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Abstract—As demand for Internet usage increases, Internet
service providers (ISPs) have begun to explore pricing-based
solutions to dampen data demand. However, while many of
these solutions focus on reducing usage at times of network
congestion, few explicitly consider the dual problem of monetizing
idle network capacity at uncongested times. PopData is a recent
initiative from Verizon that does so by offering supplemental
discount offers (SDOs) at these times, in which users can pay
a fixed fee in exchange for unlimited data in the next hour.
This work is the first of its kind to assess the benefits and
viability of SDOs by modeling user and ISP decisions as a game,
considering both overall monthly decisions and hour-to-hour
decisions throughout the month. We first use our monthly model
to show that users are generally willing to accept some SDO
offers, allowing the ISP to increase its revenue. We then show
that users face a complex hourly decision problem as to which
SDOs they should accept over their billing cycles. They must plan
their decisions over the billing cycle, despite not knowing their
future usage needs or when future SDOs will be made. The ISP
faces a similarly challenging problem in deciding when to offer
SDOs so as to maximize its revenue, subject to users’ decisions.
We develop optimal decision criteria for users and ISPs to decide
whether to make or accept SDO offers. Our analysis shows that
both users and ISPs can benefit from these offers, and we verify
this through numerical experiments on a one-week trace of 20
cellular data users. We find that ISPs can exploit user uncertainty
in when future SDOs will be made to optimize its revenue.

I. INTRODUCTION

As mobile data usage continues to grow, with a 66%
increase in 2016 [1] alone, Internet service providers (ISPs),
mobile service providers in particular, are exploring ways to
handle this rising demand. In the U.S., many ISPs have ad-
vocated changes to pricing plans; even “unlimited” data plans
force users to submit to lower throughputs upon exceeding
specified monthly data quotas [2], [3]. Internationally, most
ISPs still offer quota-based plans with additional fees for
exceeding the quota, e.g., Orange’s EE in the U.K. [4]. Such
pricing plans incentivize users to limit their overall mobile
data demands so that they stay within ISPs’ available capacity.
However, they do not address the fact that congestion on ISP
networks is concentrated at specific times of the day [5]. By
reducing overall usage, they can thus have the unintended
effect of increasing the amount of idle capacity, and its
associated unrealized ISP revenue, at uncongested times.

Much recent research has proposed ways to reduce usage at
congested times, e.g., by charging users more at these times [6]
or incentivizing them to use WiFi instead [7]. However, few
of these explicitly consider the dual problem of monetizing
idle capacity [8], and many of them have proven complex
for users to understand [9], [10]. Supplemental discount offers

(SDOs) offer a solution to both problems. SDOs have recently
been deployed by Verizon as PopData, a supplement to Verizon
users’ primary data plans [11]. Under PopData, a user pays an
additional fee for unlimited data usage for a limited period of
time, e.g., $3 for one hour of unlimited usage. Over the month,
the ISP occasionally makes these SDOs to subscribed users;
by making offers in less congested times, it can incentivize
users to consume more data at these times without fear
of exceeding their data plan quotas. These SDOs may be
particularly attractive for users who prefer to use the cellular
network instead of public WiFi due to security concerns. Users
can easily understand and react to such SDOs; they simply
decide whether to accept offers when they are made.

Further inspection reveals, however, that fully understanding
or even optimizing a user’s acceptance of SDOs is quite
complex. Such optimization requires a user to plan their
acceptance decisions over the month. For instance, if a user
knows she will not reach her data plan quota, it is better to
ignore SDOs. In practice, however, users would not know their
exact usage needs for the rest of the month, nor would they
know when SDOs will be offered in the future. They thus need
to optimize over both sources of uncertainty.

The uncertainty in user decision making leads to an equally
challenging decision problem for the ISP. Namely, the ISP
wants to offer SDOs at times and prices that maximize
revenue, subject to network availability and the fact that user
SDO acceptance is based on uncertain future data needs and
future SDOs. Yet it is unclear what this optimal schedule
would be. For instance, offering SDOs late in the billing cycle
may or may not maximize ISP revenue: at that time, only users
who know they will exceed their data plan quotas would accept
the SDO to avoid overage fees. On the other hand, these users
could be more likely to accept SDOs at the end of the month,
when they know they will otherwise incur overage fees, than at
the beginning of the month, which may increase ISP revenue.

In this work, we model user and ISP actions in accepting
and making SDOs as a game in the presence of uncertainty,
allowing us to assess SDO benefits for users and ISPs.
By handling the uncertainty challenges discussed above, we
address four fundamental questions:

• Which types of users would be most affected by SDOs?
• How should the ISP price its SDOs?
• When should ISPs offer and users accept SDOs?
• Are SDOs viable in practice?

To address the question of which types of users would be
most affected by SDOs, we first consider a model that ab-



stracts away the hour-to-hour SDOs by considering user utility
and ISP revenue on a monthly basis. Under this model, we
derive closed-form expressions for users’ optimal decisions.
In this study, we reach the two important conclusions that (1)
subscribers always accept a nonzero number of SDOs and (2)
users who consume more data per accepted SDO also use
more of their data plan, so heavier users are more affected.

To address the question of how the ISP should price SDOs,
we extend our model to include the ISP’s ability to optimize
the SDO price at the beginning of the month. We find that
when all users have limited data demands, the ISP should
charge a high price. However, in a more diverse mix of users,
ISPs may reduce fees to incentivize users to accept offers.

To understand when ISPs should offer SDOs and when
users should accept them, we model user and ISP hourly
decisions with an iterative Stackelberg game. We then derive
conditions under which users would accept SDOs. The ISP’s
decision problem in this model is NP-hard, so we provide a
near-optimal heuristic based on dynamic programming. These
user and ISP decision algorithms employ online learning to
optimize over uncertainty in users’ future data needs.

Finally, to assess SDOs’ practical viability, we conduct
extensive trace-driven simulations with real usage data to
measure the effectiveness of our decision algorithms. We find
that ISPs can exploit user uncertainty in future SDO offers, and
can compute an optimal SDO schedule such that users, in their
limited ability to be optimal without knowing the schedule,
spend higher with SDOs to realize the same data needs than
without SDOs using only overages.

We organize the paper as follows. In Section II, we discuss
relevant related work in network management and pricing.
We define our abstracted monthly model in Section III, and
we develop a more precise model as an iterated game un-
der uncertainty between the ISP and users in Section IV.
In Section V, we describe our trace-driven simulation and
highlight key results. We conclude the paper in Section VI
with a discussion of our findings and potential future work.
All proofs can be found in the appendix.

