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Abstract—As the U.S. mobile data market matures, Internet
service providers (ISPs) generally charge their users with some
variation on a quota-based data plan with overage charges.
Common variants include unlimited, prepaid, and usage-based
data plans. However, despite a recent flurry of research on
optimizing mobile data pricing, few works have considered how
these data plans affect users’ consumption behavior. In particular,
while users with such plans have a strong incentive to plan their
usage over the month, they also face uncertainty in their future
data usage needs that would make such planning difficult. In
this work, we develop a dynamic programming model of users’
consumption decisions over the month that takes this uncertainty
into account. We use this model to quantify which types of users
would benefit from different types of data plans, using these
conditions to extrapolate the optimal types of data plans that
ISPs should offer. Our theoretical findings are complemented by
numerical simulations on a dataset of user usage from a large
U.S. ISP. The results help mobile users to choose data plans that
maximize their utilities and ISPs to gain profit by understanding
their user behavior while choosing what data plans to offer.

I. INTRODUCTION

As the U.S. market for smartphones begins to saturate,
with more than 80% penetration [1], Internet service providers
(ISPs) appear to have converged on the types of mobile data
plans that they offer. In particular, most data plans offered
by major ISPs now enforce some version of a monthly data
quota with overage charges for users who go over the quota.
Common variants on this plan include unlimited data plans,
in which users pay a flat fee for an unlimited amount of
data usage, possibly with throttling after their usage reaches
a monthly limit [2]; prepaid data plans, in which users do
not have overage options but are cut off after reaching the
quota; and usage-based plans in which users pay in proportion
to their usage amounts. Yet, users are being offered more
freedom to switch between data plans: for instance, two-year
contracts were recently eliminated in the U.S. [3], with new
ISPs joining the market [4], [5]. These developments create a
need to understand how users should choose their data plans,
and which plans ISPs should offer so as to make a profit.

Some qualitative insights into users’ data plan choices are
straightforward–for instance, while an unlimited plan may be
attractive to heavy users with significant usage needs, lighter
users might be better served by a usage-based data plan that
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allows them to pay only for the data they consume. It is not
clear, however, how quota with overage plans fit into this
picture, nor do such insights quantify the exact conditions
under which users would prefer a certain type of data plan.
Answering this question would have implications not just for
users, but also for ISPs that aim to determine the specific
combination of plans to offer that can attract more users.

The presence of monthly quotas in many mobile data plans
makes determining users’ utilities from these data plans par-
ticularly difficult: in general, a user does not know in advance
exactly what her data needs will be during an upcoming
billing cycle. As a result she will consume data throughout
the month in a way that reflects this uncertainty, which will
impact her resulting utility. Thus, determining users’ utilities
from different data plans requires developing a model of
quota dynamics during the billing period in which the user
makes usage decisions today solely based on distributional
information regarding future needs for data.

In this work, we consider the problem of modeling user
usage decisions based on the pricing of a mobile data plan
and the utility that end users achieve by subscribing to it. At a
high level, our results can be viewed as quantifying how much
value a user assigns to the constraint imposed by a given data
cap. This insight can in turn be used by an ISP to develop
an optimal (i.e., profit-maximizing) set of data plans for its
population of users; we can then evaluate whether users and
ISPs would ever both prefer the same type of data plans. Our
research contributions in these directions are as follows:

Models of user utility that capture users’ usage decisions
over the month (Section III): Though any model of user
behavior is necessarily stylized, we can thus predict the actions
of a user who may try to “save up” her quota for days in which
her usage is more important. To do so, we suppose that a user
has a weighted utility function on both her evaluation of the
data consumption and cost on the data usage in each day. We
account for uncertainty in how this weight can change from
day to day by developing deterministic and stochastic models.

In Section III-A, we first consider the deterministic case in
which her utility for each day is known in advance. For this
case, we can obtain a solution in closed form, allowing us to
rigorously derive qualitative insights into user utilities and ISP
profit. In Section III-B we turn to the more realistic case in
which the weights for the utility function are drawn from a
distribution. We consider users with estimated utility making



decisions for the current day according to an estimate of how
much utility can be gained in the future. The optimization
for the stochastic case is complex and so we present a
detailed analysis on a number of special cases in Section III-C,
focusing particularly on comparing usage decisions in the
deterministic and stochastic cases.

Quantification of user utility, offering implications of
the optimal types of data plans that ISPs should offer
(Section IV): We use our usage dynamics findings to find the
optimal set of pricing plans offered by an ISP, given users’
estimated usage under each type of plan. In doing so, we
provide conditions under which users should choose each type
of offered data plan, so as to maximize their utilities. We
quantify the gap between the plans that maximize an ISP’s
revenue and those that maximize users’ utilities, and show that
under some conditions the same type of data plan maximizes
both ISP revenue and user utility.

Analysis on a real-world dataset (Section V): To examine
the findings from our usage dynamics models, we use a one-
month daily usage trace from a U.S. ISP to infer the parameters
that characterize each user’s usage behavior. By estimating
users’ utilities under different data plans, we can infer their
optimal data plan choices. We also show that our results can
be used by ISPs to decide whether to offer a new data plan:
on this dataset, the ISP should not offer a usage-based plan.

We present our conclusions in Section VI and match our
findings to trends in the mobile data market, demonstrating
the explanatory power of our model and suggesting possible
future directions for mobile data plans. All proofs can be found
in the appendix.

Our results can be applied in different ways. First, they
allow both a user and an ISP to determine how the user will
consume data over the billing cycle and also calculate the
most appropriate data plan for the user. Second, our results
could be utilized in the design of a smartphone app that
makes recommendations to users regarding which data plan
they should choose. After the plan is chosen the app can then
make recommendations as to how much data the user should
consume in the current day so as to maximize her eventual
utility. Lastly, using our methodology an ISP can examine
usage logs from their user population and use the results to
optimize the menu of data plans that it offers to its customers.

II. RELATED WORK

Previous works have studied the benefits of many variants
on today’s data plans that are currently deployed in a limited
context. For instance, some ISPs in the U.S. offer sponsored
data plans, where a third party content provider such as Netflix
or Hulu can subsidize users’ data consumption. Although users
need not pay for this traffic, the ISP can still gain revenue
by charging content providers instead [6], [7]. One can also
consider the temporal impact of sponsored data, e.g., if content
providers can sponsor different amounts of data at different
times of the day, thus even-ing out network traffic [8]. Other
works have examined the impact of data plans that combine
access to multiple cellular and WiFi networks, as Google’s

Project Fi [4] does. An economic analysis shows that such
plans can increase user utility and ISP profit [9], [10].

Little research, however, has been done on understanding
quota-based data plans, which remain the dominant type of
data pricing offered by U.S. ISPs today. Some works have
focused on rollover [11] or shared [12] aspects of such plans,
and others have considered the adoption of multiple service
plans for various user requirements [13], [14]. Still other works
have taken an empirical view: [15] models user dynamics for
calls and text messages by fitting models to a large dataset,
while [16] shows the influence of pricing on user usage and
ISP profit. Other studies have shown that users do in fact make
decisions based on their data quotas [17]. However, no work
to date has modeled and explored users’ data plan choices
in the context of the dynamics of user usage throughout the
month in the presence of data quotas and overage charges. We
address this gap in our work and consider the effects on user
usage, network traffic, and ISP profit.

III. MODELING USAGE DYNAMICS

To model the types of data plans commonly offered by ISPs,
we consider a monthly billing cycle with D days. The ISP
charges users a flat fee P for a monthly quota A MB of data,1

i.e., the data allowance within a month, with an overage fee
π $/MB for any data usage exceeding this monthly quota.
The combination (A,P, π) defines an ISP’s pricing policy; for
instance, (A = +∞, P > 0, π = 0) represents an unlimited
data plan, while data plans with (A = 0, P = 0, π > 0) adopt
usage-based pricing to charge users.

Given a pricing policy, we consider a utility-based model
for a set N of N users in the mobile network who need to
decide the amounts of data to consume in each day within a
billing cycle that maximize their utilities from the current day
until the end of the billing cycle. We define the state of each
user on each day of the cycle in terms of the amount of data
she has left in her quota and the number of days remaining
in the billing cycle. We work backwards from the end of the
billing cycle: at the beginning of the dth to last day of the
current billing cycle, i.e., after D−d days from the beginning
of the billing cycle, user i has an amount qi,d MB of leftover
data, leading to the state (qi,d, d).

To model the dynamics of users’ state variables, we let ai,d
denote the amount of data that user i consumes on the dth to
last day of her billing cycle, so that ai,d = qi,d − qi,d−1 and
qi,d = A−

∑D
t=d+1 ai,t. We note that qi,d ≤ 0 means the user

has used up her data quota and has consumed −qi,d overage
data by the (D − d)th day. Before the billing cycle is over,
each user i decides how much data to consume (ai,d) based
on her current state (qi,d, d). We use ~ai = {ai,t}Dt=1 to denote
a decision vector for each user i.

