
How to Bid the Cloud

Liang Zheng∗‡ Carlee Joe-Wong∗ Chee Wei Tan†‡ Mung Chiang∗ Xinyu Wang‡

∗Princeton University †National University of Singapore ‡City University of Hong Kong
{liangz, cjoe, chiangm}@princeton.edu cheetan@alumni.caltech.edu xinywang@cityu.edu.hk

ABSTRACT
Amazon’s Elastic Compute Cloud (EC2) uses auction-
based spot pricing to sell spare capacity, allowing users
to bid for cloud resources at a highly reduced rate.
Amazon sets the spot price dynamically and accepts
user bids above this price. Jobs with lower bids (in-
cluding those already running) are interrupted and must
wait for a lower spot price before resuming. Spot pricing
thus raises two basic questions: how might the provider
set the price, and what prices should users bid? Com-
puting users’ bidding strategies is particularly challeng-
ing: higher bid prices reduce the probability of, and
thus extra time to recover from, interruptions, but may
increase users’ cost. We address these questions in three
steps: (1) modeling the cloud provider’s setting of the
spot price and matching the model to historically of-
fered prices, (2) deriving optimal bidding strategies for
different job requirements and interruption overheads,
and (3) adapting these strategies to MapReduce jobs
with master and slave nodes having different interrup-
tion overheads. We run our strategies on EC2 for a va-
riety of job sizes and instance types, showing that spot
pricing reduces user cost by 90% with a modest increase
in completion time compared to on-demand pricing.

CCS Concepts
•Networks → Network performance evaluation;

Data center networks; Cloud computing;

Keywords
Cloud pricing, spot instance, optimization.

1. INTRODUCTION
Cloud providers face an increasingly complicated prob-

lem of allocating their resources to different users. These

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copiesare not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787473

resource allocations must take into account both avail-
able capacity within datacenter networks as well as in-
dividual jobs’ requirements, which are sometimes speci-
fied in binding service level agreements. The large num-
ber of users submitting different types of jobs to any
given cloud further complicates the problem, creating a
highly dynamic environment as jobs are submitted and
completed at different times [4].

1.1 Spot Pricing to Shape User Demand
While many works have considered the operational

problem of scheduling jobs within a datacenter [8, 14,
22,33], most have taken user demands as a given input.
Yet user demand can be partially controlled by cloud
providers’ pricing [6]. The majority of today’s pricing
plans for cloud resources are variants on usage-based
pricing, in which users pay a static per-unit price (per
workload or per hour) to access cloud resources [21].
Usage-based pricing can affect overall demand levels,
but does not even out short-term fluctuations [13]. To
manage these fluctuations in demand for a fixed amount
of available datacenter capacity, cloud providers could
introduce more flexible pricing plans in which resources
are priced according to real-time market demand [40].
Amazon’s Elastic Compute Cloud (EC2) spot pricing [2]
is an example of such a strategy.
Spot pricing creates an auction-based market for avail-

able cloud computing resources. Users can submit bids
to the market at any time, using the spot price his-
tory to help decide how much to bid (i.e., their bid
prices). The cloud provider sets the spot price at regu-
lar time intervals, e.g., every five minutes, depending on
the number of bids received from users (demand) and
how many resources are available (supply) at each time
slot.1 In each time slot, users’ bids above the spot price
are accepted, and those below it rejected. Running spot
instances are terminated if their original bid prices fall
below the new spot price, and re-launched only when
their bids again exceed the spot price. Given that these
interruptions may affect user utility, two natural ques-
tions then arise: how might the provider set the spot
price, and what prices should users bid?

1These available resources include idle resources and
those in use by launched spot instances.

We answer these questions in this work. Unlike most
works on spot pricing, which consider only the provider’s
viewpoint [10,17,34,38], we aim to develop both a rea-
sonable model for how the provider sets the spot prices
and optimal bidding strategies for the user. We do not
seek to design the auction mechanism used by the provider,
only to systematically model and estimate how the provider
might set the spot prices before we develop users’ op-
timal bidding strategies. These bidding strategies, in
turn, depend not on the specific model of how providers
choose the spot prices, but rather on the chosen spot
prices themselves. They can thus be applied to other
provider pricing models.

1.2 Research Challenges and Contributions
We can gain a basic statistical understanding of Ama-

zon’s prevailing spot prices by studying the two-month
history made available by Amazon [1,15]. Though these
statistics alone are sufficient for the user to deduce a
bid price, they also give us some insights into how the
provider sets the spot prices. By developing a model
that relates the spot price to users’ submitted bids, we
can better understand the different factors considered
by the provider in setting the spot prices.
Users’ job completion times consist of three compo-

nents: the time to execute the job, idle time while the
spot price exceeds the user bid price, and the time to re-
cover from job interruptions. A lower bid price reduces
the cost of running the job during its execution time,
but can extend the recovery time by inducing more job
interruptions. This extra recovery runtime can result in
a higher overall job cost, depending on the recovery time
from each interruption (i.e., the job’s “interruptibility”)
and the spot prices offered by the provider. Complicat-
ing this tradeoff is the fact that user jobs can have long
runtimes spanning many changes in the spot price [15].
Users then face two key challenges:

1) Users must predict the spot prices in order to opti-
mize their bids for a given job, not only in the next
time slot but also for all future time slots until the
job is completed.

2) Different jobs may have different degrees of inter-
ruptibility. Even within a single user job that re-
quires many computational nodes, e.g., MapRe-
duce’s master/slave node model, different nodes
can have different interruptibility requirements.

Figure 1 shows the basic architecture of a user client
and its interaction with the cloud provider. The client
calculates its bid price based on two inputs: user inputs
on job characteristics and the historical distribution of
the spot prices offered by the cloud provider. A price
monitor keeps the spot price distribution up to date,
and a job monitor at the provider tracks whether the
job is ever outbid. The monitor also restarts users’ jobs
when the spot price falls below their bids.
We first give a brief overview of related work in Sec-

tion 2 and relevant background on Amazon’s EC2 in

Cloud Provider

User Client

Price Distribution
Calculator

Price Monitor

Bid Calculator
User Input

(job type, etc.)

Spot Price
Calculator

Job Monitor
User Bid

Spot Price

Figure 1: Client and cloud provider interaction.

Section 3 before developing the following results:
A framework for understanding spot prices (Sec-

tion 4): We develop a model to understand how the
provider sets the spot price, using it to bound users’
quality of service and testing it against empirical data.
Users’ optimal bidding strategies (Section 5):

Given a predicted spot price distribution, we derive op-
timal bidding strategies for different degrees of job in-
terruptibility.
Adaptation to MapReduce jobs (Section 6): We

adapt our bidding strategies for the master and slave
nodes of MapReduce jobs and implement our bidding
strategy for a MapReduce job.
Experiment on Amazon EC2 (Section 7): We

run our client on a variety of EC2 instances and job
types. The proposed bidding strategies substantially
lower users’ costs in exchange for modestly higher run-
ning times.
Our work considers spot pricing from the point of

view of both the cloud provider and users, allowing us
to better understand how providers set the spot prices
and to develop bidding strategies customized to differ-
ent user requirements. We discuss some limitations of
our work in Section 8 before concluding the paper in
Section 9. All proofs can be found in the Appendix.

2. RELATED WORK
Cloud scheduling and pricing. Many works have

considered resource allocation in the cloud from a purely
operational perspective [8, 14, 22, 33]. Others incorpo-
rate pricing considerations, e.g., dynamically allocating
cloud resources, so as to maximize the provider’s rev-
enue [10, 17, 34] or social welfare [25, 38]. We construct
a similar model but relate it to empirical bid prices and
use it to develop bidding strategies for users. Joint user-
provider interactions for cloud services are considered
in [26], but auction-specific works on both provider and
user actions are limited to statistical studies of histori-
cal spot prices [1, 15].
Game theoretic pricing. Spot pricing is a dis-

tributed solution to the problem of allocating cloud re-
sources to users, which can be treated as a game be-
tween users. Some works have considered the Nash
equilibrium of such a pricing game in cloud scenar-
ios [3, 31, 32], although they do not consider optimal
bids in a resource auction. More generally, auctions
have been proposed as a solution to generic distributed
allocation games over multiple time slots [20]. Users’

optimal bidding strategies in such auctions can be quite
complex, particularly if multiple users try to optimize
their bids at the same time [36]. We assume in this
paper that users’ bid optimizations do not significantly
affect the distribution of the spot prices, and discuss the
consequences of relaxing this assumption in Section 8.
Auctions and bidding. User bidding strategies

for cloud auctions are much less studied than provider
strategies. While some works have shown that users can
reduce their costs by using spot rather than on-demand
instances [28, 37], they only consider heuristic bidding
strategies for single-instance jobs.
In general, auction frameworks assume that users’

bids are determined by their valuations of the auctioned
resource. Indeed, many works have studied the prob-
lem of designing online auctions to ensure truthful user
bids [5,11,27,29], including improvements to Amazon’s
spot pricing [35]. However, in cloud scenarios, user val-
uations for the instance in a given time slot depend on
(unknown) future spot prices. While users may know
their valuations for completing a job, job interruptions
will increase the number of instance-time slots required
to complete the job. This dependence differentiates our
work from other auctions for computing or utility re-
sources, e.g., auctions for smart grid electricity [9], sec-
ondary spectrum access [16], grid computing [19], or
Internet data [24].

