T-Chain: A General Incentive Scheme for
Cooperative Computing

Kyuyong Shin, Carlee Joe-Wong, Member, IEEE, Sangtae Ha, Senior Member, IEEE, Yung Yi, Member, IEEE,
Injong Rhee, Member, IEEE, and Douglas Reeves, Member, IEEE

Abstract—In this paper, we propose a simple, distributed,
but highly efficient fairness-enforcing incentive mechanism for
cooperative computing. The proposed mechanism, called Triangle
Chaining (T-Chain), enforces reciprocity to avoid the exploitable
aspects of other schemes that allow free-riding. In T-Chain,
symmetric key cryptography provides the basis for a lightweight,
almost-fair exchange protocol, which is coupled with a pay-it-
forward mechanism. This combination increases the opportunity
for multi-lateral exchanges and further maximizes the resource
utilization of participants, each of whom is assumed to operate
solely for his or her own benefit. T-Chain also provides barrier-
free entry to newcomers with flexible resource allocation, allow-
ing them to immediately benefit, and therefore is suitable for
dynamic environments with high churn (i.e., turnover). T-Chain
is distributed and simple to implement, as no trusted third party
is required to monitor or enforce the scheme, nor is there any
reliance on reputation information or tokens.

Index Terms—Cooperative communication, reciprocity, sym-
metric encryption

I. INTRODUCTION

N many distributed systems, participants voluntarily pool or

share their resources (e.g., computing power, storage space,
and network bandwidth) in order to obtain mutual benefits.
This general notion may be termed cooperative computing.
Examples of cooperative computing include the Domain Name
System, BGP-4 routing, application-layer multi-cast, file shar-
ing, streaming, and recent work in delay-tolerant networks [1]
and cloud [2], mobile [3], and fog computing [4].

The information and services provided by cooperative com-
puting to its participants can be thought of as examples of a
public good. In sharing the public good, cooperation among
participants is important to ensure a satisfactory experience
for all, but there may exist some free-riders, i.e., free-riding
participants, who try to enjoy the benefits of the good without
contributing to it. If free-riders are present, contributing partic-
ipants can experience under-provisioning of the good, leading
to inefficiency, unfairness, and even system collapse in some
cases (the “tragedy of the commons” [5]). Reciprocity pre-
vents such under-provisioning through the expectation that a
participant who consumes resources will contribute equivalent
resources for the benefit of others, while those unwilling to
reciprocate will be excluded from the public good’s benefits.
Enforcing the principle of reciprocity, however, is surprisingly
difficult in fully distributed systems [6]—[8].

A previous version of this work appeared at IEEE ICDCS 2015.

K. Shin is with the Korea Military Academy, C. Joe-Wong is with Carnegie
Mellon University, S. Ha is with the University of Colorado—Boulder, Y. Yi
is with KAIST, and I. Rhee and D. Reeves are with NCSU.

A large range of incentive mechanisms to enforce reci-
procity in cooperative computing have been proposed, which
can be categorized into three groups: direct reciprocity [9]-
[12], indirect reciprocity [13]-[17], and the use of coding or
encryption [6], [11], [14], [18]. However, none of these tech-
niques have been notably successful in preventing free-riding.
Reasons may include their complexity and/or overhead, slow
convergence times, the absence of trust among participants,
and the ease of bypassing the proposed mechanisms [6].

Preventing free-riding may conflict with other important
performance metrics in cooperative computing, such as ef-
ficiency (e.g., file downloading time), introducing a trade-
off between the desired objectives (see [19] for details).
This trade-off occurs because the goals of ensuring fairness
and increasing efficiency (through donating bandwidth for
fast newcomer bootstrapping) may conflict with each other.
Bandwidth donated to newcomers, for example, is often ex-
ploited for the purposes of free-riding. Another challenge
in designing incentive mechanisms comes from the diversity
of cooperative computing applications. As a result, many
existing incentive mechanisms emphasize one goal (either
fairness or efficiency/bootstrapping speed) at the expense of
the other. Thus, a good incentive mechanism in cooperative
computing should satisfy two requirements simultaneously: (i)
strict fairness to overcome free-riding; and (ii) adaptive (but
not exploitable) newcomer bootstrapping for efficiency.

This paper proposes a general incentive mechanism for
cooperative computing, enforcing direct and/or indirect reci-
procity among participants, that is designed to meet the two
afore-mentioned requirements. Under the proposed scheme,
a participant A contributes an almost complete resource re-
quested by another participant B. A also informs B of the
party to whom B must reciprocate. If A and B have symmetric
interests, A can designate itself as the party to whom B must
reciprocate. Otherwise, A designates another participant C as
the participant to whom B must reciprocate. This represents a
pay-it-forward policy [20]. It reduces the difficulty of finding a
compatible participant with mutual interests by expanding the
definition of reciprocation to include (almost) any participant.
The (almost complete) resource contributed by A to B is com-
pleted if, and only if, the request for reciprocation is fulfilled.
The steps just outlined constitute an almost-fair exchange
protocol, in which neither party can gain an advantage by
terminating the protocol early.

In fulfilling its obligation to reciprocate, B likewise con-
tributes an almost complete resource to the designated recipi-
ent, and requires that recipient to reciprocate exactly as B was

required to do. The completion of one almost-fair exchange
thus begins another almost-fair exchange, leading to a chain of
reciprocal exchanges. Moreover, resources for bootstrapping
are dynamically adjusted to the arrival rate and demands of
newcomers. We call the proposed solution Triangle Chaining
(T-Chain), and emphasize several of its favorable points:

o [ncentive compatibility: T-Chain triggers strong incentives
for all participants to follow the given protocol in order to
maximize their own benefits. This property is discussed in
detail in Section II-C.

e Fast but non-exploitable bootstrapping: Newcomers can
immediately participate in and fully contribute to the coop-
erative system. The way in which this is achieved, however,
cannot be exploited for free-riding purposes, except under
rare circumstances. In contrast to other incentive schemes,
the amount of system resources dedicated to newcomer
bootstrapping is automatically adjusted according to the
system needs instead of being pre-allocated.

e Fairness: In order to complete the received resource, the
recipient must reciprocate with the same amount of work
or resource contribution. This ensures excellent fairness
among participants.!

e Robustness: The creation of multiple identities, changing
identities, or frequent changing of the neighbor set will
not be helpful to a potential free-rider, since reputation is
neither computed nor used in T-Chain. Opportunities for
collusion by free-riders are extremely limited, because the
party to whom reciprocation must occur is selected by the
donor of the resource, not the recipient.

e Simplicity: T-Chain is easy for peers to understand and
does not require a trusted third party or any token ex-
changes. Thus, it can be easily implemented and deployed.

We illustrate T-Chain’s benefits and practicality by applying
it to BitTorrent [9], currently the most popular file sharing
application. BitTorrent suffers substantial loss of performance
due to free-riding, despite repeated attempts to address the is-
sue. Compared with current approaches (BitTorrent [9], Prop-
Share [11], and FairTorrent [12]) under realistic conditions,
T-Chain prevents, instead of merely penalizing, free-riding,
and protects compliant peers from free-riding’s detrimental
effects. T-Chain also fully utilizes the upload capacity of
compliant participants despite free-riding, in contrast to these
other approaches. Finally, T-Chain adds only a 1% overhead
to BitTorrent’s normal bandwidth and storage requirements.

Section II briefly describes the operations of BitTorrent
and details our method, T-Chain. Security considerations,
newcomer bootstrapping performance, and implementation
overhead are discussed in Section III. Section IV presents
our evaluation of T-Chain, comparing it with BitTorrent,
PropShare, and FairTorrent. Section V briefly surveys related
works, and finally Section VI concludes the paper.

'In rare cases, the recipient may not find a participant to which he can
reciprocate, hurting fairness. We address this concern in Section II-B3.

TABLE I: Summary of Notation

A, B, ... | Participants (leechers or seeders) in a swarm
F The file being shared by a swarm
Dik The " piece of F in k" transaction of a chain
Kpix] File piece p;x, encrypted with symmetric key K
Py The set of pieces completed (downloaded and
decrypted) by A
Kk The symmetric encryption key used by A
AB to encrypt p;; when sent to B
t; The ;'™ transaction of a chain
D; Donor (i.e., uploader) in the j”” transaction
R; Requestor (i.e., downloader) in the jth transaction
P, Payee in the j'" transaction

II. DESIGN OF T-CHAIN

In this section, we briefly sketch the operations of BitTorrent
to better explain our approach. We then present a new method,
T-Chain, for minimizing or preventing free-riding. We finally
discuss incentives for cooperation and suggest some perfor-
mance enhancement mechanisms.

Like most incentive mechanisms, T-Chain does not address
network communication failures. We assume that participants
do not upload corrupted or falsified file pieces; such pieces
can be detected, and their senders blacklisted, with the usual
BitTorrent mechanisms. Such an attack is distinct from free-
riding: uploading a false piece requires just as much upload
bandwidth as uploading a valid file piece.

A. BitTorrent Overview

In BitTorrent, participants form a swarm sharing a single
file divided into many fixed size pieces, which are further
subdivided into blocks. Participants logically exchange file
pieces, with blocks as the actual unit of transfer. It is assumed
that participants are rational and selfish; they wish to maximize
their benefits (i.e., minimize the time to download a file), while
minimizing their contributions (i.e., uploads to others).

A seeder creates and posts a .torrent file describing the
file it wants to share. Leechers wishing to download the file
retrieve the .torrent and contact a tracker identified there.
The tracker forwards a list of up to 50 randomly selected
members (i.e., seeders and other leechers) of the swarm. A
newcomer attempts to establish a TCP connection to each
member in that list; if the connection is accepted, they become
neighbors. Leechers with fewer than 30 neighbors can ask the
tracker for another list. A leecher can exchange file pieces
with its neighbors and download pieces from the seeder(s);
each leecher periodically sends its neighbors a list of its file
pieces. Leechers download the file piece for which the fewest
copies exist among their neighbors first, following the Local
Rarest First (LRF) policy. They wish to download the file
as quickly as possible, while seeders altruistically upload to
others without expecting anything in return.

BitTorrent discourages free-riding using rate-based fit-for-
tat (TFT) [9], in which a leecher initially chokes all upload
connections to its neighbors, uploading no data. Roughly every
10 seconds, the leecher unchokes the k neighbors who have up-
loaded the most to it over the past 10 second interval, where &
usually equals 4. Every 30 seconds, a leecher randomly selects
and unchokes one additional neighbor, regardless of its past

& &
Z/ e
© &
& & ,
4 4) K¢
) [null| K3 [pi]|C] 2)[(i1, A)| K [p]|D]

(a) Initiation Phase (¢1)

@ [(z(n - 1):W)|pin|nuu]®

(c) Termination Phase (t,,)

(b) Continuation Phase (t2 ~ t,—1)

Fig. 1: The initial, intermediate, and terminal transactions in each
chain of T-Chain.

upload history. This optimistic unchoking allows newcomers
to be easily bootstrapped into the system (i.e., some pieces
are altruistically uploaded to newcomers) and helps leechers
partner with new, potentially better, neighbors.

