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Abstract—Smart grids are capable of two-way communication
between individual user devices and the electricity provider,
enabling providers to create a control-feedback loop using time-
dependent pricing. By charging users more in peak and less
in off-peak hours, the provider can induce users to shift their
consumption to off-peak periods, thus relieving stress on the
power grid and the cost incurred from large peak loads. We
formulate the electricity provider’s cost minimization problem
in setting these prices by considering consumers’ device-specific
scheduling flexibility and the provider’s cost structure of pur-
chasing electricity from an electricity generator. Consumers’
willingness to shift their device usage is modeled probabilistically,
with parameters that can be estimated from real data. We develop
an algorithm for computing day-ahead prices, and another
algorithm for estimating and refining user reaction to the prices.
Together, these two algorithms allow the provider to dynamically
adjust the offered prices based on user behavior. Numerical
simulations with data from an Ontario electricity provider show
that our pricing algorithm can significantly reduce the cost
incurred by the provider.

Index Terms—Smart-Grid pricing; demand response; patience
index; day-ahead pricing

I. INTRODUCTION

A BASIC purpose of smart grids is to create an automated,
widely distributed energy delivery network that uses

smart meters to facilitate two-way flows of information and
electricity between energy consumers and providers. This
transformation enables greater support for demand response
and provides more flexibility in demand shaping through time-
dependent pricing (TDP).
In a smart grid infrastructure, electricity providers can

send pricing information from their pricing database to the
Energy Consumption Controller (ECC) unit located at the
consumer’s smart meters, as shown in Fig. 1. The ECC can
monitor and control a consumer’s energy consumption by
scheduling device activities at periods of lower prices. An
increasing number of devices, such as vacuum cleaners (e.g.
Roomba), smart washing machines (e.g. Miele), and smart
ovens (e.g. LG Thinq), are becoming more “intelligent” and
can be scheduled, either manually or automatically by the
ECC, to switch on or off depending on the prices at different
times of the day. Such innovations further enable electricity

Manuscript received 1 October 2011; revised 14 February 2012.
C. Joe-Wong is with the Program in Applied and Computational Mathe-

matics. Princeton University (e-mail: cjoe@princeton.edu).
S. Sen, S. Ha and M. Chiang are with the Department of Electri-

cal Engineering, Princeton University (e-mails: {soumyas, sangtaeh, chi-
angm}@princeton.edu).
Digital Object Identifier 10.1109/JSAC.2012.120706.

providers to effectively use dynamic pricing to match their
cost to revenues by flattening out peak demand and achieving
better resource utilization. Enterprise markets offer additional
opportunities in addition to consumer markets.
Several earlier works have studied TDP from a user’s

perspective of scheduling devices according to predictions of
future prices. For instance, [1] proposes a mechanism for
predicting prices one or two days in advance. Given these
prices, household devices can be scheduled so as to balance
impatience with the desire to save money. A related paper [2]
considers the same problem, but with an emphasis on several
users sharing a power source and simultaneously scheduling
energy consumption in a distributed manner. A variation on
this topic is considered in [3], which introduces an appli-
ance commitment algorithm that schedules thermostatically
controlled household loads based on price and consumption
forecasts to meet an optimization objective. In this work, we
focus on TDP from the energy provider’s perspective (i.e.,
that of increasing profit and minimizing cost), as opposed to
the consumer’s optimization problem of scheduling his or her
power consumption based on price projections.
Electricity providers’ problem of determining prices ac-

cording to user reaction has been studied in several previous
works: for instance, [4] reviews the literature up to 2002 on
modeling responses to dynamic prices and real trial studies.
The more recent work [5] uses real data to quantitatively
predict users’ scheduling of energy consumption, while [6]
considers a feedback loop between users and provider and
proposes a real-time pricing algorithm from the perspective
of price stability. Other papers such as [7] and [8] consider
the total social welfare across users and providers, while [9]
specializes a similar model to smart grids. The paper [10]
treats the electricity market as an auction, with dynamic offers
from providers selling electricity and real-time responses from
users buying electricity. Similarly, [11] focuses on users’ joint
scheduling of energy usage, in the presence of either full or
partial information about other users. In this work, we avoid
game-theoretic and social welfare models, and instead provide
a very practical framework that allows energy providers to set
prices by indirectly estimating users’ device specific schedul-
ing flexibility from time-varying aggregate demand data. Such
an approach reduces the required communication overhead and
helps ensure scalability of the model.
Many prior papers consider real data in their modeling of

user behavior and evaluation of time-dependent pricing. For
instance, [12] fits a demand function model to real data. A
similar approach is taken in [13], which analyzes the social
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Fig. 1. Schematic of Smart Grid infrastructure with Home Smart Meter controlled devices.