3. BACKGROUND

3.1 User Jobs and Instance Types
Throughout this work, we consider Infrastructure-as-

a-service (IaaS) cloud services, which are essentially re-
mote virtual machines (VMs) with CPU, memory, and
storage resources [2]. We follow Amazon’s terminology
and use the term “instance” to denote the use of a sin-
gle VM. Instances can be divided into several discrete
types, each of which may have different resource capac-
ities; users generally submit resource requests, or bids,
separately for different instance types.
The simplest types of user jobs require only one in-

stance and can be served by placing a single bid request
for a given instance type. Parallelizable jobs, on the
other hand, might require multiple instances running in
parallel. The MapReduce framework is a common re-
alization of this job structure. MapReduce divides job
functions among a master node and several slave nodes.
The master node assigns computational tasks to slave
nodes and reschedules the tasks whenever a slave node
fails. After all the tasks are finished on the slave nodes,
the master node returns a result.

3.2 EC2 Pricing
Amazon offers three types of pricing for instances:

reserved, on-demand, and spot instances. Reserved in-
stances guarantee long-term availability (e.g., over a
year), and on-demand instances offer shorter-term us-
age (e.g., one hour on an instance). Both reserved and

on-demand instances charge fixed usage-based prices.
Spot instances, however, do not guarantee availability;
users can use spot instances only if their bids exceed the
spot price. Amazon generally updates the spot price
every five minutes and encourages users to run inter-
ruptible jobs on spot instances.2

Spot instances allow two types of bids: one-time and
persistent. One-time bids are submitted once and then
exit the system once they fall below the current spot
price. Thus, submitting a one-time bid runs the risk of
having the job interrupted without completing. Persis-
tent bids, however, are resubmitted in each time period
until the job finishes or is manually terminated by the
user. One-time bids allow for better control over bid
completion times (e.g., users may default to on-demand
instances if the jobs are not completed), while persis-
tent bids allow the user to submit a bid request and
then simply wait until the job finishes.

4. CLOUD PROVIDER MODEL
In this section, we develop an explanatory model for a

cloud provider’s offered spot prices. Though the model’s
primary utility for users is in explaining the spot price
distribution used in Sections 5 and 6, we also derive
some insights into the provider’s behavior. In particu-
lar, since users’ persistent requests are continually re-
considered if not satisfied, the provider might experi-
ence unsustainably large numbers of pending bids. We
show that the number of pending bids remains bounded
under reasonable conditions by formulating a model for
a cloud provider to choose the spot prices in Section 4.1
and considering the effects on pending bids in Section
4.2. We validate our model in Section 4.3 by fitting it to
two months’ history of spot prices offered by Amazon.
Let us consider a series of discrete time slots t ∈

{1, 2, . . .}. At time slot t, the demand for a spot in-
stance type is L(t), and we use π(t) to denote the spot
price at time slot t. We restrict the spot price to not ex-
ceed the on-demand price π̄ of the same instance type.
We also impose the constraint π(t) ≥ π, where π ≥ 0
represents the provider’s marginal cost of running a spot
instance.

4.1 Revenue Maximization
When setting the spot price π(t) in each time slot

t, the cloud provider wishes to maximize its revenue
π(t)N(t), where N(t) is the number of accepted bids
(i.e., the system workload) and each successful bidder
is charged only the spot price π(t), regardless of the bid
(s)he placed.3 Other objectives, such as clearing the
market, are also possible [10,38,39]; in fact, some stud-

2Amazon charges users separately for ingress and egress
bandwidth to EC2. Since the required bandwidth is
determined by the user job rather than the instance on
which the job is run, we do not consider these costs.
3In practice N is a discrete integer, but for tractable
analysis we take N continuous in our model.

ies have suggested that Amazon does not use revenue-
maximizing spot prices [1]. Thus, we also include a ca-
pacity utilization term β log (1 +N(t)), which increases
with N(t). This term models the fact that the provider
incurs a machine on/off cost for idle spot instances,
giving it an incentive to accept more bids. We use a
strictly concave function to penalize extremely heavy
workloads, which can incur additional capacity costs.
At each time slot t, the provider chooses the spot

price π(t) so as to maximize the sum of the utilization
term and revenue, β log

(

1 +N(t)
)

+ π(t)N(t), subject
to the constraint that π(t) lie between the minimum
and maximum prices (π ≤ π(t) ≤ π̄).4 We denote this
optimal price by π?(t).
We now formulate the provider’s optimization prob-

lem by using the probability distribution fp to denote
the distribution of bids received by the provider. For
instance, if users’ bid prices follow a uniform distribu-
tion, then fp(x) = 1/(π̄−π). Defining L(t) as the total
number of bids submitted, the number of accepted bids

is N(t) = L(t) π̄−π(t)
π̄−π , or the fraction of submitted bids

that exceed the spot price.5 The provider then maxi-
mizes the sum of its revenue and utilization term:

maximize
π(t)

β log

(

1 + L(t)
π̄ − π(t)

π̄ − π

)

+π(t)L(t)
π̄ − π(t)

π̄ − π
subject to π ≤ π(t) ≤ π̄.

(1)

In the rest of the paper, we use a uniform distribution
for fp, as is often used to model distributions of user
valuations for computing services [30].
We solve (1) to find that the optimal spot price π?(t)

satisfies

L(t) =
π̄ − π

π̄ − π?(t)

(

β

π̄ − 2π?(t)
− 1

)

. (2)

We can thus solve for the optimal solution to (1):

π?(t) = max

{

π,
3

4
π̄ +

1

2
(π̄ − π)

1

L(t)

−
1

4

√

(

π̄ + 2
(

π̄ − π
) 1

L(t)

)2

+ 8β
(

π̄ − π
) 1

L(t)

}

.

(3)
More weight on the utilization term (a higher β) leads
to a lower spot price and more accepted bids. Since β
will generally be small, we assume that β ≤ (L(t) +

4In practice, we can emphasize the revenue over the uti-
lization term by choosing a small scaling factor β. The
provider can keep the number of accepted bids below
its available capacity by increasing the minimum spot
price π so that fewer bids are accepted.
5A higher spot price may cause more users to choose
the more reliable on-demand instead of spot instances,
which in turn affects user demand L(t). Since the spot
price is generally much lower than the on-demand price
(cf. Section 7), we expect this effect to be negligible.

Pending

New arrivals

Running Finished

(1-�)N(t)

N(t)

Terminated

�(t)

�N(t)

L(t)

Figure 2: State transitions of spot instances. The solid
and dashed arrow lines respectively represent the tran-
sitions at the start of the current and next time slots.

1)(π̄ − 2π) and thus that π?(t) > π (the optimal spot
price is above the minimum) in the rest of the paper.
In the above analysis, we considered user bids in a

single time slot. However, bid resubmission may cause
the spot price at time t to affect the prices in future
time slots. We consider this dependency next.

4.2 Stable Job Queues
The dynamics of user requests (i.e., bids for an in-

stance) consist of four distinct states: new arrivals,
pending, running and finished, as shown in Figure 2.
At the beginning of time slot t, there are L(t) bids for

the spot resource remaining in the system, and Λ(t) new
bid arrivals. After the spot price is determined for this
time slot, the N(t) spot requests with the highest bid
prices are successfully launched. The new arrivals with
lower bid prices are then pended, and some pending
requests remain pended until the next time slot.
After time slot t, we assume that a portion θN(t) of

the running instances are finished (including instances
that have completed their jobs and terminated instances
with one-time requests), while the other (1 − θ)N(t)
instances are still running and will be considered to-
gether along with the pended bids as bids at the next
time slot. If terminated, running instances with per-
sistent requests revert to the pending state; hence, the
requests in the pending state come from three sources:
i) failed new arrivals, ii) failed pending requests, and iii)
terminated running instances. The number of requests
in the next time slot, L(t + 1), can thus be written in
terms of the number of requests L(t) in the previous
time slot, along with Λ(t) new arrivals and θN(t) ex-
iting spot instances: L(t + 1) = L(t) − θN(t) + Λ(t).
Note that (1−θ)N(t) running instances are included in
these L(t+ 1) requests. All requests compete with one
another via bid prices. After solving (1) with L(t+ 1),
the cloud provider will terminate the running spot in-
stances whose bid prices are lower than the optimal so-
lution π?(t+ 1), the spot price of the next time slot.
We assume that the Λ(t) are independent and identi-

cally distributed (i.i.d.), following a distribution fΛ with
expected value λ and variance σ [34]. Writing N(t) in

terms of the spot price π?(t), i.e., N(t) = L(t) π̄−π?(t)
π̄−π ,

the number of submitted bids in each time slot satisfies

L(t+ 1) =

(

1− θ
π̄ − π?(t)

π̄ − π

)

L(t) + Λ(t). (4)

Note that 0 ≤ θ ≤ 1 and π ≤ π?(t) ≤ π̄ ensure a
positive value of L(t + 1). Depending on the value of
Λ(t), L(t+ 1) may be larger or smaller than L(t).
If too many user bids are continually re-submitted,

the number of submitted bids L(t) might diverge to
infinity. To show that such a scenario does not occur,
we first define the conditional Lyapunov drift as follows:

∆(t) ,
1

2
L2(t+ 1)−

1

2
L2(t), (5)

or the change in the Lyapunov function 1
2L

2(t) over one
time slot. Taking the conditional expectation, we have
an upper bound on the Lyapunov drift (5):

Proposition 1. Suppose Λ(t) follows a distribution
with expected value λ and variance σ, and suppose that
the spot prices π?(t) are chosen according to (3). Then
the conditional expectation of the Lyapunov drift is up-
per bounded: E

(

∆(t) |L(t)
)

≤ (π̄− π)λ2/(2θπ̄) + σ/2−

εL(t), where ε = θλπ̄
4(π̄−π) .

