothesis is valid, indicating that the users’
observed responses are statistically significant. A similar
plot may be observed for the iPhone users.

The overall iPhone usage changed by —11.3% in high-price
and —5.7% in low price periods, while overall iPad usage
changed by —10.1% in high-price and 15.7% in low-price
periods. Thus, iPad users generally decreased their usage
in high-price periods and increased it in low-price periods.
The overall decrease in iPhone usage is likely due to limited
user notification and display options on non-JB iPhones.
However, the greater usage decrease in high- relative to low-
price periods indicates that iPhone users attempted to use
less in high-price periods.

Next, we examine the effect of the number of notification
messages sent to users on their usage in high-price periods.
Multiple consecutive notifications were sent to a user only if
usage in each preceding 10 minute interval exceeded 2 MB.
We examine the percent change in usage in the ten minute
span before and after each notification. Figure 11 shows the
CDF of the percent change in usage due to a first, second,
etc. notification. About 80-90% of iPad and iPhone users
did not increase their usage after the first notification, indi-
cating that notifications can effectively reduce peak usage.
For all subsequent notifications, about 60-80% of the active
users responded by decreasing their usage.

4.4.3 Effectiveness of User Interface Design

Question: Do users respond more to the numerical values
of TDP prices or to the color of the price indicator bar on
the home screen?

Method: In December 2011, we installed a price indica-
tor bar on the home screen of all JB devices. The indicator
displays the numerical value of the price discounts available
in the current period and changes its color according to these
discounts. It is green for discounts over 30%, orange for 10—
29% discounts, and red for discounts below 10%.

Our experiment had two stages: in the first stage, we
offered discounts of approximately 40% every third period
of the day, starting with a 40% discount at midnight. The
other periods offered discounts of about 10%. After two
weeks of following this pattern, we began the second stage,
repeating the pattern of a 9% discount at midnight, followed
by 28%, 30%, 28%, 9%, and 30% discounts.

We compare three types of periods to assess the effect of
the indicator color and numerical discount: hours deemed
as Type 1 periods offered a 10% discount in the first stage
of the experiment and 28% discount in the second stage;
the indicator remained orange despite this increase in the
discount. Type 2 periods offered a 10% (orange) discount in
the first stage and 30% (green) discount in the second stage,
while Type 3 periods offered a 10% discount in the first
and 9% discount in the second stage of the experiment (the
indicator is orange in both periods). Table 5 summarizes the
combinations of discounts and colors used in the two stages
that characterize each type of period.

We calculated the percent changes in usage for each period
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Figure 9: Usage statistics from July - Sept. 2011.
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Figure 11: User response

Type Periods First Stage Second Stage
Color Disc. Color Disc.
1 2, 8,14,20 | Orange | 10% | Orange | 28%
2 3,6,...,24 | Orange | 10% | Green | 30%

3 5,11, 17, 23 | Orange | 10% | Orange | 9%

Table 5: Period types in the color experiment.

type between the first and second stages of the experiment.
To do so, we first found the average usage in each period
of the day (i.e., each hour) for the first stage of the exper-
iment. We then calculated the percent change in usage of
each period in the second stage of the experiment from the
average usage in the same period during the first stage. The
average change in each type of period is then defined as the
weighted average of these percent changes for each period of
the given type. The weights were proportional to the usage
in that period.

Results: We found that users paid more attention to in-
dicator color than to the numerical discount value. When
discounts increased significantly with no change in indicator
color, only half of the users increased their usage relative
to other periods. However, when the indicator color also
changed, almost all users increased their usage in those peri-
ods relative to others. In Fig. 12, each data point represents
one user’s average change in each period type, with the size
of the data point indicating the volume of usage in the sec-
ond stage of the experiment. The reference line represents
equal changes in both period types considered.

Figure 12a shows the average change in usage for each user
in Type 1 periods versus Type 3 periods. For both period
types, the color did not change, but the discount in Type 1
periods increased significantly. Thus, if users had reacted to
the numerical prices, we would expect usage to increase in
Type 1 and decrease in Type 3 periods: users’ data points
should lie above the reference line. Figure 12a shows that
this is the case with only half of the users. Moreover, some
users increased their usage dramatically in both types of
periods, while most decreased their usage in both types of
periods. Wilcoxon’s test reveals an 82% probability that the
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to notifications sent.

null hypothesis is valid on the differences in usage changes
in both types of periods: since the indicator color did not
change, users were mostly agnostic to the numerical values
of the discounts.

We next compare these results to those obtained when
the indicator color and discount offered both change. Fig-
ure 12b plots the average change in usage in Type 2 versus
Type 1 periods. The discounts in both periods increased by
comparable amounts, but the indicator color changed from
orange to green only in Type 2 periods. We see that most
users’ data points lie above the reference line, so that usage
increased more (or decreased less) in Type 2 as compared to
Type 1 periods. Wilcoxon’s test yields only a 9.8% probabil-
ity that the null hypothesis is valid on the differences in us-
age changes in both types of periods. Thus, users responded
to the indicator color despite the comparable numerical dis-
counts.

4.4.4  Benefits of Optimized TDP

Question: Does peak usage decrease with time-dependent
pricing? And does this decrease come at the expense of an
overall decrease in usage?

Method: We offered optimized time-dependent prices to
all users with JB devices over a two week period in Jan-
uary 2012. The waiting functions used to calculate these
prices were estimated from usage data for the static time-
dependent prices. To measure the peak reduction, we cal-
culated the peak-to-average ratio (PAR), i.e., the ratio of
usage in the peak period to average per-period usage, for
each day. We then compared the PARs from our TIP data
to those observed with TUBE’s optimized TDP.