Fig. 2. Schematic of different devices’ energy consumption throughout the
day.

welfare from peak/off-peak pricing plans using simulations
based on real data. TDP’s benefits are illustrated in [14], which
uses real data to illustrate that shifting usage physically insures
against an overloaded network. Finally, the papers [15] and
[16] also look at the social welfare gains from actual pricing
trials. Table I summarizes the works discussed above.
There are several key differences between our approach and

those of previous papers. First, most other works account
for the aggregate demand across users at different times,
but do not consider heterogeneity at the device level. In
practice, different devices have very different time sensitivities
in shifting their electricity consumption (e.g. smart washing
machines and vacuum cleaners like Roombas can typically
tolerate a longer delay in scheduling, while smart ovens
that schedule cooking times have very little delay tolerance).
Figure 2 illustrates this point by showing the time distribu-
tion of different devices’ energy consumption. Devices like
refrigerators consume a roughly constant amount of electricity,
and thus cannot shift their usage. Devices like dryers or
dishwashers, however, are only used once or twice a day;
this usage can easily be shifted to different times of the day,
often without user intervention. To account for this device
heterogeneity, we develop a time-dependent pricing scheme
that builds devices’ different delay tolerances into the model
of users’ demand response.
Second, this work focuses on day-ahead time-dependent

pricing as opposed to real time pricing, since the latter creates

higher uncertainty for the consumer and is less attractive from
a user adoption perspective. Consumers and many enterprise
customers prefer day-ahead time-dependent pricing as it al-
lows them to plan their activities in advance and also facilitates
automated lightweight scheduling of devices by an ECC [22].
We consider the pricing problem of an electricity distributor
selling energy directly to consumers, rather than that of an
electricity generator.

Third, our formulation of the price optimization problem is
shown to be highly tractable and scalable to large numbers of
users and pricing periods. Moreover, the formulation relies
on predictions of user behavior which can be determined
relatively easily from previous observations. Our numerical
results show that using our pricing algorithm can help elec-
tricity providers realize significant savings by flattening out
electricity consumption over the day. The following points
summarize our contributions:

• We consider heterogeneity in delay tolerances at the
device level as opposed to modeling a user’s energy
consumption with utility functions. While modeling with
utility functions is theoretically simple, estimating these
parameters is typically difficult in practice. Instead, it
is more practical for energy providers to monitor usage
behavior and estimate users’ delay tolerances for different
devices through curve fitting on observed demand data as
described in Section III.

• The analysis developed allows energy providers to esti-
mate these delay tolerances across users based only on
the aggregate data, instead of monitoring and estimating
these parameters for each individual user. Our methods
are thus easily scalable to a large number of users. They
do not require any additional infrastructure changes, as
the provider need only measure the total load on the
network in order to calculate the prices.

• Our model allows demand under TDP to remain the same
as that with flat-rate pricing. We justify this assumption
by supposing that the provider only offers discounts
from the previous usage-based price; thus, the price in
any period will be no more than it is before TDP is
introduced. In contrast, several earlier works propose
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TABLE I
SUMMARY OF RELATED WORK.

Work [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]
2/3 × × × × × × × × × × × × × × × ×
H × × × × × × × ×
AF × × × × × × × × ×
RD × × × × × × × × × × × ×
SW × × × × × × × × × × × ×
TR × × × × × × × × × ×

2/3: 2 or 3 period model H: Hour-long periods AF: Analytical Formulation
RD: Real Data SW: Social Welfare TR: Trial Results

models in which some demand (and associated revenue)
will be lost under dynamic pricing.