B. Basic T-Chain Protocol

We apply T-Chain to BitTorrent and assume that the re-
source being shared (and the limiting factor on the system
performance) is upload bandwidth. As mentioned above, we
use some BitTorrent terminology and concepts (refer to Co-
hen’s original paper [9] for details). Table I introduces our
notation. T-Chain primarily changes BitTorrent’s seeding and
unchoking procedures. We modify what seeders upload to
leechers, which neighbors are selected for unchoking, and how
much is uploaded to each neighbor and when.

File piece exchanges in T-Chain are termed transactions.
The j'" transaction ¢; usually involves three parties: a Re-
questor (R;), a Donor (D;), and a Payee (P;). In transac-
tion ¢;, D; will upload a file piece p;; to R;, who is one of
its requesting neighbors. This file piece is first encrypted by
D; with key K[Ef g, to ensure payment (i.e., reciprocation).
To receive the decryption key KDJ R from Dj;, R; must
reciprocate D;’s upload by uploadlng another encrypted file
piece to payee IP; designated by ID;. If R; does not reciprocate,
the encrypted file piece provided by ID; cannot be decrypted,
preventing R; from getting something (useful) for nothing.” A
transaction completes as soon as R; reciprocates the download
and receives the decryption key.

In the next transaction, R; and P; of transaction ¢; change
roles to respectively become the donor D1, and requestor
R; 1 of transaction ¢;y;, with a new payee P; ;; note
that ¢;,; is thus initiated by the requestor’s reciprocation
in transaction ?;. A sequence of transactions (f1, t2, ---),
each completing the one before, can continue indefinitely,
constituting a chain. As seen in Figure 1, each chain has three
phases: (a) initiation, (b) continuation, and (c) termination.

2We assume that each key is used to encrypt only one file piece and never
used thereafter, which need not be the case in practice. However, using new
keys ensures that the recipient cannot guess the key from previous transactions.

1) Initiation Phase (Figure 1(a)): As in BitTorrent, initially
the seeder has all the pieces of a file F' and will begin the
process of distributing file pieces without expecting anything
in return. The seeder (A in Figure 1(a)) begins a chain of
transactions by uploading a file piece p;1, selected (by B) with
the LRF policy, to a randomly selected requestor leecher B.3
A is thus the donor of the first transaction.

Before uploading, A encrypts the file piece p;; with a
symmetric key Kj's. The donor A also informs requestor B
that it must reciprocate by uploading a file piece to payee
(leecher) C. The payee C may be randomly selected by A from
among A’s neighbors that desire at least one of B’s file pieces.*
If the selected payee C is not a neighbor of B, then B should
send a neighboring request before reciprocation; alternatively,
A can provide a list of candidate payees to B for reciprocation.

The requestor B satisfies the reciprocity requirement by
uploading another file piece p;2 to C, encrypted with its
own key KB c; the piece is chosen by C using the LRF
policy. While uploading, B also informs C that this upload
is reciprocation for A’s upload of p;; to B. If (and only if)
C notifies A that B has reciprocated,’ A will release the key
K}' to B. This key allows B to decrypt the file piece p;1,
completing the first transaction of the chain. Note that B’s
upload reciprocation to the payee C starts a second transaction
in the chain, as indicated in Figures 1(a) and 1(b).

2) Continuation Phase (Figure 1(b)): As described above,
the fulfillment of one transaction starts another. In the second
transaction, B acts as A did in the first transaction: step 2 in
Figure 1(a) is shown again in Figure 1(b), since it initiates
Figure 1(b)’s transaction. Along with uploading Kﬁc [pi2] to
C, B selects a qualified participant D from B’s neighbors and
designates it to C as the payee to whom C must reciprocate.
The transaction then completes as in the initiation phase.®

The donor B cannot choose the requestor C in this phase of
the chain, since C is selected by A in the previous transaction.
However, B can freely choose the payee D to whom C must
reciprocate. This choice follows one of two strategies:

e Direct reciprocity. If the requestor C possesses at least
one file piece that B needs, B designates itself as the
payee D to whom C must reciprocate. This designation
represents simple bi-lateral reciprocation between B and
C, as in BitTorrent’s TFT policy; note that C is still
free to choose the payee for the next transaction, which
can continue as usual. Similarly, one leecher may take
part in multiple chains simultaneously. In general, this is
desirable to fully utilize the available upload bandwidth
of all the leechers (see Section II-D3 for details).

o Indirect reciprocity. If direct reciprocity is not possible,
the donor B randomly chooses a payee ID among its
neighbors who need at least one of C’s file pieces

3To expedite the file distribution, the seeder will likely initiate as many
chains as possible given its upload and leechers’ download capacities.

4A different method is used when B is a newcomer (Section II-D1).

SReceiver reports or notifications are assumed to be communicated directly
by the payee (e.g., C) to the donor (e.g., A). If IP address spoofing is con-
sidered to be a threat, there are standard ways to authenticate communication
between these two parties, and to prevent replay attacks (refer to RFC4953).

SNote that if steps 3 or 4 in Figure 1(a) are interrupted, e.g., due to link
failures between A and C, the next transaction can still take place as usual.

(including the file piece p;2 about to be uploaded). The
donor does not specify the exact piece that C should
upload to D; as long as D requires at least one piece from
C, reciprocation can occur. If no such neighbor exists in
the donor’s (not requestor’s) neighbor set, then the chain
terminates, as discussed in the next section.

Chains can form cycles if a designated payee served as a
donor in a previous transaction of the chain. For instance,
in direct reciprocity, a two-member cycle is formed. As for
direct reciprocity, however, cycles do not affect T-Chain’s
transactions. Additionally, we note that as the fraction of
newcomers increases, the probability that indirect reciprocity
will select a newcomer as the payee will also increase. T-
Chain thus automatically adjusts the resources allocated to
newcomers depending on their prevalence in the system.

3) Termination Phase (Figure 1(c)): A leecher X who is
required (by W) to upload a file piece to Y will normally
designate a payee Z for Y to continue the chain. However, if
neither X nor any of X’s neighbors needs a piece from Y, X
will upload an un-encrypted file piece to Y, releasing Y from
the responsibility to reciprocate and terminating the chain.

A chain terminates if and only if X cannot find a payee to
whom Y can reciprocate. In practice, this is rare: newcomers to
the swarm will always need a piece from Y, and LRF piece se-
lection ensures that pieces are well-distributed, with most peers
needing a piece from another. When newcomers stop joining
a swarm, all leechers will eventually finish downloading the
file and leave the swarm, forcing all chains to terminate. In the
most extreme case of a swarm consisting of a single seeder and
a single leecher, the seeder will simply upload the complete,
unencrypted file to the leecher. Free-riders cannot exploit this
vulnerability as they do not control newcomers’ arrivals.

4) Effect of Peer Departures: Chain transactions can be
interrupted if a participant unexpectedly departs the swarm
before the transaction is completed. Using the notation in
Figure 1(a) as an example, A may depart before receiving
the reciprocation report from C and releasing the decryption
key to B; or C may depart before B can reciprocate to C.
Neither event, however, is fatal to T-Chain. A can easily send
its decryption key to C before leaving the swarm; then C
can send it to B upon reciprocation. While A has no concrete
incentive to do so, sending a decryption key to C has negligible
overhead for A. If C leaves the swarm before B reciprocates,
then A can simply designate another payee, C’, to whom B
should reciprocate. If C does not leave the swarm but requires
no pieces from B, e.g., due to out-dated lists of required file
pieces at A, then A can similarly choose a new payee. Free-
riders cannot take advantage of this re-assignment by falsely
claiming that C has left the swarm, since C is a neighbor of
A and would directly notify A of its departure.

C. Incentives in T-Chain
In this section, we show that each party in Figure 1(a) (i.e.,
A, B, and C) has an incentive to follow the T-Chain protocol.

Proposition II.1 (Incentive compatibility with direct reci-
procity). Consider two leechers, A and B, who each need

a file piece from the other. Suppose that A has been asked
to reciprocate a previous transaction with C by uploading a
piece to B. Then if either A or B do not follow their prescribed
actions in the next stage of the chain (cf. Figure 1(b)), the other
can retaliate by preventing A or B from receiving a file piece.

Proof. There are three steps that should occur in the next
transaction of the chain: A should send an encrypted piece
K, [pa] to B designating itself as the payee; B should send an
encrypted piece Kp [pp] to A, designating itself as the payee;
and A should send the decryption key K4 to B. Note that A
does not need to verify that B has reciprocated its sending of
Ky [pa), as A is the recipient of B’s reciprocation.

We now show that A and B risk retaliation from the other
if they do not complete each step. If A does not send the
encrypted piece Kj [pa] to B, it cannot initiate the next
transaction in which it receives pg from B. If B does not
reciprocate A’s sending of K [pa], then A can withhold K
from B, preventing B from accessing p,. Finally, if A does
not send its key K, to B, then B can withhold its key Kp in
the next transaction, preventing A from accessing pg. O

Thus, if both A and B value gaining a piece above the
cost of sending encrypted pieces and decryption keys to each
other, as well as encrypting and decrypting the pieces, they
have an incentive to participate in the chain.” We show in
Section III-C that the costs of encryption, decryption, and
sending decryption keys are negligible compared to the cost
of uploading an encrypted piece; and if this uploading cost
exceeds A’s or B’s utility in receiving an additional piece,
they would not participate in the swarm in the first place.

From the proof of Proposition II.1, a non-seeder A even has
an incentive to initiate a chain instead of simply continuing an
existing one, since A anticipates receiving a piece from B. This
chain initiation is called opportunistic seeding and is discussed
in Section II-D3. If A is a seeder, it needs no incentive to start a
chain: the existence of the swarm presupposes that the seeder’s
objective is to altruistically disseminate the file to leechers.

Incentive compatibility for non-seeders with indirect reci-
procity (i.e., B reciprocates to a leecher C # A) is less
clear. If A is continuing a chain, then A has an incentive
to upload an encrypted piece to B, in order to receive a
piece in the previous transaction. We argue that A would also
have an incentive to initiate a chain, as doing so reduces its
potential competition with C in future transactions, benefitting
A through an offloading effect [21]. A may also become a
payee in later stages of the chain, acquiring pieces faster than
if the chain had not existed. This type of chain initiation,
however, is relatively rare (c.f. Section II-D3).