II. RELATED WORK

To limit usage during congested times, some industry [12],
[13] and academic [14]–[16] research has advocated for time-
dependent pricing (TDP) for mobile data. Under TDP, users
are charged higher rates when the network is congested and
lower rates during times of low network utilization. These
previous studies assessed the benefits of TDP compared to
static pricing [14], [15], e.g., with game-theoretic models [16].
TDP has been shown to be effective in user trials for cellular
networks [8], [9] and smart grids [17]. Users under TDP not
only reduced their usage at congested, high-price times, but
also increased their usage at uncongested, low-price times. We
focus on this latter effect in our work. Variations on TDP
include incorporating location into pricing models [18] and
using lotteries to offer time-dependent rewards for reducing
usage at congested times [19]. Many works show that ISPs can
reduce congestion and increase revenue by offering different

TABLE I: We summarize the notation used in the paper.

Symbol Definition

(η, d, p) ISP Data Plan
η Fixed monthly charge
d Data limit
p Overage charge per GB beyond data limit
ρ SDO price
n Number of times ISP offers SDO over a month
β Fraction of SDOs accepted
x Monthly data usage by user
xmax Maximum data consumed by a user during an SDO period
α User price sensitivity
γ Desired monthly maximum data consumption
xc(t) User’s accrued consumption under their data plan until time t.

prices at different times of the day, but the apparent complexity
for users has so far prevented deployment.

Complementary work has focused on offloading users’ data
traffic from cellular to WiFi [7], e.g., creating auctions for ISPs
to dynamically purchase WiFi capacity at times of cellular
network congestion [20], [21]. Yet while these measures can
decrease congestion for ISPs, they may also decrease ISP
profits, not only due to the cost of purchasing WiFi capacity,
but also due to the reduction in usage on cellular networks.
To model this loss in revenue in our discount offers scenario,
we include the presence of WiFi in users’ hourly decisions
in Section IV-A. Other work has used large-scale usage
datasets to model how users consume their data quotas over
a month [22]. We leverage similar frameworks in developing
user and ISP decision algorithms in Section IV.

III. MONTHLY SDO DECISION MODEL

To assess the benefits of SDOs, we model the ISP and users
respectively as the leader and followers in a game. The ISP
offers and prices SDOs, and users decide whether to accept
them. We assume a monopolistic ISP that offers a quota-based
data plan to users, imposing a usage-based overage fee p per
unit of data used over the monthly data quota d, with flat fee
η. In addition, the ISP periodically makes SDOs; a user who
accepts an SDO pays a fixed price ρ for unlimited data usage
in the next time slot (e.g., one hour). Although a user’s data
use during this time slot is contractually unbounded, usage is
still subject to network constraints and would in practice be
finite. We assume that a user consumes a maximum of xmax
data during an SDO session. We further assume there are N
users in the system. Table I summarizes our notation.

In this section, we derive a monthly model of user and
ISP behavior using a Stackelberg game. While this model
is an approximation that abstracts away hourly dynamics,
it provides qualitative insights into user benefits and SDO
pricing. Under this model, the ISP sets the number of SDOs n
offered during the month and chooses the optimal SDO price
ρ in anticipation of user decisions. In the model developed in
Section-IV, the ISP implicitly chooses n, or how many SDOs
to offer over the billing cycle, by making hourly decisions
on whether to offer SDOs. Given n and ρ at the start of the
month, each user further chooses two parameters: the fraction
β of accepted SDOs and their monthly data plan usage x.



A. Modeling User Utility

We model users’ utilities as having two components: utility
from data plan usage and utility from SDOs. We use the
standard α-fair models for user utility from monthly data
usage [23], [24] to obtain the utility function

u(x, β) = C1
x1−α

1− α
+βn

[
C2

x1−αmax

1− α
− ρ
]
−η−p(x−d)+, (1)

where C1 and C2 are scaling factors capturing relative utility
between data plan and SDO usage, and α ∈ [0, 1) indicates the
user’s price sensitivity. The first terms in this utility function
represents the overall utility from a user’s regular monthly
data plan and from SDOs, respectively. Since β represents the
fraction of SDOs that the user accepts and n the number of
offers that are made, we can interpret the utility from SDOs
as the user receiving a utility of C2x

1−α
max/(1 − α) − ρ each

time an offer is accepted. C2 scales the utility from xmax
usage depending on the received quality of service (QoS). If
the average QoS during SDO periods is high, then the user
will receive a higher utility from consuming data at that time.
Similarly, C1 can be scaled to represent the average QoS at
non-discount times. By using different scaling factors for SDO
and non-SDO times, we can model ISPs’ choice of making
SDOs only at uncongested hours of the day. The last term
in (1) represents the cost of data plan usage with (x − d)+

denoting the amount of users’ overage data.
We further suppose that the user’s overall data usage is

constrained by a monthly maximum γ, imposing the constraint

x+ βnxmax ≤ γ. (2)

For instance, we could take γ = xmaxT , where T is the
total number of time periods in a month. This maximum
usage indicates the inherent limit on the amount of data
that a user would consume even if not charged for this
data usage. Since users in reality would limit their data
consumption so as to avoid paying more for data, we assume
that γ ≥ max

{
d, (C1/p)

1/α
}

, i.e., maximum usage γ without
data costs is no less than the user’s optimal data plan usage.

B. Optimizing User Utility

In maximizing the utility (1) subject to the constraint (2), the
user jointly optimizes the data x consumed under the regular
data plan and the fraction β of accepted SDOs for the month.

Optimizing Monthly Data Usage x. We initially consider
β as given and identify the optimal values of x under different
conditions, yielding the following.

Lemma 1. The user’s optimal data plan usage x∗ is given by

x∗ =


d, if (C1

p )1/α ≤ d
(C1

p )1/α, if d ≤ (C1

p )1/α ≤ γ − βnxmax
γ − βnxmax, if (C1

p )1/α ≥ γ − βnxmax.

Thus, if no SDOs are made (n = 0), the user would consume
x∗ = max

{
d, (C1/p)

1/α
}

amount of data.

TABLE II: Optimal x∗ and β∗ that maximize user utility (1) under
different conditions on d (columns) and ρ (rows).

Conditions d ≥ (C1/p)1/α d < (C1/p)1/α

ρ ≥ C2x
1−α
max

1−α

x∗ = d x∗ = (C1/p)1/α

β∗ = 0 β∗ = 0

ρ <
C2x

1−α
max

1−α

x∗ = d x∗ = d′

β∗ = max
{

γ−d
nxmax

, 1
}

β∗ = max
{

γ−d′
nxmax

, 1
}

In the above, d′ =
(

C1xmax
C2x

1−α
max/(1−α)−ρ+pxmax

)1/α

.