• We consider the optimized price offerings from the
provider’s perspective of maximizing revenue, as op-
posed to many previous works that have solely focused
on maximizing social welfare.

• In contrast to other works, our model incorporates users’
time-shifting their electricity usage in time; the ECC
can schedule devices according to the prices since they
are known a day in advance. Most other papers do
not consider day-ahead pricing, and do not incorporate
baseline usage statistics from before TDP.

• Although we explicitly consider TDP for an electricity
distributor, we assume that this distributor purchases
electricity from a generating company. Distribution grid
operators must purchase electricity from generators at
different times (peak/off-peak), according to the prices in
these periods. This generator is assumed to pass on to the
distributor the variation in capital costs associated with
different types of energy sources, i.e., base, intermediate
and peak costs. We note that if the distributor and
generator form part of the same company, then these
costs are automatically passed on. Demand and capacity
statistics from an energy provider in Ontario are used in
the simulations.

The remainder of the paper is organized as follows. Section
II introduces our pricing formulation and models of user
behavior. We provide an algorithm for determining the optimal
day-ahead prices, with the requisite online parameter estima-
tion using the methods described in Section III. We then show
our pricing algorithm’s numerical results in Section IV. The
parameters and calibration data in this section were drawn
from real statistics provided by an Ontario operator. Finally,
Section V concludes the paper by summarizing the results and
suggesting avenues for further research.

II. MODEL FORMULATION

In this section, we introduce our model of time-dependent
pricing as an optimized feedback loop between users and
energy providers. A schematic of the feedback loop is shown
in Fig. 3; the energy provider monitors the network load to
estimate the consumer’s willingness to shift his or her demand,
and uses it to announce optimized prices for the next day. The
user’s response to these prices, via either manual or automated
scheduling by the ECC, is then used to refine the provider’s
estimates of user behavior.
Our model considers a “day-ahead” pricing scheme [14],

in which providers publish their prices one day in advance.

Fig. 3. Schematic of the feedback loop between the provider and users.

This scheme offers users more certainty than other common
implementations of dynamic pricing [4], [22], such as “hour-
ahead” or real time pricing. With day-ahead pricing, users
can schedule their device usage for the upcoming day so
as to optimize their amount spent and willingness to shift
their device usage. Hour-ahead or real-time pricing would
force the ECC to use a less optimal scheduling algorithm to
solve an online knapsack problem. We note, however, that our
algorithm can be easily adapted to hour-ahead pricing.
We suppose that there are n periods in a day, e.g., n = 24

for hourly prices. We assume that the provider faces some
given demand in each period, which we call Di, with i
indexing the period. The demandDi in each period is assumed
to be roughly the same each day due to repeated daily patterns
in electricity demands (e.g. period 1 has the same demand on
Monday, Tuesday, etc.), so that the aggregate demand over
each day is usually constant. We verify this assumption using
real traces from an Ontario operator of hourly demand data
over seven years [23]. Figure 4 shows the hourly demand over
three consecutive days; it remains approximately the same
from day to day. We use volatility measures from quantitative
finance to study the day-to-day volatility of demand for the
entire data set [24]. The mean volatility for all hours is
found to be between 3.6% and 8.8%, with standard deviations
between 1.5% and 5.4%. As shown in Fig. 5, the average
daily volatility, measured over each week, is always less than
12%. This result further strengthens the case for cyclic demand
patterns over days of the week and shows that the aggregate
demand on each day can be assumed to be roughly constant.
The provider’s goal is to incentivize users in the right way,

so that they shift their energy consumption (e.g., a Roomba)
to periods of lower demand. We model user behavior through
the shifts in demand from the baseline Di, induced by time-
dependent prices. We assume that no usage is lost with the
introduction of TDP, i.e., users consume the same amount
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Fig. 4. Hourly electricity demand for IESO remains approximately the same
over three consecutive days.