Proposition 1 implies that when (1) is used to compute
the spot price, the queuing system is stable in the sense
that the time-averaged queue size at any time t is uni-
formly bounded [23]. In fact, the number of requests
can ultimately reach an equilibrium:

Proposition 2. The queue sizes of consecutive time
slots are in equilibrium, i.e., L(t+1) = L(t), if and only
if the optimal spot prices π?(t) satisfy

π?(t) = h
(

Λ(t)
)

=
1

2

(

π̄ −
β

1 + 1
θΛ(t)

)

. (6)

We observe from (6) that π?(t) is only in terms of the
request arrivals at that time slot, so π?(t), like Λ(t), is
i.i.d. at the equilibrium. Using this result, we can derive
the probability density function (PDF) of the spot price
in terms of fΛ, the distribution (i.e., PDF) of Λ(t).

Proposition 3. The probability density function of
the spot price is given by:

fπ(π) ' fΛ(h
−1(π)), (7)

where h−1(π) = θ
(

β
π̄−2π − 1

)

is the inverse function of

the function given in (6).

We can thus use the distribution of Λ(t) at different
time slots, fΛ, to derive the distribution of the spot
prices, fπ. Since we do not know the distribution of the
bid arrivals, in the next section we instead test different
distributions and compare their spot price predictions
to the empirically observed spot prices.

4.3 Validation from Historical Spot Prices
We collected the spot price data for four instance

types over August 14 – October 13, 2014, in the US
Eastern region; we limit ourselves to a two-month dataset
since Amazon only provides user access to spot price

history for the previous two months. The PDF of these
prices is shown by the blue bars in Figure 3. We observe
that they approximately follow a power-law or expo-
nential pattern, indicating that the arrival process Λ(t)
is non-Poisson.6 Furthermore, the shape of the PDFs
across different instance types is consistent, though the
spot prices are different, agreeing with [1]’s findings.
We next estimate the spot price PDF with (6) and

(7) by assuming Pareto and exponential distributions
for Λ(t); other distributions could be used in a similar
manner. We verify that the spot price distribution does
not vary significantly over the day, e.g., due to more
jobs submitted during the day, indicating that Λ(t) can
reasonably be assumed i.i.d. as in Section 4.2. The
Kolmogorov-Smirnov test indicates that the distribu-
tions of the prices during the daytime and nighttime
are similar with p-value > 0.01.
Pareto distribution. The PDF of a Pareto distri-

bution is

fΛ(Λ) =
αΛα

min

Λα+1
, for Λ ≥ Λmin,

where Λmin = θ
(

β
π̄−2π − 1

)

is derived from the mono-

tonic relation between π?(t) and Λ(t) in (6).
Exponential distribution. The PDF of an expo-

nential distribution is

fΛ(Λ) =
1

η
e−

1

η
Λ, for Λ ≥ 0.

We show the distribution fits in Figure 3; the η, α,
β, and θ parameters were chosen to minimize the least-
squares divergence between the estimated and empirical
PDFs. We use the same β and θ values for each instance
type since these parameters do not depend on the dis-
tribution of Λ. We observe that the two distributions
fit the empirical data well, with a mean-squared error
less than 10−6. The small θ values indicate that few in-
stances finish in each time slot due to the long running
times of most jobs. For all instance types, the fitted
Pareto and exponential distributions have finite mean
and variance (α > 1, η > 0). Thus, the conditions in
Proposition 1 hold and the system is stable.

5. USER BIDDING STRATEGIES
We now derive users’ bidding strategies for jobs run-

ning on a single instance, using the spot price PDF
from Section 4 to predict future spot prices.7 Though
time series forecasting may be used instead, we note
that users’ job runtimes generally exceed one time slot,
requiring predictions far in advance. Since the spot
prices’ autocorrelation drops off rapidly with a longer

6This observation is consistent with the findings in [18].
Thus, we can expect the cumulative distribution func-
tions to have a knee, as was observed in [1].
7As noted in Section 1, the bidding strategies do not
explicitly depend on the provider model in Section 4
but rather on the spot price’s PDF.

0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

Spot price

P
ro

ba
bi

lit
y

de
ns

ity

Empirical PDF
Estimated PDF by Pareto Distr.
Estimated PDF by Exp. Distr.

(a) c3.4xlarge.

0.26 0.28 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

Spot price

P
ro

ba
bi

lit
y

de
ns

ity

Empirical PDF
Estimated PDF by Pareto Distr.
Estimated PDF by Exp. Distr.

(b) c3.8xlarge.

0.03 0.035 0.04 0.045 0.05
0

0.05

0.1

Spot price

P
ro

ba
bi

lit
y

de
ns

ity

Empirical PDF
Estimated PDF by Pareto Distr.
Estimated PDF by Exp. Distr.

(c) r3.xlarge.

0.03 0.035 0.04 0.045 0.05
0

0.02

0.04

0.06

0.08

Spot price

P
ro

ba
bi

lit
y

de
ns

ity

Empirical PDF
Estimated PDF by Pareto Distr.
Estimated PDF by Exp. Distr.

(d) m1.xlarge.

Figure 3: Fitting the probability density function of Amazon spot prices in the US Eastern region by assuming
Pareto and exponential distributions for Λ(t). The fitted parameter values are (β, θ, α, η) = (0.6, 0.02, 5, 0.00013),
(

1.2, 0.02, 8, 7.1× 10−5
)

, (0.3, 0.02, 9.5, 0.000108) , and (0.3, 0.02, 5.2, 0.000204) for (a), (b), (c), and (d) respectively.

Table 1: Key terms and symbols.

Symbol Definition

p User bid price

π Spot price

π̄ On-demand price

π Minimum spot price

L Demand for the spot instance

N Number of launched spot instances

Λ New request arrivals

tk Length of one time slot

T Total job completion time

ts Job execution time (w/o interruptions)

tr Recovery time from an interruption

to Overhead time to run multiple sub-jobs

lag time [1], such predictions are likely to be difficult.
We discuss this point further in Section 8.
In this section, we first consider one-time requests

(Section 5.1) and then persistent requests (Section 5.2)
for a single instance; we consider jobs requiring multiple
parallel instances in Section 6. We assume that users
wish to minimize the cost of running their jobs. Users
thus face a tradeoff between bidding lower prices and
experiencing more interruptions, which lead to a longer
runtime and potentially higher cost. We obtain the op-
timal bid prices by minimizing the user’s cost subject to
job interruptibility constraints (cf. Section 8).8 As in
Section 4, we consider a series of discrete time slots t and
suppose the spot prices π(t) = h

(

Λ(t)
)

, t = 0, 1, . . .
are i.i.d. as in Proposition 2. We use p to denote the
user’s bid price and Fπ to denote the cumulative distri-
bution function of each spot price π(t), corresponding
to the PDF fπ in (7): Fπ(p) gives the probability that
p ≥ π(t), i.e., the user’s bid is accepted.
We summarize our model’s notation in Table 1. Each

job is characterized by its execution time ts, or time
required to complete without interruptions. We use T
to denote the job’s total completion time, i.e., the length
of time between its submission and the time it finishes

8Including deadlines on the job completion times does
not materially change our model, but we do not explic-
itly model this constraint. Users with hard job dead-
lines are more likely to use on-demand instances with
guaranteed availability.

and exits the system. Since jobs with persistent requests
may be interrupted, we suppose that persistent jobs are
configured to save their data to a separate volume once
interrupted and recover it upon resuming. Writing and
transferring this data introduces a delay of tr seconds
per interruption. All prices are assumed to be in units
of instance/hour, and all times given in units of hours.