We suppose that users choose their usage so as to maximize
their overall utility over a month. We model the usage utility
from consuming ai,d ≥ 0 amount of data in the (D − d)th
day using a nondecreasing and concave α-fairness function

1We assume that ISPs measures usage using 1MB minimum units.



a1−αii,d /(1 − αi) with αi ∈ [0, 1) [7], [9].2 Users can incur
a monetary cost from consuming data: if the user consumes
more than her leftover data in the day, i.e., ai,d > qi,d, she will
need to pay the amount of π(ai,d−qi,d) overage fee to the ISP.
In addition, we suppose that users incur a time cost from data
consumption, as using mobile data generally requires them to
pay attention to their smartphones. This cost can be thought
of as an opportunity cost of using data instead of spending
time on other activities. (Without this cost then a user would
always consume their entire quota which is not realistic.) We
suppose that the amount of time that a user invests in using
data is proportional to the amount of data consumed, yielding
a cost of φiai,d, where φi > 0 is a linear scale of user i’s time
value on consuming 1MB of data.3 From the above discussion,
we can find user i’s utility function vi,d(ai,d) on the dth to
last day:4

vi,d=



ωi,da
1−αi
i,d

1−αi
−φiai,d, 0 ≤ai,d≤qi,d,

ωi,da
1−αi
i,d

1−αi
−π(ai,d−qi,d)−φiai,d, 0≤qi,d<ai,d,

ωi,da
1−αi
i,d

1−αi
−πai,d−φiai,d, qi,d<0≤ai,d,

(1a)

(1b)

(1c)

where the utility weights ωi,d > 0 encode the relative
importance of usage utility for different users on different
days. In (1), αi can also be viewed as an indicator of user
i’s cost sensitivity: cost-sensitive users with larger αi would
generally consume less data due to receiving a lower marginal
utility from their data usage, compared to users with a smaller
αi. Formally, we note that (1a) models the case of user i
having leftover data, while in (1b) and (1c), the user consumes
overage data: (1b) models the case in which users begin
incurring overage charges on the (D − d)th day, and (1c)
models the case in which users have already exceeded their
quotas before the (D − d)th day.

In the sections below, we find the usage patterns a?i,d
that maximize (1) over the month. We first suppose that the
weights ωi,d are deterministic (Section III-A), i.e., that they
are fixed and the user knows them in advance. This case would
correspond to users who are good at planning their usage in
advance, or whose usage is predictably consistent from month
to month. In the more realistic stochastic model (which we
consider in Section III-B) the weights ωi,d for each day are
drawn from a known distribution, but the realized values are
not known to the user until the beginning of the day.

A. User Usage Dynamics - Deterministic Model

In the deterministic case, each user decides her usage on
each day by maximizing the sum of utilities across the month

2As a special case, the usage utility function is log ai,d when αi = 1.
3This term is meant to approximate users’ overall time costs over a day,

assuming that the time spent consuming data would be proportional to the
amount of data usage. To model different users’ different opportunity costs
for their time, we allow φi to be user-specific.

4Since P is a fixed fee that users pay for the quota upfront and will not
affect their usage, we need not consider it in maximizing users’ utility.

subject to the sequence of state transitions:

maximize
{ai,t}Dt=1

∑D
t=1 vi,t(ai,t)

subject to qi,t−1 = qi,t − ai,t, t = D, . . . , 1.
(2)

Letting V (qi,d, d) be the maximum utility that user i can
achieve from day d to the end of the billing cycle if she
has qi,d amount of leftover data at the beginning of the day,
a transition from (qi,d, d) to (qi,d−1, d − 1) brings user i a
utility of vi,d(ai,d) as given in (1). By applying the principle
of dynamic programming, (2) is equivalent to the following
Bellman equations [15], [18]:

V ?(qi,d, d)=max
ai,d

{
vi,d(ai,d) + V ?(qi,d−1, d− 1)

}
, (3)

with qi,D = A. This model captures the dependency of ai,d on
this user’s current leftover and future usage for the remaining
d days in this billing cycle. Intuitively, a user would wish to
choose how much data to use by estimating the maximum
utility that she would achieve in the future. We can find
the analytical form for V ?(qi,d, d) by applying mathematical
induction to (3), leading us to a user’s optimal data usage:

Proposition 1: When all ωi,t are deterministically known in
advance, user i’s optimal usage by solving (2) is given by:

a?i,d=



(ωi,d/φi)
1
αi , qi,d>

d∑
t=1

(ωi,t/φi)
1
αi ,

(
ωi,d/(π+φi)

) 1
αi, qi,d<

d∑
t=1

(
ωi,t/(π+φi)

) 1
αi ,

qi,d

/ d∑
t=1

(ωi,t
ωi,d

) 1
αi
, otherwise.

(4a)

(4b)

(4c)

We can build on Proposition 1’s results to write users’ deci-
sions in terms of parameters known at the beginning of the
month, allowing users to plan their optimal usage in advance:

Corollary 1: When all ωi,t are deterministically known at
the start of the month, user i’s optimal usage on the dth day
counting from last day of the billing cycle, i.e., a?i,d in (4),
can be written in terms of A and π:

a?i,d=



(ωi,d/φi)
1
αi , A>

D∑
t=1

(ωi,t/φi)
1
αi ,

(
ωi,d/(π+φi)

) 1
αi , A<

D∑
t=1

(
ωi,t/(π+φi)

) 1
αi ,

ω
1
αi

i,dA
/ D∑
t=1

ω
1
αi
i,t , otherwise.

(5a)

(5b)

(5c)

Based on (5), Figure 1 illustrates user i’s usage in the dth
day counting from the last day of the billing cycle with varying
ωi,d and αi. In Figure 1(a), we fix all ωi,t for t 6= d and
calculate a?i,d for different ωi,d; and in Figure 1(b), we fix the
ωi,t at different values and plot the usage in terms of αi for
large, medium, and small ωi,d, respectively. We see that (5)
is continuous but not continuously differentiable, with breaks
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Fig. 1. User usage dynamics for the deterministic model with varying ωi,d
and αi in a billing cycle of D = 30 days, where the user is offered A =
1000MB data and any usage above that are charged at π = 0.005$/MB.
We suppose this user’s time cost is φi = 0.008$/MB. (a) α = 0.4, ωi,t =
0.027, ∀t 6= d; (b) {ωi,d}Dd=1 = {0.02, 0.021, . . . , 0.049},∀t.

divided by the dotted lines in Figure 1 corresponding to the
three usage cases below:

1) Data leftover, i.e., A >
∑D
t=1(ωi,t/φi)

1/αi in (5a):
These light users can fulfill their demands without incurring
overage charges, as shown by the blue solid curves in Figure 1.
This case corresponds to users that are more sensitive to their
time costs, i.e., small ωi,t and large αi. If the ISP offers
unlimited data plans with A→ +∞, all users would fall under
this case, consuming (ωi,t/φi)

1/αi of usage per day.

2) Data overage, i.e., A <
∑D
t=1

(
ωi,t/(π + φi)

)1/αi in
(5b): These heavy users would reduce their daily usage from(
ωi,t/π

)1/αi to
(
ωi,t/(π+ φi)

)1/αi due to overage costs, but
still incur an overage fee due to small quotas A. As for light
users, their usage increases with ωi,d but decreases with αi
(the dash-dot red curves in Figure 1). If the ISP offers usage-
based plans with A = 0, all users would fall into this case.

3) Data depletion, i.e.,
∑D
t=1

(
ωi,t/(π + φi)

)1/αi ≤ A ≤∑D
t=1(ωi,t/φi)

1/αi in (5c): These moderate users would
incur overage charges if they consumed the maximum usage
amounts (ωi,t/φi)

1/αi as in the data leftover case. However,
unlike the data overage case, their desired usage is small
enough (

∑D
t=1

(
ωi,t/(π + φi)

)1/αi ≤ A) that they would
prefer to limit their usage to the quota. Thus, they proportion-
ally allocate their daily usage according to the factor ω1/αi

i,d ,
normalized such that they would use up their data quotas by
the end of the billing cycle. Fixing αi and ωi,t,∀t 6= d, the
user’s optimal usage increases modestly with ωi,d, and can
either increase or decrease with αi, as shown by the dashed
yellow curves in Figure 1.

Although we have derived the optimal decisions on user
usage with ωi,d known in advance, most users are not aware
of how they will use the data in the future. We use a stochastic
model to capture this uncertainty.

B. User Usage Dynamics - Stochastic Models

If the ωi,t are not known in advance, we model their
decisions as a stochastic process with weights ωi,t drawn from
known distribution. In Section VI, we will discuss how an ISP
can estimate such a distribution. We first present the general
case and then illustrate our findings with the tractable special
case of prepaid data plans.