over the entire day as they did before TDP (the distribution
of the usage across different periods is merely shifted and
not completely lost when using TDP). This is particularly
true when device scheduling is done with an ECC, which
automatically schedules the same household devices every day
based on the consumer’s requirements.
We use R to denote the flat usage-based rate that an energy

provider charges to its consumers in the absence of TDP. The
time-dependent optimization problem is then formulated in
terms of rewards, or discounts applied to the nominal flat fee
R. The reward in each period i, i = 1, 2, . . . , n, is denoted
by ri. We note that given a day-ahead price offering, users
can either delay a device (shift to a later period) or shift to an
earlier period, with respect to the device’s “original period”
(the period in which the device would have been scheduled
had there been no time-dependent rewards). The maximum
reward offered is taken as R, meaning that the provider never
offers negative prices to users.
The usage shifts from devices’ original periods are calcu-

lated with sensitivity functions sj(r, t), which give each user’s
probability of shifting each device’s usage by the amount
of time t, given the reward r in the new period of usage.
Sensitivity functions can vary across users and across devices,
which we capture through appropriate parameterization of
the sensitivity functions. The subscript j denotes this user-
device parametrization. The sensitivity functions are assumed
to be concave and increasing in reward (in accordance with
the principle of diminishing marginal utility) and decreasing
in time (i.e., users prefer to shift their usage as little as
possible). Since the sensitivity functions are probabilistic, we
normalize each sj by the sum over all times t of sj(R, t).
This normalization ensures that the amount of shifted usage
calculated does not exceed the actual usage.
For simplicity, we assume that each period is one unit of

time, and index the periods by i, i = 1, 2, . . . , n. Then if a
user shifts a device from period i to period k, i.e. shifts by
k − i periods, k − i is assumed to be the number b ∈ [1, n]
which is congruent to k−i modulo n. Note that if k < i, users
have shifted from period i on one day to period k on the next
day. We use |k − i| to denote the maximum of (k − i) mod n
and (i − k) mod n. In other words, users will either advance
their usage to the first period k before period i or delay their
usage to the first period k after period i, whichever shifts their
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Fig. 5. Average over all hours of usage volatility in each hour, measured
over each week.

usage by a smaller amount of time. Since some devices (e.g.
refrigerators) cannot be turned off, we also assume a baseline
demand of di in each period i; this quantity is the amount of
electricity used by devices that never shift their usage.
Using the above notation, we can formulate the electricity

provider’s optimization problem. The provider wishes to min-
imize the costs of both offering rewards and satisfying user
demand (i.e., having a sufficient available capacity). We next
find an expression for the cost of offering rewards.
Given the rewards r1, r2, . . . , rn in each period, we first

calculate the amount of demand shifted out of each period
i into each period k �= i. We take the amount of electricity
required by each device originally in period i, multiply by
the probability of shifting, and sum over all users and their
devices to obtain ∑

j∈Di

vjsj(rk, |k − i|), (1)

where vj is the amount of energy required by the user’s device
j. The set Di is the set of all users’ devices originally (i.e.,
before the introduction of TDP) in period i. To find the total
amount of demand shifted into period i, we sum over k to
obtain ∑

k �=i

∑
j∈Dk

vjsj(ri, |k − i|).

Then the total cost of offering rewards is calculated as
n∑

i=1

ri

∑
k �=i

∑
j∈Dk

vjsj(ri, |k − i|) + ridi; (2)

the quantity ridi is the loss in revenue from the baseline
demand di in period i.1

Next, we introduce an expression for the cost of satisfying
user demand. Electricity generators generally operate multi-
ple plants of different types, e.g. gas, hydroelectric (hydro),
nuclear and coal [25], [26]. These plants may be categorized
as base-, intermediate-, and peak-load. The base-load plants
generally have a higher capital cost but low operating cost, and

1Depending on the sensitivity functions used, one may instead account for
the baseline demand with an appropriately parameterized sensitivity function,
i.e., one that does not allow any usage deferral, no matter the discount offered.
To keep the sensitivity functions general, we do not do so here.
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Fig. 6. Piecewise-linear cost structure of base-, intermediate-, and peak-load
electricity plants.

thus run all of the time (e.g., nuclear and hydro). Intermediate-
load plants (e.g., coal) have a higher operating cost, and peak-
load plants (e.g., gas turbines) have the highest operating cost
[25]. In any given period, if user demand exceeds the base-load
capacity, the generator turns to the intermediate-load plants
and then finally to peak-load plants to generate additional
electricity. As noted above, we assume that the variation in
these generation costs is passed on to the electricity distributor.