From Lemma 1, we observe that if (C1/p)
1/α ≤ γ −

βnxmax, then the user’s data plan usage would not change
with SDOs. Thus, heavy users’ data plan consumption is most
affected by SDOs; light users would not change their usage
behavior. These “light” users would have lower C1 values,
indicating that their marginal value from data consumption is
low compared to the cost of their data plan.

Optimizing the Discount Acceptance Rate β. The above
insight into lighter and heavier users is also reflected in the
fraction β of accepted SDOs, as follows.

Proposition 1. Table II gives the optimal (x∗, β∗) that maxi-
mize the utility (1) subject to the usage constraint (2).

This table defines the different boundary conditions under
which distinct utility-maximizing solutions emerge. We see
that users with (C1/p)

1/α ≤ d would not change their data
plan usage based on SDOs, rather supplementing their data
plan with SDOs as needed. However, heavier users, as iden-
tified in Lemma 1, with (C1/p)

1/α > d, would change their
data plan usage. Without SDOs, these users would consume
x∗ = (C1/p)

1/α including overage usage. By inspection of
Table II, we conclude that they always consume less than that
when SDOs are made.

Corollary 1. If C2x
1−α
max/(1 − α) > ρ, i.e., the user gains

positive utility from SDOs, then β∗ > 0 and the user accepts
at least some SDOs. However, data plan usage reduces with
SDOs, as x∗ < max

{
d, (C1/p)

1/α
}

.

We observe from this corollary that if users would have con-
sumed overage data without SDOs, then no matter how small
their utility from the SDOs, they would replace some of their
overage data consumption with SDO usage. However, light
users would still consume their data quota d (cf. Lemma 1),
though they might accept SDOs on top of this usage. We next
focus on how heavy users’ data plan consumption with SDOs
depends on their individual characteristics. In particular, we
find that users’ data plan usage x∗ can increase with xmax.

Corollary 2. If (C1/p)
1/α > d and α < ρ(1 −

α)/(C2x
1−α
max) < 1, usage x∗ is minimized when xmax =

ρ(1/α − 1)1/(1−α). When xmax ≥ ρ(1/α − 1)1/(1−α), x∗

increases with xmax.

This result is somewhat surprising; we would expect larger
xmax to lead to higher β, with less data plan usage. However,



the opposite effect occurs when xmax is large. We can partially
explain this latter result by noting that as xmax increases, users
would approach their monthly data quota γ faster with each
SDO. Thus, they would prefer to accept fewer offers, spreading
their data more evenly throughout the month by consuming
more of their data plan. This is particularly true for less price-
sensitive users (with higher α), whose utility from an SDO
session would increase slowly as xmax increases. They could
then realize larger marginal utilities from usage on their data
plans, compared to SDO usage.

We next examine the effect of the maximum usage γ in
more detail. In particular, we observe that γ may be larger for
users with a larger xmax, since both represent bounds on the
user’s desired data consumption.

Proposition 2. If γ = cxmax for a fixed c > 0 and a user
has positive utility from SDOs, then both x∗ and β∗ increase
as xmax increases, when xmax ≥ ρ(1/α− 1)1/(1−α).

In this scenario, a larger xmax would lead to a larger
maximum usage γ, allowing users to both accept more
SDOs and consume more of their data plan. Thus, even
though users would consume more data per SDO as xmax
increases, they would still increase both types of usage.
However, users’ data plan usage is still bounded by their
usage without SDOs (Corollary 1); even as xmax → ∞,
x∗ → max

{
d, (C1/p)

1/α
}

.

C. Maximizing ISP Revenue

Given the optimal user decisions in Proposition 1, we next
find the optimum SDO price ρ to maximize ISP revenue. Since
the ISP would set ρ at the beginning of the month, the monthly
model guides this choice for a given number of SDO offers n.
The ISP’s choice of n is further considered in Section IV-B.

The ISP’s revenue function is the sum of the revenue
obtained from each user over the billing cycle, so the objective
is to choose ρ to maximize this revenue, formulated as

max
ρ

∑
i∈U

(
η + p(x∗i (ρ)− d)+ + β∗i (ρ)nρ

)
,

s.t. ρ ≥ 0,
(3)

where the subscript i is added to indicate user-specific values.
We thus see that (3) is a complex optimization problem; the
set of users whose x∗ and β∗ expressions fall into the different
categories in Table II depend on ρ. We do not derive an
analytical solution, since a line search will suffice to find the
optimal ρ∗. We can, however, observe that when all users are
light users, the ISP would charge them as much as possible.

Proposition 3. When all users are homogeneous light users
who do not consume overage data (i.e., (C1/p)

1/α ≤ d, where
C1, C2, α, and d are the same for all users), the optimal price
ρ∗ in (3) is ρ = C2x

1−α
max/(1− α).

From Table II, we see that as long as these users have
positive utility from SDOs, they would accept as many offers
as necessary to realize their maximum usage γ. Thus, the ISP

(a) ISP Revenue as a function of
SDO Price

(b) Effect of SDO Price on Number
of SDO Subscribers

Fig. 1: ISP revenue (a) fluctuates as the SDO price ρ increases,
since (b) fewer users accept SDO offers for large ρ. These results
correspond to a distribution of users with mean α = 0.5 and
xmax = 0.5GB.

Fig. 2: The optimal ISP revenue always increases compared to
revenue without SDOs, and is higher for less price-sensitive (higher
α) users who consume more data with SDOs (lower xmax).

would have an incentive to charge as much as possible for
these accepted offers. However, when there is a more diverse
mix of users, the largest ρ may not be optimal. Figure 1(b)
shows the ISP revenue as a function of ρ for a distribution
of 100 light and heavy users. The optimal ρ∗ = $5 is lower
than if all users were “light” users (Proposition 3), since the
ISP can decrease ρ to encourage heavy users to accept more
SDOs. Figure 1(a) also shows the decrease in the percentage
of SDO subscribers (i.e., users who derive positive utility
from an SDO) with SDO session price ρ. There is a steep
drop-off in the subscription rate around ρ = $6, indicating
that many users no longer derive positive utility from SDOs(
C2x

1−α
max/(1− α) < ρ

)
.

As in our analysis of SDOs’ benefits in Section III-B,
Figure 2 shows the optimal ISP revenue for user populations
with different α and xmax values, compared to a scenario
without SDOs. ISPs always increase their revenue by offering
SDOs, especially for users with a higher price sensitivity; these
users will accept more SDOs to avoid overage charges. As
xmax increases, ISPs also earn more revenue, as indicated by
Corollary 2, leading to more SDO revenue.