The remainder of our proof for the direct reciprocity case
works as before except for the last step, in which C acknowl-
edges receipt of an encrypted piece from B and A sends the
decryption key to B. C has an incentive to acknowledge re-
ceipt; otherwise, B will retaliate by not sending the decryption

7Of course, A and B may not retaliate against each other. However, A and
B are unlikely to have a previous collusion arrangement (Section III-A4) and
thus could not ensure the other’s non-retaliation.

key to C.8 While B cannot retaliate against A for failing to
send the decryption key, B may be able to retaliate in the
future. Since the cost of sending K, to B is negligible (cf.
Section III-C), unless A judges the probability of needing a
piece from B in the future to be similarly negligible, e.g., if
A already has nearly all of the file pieces, A would prefer to
send K4 to B rather than risk future retaliation.

The above mentioned incentives apply to all participants
in each transaction of a chain. Since all participants have an
incentive to follow the given protocol or risk retaliation by
others that deprives them of receiving pieces, we claim that
T-Chain is incentive-compatible.

D. Additional Features of T-Chain Protocol

T-Chain’s basic protocol can be improved through new-
comer bootstrapping, flow control (adaptive receiver selec-
tion), and opportunistic seeding, as described below.

1) Newcomer Bootstrapping: In order to reciprocate, re-
questors must have at least one completed (i.e., decrypted)
file piece needed by the payee. This may not be the case for
newcomers, however. For instance, suppose B in Figure 1(a)
is a newcomer. B is required by A to reciprocate for p;; by
uploading another encrypted file piece p;2 to C. Since B has
no completed file pieces yet, it has difficulty in complying.

In this case A must select a piece p;; that both B and C
need, which is the only case in which the LRF policy is not
used in T-Chain. Now A uploads the piece p;; after encryption
(ie., KA{B[pil]) to B. Then B will be able to reciprocate
by simply forwarding the encrypted piece Ki'y[p1] or by
uploading it after re-encryption using its own key to C. Note
that this procedure makes no change in the basic protocol,
except for the piece selection scheme. No system resources
need to be set aside for newcomer bootstrapping, in contrast
with other schemes (e.g., PropShare [11]).

A significant innovation of T-Chain is that this method for
bootstrapping newcomers is difficult for free-riders to exploit.
Newcomers, like all file requestors, must reciprocate to other
leechers in order to receive decryption keys for the (encrypted)
pieces they receive. We believe the combination of immediate,
barrier-free entry of newcomers into the swarm, without risk
of free-riding, is unique in the literature (c.f. Section V).

2) Flow Control (Adaptive Receiver Selection): In the basic
protocol described above, qualified neighbors have a uniform
probability of being designated as the payee of an encrypted
file piece upload. However, in a real swarm, some neighbors
may have heterogeneous upload bandwidth capacities, making
this policy sub-optimal. A leecher with low upload bandwidth
can accumulate a backlog of encrypted file pieces that need to
be reciprocated, while a leecher with high upload bandwidth
may download pieces at a rate too slow to use its full upload
capacity while reciprocating.

81f B and C collude, B may simply upload an unencrypted piece to C,
saving C the cost of reciprocation and B the cost of encrypting this piece.
However, B could not then retaliate if C does not report B’s reciprocation to
A. B is unlikely to trust C enough to give up this leverage unless they are in
a pre-determined group of colluders, which is unlikely (cf. Section III-A4),
especially since B’s cost of encryption is negligible (Section III-C).

To prevent these scenarios, each leecher in T-Chain can
maintain a local history of its neighbors that records the num-
ber of pending file pieces, defined as the number of encrypted
file pieces uploaded to that neighbor for which it has not yet
received notification of reciprocation. A neighbor with more
than k pending file pieces from A will be neither selected by
A to receive pieces nor designated as a payee until its number
of pending file pieces drops below k. This procedure also
helps participants identify uncooperative or malfunctioning
neighbors. If a neighbor does not reciprocate its uploads, it will
accumulate pending file pieces and eventually be banned as a
payee. Note that this adaptive selection requires no centralized
monitoring or information sharing between participants.

The value of k determines how many pending file pieces
a leecher is permitted to buffer. A higher value of k£ helps
smooth out variations in system capacity, processing and
networking delays, upload bandwidths, etc., but increases the
probability that some leechers are over- and some underloaded.
An alternative option for A is to choose a neighbor with
the smallest number of pending pieces. In the experiments
described in Section IV, k& was set to a moderate value of
2, which balances smoothing out variations between leechers
with over- or underloading some leechers. Since flow control
is not a core component of T-Chain, we fix £ = 2 in order to
study other dimensions of T-Chain’s performance.

3) Opportunistic Seeding: In the basic T-Chain protocol,
only a seeder may initiate a chain. However, if too many
chains are terminated, e.g., due to leecher failure, departure
of the leecher from the swarm without completing the file
download, temporary network problems, or free-riding, then
the remaining chains may not utilize leechers’ full upload
capacity, degrading system performance. Yet the seeder may
not be able to keep up with the rate of chain termination.

To compensate for too few chains in the swarm, T-Chain can
use opportunistic seeding: a leecher B initiates a new chain by
voluntarily uploading an encrypted file piece to another leecher
C, if B in possession of at least one completed file piece and
has no pending (not yet reciprocated) file pieces. In such a
transaction, the leecher B plays the role of the seeder and
thus selects both the requestor and the payee, as is the case
for normal seeders. The leecher B may, and probably will,
designate itself as the leecher to whom C must reciprocate,
which benefits B itself. Opportunistic seeding immediately
increases the number of chains in which B is participating,
benefiting both B and the system. We investigate the frequency
and the effect of opportunistic seeding in Section IV-G.

III. SECURITY, PERFORMANCE, AND OVERHEAD

In this section, we discuss how T-Chain counteracts known
strategic manipulation techniques for free-riding and increases
the rate of peer bootstrapping, with small additional overhead.

A. Countering Known Free-Riding Attacks

In this section, we first consider T-Chain’s vulnerability to
five previously-known free-riding attacks (exploiting altruism,
cheating, the large-view exploit, whitewashing, and the Sybil
attack), and then discuss its vulnerability to attacks tailored

to the operation of T-Chain. Attacks with other goals, such as
denial of service, content pollution, or malicious disruption of
system operation, are outside the scope of T-Chain.

1) Exploiting Altruism: In BitTorrent, free-riders can ex-
ploit the altruism of seeders, who do not expect reciprocation
for uploads, and optimistic unchoking [22]. In contrast, T-
Chain does not use altruism: any work that is done requires
reciprocation in order to be successfully completed. The only
exception occurs during chain termination (Section II-B3): a
seeder or a leecher X in a tiny swarm, who cannot find any
leecher (including itself) needing a file piece from Y, may
upload an unencrypted file piece to Y. However, this is a
rare occurrence; moreover, as discussed in Section II-B3, free-
riders cannot easily cause or exploit chain terminations.

2) Cheating: Cheating, or initiating transactions with other
leechers and later refusing to reciprocally upload to those
leechers, can easily occur in BitTorrent [6]. With T-Chain,
however, leechers derive no advantage from refusing to recip-
rocate: the pieces downloaded from other peers are encrypted,
and are therefore useless to the downloader without the match-
ing decryption key, which is only released upon reciprocation.

3) Large-view-exploit and Whitewashing: Since T-Chain
prevents exploiting altruism and cheating, there is little benefit
for free-riders to increase their chances of receiving altruistic
uploads by artificially increasing their number of neighbors
(i.e., using the large-view-exploit [23], [24]) or by frequently
changing their identities (i.e., engaging in whitewashing [13],
[25]). Even though they can potentially increase the number
of encrypted pieces received through these techniques, they
must still reciprocate to decrypt the encrypted pieces.

4) Collusion and the Sybil Attack: Free-riders can collude
with each other to maximize their benefits without contribu-
tion. For instance, indirect reciprocity (e.g., reputation) based
schemes are vulnerable to collusive behavior such as false
accusation and praise [26]. Such attacks are more difficult in
T-Chain and can only occur in isolated, rare scenarios: suppose
D uploads to R and designates P as the leecher to whom R
must reciprocate. If R and PP are in collusion (or R and P are
false IDs of the same peer), leecher P may lie to D, falsely
stating that R uploaded an encrypted piece to it when in fact
R did not. In this case, D will upload the matching key to R
“for free”, so free-riding will occur.

This type of collusion or Sybil attack is possible only during
indirect reciprocity: in direct reciprocity, D designates itself
as the payee P to whom R must upload and will not give the
key to R for decryption unless it actually receives a reciprocal
piece from R. We now calculate the probability that a collusion
(or Sybil) attack can occur during indirect reciprocity. For
such attacks to be successful, the requestor and the payee
of the same transaction must be colluders (or Sybils). We
argue that the probability of this occurring is very small, unless
the colluder (or Sybil) set is very large, which is difficult to
achieve.

Consider a system of N peers, each of which receives b
randomly chosen neighbors from the tracker. Let S denote
one colluder (Sybil) set of m peers; typically, m < N and
b < N. We now find the probability of a successful collusion
(Sybil) attack, i.e., that the payee and requestor are from S.

Since the requestor R; ;1 of transaction ¢+ 1 is the payee P;
of the previous transaction ¢ (i.e., R;;; = P;), the requestor
R;4+1 and payee P;;; of transaction 7 + 1 must have been
separately chosen by the donors ; and D;; of the previous
and current transactions ¢ and ¢+ 1. Both randomly choose their
payees P; and P, from among their neighbors. To simplify
the discussion, we assume that the current transaction is not
terminating and that all neighbors are equally eligible to be
chosen as payees. By the definition of T-Chain, I; and ;1
(= R;, the requestor of transaction ¢) must be different peers.
We thus compute the probability P, of a successful attack as
follows: we first denote by P; the probability that [out of
b peers returned from the tracker are colluders (or Sybils) in
S, and by P, the probability that both the requestor and the
payee of a “random” chain are from these [. Then, it is not

hard to see that P, = ?;i;(m’b) P,P,, where

b _TT™0 p _ (1) (-1
l_E)Nﬂ" € (b) (b1>'

Note that when m < N, the probability Py is very
small. Moreover, since successful attacks require indirect reci-
procity, the actual success probability is much lower than P,.
Section IV-D experimentally investigates the effect of many
leechers colluding with each other; the colluders receive very
slow download times, making collusion impractical.

5) Failure to Complete the Exchange: In Figure 1(b), the
participant B, having previously uploaded an encrypted file
piece to C, may later fail to upload the decryption key to
C. There is minimal gain for B in failing to upload the key,
however, since uploading the key requires several orders of
magnitude less bandwidth than uploading the file piece did.