5.1 One-time Requests
Since one-time requests are terminated as soon as the

bid price falls below the spot price, we assume that users
wish to minimize their expected job cost, subject to the
constraint that jobs are not interrupted.
Job non-interruptibility. We first find the ex-

pected amount of time that a job will continue running
without being interrupted:

tk

∞
∑

i=1

iFπ(p)
i−1
(

1− Fπ(p)
)

=
tk

1− Fπ(p)
. (8)

Here the Fπ(p) terms represent the probability that p ≥
π(t), i.e., the request continues to run, and 1−Fπ(p) the
probability that the job will be terminated. We thus
find that ts ≤ tk/ (1− Fπ(p)): the expected amount
of time that a job will keep running must exceed its
execution time.
The optimal price. To find the expected cost of

a job with a one-time request, we need to find the ex-
pected price that a user must pay to use an instance in
each time slot. If a user’s bid at price p is accepted, this
expected price is simply the expected spot price, or the
expected value of all possible spot prices that are less
than or equal to p:

E(π |π ≤ p) =

∫ p

π xfπ(x)dx
∫ p

π
fπ(x)dx

=

∫ p

π xfπ(x)dx

Fπ(p)
, (9)

which monotonically increases with p (cf. Proposition
4’s proof in the Appendix). Thus, as we would intu-
itively expect, the user must pay more as his/her bid
price increases. The user’s expected cost for this job is
then the expected spot price, multiplied by the number
of time slots it takes for the job to complete. Hence,
we have the following cost minimization problem with

p

tr tr

 Time to recover from interruption: 2tr
 Execution time of a job without interruption: ts
 Running time of a job on spot instance: TF!(p)
 Bid price p

Figure 4: An example of job running times for the spot
prices of an r3.xlarge-type instance in the US Eastern
region on September 09, 2014.

a completion time constraint:

minimize
p

Φso(p) = tsE(π |π ≤ p) =
ts

∫
p

π
xfπ(x)dx

Fπ(p)

subject to Φso(p) ≤ tsπ̄, ts ≤
tk

(1−Fπ(p))
, π ≤ p ≤ π̄.

(10)
Since the expected spot price is monotonically increas-
ing in the bid price, the user can minimize his or her
expected cost by choosing the lowest possible bid price
that satisfies the constraint that the job completes be-
fore being terminated:

Proposition 4. The optimal bid price for a one-
time request is

p? = max

{

π, F−1
π

(

1−
tk
ts

)}

. (11)

We essentially wish to bid at the appropriate percentile
of the spot price distribution Fπ. As we would expect,
the bid price increases as the number of time slots re-
quired to complete the job, ts/tk, increases: the job then
needs to run for more consecutive time slots, which be-
comes more likely with a higher bid.

5.2 Persistent Requests
We now consider a job that places a persistent spot

instance request. We begin by finding the total time
that the job runs on the system, given a bid price, and
then briefly discuss the implications of a job’s interrupt-
ibility before deriving the user’s optimal bid price.
Job running time. A job’s total completion time T

comprises two types of time slots: the running time, in
which the job’s bid price exceeds the spot price and the
job actually runs on the instance, and the idle time. For
a bid price p, the job’s expected running time is TFπ(p)
(recall that Fπ(p) denotes the probability that the bid
price p ≥ π(t), the spot price), and the idle time is then
T (1−Fπ(p)). The running time can be further split into
the execution time, ts, and the additional running time
required to recover from interruptions. We illustrate
the job completion time in Figure 4, in which the bid
price of p = 0.0323 is represented by an orange dashed
line. The grey double-arrowed line represents the total

running time. Since the job is interrupted twice, the
total recovery time is 2tr. Thus, for this example, we
have TFπ(0.0323) = 2tr + ts.
To determine the total recovery time, we want to find

the expected number of interruptions, i.e., times t in
which the job runs on the system but was idle in the
previous time slot (p ≥ π(t), p < π(t−1)). Note that the
number of interruptions equals half of the total number
of times the job’s state changes between running and
idle: each interruption requires both an idle-to-running
and running-to-idle transition. We can thus find the ex-
pected total number of transitions and divide it by two.
To do so, we define Iπ

(

π(t)
)

as an indicator function:

Iπ

(

π(t)
)

= 1 if p ≥ π(t); otherwise, Iπ
(

π(t)
)

= 0. We

then consider
(

Iπ

(

π(t)
)

− Iπ

(

π(t + 1)
))2

, which equals

1 if Iπ
(

π(t)
)

6= Iπ

(

π(t+ 1)
)

(i.e., a transition happens)
and 0 otherwise. The number of idle-to-running transi-

tions in T/tk time slots is then 1
2

∑T/tk−1
k=0

(

Iπ

(

π(t)
)

−

Iπ

(

π(t + 1)
))2

. We take expectation to obtain

E





1

2

T/tk−1
∑

k=0

(

Iπ

(

π(t)
)

− Iπ

(

π(t+ 1)
)

)2





(a)
=

T

tk

(

E

(

Iπ

(

π(t)
)

)

− E

(

Iπ

(

π(t)
)

Iπ

(

π(t+ 1)
)

)

)

=
T

tk
Fπ(p)

(

1− Fπ(p)
)

,

(12)

where (a) is due to
(

Iπ

(

π(t)
))2

= Iπ

(

π(t)
)

since the

value of Iπ
(

π(t)
)

is either 1 or 0.
We now write the expected running time of the job as

the sum of the recovery and execution times: TFπ(p) =
(

T
tk
Fπ(p)

(

1−Fπ(p)
)

−1
)

tr+ ts. Simplifying the terms,

the running time becomes

TFπ(p) =
ts − tr

1− tr
tk

(

1− Fπ(p)
) , (13)

which decreases with p. As the bid price p increases,
the job is less likely to be interrupted and will therefore
have a shorter expected running time.
Job interruptibility. We can use the expected run-

ning time (13) to observe the effect of the recovery time
parameter, tr, on a job’s feasibility for spot instances.
Intuitively, spot instances are more effective for more
“interruptible” jobs that can quickly recover from inter-
ruptions. In fact, a job’s running time is finite only if
the recovery time is sufficiently small:

tr <
tk

1− Fπ(p)
. (14)

The result in (14) can be obtained by requiring the de-
nominator in (13) to be positive. We note that the
upper bound to tr is exactly the expected running time
of a job without interruptions (cf. (8)): intuitively, the
time to recover from an interruption should be smaller
than the expected time on an instance between job in-

terruptions. We take (14) as a constraint on the bid
price: if the job recovery time is high, the user should
bid at a higher bid price in order to ensure that the job
can complete. However, if the job recovery time is less

than one time slot length, tr < minp

{

tk
1−Fπ(p)

}

= tk,

and a spot instance is feasible at any price.
The optimal bid price. We can now multiply the

expected running time (13) with the expected spot price
(9) to find that the cost of a job with a persistent request
is Φsp(p) = TFπ(p)E(π |π ≤ p). The user’s optimal bid
price then solves the optimization problem

minimize
p

Φsp(p) =
ts−tr

1− tr
tk

(

1−Fπ(p)
)

∫
p

π
xfπ(x)dx

Fπ(p)

subject to Φsp(p) ≤ tsπ̄, tr <
tk

1−Fπ(p)
, π ≤ p ≤ π̄,

(15)
where the first constraint ensures that the cost of run-
ning the spot instance is lower than the cost of running
the job on an on-demand instance, and the second con-
straint ensures that the job is sufficiently interruptible.
We use p? to denote the optimal bid price to (15).
We now observe that the expected running time in

(13) decreases with the bid price, while the expected
spot price increases with the bid price. We find that the
expected cost Φsp(p) first decreases and then increases
with the bid price p, thus allowing us to solve for the
optimal bid price p?:

Proposition 5. If the probability density function of
the spot price monotonically decreases, i.e., Fπ(p) is
concave, the optimal bid price solving (15) is

p? = ψ−1

(

tk
tr

− 1

)

, (16)

where ψ−1(·) is the inverse function of

ψ(p) = Fπ(p)

(∫ p

π xf(x)dx
∫ p

π (p− x)f(x)dx
− 1

)

.

We can observe from (16) that the optimal bid price
does not depend on the execution time ts: the cost is
instead determined by the number of time slots needed
for each recovery, tr/tk. While the execution time is
fixed, a longer recovery time lengthens the total running
time and thus the job cost.

6. BIDDING FOR MAPREDUCE JOBS
We now adapt Section 5’s bidding strategies for sin-

gle instances to parallelized MapReduce jobs, in which
users bid for multiple instances at the same time. We
first consider running only the slave nodes on spot in-
stances and then consider running the full job (i.e., both
master and slave nodes) on spot instances.9 Though the

9While master nodes are often run on on-demand in-
stances to guarantee that they will not be interrupted,
our experiments in Section 7 show that, with sufficiently
high bids, interruptions are rare even on spot instances.

job structure introduces an additional requirement on
the master node’s running time–the master node should
keep running as long as the slave nodes are running–we
show that this condition does not change the optimal
bid for the master node as long as the job is sufficiently
parallelized (i.e., multiple slave nodes run in parallel for
a short amount of time).