Results: Optimized time-dependent prices reduce the peak-
to-average ratio from TIP usage. Moreover, overall usage
significantly increased after TDP was introduced, partially
because people used more in the discounted valley periods.

Figure 13a shows the distribution of daily PARs both be-
fore and after TDP was introduced. The maximum PAR
decreases by 30% with TDP, and approximately 20% of the
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PARs before TDP are larger than the maximum PAR with
TDP. Thus, TDP significantly reduced the peak-to-average
ratio, flattening demand over the day.

We next show that this decrease in PAR is not due to
a net loss of traffic. Figure 13b shows the peak daily us-
age observed before and after TDP. Though the maximum
peak usage is about the same, peak usage is generally larger
with TDP. Since the PARs also decreased, usage in non-
peak periods increased. In fact, we observe a 130% increase
in usage from TIP to TDP. Part of this increase may be due
to the time of year—we measured the TIP usage from July to
September, and the TDP usage in January. TDP, however,
is likely a major factor: the discounts during off-peak peri-
ods allowed users to consume more data while still spending
less money and decreasing the PAR.

Finally, we examine the changes in application distribu-
tion due to the introduction of TDP. Figure 13c shows the
average daily usage by application before TDP (i.e., during
our TIP calibration period) and when TDP is introduced.
We see that movie streaming nearly quadrupled, while usage
of other applications stayed about the same. Since stream-
ing is generally used for entertainment, the discounts may
have motivated people to consume more data during low-
price periods. Thus, the “valleys” of TIP usage were further
filled up by an increase in demand, creating a win-win-win
across end users, ISPs, and content providers.

S. DISCUSSION AND FUTURE WORK

We now discuss several limitations of TUBE’s model and
our trial, and then identify future extensions of our work.

Mobility: Since mobile users may switch their base sta-
tions frequently, the proposed TUBE system requires user
devices to keep track of different prices across distinct base
stations. However, user mobility can often be predicted from
location history [22]; thus, the user device can predict its lo-
cation over the next day and pull prices from the appropriate
base stations. The device itself can then keep track of the
user’s bill, an approach scalable to many users.

Single bottleneck: Our model assumes a single bottle-
neck in the network. This assumption is consistent with
a wireless base station in an urban area or a middle-mile
bottleneck in rural areas.

Time granularity: Our initial trial uses hour-long pe-
riods, since users are more familiar with hourly prices, but
we can also shrink the periods to, say, 10 minutes. Shorter
time periods allow users to wait less, possibly enhancing
TDP’s effectiveness. If the timescale is further reduced to
several seconds, the autopilot mode on user devices effec-
tively responds to real-time congestion conditions, turning
time-dependent pricing into congestion-dependent pricing.

Trial scale and additional functionalities: Different
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the period types in Table 5.

demographics likely have different price and time sensitiv-
ities for mobile data, making our trial only the first step
towards understanding TDP’s effectiveness. We are cur-
rently conducting larger-scale trials with U.S. and Indian
ISPs that will further illuminate users’ price-delay tradeoffs
and directly test the effect of the autopilot mode.

Control group: While a trial control group is highly
desirable, it is difficult to compare the TDP usage of one
group of users with another control group of TIP users un-
less they are matched properly. Such matching is especially
challenging in a small population of users, as in our trial.
Our planned large-scale trials will address this issue.

6. RELATED WORK

Internet pricing models have been debated since the 1990s.
Several pricing schemes, both static and dynamic, have been
suggested by networking researchers to alleviate congestion.
Static pricing plans charge users according to predetermined
rates without adapting to customers’ usage behavior, e.g.,
metered, flat price, cap then metered, and two-period time
of day pricing plans [17]. Other proposals include Clark’s
Expected Capacity Pricing [3], Cocchi’s Edge Pricing [4],
and Odlyzko’s Paris Metro Pricing [16], with the former two
admitting dynamic versions as well.

Dynamic pricing has the advantage of adapting prices to
the network condition, as shown in Gupta et al.’s Priority
Pricing [7], Hayer’s Transport Auction [9], Kelly et al.’s Pro-
portional Fair Pricing [11], Varian’s Smart Market Pricing
[13], MacKie-Mason et al.’s Responsive Pricing [14], Semret
et al.’s Market Pricing [19], etc. Sen et al. [20] provides
a detailed overview of these various pricing proposals and
their realization in current data plans. The social and eth-
ical dimensions of dynamic pricing have also been widely
studied, and its consumer adoption and benefits in electric-
ity and transportation networks are well documented [20].
However, there have been no documented trials of dynamic
pricing for mobile data.

7. CONCLUSION

Though time-dependent pricing for mobile data has been
discussed for several decades, no experimental study has
been conducted to investigate a functional prototype. To
this end, we developed and implemented TUBE, an archi-
tecture that takes TDP from economic theory to a system
implementation. TUBE creates a feedback loop between the
ISP’s price computation and users’ ever-changing response
to these prices. To link these components, we estimate and
predict users’ future behavior each day with aggregate usage
data. Users respond to the prices via a GUI that resides on
their devices, either manually or using an autopilot mode.
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Figure 13: Usage statistics for TIP and TDP.

To confirm TDP’s feasibility, we conduct a trial with 50
iPhone/iPad 3G data plan users, acting as a resale ISP and
charging them according to our TDP algorithms. Our trial
results indicate that people are sensitive to time-dependent
prices and indeed shift their Internet usage to off-peak peri-
ods, while increasing the monthly total of data usage. TDP
flattens the temporal distribution of user demand for data,
thus reducing ISP cost while allowing users to save money.
This implementation and pilot trial motivates future study
on time-dependent pricing for different markets and demo-
graphics.
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