B. Newcomer Bootstrapping Speed

We compare T-Chain’s bootstrapping speed to that of a
BitTorrent-like protocol in which each peer unchokes a random
peer every 1/4 timeslots (normally 1/6 = 5, i.e., 20% of
bandwidth is used for BitTorrent’s optimistic unchoking). We
consider a discrete-time system with ¢ = 0, 1, ... indexing the
timeslot and suppose that one file piece per chain is uploaded
in each timeslot. Thus, each T-Chain transaction spans two
timeslots: one for the donor’s upload to the requestor, and one
for the requestor’s to the payee. We do not consider the time
to send file piece receipts and decryption keys, since they are
much smaller than the file pieces (c.f. Section III-C).

We define three variables to track the number of peers in
the swarm at each time ¢: x(t), the number of completely un-
bootstrapped peers; y(t), the number of partially bootstrapped
peers (i.e., they have a single encrypted file piece that has not
been reciprocated); and n(t), the total number of peers. The
total number of un-bootstrapped peers is then y(¢) + z(t). For
ease of notation, we define z(t) = n(t) — z(t) — y(¢).

We define [as the peers’ departure rate and « as the
newcomer arrival rate (arrivals and departures are assumed
to follow Poisson distributions), as shown in Figure 2’s state
transition diagrams. Here P represents the probability of
bootstrapping. We use M to denote the total number of file
pieces and assume that each (bootstrapped) peer in T-Chain

£ (D (D
B B B }‘(J]
(a) BitTorrent-like model. (b) T-Chain model.

Fig. 2: Transition diagrams for the two protocols.

participates (i.e., uploads a file piece and designates a payee)
in on average K chains per timeslot. Peers participate in
direct reciprocity if they require any file pieces possessed by
a transaction’s designated payee; we suppose this happens in
a fraction 1 — w of transactions.

1) BitTorrent-like Dynamics: In this simplified BitTorrent-
like method, a peer uploads a piece to a randomly selected
peer with probability ¢ in each timeslot and otherwise uploads
based on the peers’ contributions (generally, 6 = 0.2 for
BitTorrent as discussed above). In this case, y(t) = 0: no peers
are partially bootstrapped. We now calculate the probability
that a peer will be bootstrapped at time ¢ (Figure 2(a)):

1 o 8 -2\
Pn(t)+<1 <1 5+n(t)_1>)

§(n(t) —2)* P\ 1
(1(”*7@@—1) ><t>

where the first term is the probability that the seeder bootstraps
the peer, the second term is the probability that another
downloader (i.e., leecher) bootstraps the peer, and the third
term accounts for the fact that it is possible that the peer will
be chosen by both the seeder and a downloader. We then have
the dynamical equation for the expected values of x:

E[z(t + 1)]z(t),n(t)] =2@) (1 — P)+an(t). (1)
Moreover, we find that E [n(t + 1)|n(t)] = (1 — 5 + a)n(t),
allowing us to solve for E [n(t)|n(0)] = (1 — 3+ «)" n(0).
Thus, if 8 = «, i.e., the arrival and departure rates are the
same, then the expected number of peers in the swarm remains
constant.

2) T-Chain Dynamics: We now formulate the dynamics for
T-Chain, with the state transition diagram in Figure 2(b). We
suppose that ¢ > 1 and find that

n(t) — 2

re- () (o ?

in Figure 2(b), accounting for both the seeder’s probability of
choosing a given un-bootstrapped peer and the probability that
a fully bootstrapped peer at time ¢ — 1 designated a currently
un-bootstrapped peer as the next recipient in the chain. We
next calculate w, or the probability that a bootstrapped peer
engages in indirect reciprocity in a given chain. This occurs if
(i) the peer must upload to another bootstrapped peer and does
not need any of its file pieces, or (ii) the peer must upload to
a fully un-bootstrapped peer. Thus,

/ "
w:x(t—l)—&—wy(t—l)%—w(z(t—l)—1)7 3)

nt—1)—1
where W' = Zf,i pjn;/M is the probability that the peer
already has the smgle ﬁle piece possessed by a partially
bootstrapped peer and w” is the probability that the peer
already has all the file pieces of another fully bootstrapped
peer. Thus, we generally have w” < ’, which we will assume

>Kw(z(t—1))

throughout the rest of the paper. Here we define p,, as the
probability that a given bootstrapped peer has m file pieces.
To calculate w”, we find the probability that bootstrapped peer
7 does not need any pieces from bootstrapped peer 1, i.e.,

(M —m;)im;!
Z P, Z prn, L=)y My —) (4)
mj=1 m;=1
If M is large and the p,, are uniform, then we have w” =~
log(M)/M. Note that w’ and w” are independent of the state
variables and may be taken as fixed constants. Thus, we can
write down equations for the state variables using (2) and (4):

Efz(t+D)z(t), y(t), 2(t)] = an(t) + (@) (1 - 5) (1 - P()S)
Ely(t + D), y(), 2(0)] = =()(1 = B)P (6)

where P is given by (2) and w is given by (3) and (4). Again,
if 8 =a, n(t) is a constant n.

3) Protocol Comparison: We now focus on the case o =
8 = 0, i.e., peers neither depart nor enter the system, to
examine the bootstrapping rates of both methods. To facilitate
comparisons between T-Chain and BitTorrent, we use x; to
denote the number of un-bootstrapped T-Chain peers, and x;
to denote the number of un-bootstrapped BitTorrent peers. We
also define the bootstrapping rate at a given time ¢ as the ratio
of the expected number of un-bootstrapped peers at time ¢+ 1,
given the number at time ¢, to the number of un-bootstrapped
peers at time ¢: W. We first consider a flash-crowd
scenario, in which several newcomers have recently arrived,
resulting in a large number of un-bootstrapped peers. All
proofs are in the Appendix. We derive sufficient conditions
for T-Chain to bootstrap newcomers faster than BitTorrent in
the first few timeslots:

Proposition III.1 (Short-term bootstrapping rates). Suppose
that o« = = 0. If n — xp(t) < n for BitTorrent and z:(t —
1) < n for T-Chain, then T-Chain has a higher bootstrapping
rate than BitTorrent at time t if
t—1 "y (t — 1 "zt —1)—1
PR e ESAEETARER R
n—1
> d(n — xzp(t)). (7)

Intuitively, at time ¢, Kz;(t — 1)w peers are chosen for
indirect reciprocity in T-Chain, and §(n — x(t)) peers are
chosen for optimistic unchoking by BitTorrent. Thus, in
order for T-Chain to bootstrap peers at a faster rate than
BitTorrent, T-Chain should choose more peers, giving it a
larger probability of bootstrapping newcomers. For instance,
ife(t—1)4+y(t—1) < ap(t) and 2 (t— 1) +y(t—1) > np
(T-Chain has fewer un-bootstrapped peers than BitTorrent, and
a fraction p of peers are not bootstrapped), then a sufficient
condition is Kw’p > 4, which holds, e.g., if 6 = 0.2, W’ =
0.495 (approximating w’ with M = 100 and p,, = 1/M),
u = 0.5, and K = 2. Note that this condition is weaker
than that given in Proposition III.2, which assumes most peers
are bootstrapped. When there are many bootstrapped peers in
the swarm, T-Chain’s number of un-bootstrapped peers falls
slower than when few peers are already bootstrapped.

Over time, more peers are bootstrapped and the assumption
zt(t—1) < n in Proposition III.1 will not hold. Thus, we next
examine the bootstrapping rate when many peers are already
bootstrapped. Once again, we can derive sufficient conditions
for which T-Chain is faster than BitTorrent:

Proposition IIL.2 (Long-term bootstrapping rates). Suppose
that « = § = 0 and that x4(t) + y:(t) < pn, xp(t) > vn.
Then T-Chain’s bootstrapping rate at time t is faster than
BitTorrent’s if

S n(l—v) 1 Kn(l—p)w”
1-— >(1- .8
(n— 1) - (n— 1) ®

In the limit for large n, this condition becomes 6(1 — v) <
Kw"(1—). From Proposition III.1’s result, we can generally
take v > p since zp(t) > x4(t) + y4(t) (T-Chain bootstraps
peers faster than BitTorrent shortly after many of them arrive),
implying that Kw” > ¢ is a sufficient condition to ensure (8).

Our analysis assumes that all leechers are neighbors, in
order to focus on comparing BitTorrent and T-Chain. We
do not expect this assumption to have a significant impact
on our results: in fact, limiting the number of each peer’s
neighbors would have less effect on T-Chain than on Bit-
Torrent, since T-Chain peers can overcome piece availability
limitations among their neighbors with indirect reciprocity. In
Section IV’s evaluation, leechers are connected to at most 55
of their neighbors, and Propositions III.1’s and III.2’s results
on T-Chain’s bootstrapping faster than BitTorrent still hold.

C. Overhead of T-Chain

To implement T-Chain on top of BitTorrent, we must add
some additional mechanisms (e.g., symmetric key encryption,
reception reports, etc), which yield some additional overhead.

1) Encryption Overhead: Each leecher in T-Chain must
decrypt and encrypt the equivalent of the entire file once.
Sirivianos et al. [14] have shown that the encryption of a
128KB piece with a symmetric key takes only 0.715 mil-
liseconds. Thus, a 1GB file, for instance, requires only 12
seconds for encryption and decryption, compared to the 1024
seconds required to transfer the file at 8Mbps. The encryption
and decryption time yields an overhead of less than 1.2%.

2) Report Overhead: T-Chain file transfers experience ad-
ditional delay due to the reciprocal upload of a file piece,
transmission of a reception report, and key uploading that must
occur before a transaction completes. However, the reception
report and the key uploaded are very small in size compared to
file pieces, and thus the transmission time for those messages
is negligible. Moreover, consecutive transactions in a chain
are interleaved as seen in Figure 1, so (without encryption)
the total completion time of n transactions in a single chain
of T-Chain takes no more than the time for n+2 piece uploads
in BitTorrent. More importantly, each leecher may engage
in multiple uploads and downloads simultaneously. Leechers
waiting for a key upload can still participate in other chains
until the transaction is complete.

3) Required Space: T-Chain requires space to store pending
file pieces (i.e., the encrypted pieces received but not yet
reciprocated) and their decryption keys, as well as encrypted

file pieces before transmission. The space used for pending file
pieces, however, can be reused to store the decrypted pieces
once the key to a pending file piece is received. Encrypted files
prepared for transmission can be deleted after transmission; the
leecher only needs to store the matching key to complete the
transaction. Thus, each leecher would require only 256KB of
additional space for a 1GB file if 128KB file pieces and 256-
bit encryption keys are used, representing a 0.02% overhead.