The user’s objective in choosing her daily usage is to
maximize her expected sum of utilities over the month:

maximize
{ãi,t}Dt=1

∑D
t=1 Et (vi,t(ãi,t))

subject to q̃i,t−1 = q̃i,t − ãi,t, t = D, . . . , 1.
(6)

where we suppose that ωi,d for each user i on the last
dth day is independently drawn from a known distribution
with probability density function (PDF) fi,d(ω),5 and Et(·)
calculates the expectation over the stochastic ωi,d for future
days d, i.e., t ≥ d. We use ãi,d and q̃i,d, respectively, to denote
user usage and leftover quota under uncertainty, as opposed
to the deterministic case. As in (3) for the deterministic case,
we can write down the Bellman equations for (6) as:

V ?(q̃i,d, d)=max
ãi,d

{
vi,d(ãi,d) + Ed−1

(
V ?(q̃i,d−1, d−1)

)}
,

(7)
where V ?(q̃i,d, d) is the maximum utility that the user can
obtain in state (q̃i,d, d) considering the future expected utility.
In general, this dynamic programming under uncertainty as
in (6) is not analytically tractable, as the optimization of the
current state requires us to consider all possible combinations
of future state transitions. However, (7) enables us to find the
following condition on the optimal solution of (6):

Proposition 2: When the ωi,t are random variables, user i’s
optimal usage ã?i,d from solving (6) satisfies

∂vi,d(ãi,d)

∂ãi,d

∣∣∣∣∣
ã?i,d

= Ed−1

∂vi,d−1(ãi,d−1)
∂ãi,d−1

∣∣∣∣∣
ã?i,d−1

 . (8)

Since q̃i,d−1 = q̃i,d − ãi,d, (8) is derived from the first-order
condition of (7). Proposition 2 implies that at the optimal
solution, the user’s marginal increase in her daily utility on the
current day (∂vi,d(ãi,d)/∂ãi,d) equals the expected marginal
utility increase in the next day, i.e., users should experience
the same gain in utility every day. Leveraging the result in
Proposition 2, we further characterize users’ optimal usage:

Corollary 2: When {ωi,t, 1 ≤ t ≤ D} are random variables,
user i’s optimal usage on the dth last day, i.e., ã?i,d satisfying
(8), can be extended as

ã?i,d=

{(
ωi,d/(π+φi)

) 1
αi , q̃i,d<

(
ωi,d/(π+φi)

) 1
αi ,

η(ωi,d, q̃i,d), otherwise,
(9a)
(9b)

with η(ωi,d, q̃i,d) ∈
{
ãi,d

∣∣ ∂vi,d(ãi,d)/∂ãi,d =
Ed−1

(
(∂vi,d−1(ãi,d−1)/∂ãi,d−1)

∣∣
ã?i,d−1

)}
satisfying

ω
1
αi

i,d q̃i,d/
(
ω

1
αi

i,d + E
1
αi

d−1
)
≤ η(ωi,d, q̃i,d) ≤ (ωi,d/φi)

1
αi , (10)

where Ed = Ed
(
(ω

1/αi
i,d +E

1/αi
d−1 )

αi
)

with E1 = E1(ωi,1), and(
ωi,1(π + φi)

)1/αi ≤ η(ωi,1, q̃i,1) ≤ (ωi,1/φi)
1/αi .

Specifically, a closed-form solution can be mathematically
derived in the following special case.

5Users can learn fi,d(ω) from the daily usage in previous months as it is
reasonable to assume that each user’s usage establishes a unique pattern.



Corollary 3: If φi = 0 and π = +∞, i.e., a prepaid data
plan with no time cost, then the optimal usage satisfies

ã?i,d =
ω
1/αi
i,d q̃i,d

ω
1/αi
i,d + E

1/αi
d−1

, (11)

where Ed is defined in Corollary 2. If αi = 1, this user usage
satisfies ã?i,d ≤ q̃i,d/d.

C. Comparing the Deterministic and Stochastic Models

We can further elaborate Corollary 3’s results by considering
the special cases of different distributions for ωi,d, where
E(ωi,d) = µ, φi = 0, π = +∞ and αi = 1. In particular
we wish to compare the optimal usage amounts in (11) to
those in the deterministic case (5). From the result in (5), we
first state the optimal usage for the deterministic case, i.e., the
distribution of ωi,d is a delta distribution centered at µ:

Example 1: If Pr(ωi,d = µ) = 1, then a?i,d = a?i,d−1 =
qi,d/d and V ?(qi,d) = dµ log(qi,d/d).
In the stochastic case, the user would conserve her quota for
the days with a high value of ωi,d.

Example 2: Consider the stochastic case in which the ωi,d
are i.i.d. with E(ωd) = µ. Then a?i,d =

ωi,dqi,d
ωi,d+(d−1)µ and,

V ?(qi,d, d) = dµ log qi,d + E
(
(d− 1)ωi,d logωi,d

)
+
∑d−1
i=1 iµ log(iµ)−

∑d−1
i=1 E

(
(ωi,d + iµ) log(ωi,d + iµ)

)
.

Consider the specific example in which D = 30 days, the
quota A = 1000MB and µ = 0.03. For the deterministic
case where ωi,d is always µ the optimal utility is V ? = 3.16.
However if Pr(ωi,d = K) = 1

K and Pr(ωi,d = 0) = K−1
K , then

for K = 10 the optimal utility is V ? = 4.86. This additional
utility arises from the fact that the user can conserve quota on
low utility days until it is most needed on high utility days.

We conclude with a more general stochastic example.
Figures 2(a) and 2(c) show users’ expected monthly usage
if their ωi,d follow the same distribution and they are i.i.d.
for all days. We consider two distribution types: a uniform
distribution in Figure 2(a), e.g., if users’ usage may vary
significantly from day to day; and a Pareto distribution in
Figure 2(c), corresponding to small ωi,d for most days but
occasional large values of ωi,d. For instance, some users may
derive greater utility from consuming data while traveling.

We can observe from both figures that when αi is suffi-
ciently small, so that the data quota A < DEd

(
(ωi,d/(π +

φi))
1/αi

)
, heavy users limit their usage to

∑D
t=1 a

?
i,t =

DEd
(
(ωi,d/(π + φi))

1/αi
)
, the lower bound in the figures,

but still consume overage data. When αi is large, so that
A > DEd

(
(ωi,d/φi)

1/αi
)
, light users would consume the

maximum usage
∑D
t=1 a

?
i,t = DEd

(
(ωi,d/φi)

1/αi
)
, i.e., the

upper bound in the figure, with leftover data at the end of
the billing cycle. When DEd

(
(ωi,d/(π + φi))

1/αi
)
≤ A ≤

DEd
(
(ωi,d/φi)

1/αi
)
, users’ monthly usage remains very close

to the quota as in the deterministic model, though this behavior
diverges slightly when ωi,d is drawn from a Pareto distribution.
Since the Pareto distribution allows high values of ωi,d to
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Fig. 2. User usage dynamics for the stochastic model with varying αi in a
billing cycle of D = 30 days, where users are offered A = 1000MB data and
overage fee is π = 0.015$/MB. We suppose φi = 0.006$/MB. In (a) and
(b), ωi,d follows a uniform distribution with PDF f(ω) = 1

ω̄−ω (ω̄ = 0.02

and ω = 0.04). In (c) and (d), ωi,d follows a Pareto distribution with PDF
f(ω) =

γωγm
ωγ+1 (γ = 3.2 and ωm = 0.01). The upper bound and lower bound

plot DE
(
(ωi,d/φi)

1/αi
)

and DE
(
(ωi,d/(π + φi))

1/αi
)

respectively.

occur, users would limit their usage so as to hedge against
the risk of a high utility weight in future days of the month.

In Figures 2(b) and 2(d), we plot the expected user usage
in each day of the billing cycle, covering the cases of overage
consumption (αi = 0.1), data depletion (αi = 0.14), and
leftover (αi = 0.58). We observe a linear increase in the
overage and leftover cases, due to ωi,d following the same
distribution everyday. We do observe from the middle curve
in Figure 2(d), that user usage increase is slightly lower at the
beginning of the month but more aggressive at the end until
her usage reaches the given quota, showing that users reserve
data by taking into account the future uncertainty.

Overall, we observe from Figure 2 that the three cases of
data overage, depletion, and leftover derived in Corollary 1 for
different quotas A with the deterministic model still approxi-
mately hold for the stochastic model. In the next section, we
further discuss user utility and ISP profit with different pricing
policies. For simplicity we focus on the deterministic model
since it is more tractable. However, using the results from the
previous section it is feasible to carry out a similar analysis
for the stochastic model.

IV. IMPACTS OF PRICING POLICY

Given user usage under a pricing policy (P,A, π), we now
turn to analyzing the user and ISP benefits. In doing so, we
are able to derive conditions under which both users and ISPs
are better off under the same type of data plan.

A. User Utility

Leveraging the results that we derived in Corollary 1, we
first find the total monthly utility that a given user i receives



under a pricing policy (P,A, π):

U(~a?i )=



D∑
t=1

αi
1−αi

ω
1
αi
i,t φ

1− 1
αi

i −P, A>
D∑
t=1

(ωi,t/φi)
1
αi,

D∑
t=1

αi
1−αi

ω
1
αi
i,t (π+φi)

1− 1
αi + πA− P,

A<

D∑
t=1

(
ωi,t/(π+φi)

) 1
αi,(

D∑
t=1

ω
1
αi
i,t

)αi
A1−αi

1−αi
−φiA−P, otherwise.

(12a)

(12b)

(12c)

For (P ∈ R+, A ∈ R+, π ∈ R+), (12) gives the user utility
under a quota with overage data plan. We can observe that
(12) is continuously decreasing with A, meaning that capping
user usage harms their utility; intuitively, this would be the
case as a lower cap would make it more likely for users to
incur overage charges. We next analyze specific variations of
(12) corresponding to commonly offered data plans.

1) Unlimited data plans (A = +∞, P > 0, π = 0): All
users with unlimited data plans fall into the conditions of
(12a), i.e., users would always consume the maximum possible
amount a?i,d = (ωi,d/φi)

1/αi . Thus, (12) can be reduced to

Uu(~a
?
i ) =

∑D
t=1

αi
1−αiω

1
αi
i,t φ

1− 1
αi

i − P for user utility with
unlimited data plans. Due to rapid increases in user demand
for mobile data, many alternatives to unlimited data plans have
been offered that attempt to penalize excessive amounts of user
usage by either raising the price or capping users’ data.

2) Usage-based data plans (A = 0, P = 0, π > 0):
Under these “pay-as-you-go” plans, users only pay for the
usage volume at a unit price π > 0. By substituting A = 0
and P = 0 into (12), we find user utility with usage-based

data plans: Us(~a?i ) =
∑D
t=1

αi
1−αiω

1
αi
i,t (π + φi)

1− 1
αi . Thus, all

users’ data usage are reduced by a factor of
(
φi/(π+φi)

)1/αi
as compared to unlimited data plans, though ideally, the ISP
may only want to bring down the usage of heavy users.