IV. HOURLY STACKELBERG GAME

Building on the high-level insights provided by the monthly
model, we develop a game between users and ISPs to model
hour-by-hour SDO decisions. In what follows, we derive a
decision criterion for users to accept SDOs and propose an
algorithm to optimize ISP SDO schedules.

We break the monthly billing cycle into T time steps, e.g.,
T = 720 hours in a 30-day month. At the start of each time
step t, the ISP notifies users if an SDO is offered (yt = 1) or



TABLE III: We provide a list of additional symbols and definitions
for the dynamic interaction model.

Symbol Definition

t indexes the time intervals that the billing cycle has been divided into
at Binary variable indicating a user’s SDO decision for tth period
yt Binary variable indicating the ISP’s SDO decision in the t-th period
xt User intended data consumption in tth period
φt QoS needs of a user’s xt ∈ [0, 1]
θt Cellular network congestion measure for the t-th period ∈ [0, 1]
θW Typical Public Wifi congestion measure in the region of interest ∈ [0, 1]
δW User-specific Public WiFi preference metric ∈ [0, 1]

not (yt = 0). An ISP’s SDO schedule is the resulting set of
decisions {yt, t = 1, . . . , T}. If an SDO is offered at time t,
users respond by accepting or declining the SDO at the fixed
price ρ. We model overage as an addition of dO to the user’s
data quota at a cost p, as offered by most ISPs [25]1.

Suppose that at time t, a user has previously consumed xc(t)
of their data plan quota and the total data quota currently sits at
Dt, including any previously incurred overages. During time
slot t, the user intends to consume xt additional data at a
desired QoS level φt ∈ [0, 1]. For instance, a videoconference
session may warrant a high φt, while accessing email may
tolerate a low φt. To realize the desired xt, the user can
use their data plan, public WiFi if available, or an SDO if
offered. We account for congestion and price sensitivity effects
as follows. We define the congestion level θt of the cellular
network, which is known to both the user and ISP, as well as
the typical congestion θW for public Wifi networks. We also
define δW ∈ [0, 1] as a user-specific parameter that captures
the user’s public WiFi preference, ranging from complete
aversion (δW = 0) to no aversion (δW = 1), possibly based on
security preferences as previously described. As φt increases
and θt decreases, users experience more utility from their
usage. A detailed list of this notation is presented in Table III.

A. User Decision Criteria

At each time t, the user must choose whether to accept
the SDO if offered, use a data plan, or use WiFi if available.
We assume that users are myopic, i.e., they do not plan their
decisions over the month (since they do not know when SDOs
will be offered, this would be prohibitively difficult). Instead,
users make decisions based on perceived utility at the current
time, with awareness of the risk of incurring future overages.

The user’s utility at time t from SDOs, her data plan, and
public WiFi are respectively given by

uP (t) = (1− θtφt)xt − ρ(1− α), (4)
uD(t) = (1− θtφt)xt −Rtp(1− α) +NtuO(t), (5)
uW (t) = (1− θWφt)xtδW , (6)

respectively, with corresponding costs of access scaled by the
user’s price sensitivity2. Rt represents the risk of incurring a
new overage in the remainder of the billing cycle (i.e., at time

1Note that our monthly model in Section III-A uses continuous overage
costs, but at the finer hourly timescale, our overage amounts are discrete.

2At a finer time scale, the concavity of a user’s monthly utility as in
Section III-A does not appear; thus, we assume a utility linear in xt.

τ ≥ t), which depends on cumulative data plan usage up to
time t, as well as xt. Thus, usage decisions at time t affect the
future risk of overage Rτ for τ ≥ t, as this risk evolves over
the billing cycle. We account for user’s utility from the extra
data quota earned when incurring another overage charge by
defining an overage utility uO(t). Nt = 1 indicates that the
user incurs a new overage at time t (and 0 otherwise), so uO(t)
is only realized if Nt = 1. We next discuss how a user would
estimate the overage factors Rt and uO(t).

Modeling Risk Rt of New Overage. We define Rt as the
probability that the user will incur a new overage charge in
the remainder of the billing cycle. Computing this probability,
however, is difficult, as the user would not know exactly how
much data they would consume in the rest of the month. We
thus propose to estimate this future usage by leveraging the
user’s historical usage patterns. We suppose the user has a
typical pattern of data usage during the billing cycle, e.g.,
consistent usage throughout the cycle or gradually ramping up
usage toward the end [22]. We model these consumption trends
over the billing cycle as a random process X(t) ∼ Fσ(t)(atb)
representing the user’s cumulative (non-SDO) data consump-
tion until time t. Fσ(t) represents a distribution around the
mean cumulative usage atb, parameterized by σt, e.g., a nor-
mal distribution with variance σt. We can learn the parameters
a, b, and σt for each user from previous usage patterns3. In
the appendix, we present a maximum-likelihood method for
the user to learn the optimal a, b, and σ parameters assuming
F is a normal distribution.

The probability Rt of incurring a new overage in the current
cycle can then be written as

Rt = P (X(T ) > Dt|X(T ) ≥ xc(t) + xt) , (7)

where X(T ) is the total usage in the billing cycle.
Modeling Utility uO(t) from Overage. We define uO(t)

as analogous to users’ data plan utility in (5).

uO(t) = H min(Dt + dO − xc(t)− xt,
E[X(T )|X(T ) ≥ xc(t) + xt]), (8)

where E[·] denotes expectation. The argument of the min
function in (8) represents users’ expected utility from the
dO data added to their quotas with an overage. The factor
H ∈ [0, 1] qualitatively captures any decrease in the actual
utility realized in the future from the leftover data, e.g., due
to future values of (1−φtθt). Predicting these exact values is
likely impossible, as the user does not know their future data
needs, but including H abstracts from the exact details.

Optimizing User Utility. At the start of time step t, the
user chooses to consume data on an SDO, data plan, or WiFi
to maximize utility. Given the utilities from each choice (4),
(5), and (6), we derive the user’s optimal decision criterion.

3The distribution Fσ(t) can be induced by an underlying random process
on the parameters of users’ utility functions, which will drive their demands
xt. However, these utility parameters are not directly observable by the user
or ISP, so we model the directly observable usage itself as a random variable.