6.1 Bidding for Slave Nodes Only
We first consider running only the slave nodes of a

MapReduce job on several spot instances in parallel.
We suppose that the job is split intoM sub-jobs of equal
size, each corresponding to one instance request. We
now wish to calculate the optimal (i.e., cost-minimizing)
bid prices for these sub-jobs; since we assume that all
sub-jobs are bidding for the same type of spot instance,
the bid price should be the same for all of them. We
again find the total cost by multiplying the expected
running time of the job by the expected spot price.
To find a job’s expected running time, we denote each

sub-job i’s total time in the system as Ti. Since splitting
a job results in additional overhead, e.g., due to message
passing between the sub-jobs, we use to to represent
a constant additional overhead time from splitting the
job.10 Then the total running time satisfies:

M
∑

i=1

TiFπ(p) =

M
∑

i=1

(

TiFπ(p)
(

1− Fπ(p)
)

tk
− 1

)

tr+ts+to,

i.e., it is the sum of the recovery, execution, and over-
head times. Hence, we can extend the result for a single
persistent bid in (13) as

M
∑

i=1

TiFπ(p) =
ts + to −Mtr

1− tr
tk

(

1− Fπ(p)
) . (17)

Since all of the sub-jobs run simultaneously, the overall
time of the parallelized job execution is max

i=1,...,M
TiFπ(p).

All of the M sub-jobs are of equal size, so

max
i=1,...,M

TiFπ(p) =
ts + to −Mtr

M
(

1− tr
tk

(

1− Fπ(p)
)

) . (18)

Users can minimize this cost by choosing the optimal
number of slave nodes,M . Although the job is split into
smaller pieces, the overall running time max

i=1,...,M
TiFπ(p)

is larger than ts/M , or the running time without inter-
ruptions or overhead. Thus, distributing the job across
M instances shortens the completion time as compared
to a single instance only if the overhead time is suffi-
ciently small. Comparing the completion times in both
cases, we find that using multiple instances shortens the
completion time if to < (M − 1)tk/(1− Fπ(p)).
As in Section 5, the expected cost of running a job on

M simultaneous instances is the sum of each instance’s

10This overhead time may depend on M , the (fixed)
number of sub-jobs.

expected running time, multiplied by the expected spot

price: Φmp =
∑M

i=1 TiFπ(p)E(π |π ≤ p). The user then
minimizes this cost by solving the following optimiza-
tion problem:

minimize
p

Φmp(p) =
ts+to−Mtr

1− tr
tk

(

1−Fπ(p)
)

∫
p

π
xfπ(x)dx

Fπ(p)

subject to Φmp(p) ≤ tsπ̄, π ≤ p ≤ π̄,
(19)

where the first constraint ensures that the cost is lower
than that of running the job on an on-demand instance.
Comparing (19) to bidding for a single persistent re-
quest in (15), we see that (19) can be solved similarly
to (15) in Proposition 5.
By comparing the costs for multiple bids and for a

single bid at the optimal bid prices, we find that when
the overhead time is sufficiently small (to < (M − 1)tr),
bidding for multiple spot instances can both lower the
cost and shorten the job’s overall running time. In con-
trast, running the job on an on-demand instance will
reduce the running time but increase the cost.

6.2 Bidding for Master and Slave Nodes
Running a MapReduce job entirely on spot instances

requires us to treat master and slave nodes separately;
for instance, we might bid on different instance types for
the master and slave nodes, since the slave nodes will
likely have higher computing requirements. We thus
develop two separate bidding strategies:

1) Master node: Since the master node has to be
available at all times to manage slave node failures
and to periodically check the status of tasks at the
slave nodes, we do not allow any interruptions for
the master node. We thus place a one-time request
for a single spot instance, as in Section 5.1.

2) Slave nodes: MapReduce requires many slave
nodes to process large jobs, but allows slave nodes
to be interrupted. Thus, we place a persistent re-
quest for each slave node using the strategy in Sec-
tion 6.1. The bid prices for the slave nodes must be
determined jointly with that of the master node,
since the master node’s running time should ex-
ceed the slave nodes’. We note from Section 6.1
that if many simultaneous bids are submitted, the
slave nodes’ running time will decrease, shortening
the required master node running time.

We can formally describe these strategies in the follow-
ing optimization problem:

minimize
pv ,pm

Φso(pm) + Φmp(pv)

subject to tk
1−Fm

π (pm)

≥ 1
Fv

π (pv)

(

ts+to−Mtr

1− tr
tk

(

1−Fv
π (pv)

) − (M−1)tk
1−Fv

π (pv)

)

,

π ≤ pv ≤ π̄, π ≤ pm ≤ π̄,
(20)

Table 2: EC2 instance types. Sizes are given as
(vCPU, memory in GiB, SSD storage in GB).

m3 r3 c3

.xlarge 4, 15, 1x32 4, 30.5, 1x80 4, 7.5, 2x40

.2xlarge 8, 30, 2x80 8, 61, 1x160 8, 15, 2x80

.4xlarge – 16, 122, 1x320 16, 30, 2x160

.8xlarge – – 32, 60, 2x320

where pm and pv denote the bid prices of the master
node and slave nodes respectively, and Fm

π (·) and F v
π (·)

denote the spot prices’ cumulative distribution func-
tions for the master and slave node instance types. The
first constraint in (20) ensures that the master node
runs longer than any of the slave nodes (cf. (8) and
(18)), where the righthand side of the inequality repre-
sents the worst-case completion time of the M parallel
sub-jobs. We use p?m and p?v to denote the optimal bid
prices for (20)’s optimization problem.
We can solve (20) by noting that, aside from the first

constraint, pm and pv are independent variables. Thus,
we can set their optimal values p?m and p?v respectively
as the optimal bid prices for a one-time single instance
request (Proposition 4) and for multiple persistent re-
quests (as in (19)). The first constraint is satisfied if the
user submits sufficiently many simultaneous requests for
the slave nodes. In practice, this minimum number of
nodes, which we denote as M?, can be as low as 3 or 4,
as we show in Section 7’s experiments.

7. EXPERIMENTAL RESULTS
In this section, we first examine the optimal bid prices

derived in Section 5 on Amazon EC2 spot instances. By
comparing the price charged per hour, total job comple-
tion time and final cost, we illustrate the tradeoff of us-
ing different bidding strategies. We then run a MapRe-
duce example on spot instances to further highlight that
our proposed bidding strategy in Section 6 is adapt-
able to parallelized MapReduce jobs and can substan-
tially lower their costs. Table 2 summarizes the instance
types that we use in our experiments. The m3, r3, and
c3 prefixes denote balanced, memory-optimized, and
compute-optimized instances respectively. We test a va-
riety of instance types and sizes and repeat each exper-
iment ten times for each instance type; all performance
graphs are shown as averages.11 We do not include the
runtime of the bid price calculations in our measure-
ments since it is much smaller than one minute, and can
thus be easily run within one five-minute time slot. For
example, the bid price calculations for the c3.4xlarge

instance with around 1MB of spot price history take
11.305 seconds for a one-time and 4.365 seconds for a
persistent bid on a standard laptop.

11To ensure accuracy, we use our bills from Amazon to
calculate the job costs. Since Amazon does not break
the bills into individual jobs, we do not report the cost
of each job.

7.1 Single-Instance Bids
Parameter setting: We consider a job that needs

one hour (i.e., ts = 1h) to be executed without inter-
ruption. The optimal bid prices of five Amazon spot in-
stances (r3.xlarge, r3.2xlarge, r3.4xlarge, c3.4x-
large and c3.8xlarge) are listed in Table 3 for a one-
time request and persistent requests with recovery times
tr = 10s and tr = 30s. We used the spot price history
for the two months immediately prior to the experi-
ments to calculate these prices.
Experiment setup: To simulate an exact one hour

running time of a spot instance, we created an Amazon
Machine Image (AMI), where a shell script was added
to /etc/rc.local so that a one-hour count-down pro-
gram will run once the instance is launched using this
AMI. In addition, this programwrites instance launched
time as a sequence of items into Amazon DynamoDB,
from which we can obtain the instance status (first run
or restarted from interruption) and simulate a recovery
time if the instance is interrupted. We then placed all
spot requests using this AMI.
Results: We used the optimal bid prices for one-time

requests (Table 3) to bid the associated spot instance
at random times of the day. None of our experiments
were interrupted, verifying that our bidding strategy for
one-time requests can ensure reliability. Our bills show
that this bidding strategy can reduce user costs by up to
91% compared to running the job on an on-demand in-
stance. Figure 5 compares the cost of one-time requests
on spot instances to that of on-demand instances for the
instance types in Table 3. We also compare the actual
costs (with actual spot price π̂) to the expected cost
from our analytical model; the analytical predictions
closely match the experimental results.
We additionally compare against a heuristic called

the best offline price in retrospect (shown as p̃ in Table 3
and the grey bars in Figure 5), in which we numerically
search the spot price history of the last 10 hours for the
minimal price that consistently exceeds the spot prices
for one hour. This retrospective price is lower than the
actual bid price in some cases, meaning the one-time
spot instance would have been terminated if we had bid
using this price: 10 hours of history is insufficient to
predict the future prices.
We now use the results of the one-time requests for

each instance type as a baseline to illustrate that users
can further lower their cost in exchange for longer com-
pletion times by placing persistent requests. In Fig-
ure 6, we plot the percentage difference in performance
between the persistent and one-time bids.
Figure 6(a) shows the percentage difference in price

between the one-time and persistent requests for the five
instance types. The negative values in this figure illus-
trate a lower optimal bid price for persistent requests:
persistent requests can be interrupted. As we would
expect from Section 5’s analysis, longer recovery times
(tr = 30s rather than 10s) yield higher bid prices, since

r3.xlarge r3.2xlarge r3.4xlarge c3.4xlarge c3.8xlarge
0

0.5

1

1.5

2

Instance type

C
os

t (
$)