3) Prepaid data plans (A > 0, P > 0, π = +∞):
Under these plans, users’ monthly data usage are forced
below a given quota A. With no opportunity to pur-
chase overage data, user utility in this case can be repre-
sented by (12a) or (12c): if A >

∑D
t=1(ωi,t/φi)

1/αi , then

Up(~a
?
i ) =

∑D
t=1

αi
1−αiω

1
αi
i,t φ

1− 1
αi

i − P ; otherwise, Up(~a?i ) =(∑D
t=1 ω

1/αi
i,t

)αi A1−αi

1−αi − φiA − P . Thus, heavy users are
primarily affected, who are more likely to exceed their quotas.

Given the above characterization of users’ utilities under
different types of data plans, we can now characterize which
users benefit the most from each type of data plan:

Proposition 3: Suppose all data plans offer the same quota
A and price P , with A < +∞ and P > 0. Then users always
derive more utility from an unlimited data plan compared to
a quota-with-overage plan, which yields a higher utility than
a prepaid plan: Uu(~a?i ) ≥ U(~a?i ) ≥ Up(~a?i ). Depending on P ,

usage-based data plans may realize higher or lower utilities
than any of the three other plans.

The details of these relationships under different conditions
on P and A is listed in Table II of the appendix. As Uu(~a?i )
is always at least as large as U(~a?i ) and Up(~a?i ), users prefer
the freedom of not having overage charges with unlimited
compared to prepaid plans, assuming the same flat-fee pay-
ments P . Users also benefit from the option of consuming
overage data, compared to prepaid data plans without this
option (U(~a?i ) ≥ Up(~a

?
i )). Usage-based data plans yield

higher utilities than unlimited or prepaid plans if the quota
fee P is large: usage-based data plans are attractive to users
when they are charged too much upfront.

B. ISP Profit

To analyze ISP profit, we suppose that the ISP incurs a
linear operational cost σ ∈ (0,min{P/A, π}) of handling data
traffic [10], [19]. Since ISP profit is driven by user demands,
we divide users into three subsets according to their usage
volume, as in Sections III-A1–III-A3:
• Light users with small demands: NS =

{
i ∈

N |A >
∑D
t=1(ωi,t/φi)

1/αi}. Light users would not exceed
the monthly quota, paying no overage fees. These users each
pay the quota fee P for a usage amount

∑D
t=1(ωi,t/φi)

1/αi .
• Moderate users with medium demands: NM = {i ∈
N |

∑D
t=1(ωi,t/(π + φi))

1/αi ≤ A ≤
∑D
t=1(ωi,t/φi)

1/αi}.
Like the light users, moderate users also consume no overage
data, but they use up their entire monthly quota, so revenue
from each of these users remains P with a traffic cost σA.
• Heavy users with large demands: NL = {i ∈ N |A <∑D
t=1(ωi,t/(π+φi))

1/αi}. Heavy users, whose monthly usage
exceeds their quotas, not only need to pay overage fees of
π
(∑D

t=1(ωi,t/(π + φi))
1/αi − A) in total, but also yield a

larger traffic cost σ
∑D
t=1(ωi,t/(π + φi))

1/αi for their ISPs.
We note that the division of users is relative to the quota A

set by the ISP. In general, the ISP receives the profit

R(A,P, π) =
∑
i∈NS

(
P−σ

D∑
t=1

(ωi,t
φi

) 1
αi

)
+NM (P−σA)

+
∑
i∈NL

(
P + π

( D∑
t=1

( ωi,t
π+φi

) 1
αi−A

)
−σ

D∑
t=1

( ωi,t
π+φi

) 1
αi

)
(13)

We now quantify this expression if the ISP only offers unlim-
ited, usage-based, and prepaid data plans:

1) Unlimited data plans (A = +∞, P > 0, π = 0): In this
case, all users are “light” users relative to A, so NS = N . We
find that the ISP profit is given by Ru(A,P, π) =

∑
i∈N (P −

σ
∑D
t=1(ωi,t/φi)

1/αi). A possible reason for ISPs’ elimination
of unlimited data plans could be the increased network traffic
shrinking their profit or even leading to negative profit, i.e.,
mathematically NP < σ

∑
i∈N

∑D
t=1(ωi,t/φi)

1/αi .
2) Usage-based data plans (A = 0, P = 0, π > 0):

In this case, all users would be “heavy” users relative to
A = 0, so NL = N . We then find ISP profit Rs(A,P, π) =



(π−σ)
∑
i∈N

∑D
t=1(ωi,t/(π+φi))

1/αi . Since the overall user
usage is lower compared to unlimited data plans, the ISP may
earn more revenue from offering unlimited plans.

3) Prepaid data plans (A > 0, P > 0, π = +∞): In pre-
paid data plans, each user in NM ∪NL contributes an amount
P−σA to ISP profit with no overage consumption. Therefore,
ISP profit by offering prepaid data plans is Rp(A,P, π) =∑
i∈NS (P − σ

∑D
t=1(ωi,t/φi)

1/αi) + (NM +NL)(P − σA).
We also compare the profit that the ISP would gain from

each type of data plan:

Proposition 4: Suppose all data plans offer the same quota
A charged at the same P if A < +∞ and P > 0.
ISP profit with offering unlimited data plans Ru(A,P, π),
prepaid data plans Rp(A,P, π), and quota with overage data
plans R(A,P, π) follows the relationship: R(A,P, π) ≥
Rp(A,P, π) ≥ Ru(A,P, π). Depending on P , ISPs may gain
higher or lower profit with usage-based data plans than any of
the three other data plans.

We also elaborate the relationship of ISP profit under different
data plans in Table III in the appendix. In general, users benefit
the most when the ISPs make the least profit–for instance,
users gain more utility from unlimited compared to prepaid
data plans, but ISPs gain less profit from unlimited compared
to prepaid plans (cf. Proposition 3). However, both the users
and the ISP benefit more from quota with overage data plans
compared to prepaid data plans. Moreover, as we show in
Section V-A, in some cases quota with overage plans offer the
same user utility as unlimited plans and ISP profit as prepaid
plans, allowing both users and ISPs to benefit the most from
the same type of data plan.

V. EXPERIMENTS

A. Numerical Examples

We now use numerical examples in Figures 3 and 4 to
compare the user utilities and ISP profit under different pricing
policies, as analyzed in Propositions 3 and 4, respectively. In
these figures, we vary the quota offered for the prepaid and
quota with overage plans. Both user utilities and ISP profit
under unlimited data plans and usage-based data plans are
horizontal lines in all figures, since users are either offered
infinite quota or no quota in these two types of data plans,
i.e., their usage are not affected by the amount of quota. We
find that at a large range of possible data quotas A, many
data plans give the same utilities or profits, allowing us to
find areas where a single data plan maximizes both ISP profit
and user utility.

Figure 3 shows user utilities with the four data plans
discussed in Section IV-A, illustrating Proposition 3. The
received utilities with prepaid and quota with overage data
plans are similar, becoming closer to each other as the
quota increases and taking the same values when the quota
exceeds

∑D
t=1

(
ωi,t/(π + φi)

)1/αi (illustrated by the first
vertical dotted line in the figures): at these quotas, having
overage data does not affect user utility as the amount of
quota can satisfy this user’s desired monthly usage. As the

offered quota approaches
∑D
t=1(ωi,t/φi)

1/αi (illustrated by
the second vertical dotted line in the figures), i.e., the user
is offered more than enough data, both plans reach the utility
achieved with unlimited data plans. As the flat fee P increases
from Figure 3(a), 3(b), 3(c) to 3(d), we can see that usage-
based plans move from providing the least to the most utility.
Matching this observation to real-life data plans, we notice
that most overage fees are higher than the flat fee per unit of
quota, i.e., π > P/A. If this relationship is reversed and P is
too expensive, users may defect to a usage-based data plan to
avoid this fee.

Figure 4 visualizes the ISP profit results in Proposition 4.
Unlike the small gap between user utilities with prepaid data
plans and the quota with overage data plans, the latter yields
much higher profits for the ISP than the former. This gap
is gradually reduced as the quota increases and eventually
becomes zero after NL = 0 (i.e., there are no more heavy
users consuming overage data, illustrated by the first vertical
dotted line in the figures). However, the profit gap between
prepaid data plans and unlimited data plans is so small as to
be invisible without zooming into Figure 4(c). Likewise, these
two types of data plans yield the same profit when the ISP
offers enough data to its user, i.e., NM = NL = 0 (illustrated
by the second vertical dotted line in the figures). Opposite
to user utility, ISP profit with usage-based data plans moves
from the highest to lowest as the flat fee P increases from
Figure 4(a), 4(b), 4(c) to 4(d).

Unlike user utility, ISP profit decreases with the quota
amount. Thus, for most combinations of A and P , users’ and
their ISPs’ benefits with different data plans conflict, reflected
by the reversed orders of user utility and ISP profit. However,
we do observe that if the ISP offers enough data and charges
users at a reasonable price, they both prefer the same type
of data plan, such as when the quota exceeds 12.44GB in
Figures 3(c) and 4(d).