Proposition 4. The user’s optimal choice c∗ of data access
during t when overage is not expected (Nt = 0) is given by

c∗ =


SDO, if ρ < Rtp and v > ρα′

Public WiFi, if v < ρα′ and v < Rtpα
′

Data plan, otherwise,

while the optimal choice c∗ during t when overage is expected
(Nt = 1) is given by

c∗ =


SDO, if uO(t) < (p− ρ)α′ and v > ρα′

Public WiFi, if v < ρα′ and v < pα′ − uO(t)

Data plan, otherwise.

where v = xt(1− φt(θt − θW δW )− δW ) and α′ = 1− α.

From Proposition 4, we see that when the user is not
expected to go into overage at time t (Nt = 0), SDO is
the dominant choice over data plan if it costs less than the
expected overage price Rtp. Between WiFi and SDO, we see
that SDO is the dominant choice only when the congestion in
the cellular network is lower WiFi’s, subject to how important
QoS is to the user (φt) and the user’s affinity (or lack thereof)
for WiFi δW . The overage case in Proposition 4 results in
Rt = 1, and SDO is better than the data plan only if
the estimated future utility from overage uO(t) is less than
additional cost incurred by an overage over SDO, subject to
the user’s price sensitivity.

B. ISP Revenue Formulation

We next consider the ISP’s decision of when to offer SDOs,
given that users will respond according to Proposition 4. The
ISP’s revenue ri,t from user i in time period t is given by

ri,t = ai,tytρ+ (1− ai,tyt)ωi,tNi,tp (9)

where ai,t is the user’s binary decision to accept an SDO,
depending on whether an SDO is offered at time t, and ωi,t =
1 if the user does not offload to WiFi. These can be found
from each user’s decision c∗ in Proposition 4. Hence if (1 −
ai,tyt)ωi,t = 1, the user does not accept an SDO but continues
to use her data plan. If a new overage is incurred by i at t,
then Ni,t = 1, and the ISP earns the overage price p.

While choosing the optimal yt for (9) would maximize the
ISP’s revenue in time slot t, this could be sub-optimal in
regard to the monthly billing cycle. The ISP must then account
for the fact that its decision to offer an SDO at time t will
affect users’ risk of incurring an overage and hence the future
acceptance of SDOs and future revenue. Hence, even though
the ISP does not reveal the future SDO schedule to users, the
current SDO decision is a function of the optimal schedule
over the entire cycle. Therefore, this must be calculated at
t = 0 for maximizing revenue over the entire billing cycle.
The ISP thus aims to maximize the total revenue by optimizing
the SDO schedule y = {y1, . . . , yT } as

y∗ = argmax
y1,...,yT

E

(∑
i∈U

T∑
t=1

ri,t

)
(10)

In the revenue optimization in (10), note that the revenue terms
ri,t are necessarily dependent on each other over time, seen by
the inclusion of overage and conditional decision terms in (9).
Most importantly, the expectation appears in (10) to capture
the effects of the uncertainty in user decisions. In practice, the
ISP could execute y∗t at each time t and then re-compute its
optimal schedule for the rest of a billing cycle given updated
estimates of user parameters.

C. Optimizing ISP Revenue

To solve (10), the ISP must compute the distributions of Ni,t
and ai,t for each user so as to derive the expectation of ri,t in
(9), noting that both depend on previous values of yt. To do
so, the ISP must estimate the parameters θt, αi, and φi,t that
influence users’ SDO acceptance decisions in Proposition 4.
While the ISP would know the cellular and WiFi congestion
levels θt, it would need to use historical data from the user to
estimate the user-specific φi,t and αi parameters. The ISP must
then estimate the distribution of users’ future usage xi,t. We
suppose that it does so using the same method as the user in
Section IV-A. Given this knowledge of user behavior, we can
then recast (10) as a dynamic program and derive a heuristic
algorithm to compute an approximate solution.

Dynamic Programming Formulation. The solution to (10)
can be found by formulating the following Bellman equation
for computing the optimal revenue V ∗t at t. It can be expressed
as a function of the current time step decision yt that allows
for the maximum expected sum rt (one summation over users
in (10)) from the current time step revenue rt and the optimal
revenue from the next time step V ∗t (Dt+1, t+ 1), given by

V ∗t (Dt, t) = max
yt

(rt + V ∗t (Dt+1, t+ 1)) , (11)

where the boldface Dt is a vector of all users’ data quotas and
all of the terms depend on current and past values of yt. The
corresponding yt value becomes the tth entry in y∗. As we see
from (11), user quotas Dt+1 at time t+1 are a function of the
decision yt from the current-step, according to the relationship

Di,t+1 = Di,t +Ni,tdO, (12)

and as we know from (9), Ni,t is a function of the SDO
decision yt. Thus, this data quota state update mechanism
at every time step captures the tradeoff between overage and
SDO revenue, dependent on both yt and Dt. The results of
solving (11) are presented in Section V.

Fast Pruning Algorithm. Finding an optimal dynamic
programming solution is known to be difficult. Since the ISP’s
decision variables yt are binary, our problem is NP-hard.
We thus develop an approximation algorithm for (11) that
efficiently prunes the search space of possible SDO schedules.
Our near-optimal numerical results are given in Section V.

Algorithm 1 presents the details of the algorithm. To facili-
tate our discussion, we define an outcome state Ot,~y at time t
as the vector of estimated accrued consumption for each user
and accrued revenue for the ISP, given the yτ decisions chosen
at previous times τ ≤ t. At each time t, we consider both



Algorithm 1 Fast Pruning Algorithm for SDO Schedules.
1: procedure COMPUTESDOSCHEDULE(a,b, σ)

. Columns of all matrices are 0-indexed
2: usageState[0, :]← [0]
3: revenue[0, :]← 0
4: for t← 1, . . . , T do
5: for y ← 0, 1 do
6: for prevY ← 0, 1 do
7: currUsage← usageState[t− 1, prevY ]
8: currRev ← revenue[t− 1, prevY ]
9: incRev ← 0

10: for each u ∈ {Users} do
11: [newUserUsage, newRev] ←

estIncUsageThisHour(currUsage[u], y, a[u], b[u], σ[u, t])
12: incRev ← incRev + newRev
13: newUsage[u]← newUserUsage

14: revV sY Decision[prevY ] ← incRev +
currRev

15: usageV sY Decisions[prevY ]← newUsage

16: if revV sY Decision[0] > revV sY Decision[1]
then

17: ySchedule[t, y]← 0
18: usageState[t, y]← usageV sY Decisions[0]
19: currRev[y]← revV sY Decision[0]
20: else
21: ySchedule[t, y]← 1
22: usageState[t, y]← usageV sY Decisions[1]
23: currRev[y]← revV sY Decision[1]

24: if currRev[T, 0] > currRev[T, 1] then
25: return ySchedule[0]
26: else
27: return ySchedule[1]

possible ISP decision outcomes: yt = 0 (do not offer SDO)
and yt = 1 (offer SDO). For each option, we prune among
the possible SDO schedules by retaining only one outcome of
the option under consideration.