We model the cost of base-, intermediate- and peak-load
plants linearly, with different marginal costs (slopes). These
marginal costs are incurred from fuel and operational costs;
while the operational costs can be assumed to be roughly
constant, the fuel cost can vary significantly even on a short
timescale. Thus, we let ci1 denote the marginal additional
cost of using intermediate- rather than base-load plants in
period i, and ci2 denote the marginal additional cost of using
peak- rather than intermediate-load plants in period i. These
marginal costs are instances of the random variables; we
assume that their actual values are exogenously determined
for use in the provider’s optimization problem. Figure 6 shows
the piecewise-linear cost structure for base-, intermediate- and
peak-load plants; ci0 denotes the slope of base-load electricity
generation costs. We assume that any revenue gain from
reselling surplus electricity is included in ci0 .

Both plant capacity and the marginal cost of plant operation
can vary from period to period. Thus, we use Ci1 and Ci2 to
denote the base- and intermediate-load capacities respectively
in period i. Again, these are instances of random variables
drawn from exogenous (i.e., price-independent) distributions.
Time-series prediction algorithms such as triple-exponential
smoothing or auto-regression can be used to estimate the
base- and intermediate-load capacities from historical data
and exogenous factors [27], [28]. These predictions are then
fed into the provider’s cost minimization problem, which
considers the additional cost from user demand exceeding
base- and intermediate-load capacities.

Using (1), the amount of demand in each period i is

Di−
∑
j∈Di

∑
k �=i

vjsj(rk, |k−i|)+
∑
k �=i

∑
j∈Dk

vjsj(ri, |k−i|). (3)

Then the cost of meeting user demand in each period i is

∑
l=1,2

cil

[
Di −

∑
j∈Di

∑
k �=i

vjsj(rk, |k − i|)

+
∑
k �=i

∑
j∈Dk

vjsj(ri, |k − i|) − Cil

]+

, (4)

where [y]+ signifies the maximum of y and 0. Combining (2)
and (4) then yields the following proposition:
Proposition 1: The provider’s cost minimization optimiza-

tion problem is

min
ri

n∑
i=1

ri

∑
k �=i

∑
j∈Dk

vjsj(ri, |k − i|) + ridi+

∑
l=1,2

cil

[
Di −

∑
k �=i

( ∑
j∈Di

vjsj(rk, |k − i|)

+
∑

j∈Dk

vjsj(ri, |k − i|)
)

− Cil

]+

(5)

s.t. ri ≥ 0, i = 1, 2, . . . , n (6)

var. ri, i = 1, 2, . . . , n (7)

This optimization problem (5-7) is easily solvable even with
large numbers of users and periods:
Proposition 2: The optimization problem (5-7) is a convex

optimization problem, assuming that the sensitivity functions
sj(r, t) are concave and increasing in r and decreasing in t.

Proof: See the Appendix.
We can get a sense of the range of rewards offered by

assuming that the sensitivity functions are linear in rewards.
In that case, taking the derivative of the objective function (5)
with respect to the reward ri yields

di + 2ri

∑
k �=i

∑
j∈Dk

∂sj

∂ri
(ri, |i − k|)vj

−
∑
k �=i

(ck1 + ck2)
∑

j∈Dk

vj
∂sj

∂ri
(ri, |i − k|). (8)

Setting this quantity equal to zero, we obtain the following
proposition:
Proposition 3: If the sensitivity functions are linear in

reward, then the maximum possible reward in period i is∑
k �=i

(ck1 + ck2)
∑

j∈Dk

vj
∂sj

∂ri
(ri, |i − k|) − di

2
∑
k �=i

∑
j∈Dk

vj
∂sj

∂ri
(ri, |i − k|)

≤
max

k
(ck1 + ck2)

2
− di

2
∑
k �=i

∑
j∈Dk

vj
∂sj

∂ri
(ri, |i − k|)

(9)

≤
max

k
(ck1 + ck2)

2
. (10)

Since the capacity and sensitivity functions change from day
to day, the provider’s cost-minimizing prices will also change.
The provider thus requires a dynamic algorithm to adjust
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the prices offered in response to these changing optimization
parameters. A simple adaptation of the optimization problem
(5-7), inspired by a dynamic programming approach, is given
in Algorithm 1.