On−demand instance
Offline retrospective price
Analytical results for spot instance
One−time spot instance

Figure 5: One-time spot instance requests substantially
lower user cost compared to on-demand instances (on-
demand and bid prices are as in Table 3).

a higher bid price ensures that the job has sufficient
time to execute after recovering from interruptions.
Conversely, as shown in Figure 6(b), the completion

time of a one-hour job with a persistent request is longer
than that of a one-time request. The difference in these
completion times includes both the recovery time af-
ter the instance is interrupted and the idle time during
which the user’s bid price is lower than the spot price.
Interestingly, the job with longer recovery time tr has
a shorter completion time, though it is still longer than
the completion time with a one-time request. We can
observe from Table 3 that a longer recovery time leads
to a higher optimal bid price, which can consequently
increase the likelihood of satisfying the spot price and
lead to less idle time.
As shown in Figures 6(a) and 6(b), the price charged

per hour is slightly lower, but the completion time is
longer for the persistent requests compared to the one-
time requests. This makes the final cost underdeter-
mined: Figure 6(c) demonstrates that persistent bids
lead to lower overall costs. Smaller recovery times (tr =
10s versus 30s) have higher completion times but yield
lower costs due to their lower bid prices (the higher com-
pletion time is mostly due to more idle time, for which
the user is not charged, rather than extra time running
on the instance). Thus, persistent requests can reduce
user cost but lengthen the job completion time.
We also compare against simply bidding the 90th per-

centile spot price. Compared to our optimal prices,
bidding the (larger) 90th percentile price yields a much
smaller decrease in cost, despite slightly higher bid prices
in Figure 6(a) and lower completion times in Figure 6(b).
The jobs running on r3.4xlarge with recovery time
tr = 30s instead have a longer completion time and
lower bid price, but higher cost, with the 90th percentile
spot price. This comparison is consistent with the fact
that our bid prices are chosen to minimize users’ costs.

7.2 MapReduce Jobs
We implemented our optimal bidding strategy to run

HadoopMapReduce jobs on the Common Crawl Dataset
[7] using Amazon Elastic MapReduce (EMR). This dataset,
which is hosted on Amazon’s Simple Storage Service,
maintains an open repository of web crawl data that
is accessible to the public for free. In this experiment,

Table 3: Optimal bid prices for a single-instance job on spot instances.

Instance type π̄ π
One-time bid

Persistent bid

(tr = 10s)

Persistent bid

(tr = 30s)

p? E(π |π < p?) p̃ π̂ p? T p? T

r3.xlarge $0.35 $0.0321 $0.0374 $0.0331 $0.0324 $0.033 $0.0332 1.4549h $0.0355 1.1903h

r3.2xlarge $0.70 $0.0646 $0.0795 $0.0669 $0.0644 $0.066 $0.0661 1.7638h $0.0711 1.2558h

r3.4xlarge $1.40 $0.1286 $0.1430 $0.1304 $0.1288 $0.130 $0.1327 1.2798h $0.1422 1.0976h

c3.4xlarge $0.84 $0.1281 $0.1669 $0.1324 $0.1283 $0.128 $0.1322 1.4917h $0.1413 1.2180h

c3.8xlarge $1.68 $0.2561 $0.2903 $0.2604 $0.2564 $0.256 $0.2648 1.2767h $0.2831 1.1209h

−5

−4

−3

−2

−1

0

Instance type

P
ric

e
(%

 w
.r

.t.
 o

ne
−

tim
e

re
qu

es
t)

r3
.xl

ar
ge

r3
.2

xla
rg

e

r3
.4

xla
rg

e

c3
.4

xla
rg

e

c3
.8

xla
rg

e

Persistent request with p* (t
r
=30)

Persistent request with Fπ(p)=0.9 (t
r
=30)

Persistent request with p* (t
r
=10)

Persistent request with Fπ(p)=0.9 (t
r
=10)

(a) Expected spot price.

0

20

40

60

80

100

120

Instance type

T
im

e
(%

 w
.r

.t.
 o

ne
−

tim
e

re
qu

es
t)

r3
.xl

ar
ge

r3
.2

xla
rg

e

r3
.4

xla
rg

e

c3
.4

xla
rg

e

c3
.8

xla
rg

e

Persistent request with p* (t

r
=30)

Persistent request with Fπ(p)=0.9 (t
r
=30)

Persistent request with p* (t
r
=10)

Persistent request with Fπ(p)=0.9 (t
r
=10)

(b) Job completion time.

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Instance type

C
os

t (
%

 w
.r

.t.
 o

ne
−

tim
e

re
qu

es
t)

r3
.xl

ar
ge

r3
.2

xla
rg

e

r3
.4

xla
rg

e

c3
.4

xla
rg

e

c3
.8

xla
rg

e

Persistent request with p* (t
r
=30)

Persistent request with Fπ(p)=0.9 (t
r
=30)

Persistent request with p* (t
r
=10)

Persistent request with Fπ(p)=0.9 (t
r
=10)

(c) Total job cost.

Figure 6: Persistent requests yield lower costs but longer completion times compared to one-time requests. The bid
prices for each instance type are given in Table 3.

Table 4: Optimal bid prices and actual costs for a MapReduce job.

Master node Slave nodes

Client Setting Instance type p?m Actual cost Instance type p?v M? Actual cost

CS1 c3.xlarge $0.133 $0.10 m3.2xlarge $0.070 5 $0.90

CS2 m3.xlarge $0.101 $0.13 m3.2xlarge $0.070 5 $1.03

CS3 m3.xlarge $0.102 $0.13 r3.2xlarge $0.071 3 $0.51

CS4 r3.xlarge $0.042 $0.13 m3.2xlarge $0.070 5 $0.58

CS5 r3.xlarge $0.042 $0.13 r3.2xlarge $0.071 3 $0.64

we ran the well-known “Common Crawl Word Count”
example that counts the frequency of words appearing
on the Common Crawl Corpus.
Parameter setting: We consider a word count job

with recovery time tr = 30s and overhead time to = 60s.
Using the bidding strategy proposed in Section 6, we
list in Table 4 the optimal bid prices and the number of
slave nodes for five client settings with different instance
types for the master node and the slave nodes.
Experiment setup: We placed a one-time request

for a single spot instance for the master node and per-
sistent requests for multiple spot instances for the slave
nodes. Since the master node just distributes the raw
data and tracks the status of each task, it does not re-
quire a high-performance instance; we therefore bid on
instances with better CPU performance for the slave
nodes.
Results: We compare the completion time and cost

of running MapReduce jobs on on-demand and spot in-
stances for the five client settings. We use the optimal
bid prices listed in Table 4 to place the spot instance

bids. Using the on-demand instance as a baseline, our
bills from Amazon show that the bidding strategy for
MapReduce jobs can reduce up to 92.6% of user cost
with just a 14.9% increase of completion time.
In Figure 7, we show the completion time and the

cost of the five client settings for on-demand and spot
instances. Again, our experimental results closely ap-
proximate the analytical results from our model. As we
would expect, the job completion time is longer on the
spot instances than on the on-demand instances (Fig-
ure 7(a)), while the costs of the jobs running on the spot
instances are much lower than those on the on-demand
instances (Figure 7(b)).
In Table 4, we break down the actual costs of the

master and slave nodes for each client setting of the
MapReduce job. The cost of the master node is 10% to
25% of the slave node cost, indicating that users may
wish to pay a higher spot price for the master node: this
price does not significantly affect the overall cost, and
helps ensure that the master node is not interrupted.

CS1 CS2 CS3 CS4 CS5
0

1

2

3

4

5

6

Client settings

C
om

pl
et

io
n

tim
e

(h
ou

rs
)

On−demand instance
Analytical results for spot instance
Spot instance

(a) Job completion time.

CS1 CS2 CS3 CS4 CS5
0

5

10

15

Client settings

C
os

t (
$)

On−demand instance
Analytical results for spot instance
Spot instance

(b) Job cost.

Figure 7: MapReduce jobs can save about 90% of user
cost but have a 15% longer completion time on spot
compared to on-demand instances.