At t = 1, we start with one initial state of no usage or
revenue. We then consider decisions y1 = 1 and y1 = 0
with resulting outcome states O1,1 and O1,0. At the next time
step, t = 2, we again consider y2 ∈ {0, 1} and end up with
two outcome states for each. For example, we could move
to y2 = 1 from either O1,1 (ending up in O1,(1,1)) or from
O1,0 (ending up in O1,(0,1). For each choice of y2, we pick
the outcome state that has higher aggregate revenue (hence
implicitly choosing the associated parent state from t = 1). We
continue until time T , when we chose the final outcome state
O1,(y1,y2...,1) or O1,(y1,y2...,0) with higher accrued revenue.
By not pruning between the two yt options in each time
step, but instead pruning between each previous outcome state,
we account for the effect of accruing outcomes between the
decision branches for yt = 1 and yt = 0.

V. TRACE-DRIVEN EVALUATION

In this section, we illustrate user and ISP decisions in
our hourly model. We use a cellular usage trace from 20
users to show that ISPs gain revenue from making SDOs
and that the SDO schedule computed by our pruning heuristic
(Algorithm 1) is close to the optimal. We then examine the

effect of the SDO price ρ. We show that ISPs can exploit
user uncertainty to earn more overage revenue as ρ increases
and that ISPs experience a tradeoff between maximizing their
revenue and their network utilization in making SDO offers.
We also draw comparisons between our findings and Verizon’s
existing PopData deployment.

Simulation Setup. For illustration, we reduce the duration
of the billing cycle to 24 hours, with an associated data
overage threshold of 50MB (equivalent to a 1.5GB monthly
quota). Our user-specific consumption patterns are taken from
a one-week cellular usage trace of 20 users. The availability
of public WiFi hotspots to users is drawn from a Rayleigh
distribution with parameter 0.25 (where an availability below
0.5 is considered unavailable), as are users’ price sensitivities
α. We set θw = 0.5 and draw θt and δW from a uniform
distribution between 0 and 1. The ISP never offers SDO during
hours 2-5 as typical network use is very low during these hours
of the night; it also does not offer SDOs at 8AM and 6PM
due to already high network congestion as done by Verizon
with PopData [26]. These configurations apply to the following
results unless noted otherwise.

SDO Schedules. Figure 3(b) compares the optimal ISP
schedule for each value of ρ to the schedule generated by the
fast pruning algorithm (Algorithm 1). Our pruning algorithm
yields the optimal schedule when ρ is very low or high, and it
closely trails the optimal schedule in other cases. When ρ = 1,
the ISP does not offer any SDOs. Even though this SDO price
is low enough to attract many users, the resulting SDO revenue
does not compensate for the ISP’s loss in overage revenue. As
ρ increases, the ISP selectively makes SDOs in more hours.
When ρ is sufficiently high, at $7, the ISP makes an SDO in
all hours, as its revenue from users’ acceptance of an SDO
exceeds any resulting loss in overage fees.

We next examine the revenues achieved by our pruning
algorithm in Figure 3(c), with a low data overage threshold
of 2MB. Our algorithm nearly achieves the revenue with the
optimal schedule at all prices ρ. Both significantly improve
the ISP revenue compared to a random schedule, with a
20% increase at the optimal ρ∗ = 9, emphasizing the ISP’s
benefit from optimizing its SDO schedule. We next examine
ISP benefits in more detail by comparing their overage and
SDO revenues and considering the effect of SDOs on network
utilization. These results use the optimal SDO schedule.

Overage vs. SDO revenue. We first examine the effect of
users’ overage thresholds on ISP revenue. Figure 4(a) shows
that users incur more overage charges, increasing ISP revenue,
as the overage threshold decreases from 50MB to 800KB.
Moreover, the optimal SDO price ρ∗ also increases as the ISP
would discourage them from accepting SDOs and lowering its
overage revenue. Hence, only higher values of ρ incentivize
the ISP to offer SDOs as more users go into overage. In
Verizon’s PopData deployment, each PopData session costs
$2, indicating that few users would incur overage charges.

To confirm this intuition, we visualize user spending on
overage and SDO fees in Figure 4(b) for an overage threshold
of 1.5MB. Surprisingly, users spend more money overall under



(a) Total ISP Revenue as a function of SDO Price (b) Optimal SDO Schedule vs. SDO Price (c) ISP Revenue vs. ρ over SDO decision methods

Fig. 3: We illustrate the dependence of ISP revenue on the SDO price ρ. Our results indicate that (a) revenue from SDOs far exceeds that
from overage when the ISP plans its SDO schedule optimally, (b) our heuristic SDO schedule closely matches the optimal one, with an
exact match for very low or high fees ρ, and (c) our heuristic yields nearly the same revenue as the optimal SDO schedule, with significant
improvement over a random schedule.

(a) Effect of Overage Threshold on Op-
timal ISP Revenue

(b) Users’ Overage vs SDO spend-
ing over SDO price

Fig. 4: As users’ data quota decreases, (a) ISP revenue is maximized
at higher SDO fees ρ. As ρ increases, (b) ISP’s continue to make
steady income from SDOs as in Figure 3(b). For each ρ, the ISP
exploits user uncertainty in when SDOs will be offered, choosing its
SDO schedule so as to induce users to myopically accept SDOs, even
though the SDO fees incurred exceed users’ future overage charges.

most regions of ρ with SDO than without. Without SDOs
(at ρ = $10 when no users accept SDOs), users spend
approximately $200 total on overage fees. At 20 users and $10
for an overage, this implies 20 overages overall in the billing
cycle. For the same data needs, users spend significantly more
when offered SDOs. We show below that this substantial
increase in revenue is not due to any significant shift from
WiFi to SDOs. Instead, it is a direct consequence of users’
inability to predict when future SDOs will be offered.