B. Choosing Which Plans to Offer

We now apply our analysis to a real-world usage trace from
13 mobile users of a U.S. ISP for one billing cycle. For each
user in this dataset, we have the user’s data plan information
(monthly quota and flat fee for the quota), usage per day, and
date of the usage from February 1 to March 2 in 2013. The
users in the dataset subscribe to either an unlimited data plan
at 30$, or a quota with overage data plan at 20$ for 1GB
of mobile data. In 2013, this ISP charged users an overage
fee π = 20$GB, and it had not throttled user data when they
run over their quota. We first show that some users chose
a suboptimal data plan, and then evaluate whether this ISP
should offer a new, usage-based data plan.

To compute user utility and ISP profit with different data
plans from the current offering, we need to learn ωi,d of each
day d, φi, and αi for each user. We refer to the appendix for
the method of this parameter estimation. We show each user’s
estimated φ̂i and α̂i in Figure 5 and show their monthly usage
by the sizes of the markers. Users with a 1GB quota who
limit their usage below 1GB either have higher φ̂i or higher
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(b) P = 1.2$/GB.
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Fig. 3. Comparison of user utility under different pricing policies with varying flat fee P and monthly data quota A in a billing cycle of D = 30 days. We
set π = 0.015$/MB, and suppose this user has φi = 0.021$/MB αi = 0.38, and ωi,d = 0.08 for all d.
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Fig. 4. Comparison of ISP profit under different pricing policies with varying flat fee P and monthly data quota A. All parameter settings are the same
as in Figure 3. In addition, we suppose there are N = 100 users subscribing to the ISP, where {αi}Di=1 = {0.4, 0.3983, . . . , 0.23}, and {ωi,d}Di=1 =
{0.7, 0.701, . . . , 0.8} for each user i for all d. The traffic maintenance cost for the ISP is set to σ = 10−6$/MB.
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Fig. 5. Estimated α̂i and φ̂i for 13 users. Marker sizes are proportional to
users’ monthly usage.

α̂i, meaning they either have a high time opportunity cost for
mobile data usage or are very cost-sensitive. We shall pay
more attention to the heterogeneity of users with unlimited
data plans (marked with green circles): the largest data usage
is among users with the unlimited data plan, but there is one
unlimited user with high time cost (φ̂i = 1) and thus low
usage. Thus, we find that users may not fully understand their
own usage, and may then choose the wrong data plans for
themselves.

Depending on the φ̂i and α̂i that we obtained by learning
users’ usage for each of them, we estimate user utility and ISP
profit from each user under three different types of data plans,
including the unlimited data plan and quota with overage data
plan that the ISP was offering, as well as an extra usage-based
data plan with π = 20$/GB. Table I lists four representative
users’ usage and utilities achieved under these data plans
as well as ISP profit from each of them, assuming a traffic
maintenance cost σ = 0.1$/GB. We extend Table I to the same
set of results for all 13 users in the appendix. User 1 is the
heaviest in our dataset, i.e., the largest green circle in Figure 5:
her usage is well aligned with her current data plan, since she
would be charged much more in other data plans, dragging
down her utility. Clearly, unlimited data plans benefit heavy
users more. There are also users like user 2, whose usage is
relatively higher than the quota but not ultra-high like user 1:
switching to other data plans only slightly increases her utility.
However, light users, like user 3, receive a higher utility by

staying in the quota with overage data plan, as compared to
the unlimited data plan. If user 3 could choose a usage-based
data plan, she could receive an even higher utility. Thus, usage-
based data plans are suitable for light users, as they may waste
too much leftover data under prepaid data plans. Although
user 4’s usage could be higher than 1GB under the unlimited
data plan, she can limit it to the quota and achieve a better
utility under the quota with overage plan. Thus, users with
desired usage near the quota should choose the quota with
overage data plan.

We also calculate ISP profit if all 13 users subscribe to the
unlimited data plan, quota with overage data plan, or usage-
based data plans: they are 384.14$, 454.73$, and 357.10$,
respectively. We thus see that the ISP should not offer a usage-
based data plan.

Finally, Figure 6 shows the average user utility and ISP
profit while varying the quota A offered by the ISP, assuming
the flat fee for the quota is set to P = 0.02$/MB×A and
users subscribe to the data plans that lead them to the highest
utility. We find that the ISP’s profit-maximizing data quota is
1.5GB. As we can expect, user utility decreases as ISP profit
increases. When the quota exceeds 1.5GB, the flat fee P for
the quota with overage data plan exceeds that for the unlimited
data plan, users all choose the unlimited data plan. However,
we note that this profit is based only on the current set of
users. We do not model new users subscribing to the ISP if
they are attracted by new data plans, or users leaving the ISP
for another provider. Thus, we leave as an open question the
effect of competition with other ISPs on ISPs’ optimal data
plans.

VI. DISCUSSION AND CONCLUSIONS

In this work, we use dynamic programming to introduce
the first model of users’ data consumption decisions in the
presence of a monthly quota. Though our model allows us
to rigorously derive conditions under which users benefit



TABLE I
COMPARISON OF USER UTILITY AND ISP PROFIT IF USERS SWITCH TO A DIFFERENT DATA PLAN.

Current Monthly usage (MB) User utility ISP profit ($)
data plan Unlimited Quota Usage-based Unlimited Quota Usage-based Unlimited Quota Usage-based

User 1 Unlimited 10628.97 9459.76 9459.76 6632.52 6462.03 6462.03 29.34 188.25 188.25
User 2 Unlimited 1379.85 1314.72 1314.72 2164.49 2167.55 2167.55 29.78 26.16 26.16
User 3 Quota 574.33 574.33 561.94 2292.20 2302.20 2310.83 29.77 19.94 11.18
User 4 Quota 1104.56 1000.00 976.03 897.80 907.00 907.04 29.91 19.90 19.42
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Fig. 6. Estimated user utility and ISP profit with varying quota.

from different types of data plans, it–like any model of user
behavior–is inherently stylized, and may not reflect the reality
of user actions. Thus, to conclude the paper we first discuss
some ways to extend these limitations before discussing the
implications of our findings on mobile data markets and
pointing towards promising directions of future work.

Modeling user behavior. In practice, users would not
explicitly optimize their usage according to our dynamic
program, but they might subconsciously trade-off data con-
sumption today with saving data for the future. Empirical
evidence suggests that users do engage in such planning [17],
though in Section V-B we see that users do not always choose
their optimal data plans. We argue, however, that dynamic
programming provides a convenient approximation to this user
behavior and allows us to provide qualitative insights into how
ISPs should optimize their data plan offerings.

Parameter estimation. ISPs can use historical data on their
users’ data consumption amounts over several months to infer
the parameters of users’ utility models. In Section V, we utilize
some practical methods for our numerical experiments on one
month of user data. It is unlikely that ISPs would obtain exact
estimates (indeed, users’ true utilities may not always follow
an α-fair utility function). However, the ISPs’ decisions on
which data plans to offer are robust to changes in model
parameters, as the user behavior captured by different model
parameters generally preserves the same pattern.

Implications of our work. Cellular data usage has greatly
increased over the past years due to better network infras-
tructure and a wider range of data-consuming applications,
leading to larger ω in user utility. We find that users prefer
unlimited rather than usage-based data plans, which may
partially explain why AT&T and Verizon have recently offered
unlimited data plans again [2]. However, these plans throttle
usage after a threshold quota, making them in effect a softer
version of prepaid data plans. Since light users may prefer
usage-based data plans, we conjecture that ISPs may start to
offer such plans in an effort to attract light users. Google Fi [4]
represents a step in this direction.

Future research. This work represents a first attempt to
model users’ data usage dynamics under a monthly quota.
Future models could be made more accurate by taking into

account the correlation in model parameters and known period-
icity in usage data volumes, e.g., higher data consumption on
weekends compared to weekdays. One could also expand the
types of data plans considered to reason about how new types
of pricing like sponsored data would affect ISPs’ incentives
for offering different data plans. Our usage dynamics models
could then be used to derive optimal sponsoring algorithms.
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APPENDIX

A. Parameter Inference for A Real-world Dataset

We introduce the parameter estimation for the dataset that
we described in Sectoin V-B. This parameter estimation is
based on our result in (4). We find that users in real-life either
have leftover or consume overage, i.e., data depletion is not
observed in our dataset. We also observe that most users do
not exceed their quota, but overage consumption did happen
for three of them. If we would have user usage for several
months with some months of data leftover and some of data
overage, we can divide the log of user i into two subsets:
one subset of all users’ daily usage in the months without
overage usage, forming a cumulative density function (CDF)
F
w/o
i (aw/o) of all observed daily usage aw/o in these months,

and the other subset of all observed daily usage aw in the
months with overage usage, forming the corresponding CDF
Fwi (aw). Assuming ωi,d follow a distribution with CDF F̂i(ω)
that we can either assume a distribution that visually match
the observation or learn from kernel density estimation, we
first obtain φ̂i and α̂i by solving the following optimization
problem:

minimize
αi,φi,γ

‖F̂i(φiaw/oαi)− F
w/o
i (aw/o)‖2

+‖F̂i((π + φi)aw
αi)− Fwi (aw)‖2,

(14)

where γ is a group of parameters to shape the distribution
F̂i(ω). Then, we can calculate ω̂i,d = φ̂ia

α̂i
i,d for the months

without overage usage, and ω̂i,d = (π+ φ̂i)a
α̂i
i,d for the months

with overage usage. All these ω̂i,d constitutes to an estimated
distribution for user i’s weights on usage utility extracted from
their empirical data usage.