8. DISCUSSION
Like all work based on analytical models, our work

has some limitations. We discuss five important ones
here and suggest ways to address them in future work.
Provider objectives. We have assumed that the

cloud provider optimizes the sum of a concave utiliza-
tion term and its revenue, where the concave shape of
the utilization term is due to the cost of running large
numbers of instances while maintaining users’ quality-
of-service. We could more explicitly account for user
satisfaction by taking the social welfare to be the provider’s
objective function [25, 38]. While our current formu-
lation matches well with the observed spot prices, in-
cluding other factors in the provider’s spot price opti-
mization problem may shed more light on the provider’s
behavior. We emphasize, however, that our bidding
strategies depend only on the spot prices, not on the
provider’s objectives or optimization problem.
Temporal correlations. We assume i.i.d. job ar-

rivals that induce i.i.d. spot prices at the equilibrium.
However, empirical studies have found temporal cor-
relation in cloud workloads, possibly inducing positive
temporal correlation in the spot prices [12]. In fact,
a study of the spot prices in 2010 shows the presence
of limited autocorrelation for consecutive time slots [1].
Incorporating these correlations into users’ spot price
predictions may improve their bidding strategies and
outcomes: this correlation would likely reduce the de-
gree to which the spot price changes in consecutive time
slots. Thus, the user’s job would be interrupted less of-
ten, leading to lower job running times and costs.
Risk-averseness. We suppose that users choose their

bid prices so as to minimize their expected costs, subject
to constraints on the expected runtimes. Risk-averse
users may also wish to minimize the variance in costs
and runtimes, so as to ensure that particularly bad out-
comes do not occur. For example, we might choose the
bid price so as to minimize the expected cost subject to
an upper bound on the cost variance. Other users might
allow their jobs’ completion time to have a small prob-
ability of exceeding a job deadline. Instead of bounding
the expected completion time, we could constrain the
user’s bid price so that the probability of exceeding this
deadline is lower than a given small threshold.

Task dependence. Some tasks within a job can-
not proceed before other tasks have been completed.
While we do not account for such dependent tasks in
our model, we can in practice bid on these tasks only
after the tasks that they depend on have been com-
pleted. Thus, we will not bid on idle tasks that are
waiting for other tasks to finish.
Collective user behavior. The bidding strategies

that we have developed in Sections 5 and 6 assume that
an individual user’s bid price will not measurably affect
the provider’s spot price. While our experiments in Sec-
tion 7 show that this assumption holds for a single user,
it may not hold if multiple users begin to optimize their
bidding strategies, which might affect the distribution
of the submitted bids. To study this scenario, we can
assume that users with a distribution of jobs optimize
their bids and use Section 4’s model to derive the effect
on the provider’s offered spot price.

9. CONCLUSION
Spot pricing opens up an auction-based market in

which cloud providers can dynamically provision data
center resources to meet user demand and users can de-
velop bidding strategies that lower their cloud resource
costs. In this work we first consider providers’ setting
of the spot prices, developing an optimization model
for the provider and comparing its results to observed
spot prices. We then answer the question of how users
should bid for cloud resources. Since spot instances do
not guarantee their availability, we consider the trade-
off between bidding higher prices to avoid interruptions
(for one-time requests) and bidding lower prices to save
money (for persistent requests).
We adapt these bidding strategies to MapReduce jobs

with master and slave nodes. Finally, we run our bid-
ding client on Amazon EC2 to verify that our analyti-
cal results accurately approximate the real-time experi-
mental results. Our bidding strategies can reduce users’
costs by around 90% on a variety of instance types, with
modest increases in the job completion times.
Spot pricing has been offered by Amazon for many

years, yet the heavy-tailed spot price distributions that
we observe suggest that few users bid for spot instances.
We thus conjecture that many users are concerned by
the possibility of too many job interruptions. Our pa-
per suggests that these concerns might be misplaced:
by tailoring their bids to their jobs’ interruption con-
straints, users can save a substantial amount of money
with spot instances without excessive job interruption.

Acknowledgments
We thank our shepherd, Michael Schapira, and Sudipta
Sengupta for helpful comments. This work was in part
supported by the Waterman Award CNS-1347234, the
Research Grants Council of Hong Kong Project No.
RGC 11212114 and the National Research Foundation
Fellowship NRF-NRFF2015-07.

APPENDIX
Proof of Proposition 1.

Proof. Substituting (4) into (5), the Lyapunov drift

can be expressed as ∆(t) = 1
2

(

(1 − θ π̄−π?(t)
π̄−π)L(t) +

Λ(t)
)2

− 1
2L

2(t). We now bound the expectation of this
quantity by:

E
(

∆(t) |L(t)
)

(a)

≤ 1
2

(

− θπ̄
π̄−π + 1

4

(

θπ̄
π̄−π

)2
)

L2(t)

+
(

1− 1
2

θπ̄
π̄−π

)

L(t)E
(

Λ(t)
)

+ 1
2E
(

Λ2(t)
)

(b)
= 1

2

(

− θπ̄
π̄−π + 1

4

(

θπ̄
π̄−π

)2
)

L2(t)

+
(

1− 1
2

θπ̄
π̄−π

)

λL(t) + 1
2 (σ + λ2)

≤
(

1− 1
4

θπ̄
π̄−π

)

maxL(t)

{

− 1
2

θπ̄
π̄−πL

2(t) + λL(t)
}

− 1
4

θλπ̄
π̄−πL(t) +

1
2 (σ + λ2)

(c)
= π̄−π

2θπ̄ λ
2 + 1

2σ − 1
4

θλπ̄
π̄−πL(t),

where (a) is due to π(t) ≤ 1
2 π̄, (b) is due to E(Λ2(t)) =

Var(Λ(t)) +
(

E(Λ(t))
)2

and the equality in (c) holds

when L(t) = π̄−π
θπ̄ λ.

Proof of Proposition 2.

Proof. We first prove that (6) is a necessary condi-
tion for L(t+ 1) = L(t). We rewrite (4) as

L(t) =
π̄ − π

θ(π̄ − π?(t))
Λ(t). (21)

Solving the system of equations (2) and (21) yields (6).
We then prove that (6) is a sufficient condition for

L(t+ 1) = L(t). From (4), we can derive

L(t+ 1)− L(t)
(a)
= −θ

(

β

π̄ − 2π?(t)
− 1

)

+ Λ(t)

(b)
= θ

(β

π̄ −
(

π̄ − β
1+ 1

θ
Λ(t)

) − 1
)

+ Λ(t) = 0,

where (a) and (b) are obtained by respectively substi-
tuting (2) and (6). Thus, L(t+ 1) = L(t).

Proof of Proposition 4.

Proof. By taking the first-order derivative of Φso(p)
in the objective of (10), we have

∂Φso(p)/∂p =
ts

(Fπ(p))
2 fπ(p)

(

−
∫ p

π
xfπ(x)dx + pFπ(p)

)

.

By letting g(p) = −
∫ p

π
xfπ(x)dx + pFπ(p), we have

∂g(p)/∂p = Fπ(p) > 0. So g(p) increases with p. Com-
bining the fact that g(π) = −πfπ(π) + πFπ(π) = 0, the
nonnegativity and monotonic increasing of g(p) lead to
∂Φso(p)/∂p > 0. Therefore, Φso(p) also increases with
p. Minimizing Φso(p) is equivalent to finding the min-
imum p in its feasible set. From tk/

(

1 − Fπ(p)
)

, we

have p ≥ F−1
π

(

1 − tk
ts

)

due to the monotonic property

of Fπ(p). Thus, the minimum of the feasible set is the
larger one of π and F−1

π

(

1− tk
ts

)

.

Proof of Proposition 5.

Proof. By taking the first-order derivative of Φ(p)
in (15), we have

∂Φsp(p)/∂p =
(ts−tr)fπ(p)

(

(1− tr
tk

)+2 tr
tk

Fπ(p)
)

(

(1− tr
tk

)Fπ(p)+
tr
tk

(

Fπ(p)
)

2
)

2 g(p),

where

g(p) = −

∫ p

π

xfπ(x)dx+ p
(1− tr

tk
)Fπ(p) +

tr
tk

(

Fπ(p)
)2

(1 − tr
tk
) + 2 tr

tk
Fπ(p)

.

Note that first three terms before g(p) in ∂Φsp(p)/∂p are
positive. To show the positivity of ∂Φsp(p)/∂p, we take
first-order derivative of g(p) and then have ∂g(p)/∂p =

(1− tr
tk

)Fπ(p)+
tr
tk

(

Fπ(p)
)

2

(

(1− tr
tk

)+2 tr
tk

Fπ(p)
)

2

(

(1− tr
tk
)+2 tr

tk

(

Fπ(p)−pfπ(p)
)

)

.