As users approach a new overage, i.e., Rt from (5) in-
creases, they are more likely to accept SDOs. They do not,
however, anticipate this increase in Rt in advance. As shown
by users’ myopic hourly utilities in (4–6), lack of information
about future SDOs forces users to make bounded-rationality
choices. Aversion to future overages then biases users towards
accepting the SDO, allowing the ISP to plan its SDO schedule
such that users’ myopic decisions yield much higher revenue
than the ISP could otherwise gain. While some users may
avoid these charges, Figure 4(b) shows that most spend more
under SDOs. If users, as in the monthly model, could plan their
optimal usage up-front knowing the future SDO schedule, they
could avoid these charges. If users, as in the monthly model,
could plan their optimal usage up-front with the knowledge
of the future SDO schedule, then they would properly balance
SDO spending. In Figure 5, we show that in our monthly
model, users consume more data with SDOs compared to

Fig. 5: Distribution of aggregate user usage across the population.
The Distributions are representatives of two populations. One, with
price sensitivity 0.8 and another with price sensitivity 0.3

Fig. 6: Distribution of total user cost across the population. The
Distributions are representatives of two populations. One, with price
sensitivity 0.8 and another with price sensitivity 0.3

without. Despite this increase in usage, however, they spend
only slightly less with SDOs than without, indicating that they
better balance their SDO spending with overage charges.

Network utilization vs. revenue. We finally examine

Fig. 7: The amount of public WiFi data captured by the ISP’s network
due to SDOs is non-monotonic in ρ, reflecting the ISP’s strategic
choices in computing the optimal SDO schedule.



Fig. 8: The ISP can make more revenue from users with lower WiFi
preferences, since these users would be more likely to accept SDOs.
Comparing the revenue with the network utilization in Figure 7, the
revenue maximizing ρ does not maximize network utilization.

the effect of WiFi availability on ISPs’ revenue and network
utilization. Though SDOs could incentivize users to consume
cellular instead of WiFi data, thus allowing ISPs to monetize
this otherwise “lost” usage, we find that there is a tradeoff
between maximizing ISP revenue and the network utilization.

Figure 7 depicts the amount of data traffic onboarded onto
the ISP’s network from WiFi, as a function of ρ as well as the
distribution of users’ WiFi preference factor δW . Though the
overall network utilization decreases as ρ increases, which we
would expect since a higher SDO price ρ would lead to fewer
users accepting SDOs instead of using WiFi, this decrease
is non-monotonic. This is a direct effect of the ISP jointly
optimizing ρ and the SDO schedule such that the optimal SDO
offerings at each price are made strategically in hours that
balance the ISP’s predicted revenue from cellular onboarding
and overage fees. Moreover, comparing Figures 7 and 8 shows
that while network utilization is maximized at ρ = 1, ISP
revenue is maximized at higher prices.

Our result realizes a key consequence of the dynamics of
hourly SDO games. The ISP is able to learn user intentions
from historical data and strategically choose the SDO schedule
and price to maximize its revenue. Users are then at a
disadvantage; even though they may increase their utility by
switching from WiFi to SDOs, the ISP’s offered SDO schedule
and price does not maximize this utility increase. Thus, the
ISP is able to control the information revealed about SDOs to
profit from users’ consequential myopic actions.

VI. DISCUSSION AND CONCLUSION

In this work, we analytically and empirically assess the
viability of supplemental discount offers from ISPs to their
users. We first abstract away from hour-to-hour dynamics to
show that most users would accept some SDOs, and that those
who consume the most data per SDO would also consume
the most data on their cellular data plans. We then build on
this framework by developing hourly decision algorithms for
users to decide when to accept and ISPs to decide when
to make SDOs. We simulate these algorithms over a two-
week trace of data usage, empirically establishing that SDOs
can increase ISPs’ network utilization and revenue. Moreover,

ISPs can exploit user uncertainty in when SDOs will be
offered to further increase their revenue. Our work captures
Verizon’s claimed motivation of offering PopData in order to
recover usage that would otherwise have been realized on WiFi
networks [27], and indeed we find a tradeoff between the ISP
maximizing its revenue and its network utilization.

Throughout this work, we assume a monopoly ISP. Though
we do consider users’ option to consume WiFi instead of
cellular data, we do not model competition between ISPs.
In a competitive setting, SDOs may attract new users to an
ISP by allowing them to supplement their data plans; on the
other hand, other ISPs could counter these offers by simply
increasing their plans’ monthly quotas. Thus, future work
should consider these potential ISP competition effects, as well
as users’ ability to predict when SDOs will occur in the future.
With such predictions, users could further optimize their SDO
acceptances and undercut ISPs’ SDO revenue. Our work can
be viewed as a first step towards assessing SDOs’ benefits and
guiding users and ISPs as to how to use and react to them.
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APPENDIX

A. Proof of Lemma 1
Proof. In the event that x ≤ d, the utility u(x, β) can be
written as

u(x, β) = C1
x1−α

1− α
+ βn

[
C2

x1−αmax

1− α
− ρ
]
− η, (13)

for x ≤ d, where u is strictly increasing in x. Hence, the user
utility is maximized at x∗ = d, at which point the user always
consumes the data quota, as it is already paid for. Considering
the case where x ≥ d, the user utility expression is

u(x, β) = C1
x1−α

1− α
+βn

[
C2

x1−αmax

1− α
− ρ
]
−η−p(x−d), (14)

for x ≥ d. In this region, u(x, β) is convex and hence a
maxima exists. However, this maxima is the optimal x for (14)
only if it lies beyond d. Else, the function is strictly decreasing
is this region and the optimal x is simply d. Assuming the
maxima is beyond d, we find the utility-maximizing x by
equating the derivative of the utility function to 0, yielding

∂u

∂x
= 0

C1x
−α − p = 0

x∗ =

(
C1

p

) 1
α

The optimal value obtained, x∗ = (C1/p)
1/α, is subject to

two constraints: it is lower bounded by d and upper bounded
by γ−βnxmax ≥ d due to (2). By considering these bounds,
we obtain the desired result.

B. Proof of Proposition 1

Proof. We separately consider two cases. If (C1/p)
1/α ≤ d,

then x∗ = d, and the user utility as a function of β is:

u(β) = C1
d1−α

1− α
+ βn

[
C2

x1−αmax

1− α
− ρ
]
− η, (15)

for d ≥ (C1/p)
1/α.

From (15), we see that the utility function is linear in β. If
C2

x1−α
max

1−α − ρ is negative, (15) decreases with β indicating that
the satisfaction obtained from using PopData is less than the
cost of PopData, and hence β∗ = 0. A positive co-efficient
for β, however, implies that the user utility increases linearly
in β, and hence the difference between γ and x (which is, by
definition, d in this region) in this region is accommodated by
PopData. The optimal β in this region is hence:

β∗ =
γ − d
nxmax

H

[
C2

x1−αmax

1− α
− ρ
]
, (16)

where H denotes the unit step function that equals one if the
argument is greater than 0, and 0 otherwise.