IV. EVALUATION

We evaluate T-Chain’s effectiveness through event-driven
simulations in a wide range of scenarios and present the
results here. To perform our experiments, we use a BitTorrent
simulator [6] to measure the performance of a standard Bit-
Torrent system as the basis of the experiments. This simulator
models all of the usual BitTorrent protocol functions, including
joining and leaving the swarm, neighbor choking, normal and
optimistic unchokings, seeding, piece exchanges, etc.

A. Simulation Setup

Each experimental run started with a swarm consisting of a
single seeder. This seeder remained in the swarm throughout
the simulation run. A leecher joining the swarm was assumed
to begin downloading file pieces, remain in the swarm until
its download of the file completed, and exit the swarm im-
mediately upon completion. We initially model the leechers’
arrival as a flash crowd in which all leechers joined the swarm
within the first 10 seconds. For instance, a file may attract high
interest prior to its release [27], representing a demanding test
case for file sharing. We later use a real trace arrival model
taken from the RedHat 9 Torrent tracker trace [28], which
represents 5 months of activity in a BitTorrent swarm. Each
leecher requests a list of 50 randomly selected neighbors from
the tracker upon arrival, and whenever its list of neighbors falls
below 30. Leechers maintain at most 55 neighbors throughout
their time in the swarm.

We compared the performance of four protocols: original
BitTorrent [9], PropShare [11], FairTorrent [12], and T-Chain.
The latter three protocols were implemented as BitTorrent
extensions in our simulator. In each, we set the seeder’s upload
bandwidth to 6000 Kbps. The upload bandwidth of leechers
was assumed to be heterogeneous, varying from 400 Kbps
to 1200 Kbps, in accordance with the assumptions of [6],
[22], [27]. There was no limit on the download bandwidth
of leechers; upload bandwidth was assumed to be the limiting
factor or resource [29]. The file size was taken as a fixed size
of 128 MB (1 Gb) unless otherwise stated. The block sizes of
BitTorrent and PropShare were set to 16 KB, and the piece size
was set to 256 KB (i.e., one piece = 16 blocks), agreeing with
the values used by most actual BitTorrent clients. A piece size
of 64 KB was used for T-Chain and FairTorrent without further
subdivision; this is the basic exchange unit of FairTorrent [12].

Data points in each graph show the mean and 95% confi-
dence intervals of the average file download completion time
over 30 runs, using different random number seeds.

B. Performance without Free-Riding

T-Chain is designed to enforce reciprocity and thereby pre-
vent free-riding in file sharing applications, without degrading
the system performance. To evaluate whether this goal has
been achieved, we first measure the system performance when
there are only compliant leechers (i.e., leechers that comply
with all the normal requirements of each protocol) and then
compare it to the performance with free-riders.

o

8 1600 100 el

2 1400 S 2 s %

£ e i et K Eo

5 1200 5§

@ 1000 g

1 f o

£ 800 5 50

3 £ 40

- 600 Original BT - -0 - | £ Original BT = 6~ -
8 400 PropShare i g 30 PropShare u
< FairTorrent o 20 FairTorrent -
2 200 T-Chain —— || F 10 T-Chain —i—
° Optimal ---&-- Optimal ---&-- [7
5 0 L I I 0 L I I

] 200 400 600 800 1000 200 400 600 800 1000

swarm size swarm size

(a) Avg. download completion time. (b) Avg. uplink utilization.

Fig. 3: (a) Average download completion time and (b) average uplink
utilization for leechers in BitTorrent, PropShare, FairTorrent and T-
Chain under a flash crowd leecher arrival model without free-riders.

Figure 3 shows the results without free-riders. Figure 3(a)
shows that all methods perform similarly (in terms of average
download completion time) and close to optimal (cf. [27]).
T-Chain and FairTorrent have slightly smaller download com-
pletion times than the other methods due to their better uplink
utilization, which can be observed from Figure 3(b). This
improvement comes from the fact that T-Chain and FairTorrent
dynamically adjust the system resources to bootstrap more
newcomers soon after their arrival, compared to the fixed 20%
of system resources that are pre-allocated for bootstrapping in
BitTorrent and PropShare. All methods are scalable; as the
swarm size and demand on each peer’s upload bandwidth in-
crease, the download completion times stay relatively constant.

The next two experiments investigate the effects of the file
size and the swarm size on system performance in T-Chain.

1600

12000 T

e

1200 | - 4
800 /./ i

400

10000
8000 |-
6000 -

4000 |~

2000 -

0

avg. download completion time (sec)
avg. download completion time (sec)

0 L .
10 100 1000
swarm size

L I L L L
0 200 400 600 800 1000
size of the shared file (MB)

10000

(a) File size effects. (b) Swarm size effects.

Fig. 4: The effects of (a) file size and (b) swarm size under T-Chain.

Figure 4(a) shows the effects of the size of the file shared
in the system. In this experiment, the number of compliant
leechers joining the system was fixed at 600 (without free-
riders), but the size of the shared file varied from 32MB to
1024MB. The average download completion time increases
linearly with the file size, indicating that T-Chain performs
well even when large files are shared. Figure 4(b) shows the
effects of the swarm size. In this experiment, the file size
was fixed at 128MB, but the number of compliant leechers
joining the system varied from 10 to 10,000. No free-riders are
considered in this experiment. As seen in the figure, T-Chain is
highly scalable in that the average download completion time

converges and stays nearly constant regardless of the number
of leechers joining the system in a flash crowd fashion. The
average download completion time is low with fewer than 200
leechers because the seeder’s upload bandwidth dominates the
system performance when there are few leechers in the system.
The upload bandwidth of the seeder was set to 6000Kbps. T-
Chain thus has good average performance when there are no
free-riders in the system.

2500 T T 2500 T
encrypted -~ encrypted -
decrypted decrypted

2000
1000 }/)y
500 /

0 100 200 300 400 500 600 700 800 900

Elapsed time after joining (sec)

(b) 1200Kbps leecher.

2000

1500

1000

Number of pieces received
Number of pieces received

500

0 L L L L L
0 500 1000 1500 2000 2500 3000

Elapsed time after joining (sec)

(a) 400Kbps leecher.

Fig. 5: Transfer times of individual file pieces for two specific
leechers with the lowest and the highest upload rates.

To further understand T-Chain’s effects for individual leech-
ers, Figure 5 shows the transfer times of individual file pieces
for two specific leechers with the highest and lowest upload
rates. In each figure, one line (set of data points) represents
the times at which each encrypted file piece was received
by the leecher, and the other line represents the times at
which the matching decryption key for each encrypted file
piece was received. The upload of file pieces to the leecher
proceeds at a very steady rate in each case, and the delay
before a downloaded piece’s decryption key becomes available
is generally quite small.

The results for the 400Kbps leecher in Figure 5(a) are partic-
ularly instructive. In this figure, the slope of the downloaded
file pieces’ line is higher than the slope of the downloaded
decryption keys’ line. The slope of the first line is determined
by the upload bandwidth of the leecher’s neighbors, while the
slope of the second line is determined by the upload bandwidth
of the leecher itself. Since this leecher has a lower upload
bandwidth than the average for the swarm, the second slope
is lower. Eventually, the adaptive receiver selection rule will
apply if the leecher buffers too many pending pieces, in which
case the slope of the line for the file pieces will decrease.

1400

1200
1000

1600
1400 b+
1200 | 1
1000 | 1
800 - 1
800 . -
400 |
200 -

0

800
600
400

200
0

+

+# of different pieces (out of 2808)

avg. download completion time (sec)

I L | 1
0 0.2 0.4 0.6 08 1
the ratio of pre-occupied pieces

0 2e+08 4e+08

time (msec)

6e+08 8e+08

(a) Number of different pieces. (b) Effect of initial piece differences.

Fig. 6: (a) The number of different pieces between each pair of
neighbors in a real BitTorrent swarm over 7 days and (b) the effect
of initial piece differences among leechers.

T-Chain leverages leechers’ needs for different file pieces in
order to facilitate piece exchanges. If leechers do not require
different pieces, the chain created by the seeder is hard to grow.

To investigate this effect, we measure the number of different
pieces between pairs of leechers in a real BitTorrent swarm.
We insert a crawler (i.e., our own leecher) into the swarm and
measure the piece differences between all pairs of the crawler’s
neighbors at different times; new leechers became neighbors to
the crawler throughout the swarm duration. Figure 6(a) shows
the results. The average number of different pieces between
two neighbors over the 7-day measurement period was 612 out
of 2808 total pieces, indicating that leechers have an interest
in growing chains with little restriction. To further verify these
results, we additionally conduct an experiment in which 600
compliant leechers (without free-riders) join the system with a
certain number of randomly selected pieces, ranging from 0%
to 100% of the total pieces. Figure 6(b) shows the results. T-
Chain’s download completion times decrease linearly with the
fraction of pre-occupied initial pieces, indicating that T-Chain
by itself creates a strong incentive for leechers to exchange
pieces, successfully growing chains.

C. Performance under Free-Riding

We next show the results of an experiment in which 25% of
the leechers were free-riders. Each free-rider engaged in the
worst possible behavior and provided zero upload bandwidth
to other leechers. In addition, it was assumed that each
free-rider attempted to avoid penalties for its behavior by
using the large-view-exploit. Leechers requested a new list
of neighbors from the tracker at every rechoking period (10
second intervals), more frequently than in normal BitTorrent
operations, and accepted all neighboring requests. We further
assumed that the free-riders employed whitewashing and the
Sybil attack [22]-[24]. A free-rider in FairTorrent may want to
employ whitewashing to neutralize the deficit-based approach
by disconnecting and reconnecting its TCP connection as soon
as it gets one (free) piece from one of its neighbors. This
effectively restores its deficit value (to zero), allowing it to be
treated as another newcomer by the deceived neighbor.

§ s ' ' ' g Original BT - -& j

Y % 50000 | Original BT &~ J
£ 2500 g PropShare

= i r = FairTorrent

5 . T i S 40000 [1
T 2000 [P S N 3

2 [o}

£ 1500 5 30000

8 - —8 —8—+*4 S

° 5 20000

g 1000 Original BT =767 g

€ PropShare € [

g 500 FairTorrent a g 10000 3

s T-Chain —m— 8 B LY ST R St
= 0 L L < 0

© 200 400 600 800 1000 © 200 400 600 800 1000

swarm size

(b) Free-riders.

swarm size
(a) Compliant leechers.

Fig. 7: Average download completion time for (a) compliant leechers
and (b) free-riders in BitTorrent, PropShare, FairTorrent and T-Chain
in a flash crowd (with the large-view-exploit and whitewashing).