Since our dataset only contains the usage of each user for
a month, we consider either the first or second part of (14)
depending on whether or not the user had leftover by the end
of the billing cycle. Following our discussion in Section III,
we use Pareto distribution F̂i(ω) = 1 − (m/ω)γ , where we
also need to learn the parameters for this distribution: γ and
m. Thus, if the user did not consume overage, we solve
for minimize

αi,φi,γ,m

∥∥1 − (m/(φiaαiw/o))αi − F
w/o
i (aw/o)

∥∥
2
; and

otherwise, we solve for minimize
αi,φi,γ,m

∥∥1−(m/((π+φi)aαiw )
)αi−

Fwi (aw)
∥∥
2
.

Figure 7 shows the distribution fits: as we minimize the
linear squares divergence between the estimated and empirical
CDFs, we use R2 values to illustrate the goodness of the fitting
results, calculated by

R2 = 1−
∑

(F̂i − Fi)2∑
(F̂i − 〈F̂i〉)2

,

where 〈·〉 is the average operation. We observe that the Pareto
distribution fits the empirical data well, with both R2 above
0.95.
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(a) R2 = 0.9596, γ = 2.06, m =
3.78, α̂i = 0.84, φ̂i = 0.20.
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(b) R2 = 0.9558, γ = 0.86, m =
1.84, α̂i = 0.97, φ̂i = 0.82.

Fig. 7. Fitting the CDF of empirical user usage to our result in (4) by assuming
Pareto distribution for ωi,d.

B. Proof of Proposition 1
Proof: We use mathematical induction to prove the hy-

pothesis that user i’s maximum utility for the remaining d
days, i.e., V ?(qi,d, d) is given by

d∑
t=1

αi
1−αi

ω
1
αi
i,t φ

1− 1
αi

i , qi,d>

d∑
t=1

(
ωi,t
φi

) 1
αi

,

ωi,d

(
d∑
t=1

(
ωi,t
ωi,d

) 1
αi

)αi
q1−αii,d

1−αi
− φiqi,d,

d∑
t=1

(
ωi,t
π+φi

) 1
αi

≤qi,d≤
d∑
t=1

(
ωi,t
φi

) 1
αi

,

d∑
t=1

αi
1−αi

ω
1
αi
i,t (π+φi)

1− 1
αi +πqi,d,

0 ≤ qi,d<
d∑
t=1

(
ωi,t
π+φi

) 1
αi

,

d∑
t=1

αi
1−αi

ω
1
αi
i,t (π+φi)

1− 1
αi , qi,d < 0.

(15a)

(15b)

(15c)

(15d)

We first show that (15) is true for the base case of d = 1.
Since V (qi,0, 0) = 0, we have V ?(qi,1, 1) = max{vi,1(ai,1)},
leading V ?(qi,1, 1) to equal

αi
1−αi

ω
1
αi
i,1 φ

1− 1
αi

i , qi,1 >

(
ωi,1
φ1

) 1
αi

,

ωi,1
q1−αii,1

1−αi
− φ1qi,1,

(
ωi,1
π + φ1

) 1
αi

≤qi,1≤
(
ωi,1
φ1

) 1
αi

,

αi
1−αi

ω
1
αi
i,1 (π+φi)

1− 1
αi + πqi,1, 0 ≤ qi,1<

(
ωi,1
π + φ1

) 1
αi

,

αi
1−αi

ω
1
αi
i,1 (π+φi)

1− 1
αi , qi,1<0,

which holds for (15) when d = 1.
Assuming (15) is true, we then take the inductive

step to prove that it is also true for V ?(qi,d+1, d +
1) = max

ai,d+1

{
vi,d+1(ai,d+1) + V (qi,d, d)

}
by substituting

qi,d = qi,d+1 − ai,d+1 so that V ?(qi,d+1, d + 1) =
max
ai,d+1

{
V (qi,d+1, d+1)

}
= max
ai,d+1

{
vi,d+1(ai,d+1)+V (qi,d+1−

ai,d+1, d)
}

. Although both (1) and (15) are piecewise func-
tions, we can observe ai,d+1 ≤ qi,d+1 for (1a), (15a), and



(15b) and ai,d+1 > qi,d+! for (1b), (1c), and (15d). We then
discuss case by case below to calculate for V ?(qi,d+1, d+1).

1) qi,d >
d∑
t=1

(
ωi,t
φi

) 1
αi

and qi,d+1 > 0.

In this case, (1a) plus (15a) results in

V(qi,d+1, d+1)=ωi,d+1

a1−αii,d+1

1−αi
−φiai,d+1+

d∑
t=1

αi
1−αi

ω
1
αi
i,t φ

1− 1
αi

i .

By taking the first-order derivative of the above equation, we
find

a?i,d+1 =

(
ωi,d+1

φi

) 1
αi

. (17)

By substituting a?i,d+1 back to V (qi,d+1, d+1), we thus derive

V ?(qi,d+1, d+ 1) =

d+1∑
t=1

αi
1− αi

ω
1
αi
i,t φ

1− 1
αi

i

for

qi,d = qi,d+1 − a?i,d+1 >

d∑
t=1

(
ωi,t
φi

) 1
αi

⇒ qi,d+1 >

d+1∑
t=1

(
ωi,t
φi

) 1
αi

,

(18)

which verifies (15a).

2)
d∑
t=1

(
ωi,t
π + φi

) 1
αi

≤ qi,d ≤
d∑
t=1

(
ωi,t
φi

) 1
αi

and qi,d+1 > 0.

By adding (1a) to (15b), we find:

V (qi,d+1, d+ 1) = ωi,d+1

a1−αii,d+1

1− αi
− φiqi,d+1

+ωi,d

(
d∑
t=1

(
ωi,t
ωi,d

) 1
αi

)αi
(qi,d+1 − ai,d+1)

1−αi

1− αi
.

By taking the first-order derivative of the above equation, we
find

ωi,d+1a
?−αi
i,d+1=ωi,d

(
d∑
t=1

(
ωi,t
ωi,d

) 1
αi

)αi
(qi,d+1−a?i,d+1)

−αi

⇒ qi,d+1

a?i,d+1

−1=
(
ωi,d
ωi,d+1

) 1
αi

d∑
t=1

(
ωi,t
ωi,d

) 1
αi

=

d∑
t=1

(
ωi,t
ωi,d+1

) 1
αi

⇒ a?i,d+1 =
qi,d+1∑d+1

t=1

(
ωi,t
ωi,d+1

) 1
αi

.

(19)
By substituting a?i,d+1 back into V (qi,d+1, d + 1), we thus
derive

V ?(qi,d+1, d+ 1)

= ωi,d+1

a?1−αii,d+1

1− αi
− φiqi,d+1

+ωi,d

(
ωi,d
ωi,d+1

) 1
αi
−1 d∑

t=1

(
ωi,t
ωi,d

) 1
αi a?1−αii,d+1

1− αi

= ωi,d+1

(
d+1∑
t=1

(
ωi,t
ωi,d+1

) 1
αi

)αi
q1−αii,d+1

1− αi
− φiqi,d+1,

and qi,d = qi,d+1 − a?i,d+1 needs to satisfy the necessary
condition for this case, implying that qi,d+1 satisfies

d+1∑
t=1

(
ωi,t
π + φi

) 1
αi

≤ qi,d+1 ≤
d+1∑
t=1

(
ωi,t
φi

) 1
αi

, (20)

which verifies (15b).

3) qi,d <
d∑
t=1

(
ωi,t
π + φi

) 1
αi

and qi,d+1 ≥ 0.

Both (1a) plus (15c) and (1b) plus (15d) result in

V(qi,d+1, d+1)= ωi,d+1

a1−αii,d+1

1−αi
−φiai,d+1+π(qi,d+1−ai,d+1)

+

d∑
t=1

αi
1− αi

ω
1
αi
i,t (π + φi)

1− 1
αi

By taking the first-order derivative of the above equation, we
find

a?i,d+1 =

(
ωi,d+1

π + φi

) 1
αi

. (21)

By substituting a?i,d+1 back to V (qi,d+1, d+1), we thus derive

V ?(qi,d+1, d+ 1) =

d+1∑
t=1

αi
1− αi

ω
1
αi
i,t (π + φi)

1− 1
αi + πqi,d+1

for

qi,d = qi,d+1−a?i,d+1<

d∑
t=1

(
ωi,t
π + φi

) 1
αi

and qi,d+1≥0

⇒ 0 ≤ qi,d+1 <

d+1∑
t=1

(
ωi,t
π + φi

) 1
αi

,

which verifies (15c).
4) qi,d+1 < 0, meaning qi,d < 0 as well.

Finally, (1c) plus (15d) results in

V (qi,d+1, d+ 1) = ωi,d+1

a1−αii,d+1

1− αi
− φiai,d+1 − πai,d+1)

+

d∑
t=1

αi
1− αi

ω
1
αi
i,t (π + φi)

1− 1
αi

Following the similar steps that we did for the previous cases,

we also find a?i,d+1 =
(
ωi,d+1

π+φi

) 1
αi for this case and can easily

verifies (15d).
Therefore, we can conclude that V ?(qi,d, d) formulated in

(3) can be represented by (15).
Furthermore, case 1 (where (17) and (18) lead to (4a))

and case 2 (where (19) and (20) leads to (4c)) are both
exclusive with other cases, since the condition satisfied for
d also satisfies for d+1. Although a user’s utility may switch
from (15c) at d+1 to (15d) at d, meaning that case 3 and case 4
are inclusive, they together lead to (4b). Also, these conditions
together include all real numbers. Thus, we conclude that the
functions contained in (4) are exclusive with each other.