Due to the positivity and monotonic decreasing prop-
erty of fπ(p) (cf. Figure 3), Fπ(p) is concave and Fπ(p)−
pfπ(p) ≥ 0. We then have ∂g(p)/∂p ≥ 0. Thus, g(p)
monotonically increases with p, so is ∂Φsp(p)/∂p. By
the fact that g(π) < 0 and g(π̄) > 0, ∂Φsp(p)/∂p in-
creases monotonically from a negative value to a posi-
tive value, i.e., Φsp(p) first decreases and then increases
with p. Hence, Φsp(p) is minimized when ∂Φsp(p)/∂p =
0, i.e., g(p) = 0. Letting g(p) = 0, we thus deduce

∫ p

π

xfπ(x)dx = p
(1− tr

tk
)Fπ(p) +

tr
tk

(

Fπ(p)
)2

(1 − tr
tk
) + 2 tr

tk
Fπ(p)

⇒ ψ(p) = Fπ(p)

(∫ p

π
xf(x)dx

∫ p

π (p− x)f(x)dx
− 1

)

=
tk
tr

− 1,

which leads to (16). In addition, Φ(p?) < Φ(π̄) = (ts −
tr)E(π |π ≤ π̄) ≤ tsπ̄ so the constraints in (15) are
satisfied at optimality.

10. REFERENCES
[1] Agmon Ben-Yehuda, O., Ben-Yehuda, M.,

Schuster, A., and Tsafrir, D. Deconstructing
Amazon EC2 spot instance pricing. ACM Trans. on
Economics and Computation 1, 3 (2013), 1–16.

[2] Amazon. EC2 spot instance, 2015. http://aws.
amazon.com/ec2/purchasing-options/spot-instances/.

[3] Ardagna, D., Panicucci, B., and Passacantando,
M. A game theoretic formulation of the service
provisioning problem in cloud systems. In Proc. of
WWW (2011), ACM, pp. 177–186.

[4] Armbrust, M., Fox, A., Griffith, R., Joseph,
A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al. A
view of cloud computing. Communications of the
ACM 53, 4 (2010), 50–58.

[5] Blum, A., Sandholm, T., and Zinkevich, M.
Online algorithms for market clearing. Journal of the
ACM (JACM) 53, 5 (2006), 845–879.

[6] Buyya, R., Yeo, C. S., and Venugopal, S.
Market-oriented cloud computing: Vision, hype, and
reality for delivering IT services as computing utilities.
In Proc. of IEEE HPCC (2008), IEEE, pp. 5–13.

[7] Common Crawl. Common Crawl Corpus. online at:
http://commoncrawl.org/ (2015).

[8] Dogar, F. R., Karagiannis, T., Ballani, H., and
Rowstron, A. Decentralized task-aware scheduling
for data center networks. In Proc. of ACM SIGCOMM
(2014).

[9] Fang, X., Misra, S., Xue, G., and Yang, D. Smart
grid – The new and improved power grid: A survey.
IEEE Communications Surveys & Tutorials 14, 4
(2012), 944–980.

[10] Feng, G., Garg, S., Buyya, R., and Li, W.
Revenue maximization using adaptive resource
provisioning in cloud computing environments. In
Proc. of ACM/IEEE Grid (2012), pp. 192–200.

[11] Friedman, E. J., and Parkes, D. C. Pricing WiFi
at Starbucks: Issues in online mechanism design. In
Proc. of ACM EC (2003), ACM, pp. 240–241.

[12] Guenter, B., Jain, N., and Williams, C.
Managing cost, performance, and reliability tradeoffs
for energy-aware server provisioning. In Proc. of IEEE
INFOCOM (2011), IEEE, pp. 1332–1340.

[13] Ha, S., Sen, S., Joe-Wong, C., Im, Y., and
Chiang, M. TUBE: time-dependent pricing for
mobile data. In Proc. of ACM SIGCOMM (2012).

[14] Jain, N., Menache, I., Naor, J. S., and Yaniv, J.
Near-optimal scheduling mechanisms for
deadline-sensitive jobs in large computing clusters.
ACM Trans. on Parallel Computing 2, 1 (2015), 3.

[15] Javadi, B., Thulasiram, R. K., and Buyya, R.
Statistical modeling of spot instance prices in public
cloud environments. In Proc. of IEEE/ACM UCC
(2011), IEEE/ACM, pp. 219–228.

[16] Jia, J., Zhang, Q., Zhang, Q., and Liu, M.
Revenue generation for truthful spectrum auction in
dynamic spectrum access. In Proc. of ACM MobiHoc
(2009), pp. 3–12.

[17] Jin, H., Wang, X., Wu, S., Di, S., and Shi, X.
Towards optimized fine-grained pricing of IaaS cloud
platform. IEEE Trans. on Cloud Computing (2014), to
appear.

[18] Juan, D.-C., Li, L., Peng, H.-K., Marculescu,
D., and Faloutsos, C. Beyond poisson: Modeling
inter-arrival time of requests in a datacenter. In
Advances in Knowledge Discovery and Data Mining.
Springer, 2014, pp. 198–209.

[19] Kang, L., and Parkes, D. C. A decentralized
auction framework to promote efficient resource
allocation in open computational grids. In Proc. Joint
Workshop on The Economics of Networked Systems
and Incentive-Based Computing (2007).

[20] Kutanoglu, E., and Wu, S. D. On combinatorial
auction and Lagrangean relaxation for distributed
resource scheduling. IIE Trans. 31, 9 (1999), 813–826.

[21] Lampe, U., Hans, R., Seliger, M., and Pauly, M.
Pricing in infrastructure clouds–an analytical and
empirical examination. In Association for Information
Systems Conference (2014).

[22] Lee, G., Chun, B.-G., and Katz, R. H.
Heterogeneity-aware resource allocation and
scheduling in the cloud. Proc. of HotCloud (2011), 1–5.

[23] Leonardi, E., Mellia, M., Neri, F., and
Ajmone Marsan, M. Bounds on average delays and
queue size averages and variances in input-queued
cell-based switches. In Proc. of IEEE INFOCOM
(2001), vol. 2, IEEE, pp. 1095–1103.

[24] MacKie-Mason, J., and Varian, H. Pricing the
Internet. In Public Access to the Internet, B. Kahin
and J. Keller, Eds. Prentice-Hall, Englewood Cliffs,
NJ, 1995.

[25] Menache, I., Ozdaglar, A., and Shimkin, N.
Socially optimal pricing of cloud computing resources.
In Proc. of VALUETOOLS (2011), ICST,
pp. 322–331.

[26] Nair, J., Subramanian, V. G., and Wierman, A.
On competitive provisioning of cloud services. ACM
SIGMETRICS Performance Evaluation Review 42, 2
(2014), 30–32.

[27] Ng, C., Parkes, D. C., and Seltzer, M. Virtual
worlds: Fast and strategyproof auctions for dynamic
resource allocation. In Proc. of ACM EC (2003),
ACM, pp. 238–239.

[28] Poola, D., Ramamohanarao, K., and Buyya, R.
Fault-tolerant workflow scheduling using spot
instances on clouds. Procedia Computer Science 29
(2014), 523–533.

[29] Porter, R. Mechanism design for online real-time
scheduling. In Proc. of ACM EC (2004), ACM,
pp. 61–70.

[30] Sen, S., Jin, Y., Guérin, R., and Hosanagar, K.
Modeling the dynamics of network technology
adoption and the role of converters. IEEE/ACM
Trans. on Networking 18, 6 (2010), 1793–1805.

[31] Teng, F., and Magoulès, F. A new game
theoretical resource allocation algorithm for cloud
computing. In Advances in Grid and Pervasive
Computing. Springer, 2010, pp. 321–330.

[32] Upadhyaya, P., Balazinska, M., and Suciu, D.
How to price shared optimizations in the cloud. Proc.
of the VLDB Endowment 5, 6 (2012), 562–573.

[33] Van den Bossche, R., Vanmechelen, K., and
Broeckhove, J. Cost-optimal scheduling in hybrid
IaaS clouds for deadline constrained workloads. In
Proc. of IEEE CLOUD (2010), IEEE, pp. 228–235.

[34] Wang, P., Qi, Y., Hui, D., Rao, L., and Liu, X.
Present or future: Optimal pricing for spot instances.
In Proc. of IEEE ICDCS (2013).

[35] Wang, Q., Ren, K., and Meng, X. When cloud
meets eBay: Towards effective pricing for cloud
computing. In Proc. of IEEE INFOCOM (2012),
IEEE, pp. 936–944.

[36] Wellman, M. P., MacKie-Mason, J. K., Reeves,
D. M., and Swaminathan, S. Exploring bidding
strategies for market-based scheduling. In Proc. of
ACM EC (2003), ACM, pp. 115–124.

[37] Yi, S., Andrzejak, A., and Kondo, D. Monetary
cost-aware checkpointing and migration on Amazon
cloud spot instances. IEEE Trans. on Services
Computing 5, 4 (2012), 512–524.

[38] Zhang, L., Li, Z., and Wu, C. Dynamic resource
provisioning in cloud computing: A randomized
auction approach. In Proc. of IEEE INFOCOM
(2014).

[39] Zhang, Q., Zhu, Q., and Boutaba, R. Dynamic
resource allocation for spot markets in cloud
computing environments. In Proc. of IEEE/ACM
UCC (2011), IEEE/ACM, pp. 178–185.

[40] Zhou, Y., and Wentzlaff, D. The sharing
architecture: sub-core configurability for IaaS clouds.
In Proc. of ACM ASPLOS (2014), ACM, pp. 559–574.