Figure 7(a) indicates that the addition of free-riders length-
ens the average download completion time for compliant
leechers by as much as 33%, 29% and 28% for BitTorrent,
PropShare, and FairTorrent respectively. T-Chain, in contrast,
effectively protects compliant leechers from this performance
degradation. Figure 7(b) shows that free-riders are successful
in BitTorrent, PropShare, and FairTorrent, with FairTorrent
delivering the best and PropShare the worst (i.e., longest
completion time) performance for the free-riders. Simple

3000 T T T

T T
Original BT -+ -&- -
PropShare
FairTorrent
T-Chain ——

50000 |

2500

. - 40000 H
2000 : A

30000

20000
10000!{/

0
200 400 600 800 1000

swarm size

(b) Free-riders.

1500 -5
L

1000

Original BT -+ -©- -
PropShare

500 FairTorrent i
. T—Chain‘ ——

avg. download completion time (sec)
avg. download completion time (sec)

L
200 400 600 800 1000
swarm size

(a) Compliant leechers.

Fig. 8: The effects of collusion in T-Chain under the flash crowd
arrival model (adding collusion in T-Chain to Figure 7’s setting).

whitewashing thus enables free-riders in FairTorrent to finish
their downloads as fast as compliant leechers. The figure
contains no line for T-Chain, since not a single free-rider
completed the download of the unencrypted file, even under
these challenging conditions. Leechers in T-Chain can easily
identify uncooperative neighbors through adaptive receiver
selection (Section II-D2), minimizing the amount of system
resources allocated to free-riders.

D. Impact of Collusion

We next evaluate T-Chain’s performance when free-riders
collude with each other, i.e., lie on each other’s behalf. While
T-Chain is designed to eliminate incentives for collusion, it
cannot absolutely prevent it from occurring; collusion oppor-
tunities are highly limited (Section IV-C) but do exist. We
investigate collusion under the same experimental settings with
free-riders as in Section IV-C. We assumed that all free-riders
in T-Chain colluded, sending false reception reports on behalf
of other colluding free-riders.

Figure 8 shows the impact of collusion against T-Chain.
Since collusion only affects T-Chain, the results for the other
methods are as before. As seen in Figure 8(b), with collusion
free-riders are able to complete their downloads. However, the
average download completion time for a free-rider is almost
40 times longer than for a compliant leecher when the swarm
size is 1,000. Free-riders’ average download speeds are thus
less than 20Kbps (slower than dial-up). The average down-
load completion times for free-riders are 103%, 1,066%, and
3,497% higher with T-Chain than with PropShare, BitTorrent
and FairTorrent, respectively. In addition, collusion has little
effect on the average download completion time for T-Chain’s
compliant leechers (compare Figures 7(a) and 8(a)).

E. Real Swarm Performance

We next consider conditions more gradual than flash crowds
by examining the system performance when arrivals mirror
the behavior of leechers in a single BitTorrent swarm that
downloaded the RedHat 9 release [28]. Free-riders provided no
upload bandwidth and attempted to avoid penalties by means
of the large-view-exploit and whitewashing. We measured
completion times for the first 1,000 compliant leechers that
successfully completed their downloads for each method, but
excluded the first 500 compliant leechers from the average
performance in order to avoid startup transients and focus on
the steady state performance.

8 9000 —————— :

g || rigina O

8 8000 PropShare

“; 7000 [FairTorrent

% 6000 T-Chain —#— -
2 5000 e

S 4000 o

B 3000 et

o Bk

g 2000 B T 4

S 1000 " " —
-:-) o r 1 1 1 1 —|
& 0 10 20 30 40 50

percentage of free-riders (%)

Fig. 9: The average download completion times for compliant
leechers in BitTorrent, PropShare, FairTorrent and T-Chain under a
continuous stream model.

Figure 9 demonstrates the average download completion
time for compliant leechers with each method. These times
are quite similar until the fraction of free-riders exceeds
10%, at which point T-Chain clearly delivers better results.
When the fraction of free-riders is 50%, the average down-
load completion time for compliant leechers with BitTorrent,
PropShare, and FairTorrent is roughly 5 times longer than
with T-Chain. Compliant leechers in T-Chain can effectively
detect and penalize free-riders through adaptive receiver se-
lection (Section II-D2), and opportunistic seeding enables
better utilization of the system resources (Section IV-G) than
BitTorrent’s and PropShare’s fixed resource allocations for
newcomer bootstrapping. Simple whitewashing severely de-
teriorates FairTorrent’s performance for compliant leechers.

FE. Chain Characteristics

T-Chain’s performance is strongly related to the growth of
chains in the system: to saturate leechers’ upload bandwidth,
they must participate in a sufficient number of chains. To
investigate this effect, we next examine the number of active
chains and length of each chain formed.

16000 800 1000

chains
leechers

/1
/L
AP

0 0 0
0 500 1000 1500 2000 2500 0
time (sec)

18000 = .
chains
]

14000 = 800

12000 /\\‘_‘ 1 00
.

10000
< 400

12000 -

8000

8000
6000

4000 / 4 200
2000
ot

|

0

2000 4000 6000 8000
time (sec)

of active chains
of active leechers
of active chains
of active leechers

4000

(a) Under a flash crowd. (b) Under a real trace.

Fig. 10: The number of active chains as a function of time in (a) a
flash crowd and (b) a continuous stream model without free-riders.

We first consider the number of active chains in flash crowd
and continuous stream models. In the flash crowd model, 600
leechers with heterogeneous upload bandwidths joined the
system within 10 seconds, and no free-riders were present.
In the continuous stream model, leechers with heterogenous
upload bandwidths continuously joined the system, mimicking
the arrivals of leechers in a real P2P system.

Figure 10(a) shows the results in a flash crowd model. As
seen in the figure, the number of active chains in this model
keeps increasing until the leechers with the highest upload
bandwidth finish their downloads, after around 830 seconds.

30000

by the seeder mmmm

25000 by leechers ———

20000 ! ‘ ‘ ‘ ‘
0.8

06 [

15000

ratio

10000 ol i

5000

cumulative number of chains

02 - 4

0
1500 2000 2500 0 10 25 50
percentage of free-riders (%)

0
0 500

1000
time (sec)

(a) Under a flash crowd.

Fig. 11: (a) The cumulative number of chains created by the seeder
and by leechers in a flash crowd, and (b) the fraction of chains
resulting from opportunistic seeding in a real trace, as a function
of the fraction of free-riders in the system.

(b) Under a real trace.

The saw-toothed decrease follows as each bandwidth group of
leechers leaves the system, indicating that chain termination
is strongly related to leecher departure. Figure 10(b) shows
the number of active chains in a continuous stream model
without free-riders. The number of chains sharply increases
as the system grows and stabilizes, in conjunction with the
number of active leechers in the system. The number of chains
is dynamically adjusted to the number of active leechers in the
system as leechers join or leave the swarm.

G. Opportunistic Seeding

As discussed previously in Section II-D3, opportunistic
seeding (i.e., initiation of a new chain by a leecher) is helpful
when the number of chains in the swarm is insufficient to
fully utilize all of the available upload capacity of the system.
Leechers can benefit from opportunistic seeding through direct
reciprocity (i.e., designating themselves as transaction payees).
This happens when the system is just initiated with many
newcomers (so the seeder cannot afford all of them by itself)
or when many existing chains terminate at the same time (e.g.,
many leechers leave the system). In such situations, leechers
initiate new chains to compensate the under-utilization of
their upload bandwidth. We conducted two experiments to
investigate the frequency of opportunistic seeding in T-Chain.

Figure 11(a) shows the cumulative number of chains created
by the seeder (green dotted line) and leechers (black dotted
line) in a flash crowd model. In this graph, it was assumed that
600 compliant leechers without free-riders join the system.
As seen in the figure, the amount of opportunistic seeding is
high when the system is newly initiated and the seeder cannot
satisfy the demands of all newcomers, resulting in under-
utilization of newcomers’ available upload bandwidth without
opportunistic seeding. After several dozens of seconds, the rate
of opportunistic seeding is nearly zero, as reciprocation fully
utilizes the upload capacity.

Figure 11(b) shows the fraction of chains resulting from
opportunistic seeding under a real trace model, as a function
of the fraction of free-riders in the system. As the number
of free-riders increases, opportunistic seeding creates more
chains, since each instance of free-riding will terminate a
chain. The under-utilization of upload capacity caused by such
chain termination is immediately compensated by leechers
using opportunistic seeding with T-Chain. However, free-riders
are still unlikely to successfully download the file.

0.6

0.4

[Onignal BT ~ -~
PropShare PropShare
FairTorrent FairTorrent
B T-Chain o & T-Chain
0 0.5 1 15 2 25 0 0.5 1 15 2 25
nomalized fairness factor

[Orfiginal BT -~

0.2

Cumulative Distribution Function
Cumulative Distribution Function

normalized fairness factor

(a) No free-riders. (b) 25% free-riders.

Fig. 12: Fairness enforced by each method.
H. Fairness

We next evaluate T-Chain’s performance in terms of fair-
ness, or the ratio of leechers’ benefits (i.e., received piece
downloads) to their contributions (piece uploads). In a fair sys-
tem, this ratio would be 1: leechers would benefit according to
their contributions, encouraging participation in a cooperative
system. To evaluate the fairness offered by each method, we
define the fairness factor as the ratio of the number of pieces
downloaded to the number uploaded by each leecher during
its participation in the swarm.

We use the same experimental conditions as in Figure 9 and
show the resulting fairness in Figures 12(a) and 12(b). These
figures plot the Cumulative Distribution Function (CDF) of
the fairness factors of the last 500 compliant leechers in each
system. Figure 12(a) demonstrates that all four methods are
quite fair when there is no free-riding in the system, with T-
Chain and FairTorrent being slightly more fair than the others.
However, Figure 12(b) shows that when free-riding increases
to 25% of leechers, only T-Chain continues to achieve a high
level of fairness, with only a few leechers receiving more
pieces than they contribute. BitTorrent, PropShare, and Fair-
Torrent show a marked divergence from fairness. Compliant
leechers are therefore likely to conclude that T-Chain is fairer
than BitTorrent, PropShare, or FairTorrent.

1. Performance with Small Files

We finally measure T-Chain’s performance when trans-
ferring small files. We compare the four methods above
(BitTorrent, PropShare, FairTorrent, and T-Chain) to Random
BitTorrent, in which all leechers’ and seeders’ bandwidth was
only used for optimistic unchoking, for different file sizes
ranging from 64 KB to 3.2 MB. In this experiment, it was
assumed that 1,000 leechers join the system as a flash crowd
and that a leecher leaves the system upon completing its
download, but is then immediately replaced by a newcomer.
We thus capture the performance of each approach under high
churn rates (in a swarm sharing a small file). We measured the
average download throughput of compliant leechers (i.e., the
average amount of data successfully downloaded per second)
in each system during the first 1,000 seconds. We consider
one case with no free-riding and one with 50% of leechers
being free-riders.