We now consider the second case in which (C1/p)
1/α > d,

for which u(β) is

u(β) =C1

((C1

p )
1
α )1−α

1− α
+ βn

[
C2

x1−αmax

1− α
− ρ
]

− η − p((C1

p
)

1
α − d), (17)

for d ≤ (C1/p)
1/α ≤ γ − βnxmax. As in the first case, we

see that the optimal β is either 0 or the upper-bound from the
constraint in (2),

β∗ =
γ − (C1

p )
1
α

nxmax
H[C2

x1−αmax

1− α
− ρ] (18)

Finally, we jointly optimize β and x over the remaining
region. If (C1/p)

1/α ≥ γ − βnxmax, u(β) is given by

u(β) =C1
(γ − βnxmax)1−α

1− α
+ βn

[
C2

x1−αmax

1− α
− ρ
]

− η − p(γ − βnxmax − d), (19)

for d < γ − βnxmax ≤ (C1/p)
1/α.



Upon equating the derivative of (19) to 0, we have:
∂u

∂β
= 0

C1nxmax
(γ − βnxmax)α

= n

[
C2

x1−αmax

1− α
− ρ
]

+ pnxmax

γ − βnxmax =

 C1xmax[
C2

x1−α
max

1−α − ρ
]

+ pxmax

1/α

β∗ =

γ −

 C1xmax[
C2

x
1−α
max
1−α −ρ

]
+pxmax

1/α

nxmax
(20)

x∗ =

 C1xmax[
C2

x1−α
max

1−α − ρ
]

+ pxmax

1/α

(21)

We now note that Region 2 is a special case of Region
3 when PopData has negative utility. To see this, substitute
[C2x

1−α
max/(1 − α) − ρ] = 0 in (20) and (21), thus setting

utility from PopData to 0. Then, x∗ and β∗ take the values of
x∗ and β∗ for Region 2. However, if the utility of PopData is
0, H in (18) would put β∗ as 0, which is not the case as seen.
Thus Region 2, in fact, does not apply when the Utility from
PopData is non-negative, in which case, Region 3 accounts
for the values of x∗ and β∗. However, when the utility from
PopData is negative, i.e, [C2x

1−α
max/(1 − α) − ρ] < 0, then

(18) correctly results in zero PopData usage and optimal x∗

of (C1/p)
1/α.

We note as well that, by definition of (C1/p)
1/α in Region

3, utility from PopData cannot be negative in Region 3. That
is, if [C2x

1−α
max/(1−α)−ρ] < 0 in Region 3, then the optimal

x∗ given by (21) exceeds (C1/p)
1/α, in which case that x∗ is

infeasible as it violates usage constraint (2). This means that
if utility from PopData is negative and (C1/p)

1/α > d (i.e,
we are not in Region 1), then the user must necessarily be in
Region 2. On the other hand, if the utility from PopData is
greater than 0 and (C1/p)

1/α > d (i.e, we are not in Region 1),
then the user must necessarily be in Region 3. These conditions
yield the final result given in Table II.

C. Proof of Corollary 2
Proof. Under the stated conditions, users’ data plan usage is
given by

x∗ =

(
C1xmax

C2
x1−α
max

1−α − ρ+ pxmax

) 1
α

.

Thus, it suffices to show that x∗α reaches its minimum value
at xmax = (ρ(1 − 1/α)1/(1−α). We do so by taking the first
derivative and setting it equal to zero, which is equivalent to

C1

(
C2

x1−αmax

1− α
− ρ+ pxmax

)
= C1xmax

(
p+ C2x

−α
max

)
C2α

1− α
x1−αmax = ρ,

from which the result follows directly.

D. Proof of Proposition 2

Proof. Corollary 2 shows that x∗ increases as xmax increases,
for xmax above the given threshold, regardless of the value of
γ. To show that β∗ increases with γ, we consider two cases.
First, if (C1/p)

1/α ≤ d, then

β∗ =
γ

n
− d

nxmax
,

which is increasing in xmax by inspection. Second, if
(C1/p)

1/α > d, then we find that

β∗ =
γ

n
− 1

n

(
C1x

1−α
max

C2
x1−α
max

1−α − ρ+ pxmax

) 1
α

thus, it suffices to show that

d

dxmax

(
C1x

1−α
max

C2
x1−α
max

1−α − ρ+ pxmax

)
< 0.

Taking this derivative, we find that it is proportional to(
C1

x1−αmax

1− α
− ρ+ pxmax

)
(1− α)C1x

−α
max

− C1x
1−α
max

(
C1x

1−α
max + p

)
= −pC1x

−α
max − αpC1x

1−α
max

which is negative by inspection.

E. Online Estimation of User Parameters

While the ISP calculates optimal SDO schedule at t = 0, it
strategically does not reveal this to the users, hence gaining the
advantage (amongst others detailed in Section V) to observe
users’ accrued consumption in the current billing cycle and
measure any significant deviations from the learnt a, b and σ2

T .
This deviation from typical historic trends could be especially
considerable when the ISP first introduces SDOs, as offloading
to SDOs impacts the usage trend under the regular data
plan. To accommodate such externalities, the ISP might use
the following online learning procedure to recompute user
characteristics and subsequently the SDO schedule for leftover
timesteps.

Update Criteria. The ISP can periodically calculate the
likelihood of the observed xcs over the duration of the billing
cycle and determine whether the user’s consumption trend in
the current month is in keeping with the learnt model. Given
a vector of observed ~xc and corresponding time-intervals ~t,
the update criteria is defined as:

p( ~xc(t)| ~µ(t), ~Σ(t)) =

t∏
i=1

1√
(2π)t|Σ|

(22)

exp
−(xc(i)− ~µ(t))′Σ−1(xc(i)− ~µ(t))

2
(23)

u( ~xc(t)) =

{
1, if p( ~xc(t)|a(t)b, σ2

t ) ≥ TU
0, otherwise

(24)

where u is the update decision, and TU is a pre-defined
empirical threshold for the likelihood of observations ~xc(t),



below which the user is determined to be significantly deviant
from their expected trend.

Update Algorithm. If the update decision u is affirmative,
the ISP can use weighted Maximum Likelihood estimation
to recalculate the learned parameters, where the observations
of the current cycle ~xc are assigned a weight inversely
proportional to the likelihood of the observations, and the rest
of the historic observations are weighed equally. i.e.,

Wi(S) =


(1−p( ~xc(t)|a(t)b,σ2

t ))
|S| , if S = ~xc(t)

p( ~xc(t)|a(t)b,σ2
t )

|S| , otherwise
(25)