C. Proof of Corollary 1

Proof: Based on the result in Proposition 1, we further
simplify a?i,d. We have found that a?i,d can be expressed by
(17) (case 1 above), (19) (case 2 above), and (21) (case 3 and
4 above) respectively under different conditions of qi,d. Since
only (19) is in terms of qi,d, we simplify it by combining with
qi,d = A−

∑D
t=d+1 a

?
i,t:

a?i,d

ω
1
αi

i,d

d∑
t=1

ω
1
αi
i,t = qi,d = A−

D∑
t=d+1

a?i,t

⇒
a?i,d

ω
1
αi

i,d

d−1∑
t=1

ω
1
αi
i,t = A−

D∑
t=d

a?i,t

(22)

Shifting one time slot, we have for a?i,d−1 that

a?i,d−1

ω
1
αi

i,d−1

d−1∑
t=1

ω
1
αi
i,t = A−

D∑
t=d

a?i,t (23)

Combining (22) and (23) leads to

a?i,d
a?i,d−1

=
ω

1
αi

i,d

ω
1
αi

i,d−1

⇒
a?i,D
a?i,d

=
ω

1
αi

i,D

ω
1
αi

i,d

(24)

If we solve (24) together with a?i,D in (23) such that qi,D = A,
we can derive the expression in (5c).

By substituting a?i,D in (5c) back into
∑d
t=1

(
ωi,t
π+φi

) 1
αi ≤

qi,d ≤
∑d
t=1

(
ωi,t
φi

) 1
αi , we further simplified this inequality

as follows:
d∑
t=1

(
ωi,t
π + φi

) 1
αi

≤ A−
D∑

t=d+1

a?i,t ≤
d∑
t=1

(
ωi,t
φi

) 1
αi

⇒
d∑
t=1

(
ωi,t
π + φi

) 1
αi

≤ A
∑d
t=1 ω

1
αi
i,t∑D

t=1 ω
1
αi
i,t

≤
d∑
t=1

(
ωi,t
φi

) 1
αi

which is equivalent to the domain in (5c). Since the func-
tions contained in (4) are exclusive with each other (cf.
Appendix B), we can conclude the result as in (5).

D. Proof of Proposition 2

Proof: By taking the first-order derivative of the right-
hand side of (7) in terms of ãi,d, we have

∂V ?(q̃i,d, d)

∂ãi,d
=
∂vi,d(ãi,d)

∂ãi,d
−E

(
∂V ?(q̃i,d−1, d− 1)

∂q̃i,d−1

)
(25)

and setting it to zero yields the first-order condition of (7):

∂vi,d(ã
?
i,d)

∂ã?i,d
= E

(
∂V ?(q̃i,d−1, d− 1)

∂q̃i,d−1

)
. (26)

Applying the Benveniste-Scheinkman formula to (7) gives us:

∂V ?(q̃i,d, d)

∂q̃i,d
=
∂vi,d(ã

?
i,d)

∂q̃i,d
+E
(
∂V ?(q̃i,d−1, d− 1)

∂q̃i,d−1

∂q̃i,d−1
∂q̃i,d

)
=
∂vi,d(ãi,d)

∂q̃i,d
+
∂vi,d(ã

?
i,d)

∂ã?i,d

(
1−

∂ã?i,d
∂q̃i,d

)
=
∂vi,d(ã

?
i,d)

∂ã?i,d
,

where the second equality holds due to (26). Analogously, we
can write for a?i,d−1 that

∂V ?(q̃i,d−1, d− 1)

∂q̃i,d−1
=
∂vi,d−1(ã

?
i,d−1)

∂ã?i,d−1
. (27)

Combining (26) and (27) leads us to (8).

E. Proof of Corollary 2

Proof: First of all, for all ãi,d, we have

∂vi,d(ãi,d)

∂ãi,d
=

{
ωi,dã

−αi
i,d − φi, ãi,d ≤ q̃i,d,

ωi,dã
−αi
i,d − π − φi, ãi,d > q̃i,d.

(28a)

(28b)

Then, we apply mathematical induction again to prove Corol-
lary 2.

Before deriving the base case d = 2, we start by looking
into the first-order derivative of vi,1(ãi,1):

∂vi,1(ã
?
i,1)

∂ã?i,1
=



0, ã?=

(
ωi,1
φi

) 1
αi

, q̃i,1>

(
ωi,1
φi

) 1
αi

,

0, ã?i,1=

(
ωi,1
π + φi

) 1
αi

, q̃i,1<

(
ωi,1
π + φi

) 1
αi

,

∂vi,1(ãi,1)

∂ãi,1

∣∣∣
ã?i,1=q̃i,1

, otherwise.

(29a)

(29b)

(29c)

We note that (29) is not continuous, i.e., the utility function in
(1) is not continuously differentiable. This is reflected in (29)
that for

( ωi,1
π+φi

)1/αi ≤ q̃i,1 ≤ (ωi,1φi )1/αi , we have

∂vi,1(ã
?
i,1)

∂ã?i,1

∣∣∣
ã?i,1=q̃i,1

=


ωi,1q̃

−αi
i,1 −φi, lim

ã?i,1→q̃
−
i,1

= q̃i,1,

ωi,dq̃
−αi
i,1 −π−φi, lim

ã?i,1→q̃
+
i,1

= q̃i,1,

(30a)

(30b)

where (30a) identifies the case that ã?i,1 approaches to q̃i,1 from
the left side, while (30b) shows the other direction. Though
discontinuous, we observe from (29) and (30) that q̃i,1 = q̃i,2−
ãi,2 < 0 falls only into the case in (29b), and thus

∂vi,2(ã
?
i,2)

∂ã?i,2
=

E
(∂vi,1(ã?i,1)

∂ã?i,1

)
= 0 as integral over 0 yields 0. Therefore,

ã?i,2 =
( ωi,1
π+φi

)1/αi when q̃i,2 < ãi,2 =
( ωi,1
π+φi

)1/αi . On
the other hand, q̃i,1 = q̃i,2 − ãi,2 ≥ 0 falls into all cases in
(29a), (29b), and (29c), and thus

∂vi,2(ã
?
i,2)

∂ã?i,2
= E

(∂vi,1(ã?i,1)
∂ã?i,1

)
∈

[0,E(ωi,1)q̃−αii,1 − φi]: ωi,2ã?−αii,2 − φi ≥ 0 leads to ã?i,2 ≤



(ωi,2
φi

)1/αi , and ωi,2ã
?−αi
i,2 − φi ≤ E(ωi,1)q̃−αii,1 − φi leads to

ã?i,2 ≥
ω

1/αi
i,2 q̃i,2

ω
1/αi
i,2 +E

1/αi
1

. Thus, (8) holds for d = 2.

Assuming (8) is true, we have E
(∂vi,d(ã?i,d)

∂ã?i,d

)
= 0 if

q̃i,d <
( ωi,d
π+φi

)1/αi , and otherwise, 0 ≤ E
(∂vi,d(ã?i,d)

∂ã?i,d

)
≤

E
(
ωi,d

( ω
1/αi
i,d q̃i,d

ω
1/αi
i,d +E

1/αi
d−1

)−αi − φi

)
= Edq̃

−αi
i,d − φi. To solve

∂vi,d+1(ã
?
i,d+1)

∂ã?i,d+1
= E

(∂vi,d+1(ã
?
i,d)

∂ã?i,d

)
, we shift (29) by one pe-

riod for ãi,d+1. Similarly, ãi,d+1 > q̃i,d+1 in (28b) only
requires to consider the case of q̃i,d <

( ωi,d
π+φi

)1/αi , yield-

ing
∂vi,d+1(ã

?
i,d+1)

∂ã?i,d+1
= 0 ⇒ ãi,d+1 =

(ωi,d+1

π+φi

)1/αi for

q̃i,d+1 < ã?i,d+1 =
(ωi,d+1

π+φi

)1/αi . If ãi,d+1 ≤ q̃i,d+1, 0 ≤
∂vi,d+1(ã

?
i,d+1)

∂ã?i,d+1
≤ Edq̃

−αi
i,d − φi leads us to

ω
1/αi
i,d+1q̃i,d+1

ω
1/αi
i,d+1+E

1/αi
d

≤

ã?i,d+1 ≤
(ωi,d+1

φi

) 1
αi . Therefore, as we find that ã?i,d+1

also satisfies (8), we can conclude that (8) holds for all
ã?i,d, d = D, . . . , 2.

F. Proof of Corollary 3

Proof: When there is no time cost, i.e., φ = 0 and
overage fee is infinite (none of the users would consume
overage data), i.e., π = +∞, the utility function can be

reduced to vi,d(ai,d) = ωi,d
a
1−αi
i,d

1−αi . In this special case, we can
again apply mathematical induction to solve (8) and obtain

ã?i,d =
ω

1/αi
i,d q̃i,d

ω
1/αi
i,d +E

1/αi
d−1

.

We now examine E1/αi
d . According to Jensen’s inequality,

the convexity of g(ωi,d) = (ω
1/αi
i,d + Ed−1)

αi gives us

Ed = E
((
ω

1
αi

i,d + Ed−1
)αi) ≥ (E(ωi,d) 1

αi + Ed−1

)αi
.