Figures 13(a) and 13(b) show the download throughput of
leechers in a swarm with different file sizes (i.e., different
number of file pieces). As seen in Figure 13(a), if the shared
file has relatively few pieces (e.g., below 5), the average
throughputs of BitTorrent, Random BitTorrent, PropShare, and

900

e 900 e
Random BitTorrent Random BitTorrent
800 H Original BT - &+ 4 800 H Original BT
2 PropShare — 7 PropShare
2 700 H FairTorrent Z 2 700 H FairTorrent
< T-Chain —— ¥/ L < T-Chain ——
< 600 =Y T 600
2 L 3 ,l/-/
£ 500 ,/ 5 500 -/
2 400 ," £ 400
s Q s
& 300 ‘/. o & 300 /-/‘
$ 200 e $ 200
* o0 /‘/3 . * oo '//'/' Y.
g . | SRS - S0 S o e
12 3 4 5 10 2 30 50 2 3 4 5 10 20 30 50

Number of file pieces Number of file pieces

(a) No free-riders. (b) 50% free-riders.

Fig. 13: The average download throughput of compliant leechers in
Random BitTorrent, BitTorrent, PropShare, FairTorrent, and T-Chain
under various file sizes with different numbers of free-riders.

FairTorrent are extremely low, even without free-riding. The
lack of file pieces reduces opportunities for reciprocation, so
seeding is the primary method of distribution. In an extreme
case with only one shared piece, every compliant leecher
leaves the system as soon as the piece is attained, and the
system effectively functions as a client-server model with the
seeder as the server and the leechers as the clients. T-Chain
achieves better performance than do other methods in this
scenario, since leechers are forced to reciprocate.

When the number of file pieces ranges between 5 and 30,
Random BitTorrent and FairTorrent outperform T-Chain due
to the overhead of the piece encryption and key exchange. The
effect of this overhead, however, is quickly diluted as the file
size grows, as seen from the previous results with large files
(Sections IV-B — I'V-H). BitTorrent and PropShare continue to
perform worse than T-Chain: their fixed bandwidth allocation
for newcomer bootstrapping is insufficient for small files and
high churn rates. If 50% of the leechers are free-riders, T-
Chain performs better than all the other methods, regardless
of file size (Figure 13(b)).

V. RELATED WORK

The success of cooperative computing depends on effec-
tively motivating or incentivizing participants to voluntarily
donate their resources to the system. If reciprocity can be
enforced, the problem of free-riding can be greatly reduced or
eliminated. To achieve cooperation, many incentive schemes
have been proposed in the literature. These schemes encourage
or enforce reciprocity based on direct experience, on informa-
tion indirectly obtained (e.g., reputation), or on the use of
encryption. Table II summarizes the advantages provided by
T-Chain when compared to other major direct and indirect
reciprocity schemes.

Direct reciprocity [9]-[12] is a straightforward approach
in which the willingness of two participants to cooperate is
influenced by the quality of their past direct interactions. The
rate-based TFT policy of BitTorrent is a well known example.
BitTyrant [22], PropShare [11], and FairTorrent [12] attempt
to improve TFT’s fairness by tweaking resource allocation to
unchoked neighbors. The most significant advantage of direct
reciprocity is its simplicity of implementation, in that any
decision depends only upon local observations. However, it
is difficult for these approaches to accommodate asymmetric
interests, capabilities, and state among participants, with the
result that some of the system capacity may be wasted. Addi-
tionally, these approaches have been shown to be vulnerable

TABLE II: Comparison of major incentives under possible attacks (/ : Good, (blank) : Medium, x : Bad)

Features Direct Reciprocity Indirect Reciprocity
BitTorrent | PropShare | FairTorrent [T-Chain | EigenTrust [Dandelion
Simplicity & Scalability N v/ v/ N X X
Fairness X v/ N N v/
Flexible Newcomer Bootstrapping X X v/ N X X
Exploiting Altruism X X X N N v/
Cheating X V4 v v/
. Large-view-exploit X

Immunity to g ewashing 7 \></ v N N
Collusion V4 V4 V4 v

False Praise (Accusation) VA VA V4 IV
Asymmetric Interest v/ v/ N v/

Work with small files X X v/

to cheating, in that a file piece upload by one participant may
not be reciprocated by the other party. Note that approximately
20% of the system resources in BitTorrent and PropShare
are reserved for transaction initiation, which has been shown
to be a vulnerable target of strategic free-riding. The simple
elimination of such initiation mechanisms to prevent free-
riding, however, would significantly hurt overall system per-
formance [30]. FairTorrent [12] uses a deficit-based distributed
algorithm to achieve strong fairness, but its immunity to
whitewashing and the Sybil attack is questionable in that it
still uploads unencrypted blocks for transaction initiation (as
seen in Sections IV-C — IV-I). In addition, FairTorrent cannot
prevent seeders from being exploited by free-riders.

There also exist variants of direct reciprocity. Give-to-
Get [10] uses a TFT policy based on forwarding pieces
to other participants; this policy is somewhat similar to T-
Chain’s pay-it-forward reciprocity. Give-to-Get does not, how-
ever, designate recipients or validate their feedback, and is
therefore readily susceptible to collusion or Sybil attacks.
Accelerated Chaining [31] was proposed to let peers in a
Video-On-Demand (VOD) application forward video data to
their children in a chain at a rate slightly faster than the
rate they receive from their parents, virtually eliminating the
server workload. The concept of pay-it-forward with chaining
in Accelerated Chaining is very similar to Give-to-Get and
T-Chain, but they did not consider the strategic manipulation
techniques that free-riders could take.

Indirect reciprocity schemes (e.g., reputation or monetary
approaches [13]-[17], [32]) base decisions about cooperation
on past interactions that are direct (mutual), or that are indirect
(involving other participants). Therefore, these schemes can
potentially lead to better decisions about cooperation. Eigen-
Trust [13] is a representative example. The largest drawback
of these approaches is the complexity of their implemen-
tations. Reputation schemes are frequently complicated by
the opportunity for participants to spread false information,
while monetary systems require significant infrastructure to
monitor credit, account for individual transactions, and prevent
counterfeiting. One-hop reputation [15], PledgeRoute [16], and
Dandelion [14] attempt to reduce this complexity by either
limiting the scope of reputation calculations or by relying
on a central (trusted) server. Unfortunately, newcomer boot-
strapping, which is a critical factor in large, dynamic systems,
is ignored in some of these approaches. When considered,
bootstrapping commonly relies on some sort of altruism (e.g.,
in EigenTrust, 10% of each participant’s resources are allotted

for newcomers with no previous reputation). Those resources
have been the target of strategic free-riders.

Encryption-based approaches [6], [11], [14], [18] are at-
tractive because they attempt to prevent altruism (allocated
for newcomer bootstrapping) from being exploited by free-
riders. Existing schemes, however, have several limitations.
Dandelion [14] uses both indirect reciprocity, as discussed
above, and file piece encryption to force reciprocity, yet also
relies on a trusted third party. This has scalability issues,
and represents a single point of failure or compromise. In
addition, the issue of seeding, or newcomer bootstrapping, is
avoided by assuming that newcomers start with some initial
credit, earned by some means outside the scope of the file-
sharing system. The authors of PropShare [11] suggested
a bootstrapping scheme using encryption (without providing
details). However, T-Chain bootstraps newcomers very differ-
ently, and uses encryption throughout for enforcing reciprocity.
We can in fact identify several differences between T-Chain
and PropShare: (a) PropShare uses only a fixed amount
(i.e., 20%) of total system resources for bootstrapping; (b) it
provides no direct incentives to the two participants involved
in bootstrapping; (c) it assumes that two participants A and B
have had multiple interactions in the past; and (d) it assumes
A and B have mutual (i.e., symmetric) interests. PropShare
also has no chaining effect (i.e., propagation of reciprocation).
The secret sharing approach of TBeT [6] is not applicable
to streaming applications and is also vulnerable to the key
disclosure problem. The hierarchical chunk cipher scheme [18]
is another encryption-based approach, based on hierarchical
circular shifting of bits. The scheme is, however, designed to
prevent the fake chunk attack rather than free-riding.

The use of symmetric key cryptography to enforce reci-
procity in T-Chain is reminiscent of a fair exchange proto-
col [33]. Such a protocol guarantees that either all or no
parties benefit from shared resources, effectively preventing
free-riding. Fair exchange is relatively easy to accomplish
by means of an online, trusted third party, but otherwise is
surprisingly difficult, slow, and complex to achieve. Note that
T-chain is not a strictly fair exchange protocol, in that cheating
is possible, but it removes most of the incentive for cheating.
Moreover, T-Chain is extremely lightweight and simple in
comparison and requires no trust or central server.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This work proposes T-Chain, a general incentive mechanism
to enforce cooperation among participants. T-Chain has two

components: (i) an almost-fair exchange protocol based on
symmetric key cryptography, which does not require a trusted
third party; and (ii) a pay-it-forward reciprocation scheme
that increases opportunities for multi-lateral cooperation and
reduces free-riders’ opportunities for collusion. We apply T-
Chain to the BitTorrent protocol. Leechers download encrypted
file pieces from other peers and must reciprocate by uploading
another (encrypted) file piece before receiving the decryption
key. T-Chain thus makes cooperation mandatory and easily
bootstraps newcomers by letting them upload their first re-
ceived file piece to another peer. No centralized monitoring or
control is required, and overhead costs are very low.

We evaluate T-Chain with extensive simulations and com-
pare its performance with BitTorrent, PropShare, and FairTor-
rent. Under normal conditions, T-Chain provides significantly
faster downloads for compliant leechers and prevents all free-
riders from completing their downloads. Even under unrealisti-
cally severe collusion, free-riders can only download files with
extremely slow speeds. T-Chain is also more fair for compliant
leechers, incentivizing cooperation.

The simplicity of T-Chain fosters cooperation among par-
ticipants and can be readily adapted to other applications
or protocols. Future work will include the application of T-
Chain to streaming, content distribution, overlay routing, file
replication (and preservation), and name resolution services.

ACKNOWLEDGEMENTS

This work was partly supported by NSF grant CNS-
1525435. K.Shin gratefully acknowledges partial support from
the 2013 Korea Military Academy Hwarangdae Research
Institute. Y.Yi was supported by the Institute for Infor-
mation & Communications Technology Promotion (IITP)
grant funded by the Korea government (MSIP) (No.B0O717-
17-0034,Versatile Network System Architecture for Multi-
dimensional Diversity) and the Korea government (MSIP) (No.
2016R1A2A2A05921755).