Applying this iteratively gives us

E
1
αi

d ≥
d∑
t=1

E(ωi,t)
1
αi . (31)

Again, due to the concavity of ã?i,d =
ω

1/αi
i,d q̃i,d

ω
1/αi
i,d +E

1/αi
d−1

in terms

of ω1/αi
i,d , we have the following derivations:

E(ã?i,d) = E

 ω
1
αi

i,d q̃i,d

ω
1
αi

i,d + E
1
αi

d−1

 ≤ E
(
ω

1
αi

i,d

)
E
(
ω

1
αi

i,d

)
+ E

1
αi

d−1

q̃i,d

(a)

≤
E
(
ω

1
αi

i,d

)
E
(
ω

1
αi

i,d

)
+
∑d−1
t=1 E(ωi,t)

1
αi

q̃i,d,

where (a) is due to (31). When setting αi = 1, we obtain
ã?i,d ≤ q̃i,d/d.

G. Proof of Example 2

Proof: We now use induction on d to show that:

V ?(qi,d, d)

= dµ log qi,d + E
(
(d− 1)ωi,d logωi,d

)
+

d−1∑
i=1

iµ log(iµ)−
d−1∑
i=1

E
(
(ωi,d + iµ) log(ωi,d + iµ)

)
.

For d = 1, we have a?i,1 = qi,1 and thus V ?1 (qi,1, 1) =
µ log qi,1. Now suppose that the result holds for day d − 1.
Since a?i,d =

ωi,dqi,d
ωi,d+(d−1)µ and qi,d − a?i,d =

(d−1)µqi,d
ωi,d+(d−1)µ , our

inductive hypothesis implies:

V ?(qd, d)

= E
(
ωi,d log

ωi,dqi,d
ωi,d + (d− 1)µ

)
+E

(
(d− 1)µ log

(d− 1)µqi,d
ωi,d + (d− 1)µ

)
+E ((d− 2)ωi,d logωi,d) +

d−2∑
i=1

iµ log(iµ)

−
d−2∑
i=1

E ((ωi,d + iµ) log(ωi,d + iµ))

= dµ log qi,d + E ((d− 1)ωi,d logωi,d) +

d−1∑
i=1

iµ log(iµ)

−
d−1∑
i=1

E ((ωi,d + iµ) log(ωi,d + iµ)) .

H. Proof of Proposition 3

Proof: Supposing all data plans offer the same amount
A charged at the same P if A < +∞ and P > 0,
we first prove the relationship between Uu(~a

?
i ), U(~a?i ), and

Up(~a
?
i ), as it is independent from P . It is easy to see

that g(A) =
(∑D

t=1 ω
1/αi
i,t

)αi A1−αi

1−αi − φiA − P increases
in A if A ≤

∑D
t=1(ωi,t/φi)

1/αi . We then have g(A) ≤
g(A)

∣∣
A=

∑D
t=1(ωi,t/φi)

1/αi
=
∑D
t=1

αi
1−αiω

1
αi
i,t φ

1− 1
αi

i − P if

A ≤
∑D
t=1(ωi,t/φi)

1/αi . Hence, if A ≤
∑D
t=1

(
ωi,t/(π +

φi)
)1/αi , we have Uu(~a

?
i ) ≥ U(~a?i ); otherwise, Uu(~a?i ) =

U(~a?i ) as they have the same expression. Similarly, we
also have g(A) ≤ g(A)

∣∣
A=

∑D
t=1

(
ωi,t/(π+φi)

)1/αi =∑D
t=1

αi
1−αiω

1
αi
i,t (π + φi)

1− 1
αi − P if A ≤

∑D
t=1

(
ωi,t/(π +

φi)
)1/αi . It is obvious to see that Up(~a?i ) ≤ U(~a?i ) in this

case; and otherwise, they equal each other.
Since we have obtained the tendency of Uu(~a?i ), U(~a?i ), and

Up(~a
?
i ), we next need to compare each of them to Us(~a

?
i ).

After doing so, we have Us(~a
?
i ) > Uu(~a

?
i ) if P > P vL,

Us(~a
?
i ) > U(~a?i ) if P > P vM , and Us(~a

?
i ) > Up(~a

?
i ) if

P > P vS , where P vL, P vM , and P vS are given below Table II.
Summarizing the above discussion leads us to Table II.



TABLE II
COMPARISON OF USER UTILITY WITH DIFFERENT DATA PLANS.

Conditions A <
∑D
t=1

(
ωi,t
π+φi

) 1
αi

∑D
t=1

(
ωi,t
π+φi

) 1
αi ≤ A ≤

∑D
t=1

(
ωi,t
φi

) 1
αi A >

∑D
t=1

(
ωi,t
φi

) 1
αi

P > P vL Us > Uu ≥ U ≥ Up Us > Uu ≥ U = Up Us > Uu = U = Up
P vM < P ≤ P vL Uu ≥ Us > U ≥ Up Uu ≥ Us > U = Up

Uu = U = Up ≥ UsP vS < P ≤ P vM Uu ≥ U ≥ Us > Up Uu ≥ U = Up ≥ UsP ≤ P vS Uu ≥ U ≥ Up ≥ Us

P vL =
∑D
t=1

αi
1−αi

ω
1
αi
i,t

(
φ

1− 1
αi

i − (π + φi)
1− 1

αi
)

P vM = πA

P vS =
(∑D

t=1 ω
1
αi
i,t

)αi A1−αi
1−αi

− φiA−
∑D
t=1

αi
1−αi

ω
1
αi
i,t (π + φi)

1− 1
αi

TABLE III
COMPARISON OF ISP PROFIT WITH DIFFERENT DATA PLANS.

Conditions NM 6= 0, NL 6= 0 NM 6= 0, NL = 0 NM = 0, NL = 0
P > P rL R > Rp > Ru > Rs R = Rp > Ru > Rs R = Rp = Ru > Rs

P rM < P ≤ P rL R > Rp > Rs ≥ Ru R = Rp > Rs ≥ Ru
Rs ≥ R = Rp = RuP rS < P ≤ P rM R > Rs ≥ Rp > Ru Rs ≥ R = Rp > RuP ≤ P rS Rs ≥ R > Rp > Ru

P rL = 1
N

(
(π − σ)

∑
i∈N

∑D
t=1

( ωi,t
π+φi

) 1
αi + σ

∑
i∈N

∑D
t=1

(ωi,t
φi

) 1
αi

)
P rM = 1

N

(
(π − σ)

∑
i∈N

∑D
t=1

( ωi,t
π+φi

) 1
αi + σ

∑
i∈NS

∑D
t=1

(ωi,t
φi

) 1
αi + σ(NM +NL)A

)
P rS = 1

N

(
(π − σ)

∑
i∈NS∪NM

∑D
t=1

( ωi,t
π+φi

) 1
αi + σ

∑
i∈NS

∑D
t=1

(ωi,t
φi

) 1
αi + (σNM + πNL)A

)
TABLE IV

COMPARISON OF USER UTILITY AND ISP PROFIT IF USERS SWITCH TO A DIFFERENT DATA PLAN.
Current Monthly usage (MB) User utility ISP profit ($)

data plan Unlimited Quota Usage-based Unlimited Quota Usage-based Unlimited Quota Usage-based
User 1 Unlimited 10628.97 9459.76 9459.76 6632.52 6462.03 6462.03 29.34 188.25 188.25
User 2 Unlimited 1379.85 1314.72 1314.72 2164.49 2167.55 2167.55 29.78 26.16 26.16
User 3 Quota 574.33 574.33 561.94 2292.20 2302.20 2310.83 29.77 19.94 11.18
User 4 Quota 1104.56 1000.00 976.03 897.80 907.00 907.04 29.91 19.90 19.42
User 5 Unlimited 711.52 711.52 676.05 657.46 667.46 673.59 29.93 19.93 13.45
User 6 Unlimited 298.19 298.19 287.46 1082.66 1092.66 1106.80 29.89 19.97 5.72
User 7 Unlimited 63.93 63.93 63.20 162.48 172.48 191.21 29.98 19.99 1.2
User 8 Quota 393.75 393.75 388.16 11888.04 11898.04 11910.22 28.81 19.96 7.72
User 9 Quota 267.39 267.39 265.17 2440.52 2450.52 2465.20 29.76 19.97 5.2

User 10 Quota 462.02 462.02 450.64 12899.32 12909.32 12920.19 28.71 19.95 8.9
User 11 Quota 1828.41 1628.00 1628.00 1839.91 1835.41 1835.41 29.82 32.40 32.40
User 12 Quota 473.04 473.04 449.28 14213.93 14223.93 14234.71 28.58 19.95 8.94
User 13 Quota 1490.56 1424.46 1424.46 1411.16 1412.02 1412.02 29.86 28.35 28.35

I. Proof of Proposition 4

Proof: Similar to the proof of Proposition 3, we first
show the relationship between R(A,P, π), Rp(A,P, π), and
Ru(A,P, π), as it is independent from P . We see that the
profit that the ISP receives from a user is nondecreasing with
user demand. When there is no modest and heavy users, we
have R(A,P, π) = Rp(A,P, π) = Ru(A,P, π) as they have
the same expression. When there is no heavy users but some
modest users, prepaid and quota with overage data plans lead

to same usage for all users. Although all three data plans end
up with the same revenue from users, the associated profit
results in R(A,P, π) = Rp(A,P, π) > Ru(A,P, π) due to
more traffic cost for unlimited data plans. When there are some
heavy users, profit of quota with overage data plans is more
than that of prepaid data plans because of the overage charge.

From the relationship between R(A,P, π), Rp(A,P, π), and
Ru(A,P, π), we again compare each of them to Rs(A,P, π)
with the boundaries of P , P rL, P rM , and P rS , given below
Table III.