REFERENCES

[1] W. Gao, G. Cao, A. Iyengar, and M. Srivatsa, “Cooperative caching
for efficient data access in disruption tolerant networks,” Trans. Mob.
Comp., vol. 13, no. 3, pp. 611-625, 2014.

[2] J. Berry, M. Collins, A. Kearns, C. A. Phillips, J. Saia, and R. Smith,
“Cooperative computing for autonomous data centers,” in /EEE IPDPS.
IEEE, 2015, pp. 38-47.

[3] E. Cerqueira, E. Lee, J.-T. Weng, J.-H. Lim, J. Joy, and M. Gerla,
“Recent advances and challenges in human-centric multimedia mobile
cloud computing,” in /EEE ICNC. IEEE, 2014, pp. 242-246.

[4] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Comp. Comm. Rev., vol. 44, no. 5, pp. 27-32, 2014.

[5] G. Hardin, “Tragedy of the commons,” Science, vol. 162, 1968.

[6] K. Shin, D. S. Reeves, and 1. Rhee, “Treat-before-trick : Free-riding pre-
vention for bittorrent-like peer-to-peer networks,” in IPDPS’09, Rome,
Italy, May 2009.

[7]1 R. Guerraoui, K. Huguenin, A.-M. Kermarrec, M. Monod, S. Prusty, and
A. Roumy, “Tracking freeriders in gossip-based content dissemination
systems,” Computer Networks, vol. 64, no. 8, pp. 322-338, May 2014.

[8] W. Wu, R. T. Ma, and J. C. Lui, “Distributed caching via rewarding: An
incentive scheme design in p2p-vod systems,” TPDS’14, vol. 25, no. 3,
pp. 612-621, March 2014.

[9] B. Cohen, “Incentives build robustness in bittorrent,” in P2PECON,
2003.

[10] J. J. D. Mol, J. A. Pouwelse, M. Meulpolder, D. H. J. Epema, and
H. J. Sips, “Give-to-get: free-riding resilient video-on-demand in p2p
systems,” in SPIE Conference Series, 2008.

D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee, “Bittorrent is an
auction: Analyzing and improving bittorrent’s incentives,” SIGCOMM,
2008.

A. Sherman, J. Nieh, and C. Stein, “Fairtorrent : Bringing fairness to
peer-to-peer systems,” in ACM CoNEXT’09, December 2009.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-molina, “The eigentrust
algorithm for reputation management in p2p networks,” in WWW, 2003.
M. Sirivianos, J. H. Park, X. Yang, and S. Jarecski, “Dandelion:
Cooperative content distribution with robust incentives,” in USENIX,
2007.

M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop
reputations for peer to peer file sharing workloads,” in NSDI’08, 2008.
R. Landa, D. Griffin, R. G. Clegg, E. Mykoniati, and M. Rio, “A
sybilproof indirect reciprocity mechanism for peer-to-peer networks,”
in INFOCOM’09, 2009.

X. Kang and Y. Wu, “Incentive mechanism design for heterogeneous
peer-to-peer networks: A stackelberg game approach,” To be appear in
IEEE Transactions on Mobile Computing, submitted on 24 Jul 2014.
[18] J. Wang, X. Hu, X. Xu, and Y. Yang, “A verifiable hierarchical
circular shift cipher scheme for p2p chunk exchanges,” in Peer-to-Peer
Networking and Applications, 2013.

B. Fan, J. C. Lui, and D.-M. Chiu, “The design trade-offs of bittorrent-
like file sharing protocols,” IEEE/ACM Transactions on Networking,
vol. 17, pp. 365-376, 2009.

L. Jian and J. K. MacKie-Mason, “Why share in peer-to-peer networks?”
in International Conference on Electronic Commerce, 2008.

R. Krishnan, M. Smith, Z. Tang, and R. Telang, “The virtual commons:
Why free-riding can be tolerated in file sharing networks?” in ICIS,
2002.

M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do incentives build robustness in bittorrent?” in USENIX
NSDI’07, May 2007.

T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free riding in
bittorrent is cheap,” in HotNets’06, November 2006.

M. Sirivianos, J. H. Park, R. Chen, and X. Yang, “Free-riding in
bittorrent networks with the large view exploit,” in IPTPS’07, 2007.
[25] J. R. Douceur, “The sybil attack,” in /PTPS’02, March 2002.

[26] M. Feldman and J. Chuang, “Overcoming free-riding behavior in peer-
to-peer systems,” in ACM Sigecom Exchanges, vol. 5, July 2005.

A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing
and improving a bittorrent network’s performance mechanisms,” in
INFOCOM’06, 2006.

“Redhat 9 torrent tracker trace.” [Online]. Available: http://mikel.tlm.
unavarra.es/~mikel/bt_pam2004/

[29] W. Wu, J. C. Lui, and R. T. Ma, “On incentivizing upload capacity in
p2p-vod systems: Design, analysis and evaluation,” Comp. Netw., 2013.
S. Jun and M. Ahamad, “Incentives in bittorrent induce free riding,” in
P2PECON’05, Philadelphia, PA, August 2005.

[31] J.-F. Pris, A. Amer, and D. D. E. Long, “Accelerated chaining: A better
way to harness peer power in video-on-demand applications,” in ACM
Symposium on Applied Computing(SAC), 2011.

U. E. Tahta, S. Sen, and A. B. Can, “Gentrust: A genetic trust
management model for peer-to-peer systems,” Appl. Soft Comp., vol. 34,
pp. 693-704, 2015.

I. Ray, I. Ray, and N. Natarajan, “An anonymous and failure resilient
fair-exchange e-commerce protocol,” Dec. Supp. Sys., vol. 39, 2005.

(11]

[12]
[13]

[14]

[15]

[16]

(17]

[19]

[20]

[21]
(22]

[23]

[24]

[27]

[28]

(30]

(32]

[33]

APPENDIX A
PROOFS

Proposition II1.1.
Proof: When @ = 8 = 0, the dynamics for BitTorrent
and T-Chain respectively may be written as
n—xz(t)
>)

E; [xp(t 4+ 1)] = x3(2) <1 - 1> <1 _ 0
Kq(t)
1) , (10)

n n—1

n n —

By [24(t +1)] = 24(t) (1 - 1) (1 S

where
—D+y(t—1)+ 0" (z(t—1)—1)

o0 = z(-1) (20

n—1

(11
E¢ [y+(t + 1)] is determined by z+(t — 1), and the ¢ subscripts
on the expectations denote expectations taken given the num-
ber of bootstrapped and un-bootstrapped peers at times 7 < ¢.
We consider the dynamics in (9-10) and use the approximation
(1—w)™ = 1 —mw for m and w small to obtain the sufficient
condition (7). If n — x4(t — 1) — y:(t — 1) = n — xp(t), we
have the sufficient condition
et -+t —1)+w’ (n—a(t—1) —y(t —1) — 1)
n—1

> > é
- - K
| |
Proposition I11.2.
Proof: From (9) and (10) in the proof of Proposition
II.1, we see that when @ = 8 = 0, T-Chain has a higher

bootstrapping rate than BitTorrent if

n—zy(t) Kq(t)
-0 > (1- 2 . 1)
n—1 n—1

where ¢(t) > w”’(n — x4(t — 1) — y:(t — 1) is given by (11)
and we assume that w” < w’. Thus, we derive (8). []

Kyuyong Shin Kyuyong Shin is a professor in the
Department of Computer Science at Korea Military
Academy in Seoul, South Korea since 2009. He
received his Ph.D. degree in the Department of
Computer Science at North Carolina State University
in 2009. His research interests lie in security issues
in cooperatively managed distributed systems, which
may include security issues in Peer-to-Peer (P2P),
Cloud Computing, Grid Computing, etc.

Carlee Joe-Wong Carlee Joe-Wong (S’11, M’16)
is an assistant professor in the ECE department
at Carnegie Mellon University, working at CMU?s
Silicon Valley Campus. She received her Ph.D.
from Princeton University in 2016 and is primarily
interested in incentives and resource allocation for
computer and information networks. In 2013?2014,
Carlee was the Director of Advanced Research at
DataMi, a startup she co-founded from her data
pricing research. She received the INFORMS ISS
Design Science Award in 2014 and the Best Paper
Award at IEEE INFOCOM 2012, and was a National Defense Science and
Engineering Graduate Fellow (NDSEG) from 2011 to 2013.

Sangtae Ha Sangtae Ha (S?07, M?09, SM?12) is an
Assistant Professor in the Department of Computer
Science at the University of Colorado at Boulder. He
received his Ph.D. in Computer Science from North
Carolina State University. His research focuses on
building and deploying practical systems. He is a
co-founder and the founding CTO/VP Engineering
of DataMi, a startup company on mobile networks,
and is a technical consultant to a few startups. He is
W an IEEE Senior Member and serves as an Associate
Editor for IEEE Internet of Things (IoT) Journal. He

received the INFORMS ISS Design Science Award in 2014.

Yung Yi Yung Yi received his B.S. and the M.S.
in the School of Computer Science and Engineering
from Seoul National University, South Korea in 1997
and 1999, respectively, and his Ph.D. in the Depart-
ment o Electrical and Computer Engineering at the
University of Texas at Austin in 2006. From 2006
to 2008, he was a post-doctoral research associate in
the Department of Electrical Engineering at Prince-
ton University. Now, he is an associate professor at
the Department of Electrical Engineering at KAIST,
South Korea. He received the best paper awards at

IEEE SECON 2013, ACM MOBIHOC 2013, and IEEE William R. Bennett
Award 2016.

Injong Rhee Injong Rhee is the CTO and Head of
R&D, Software and Services, Samsung Mobile. He
was previously a Professor of Computer Science at
North Carolina State University. He works primarily
on network protocols for the Internet. His major
contributions in the field include the development
of congestion control protocols, called BIC and
CUBIC. Since 2004, these protocols have been the
default TCP algorithms for Linux and are currently
being used by more than 40% of Internet servers
around the world and by several tens millions Linux
users for daily Internet communication. He also has invented several mul-
timedia streaming and multicast technologies licensed to companies for
commercial applications. He started a company based on these technologies
in 2000 where he developed and launched the world’s first video streaming
products and push-to-talk (PTT) VoIP products for cell phones. He received
NSF Career Award in 1999 and NCSU New Inventor’s award in 2000.

e

bt

i

Douglas Reeves Douglas S. Reeves is Professor of
Computer Science and Associate Dean of Engineer-
ing at N.C. State University. His research interests
are network and distributed systems security.