Algorithm 1 COMPUTING DAY-AHEAD PRICES

1: Estimate the capacities for the next n periods.
2: Solve (5-7) for the optimal rewards using the capacities
estimated in the previous step.

3: while the provider runs time-dependent pricing do
4: Estimate the generating capacity for the next n peri-
ods.

5: Solve (5-7) for the reward n periods in advance
using the capacities estimated and taking the previously
computed rewards for the next n − 1 periods as given.

6: if it is period n then
7: Estimate the sensitivity functions using the meth-
ods in Section III.

8: end if
9: end while

Using Algorithm 1, the provider would initialize TDP by
forecasting each period’s capacity over the next day and com-
puting the corresponding prices. For instance, if the provider
initiates time-dependent pricing in period 1 on day 1, the
rewards (equivalently, the prices) for periods 1 to n on day
1 are calculated just before this initial period 1. At the end
of period 1 on this first day, the provider would estimate
the generating capacity for period 1 on the next day. The
provider then computes the reward for period 1 of the next
day by optimizing the expected cost from period 2 on the
first day to period 1 on the second day. The rewards for
periods 2 to n on the first day are taken as given, as they
were computed in the previous iteration. These estimation-
calculation steps of calculating one new day-ahead reward in
each period are repeated for as long as time-dependent pricing
is run. Estimates of the underlying sensitivity functions can be
refined as described in Section III below.

III. SENSITIVITY FUNCTION ESTIMATION

As discussed in Section II, implementing our pricing al-
gorithm requires the electricity provider to estimate users’
sensitivity functions. This section proposes a method for doing
so, based on best-fit curves. We emphasize that our method
uses only aggregate usage data; thus, the electricity provider
need not keep track of individual usage (e.g. from smart
meters) in real time.
To estimate the sensitivity functions, we assume a given

functional form with tunable parameters. For instance, we
use the following function in which the consumer’s utility
increases in reward amount but decreases exponentially in
time:

sβ(r, t) = Cβ
r

(t + 1)β
, (11)

where Cβ is a normalization constant depending on β, the
adjustable parameter. For ease of notation, we refer to β as
the patience index, though β actually parameterizes users’
willingness to shift a device’s usage to either before or after its
original period. A higher value of β indicates a more impatient

user, who is less willing to shift his or her usage for longer
periods of time. Figure 7 shows the sensitivity function versus
the duration of shifting and percent reward for different values
of β; we see that for a lower value of β, the sensitivity function
decreases much more slowly with the duration of shifting.
Figure 8 gives an intuitive understanding of other values of β
by showing the average duration of shifting, assuming flat-rate
pricing. We stress that these sensitivity functions are simply
mathematical approximations to user behavior; thus, while
users’ behavior may actually follow a highly nonlinear, non-
differentiable pattern, we assume that this behavior can be
well-approximated with functions such as those in (11).
The goal of the estimation algorithm is to estimate the

particular values of β for different users and devices. For
ease of notation, we can include all values of β for a given
period into one aggregate sensitivity function, by summing the
sensitivity functions for all devices in that period, weighted by
the proportion of electricity consumption due to each device.
Thus if αj denotes the proportion of electricity consumption
due to device j, we have the aggregate sensitivity function in
period i:

Si(r, t) =
∑
j∈Di

αjsj(r, t). (12)

We note that the amount of usage deferred from period i to
period k is then

Bi,k = (Di − di)Si(rk, |k − i|)
and that given a set of rewards and times shifted, Si depends
entirely on the parameters αj and βj , where the βj are pa-
tience parameters. We can group devices with similar patience
parameters together, so that they become one αjsj(r, t) term
in (12). Note that Di − di is the demand in period i that can
actually be shifted.
Let Ai denote the difference between the demand Di

without time-dependent pricing and the demand with time-
dependent pricing. Given a set of n prices over one day, each
Ai can be expressed with the aggregate sensitivity functions:

Ai =
∑
k �=i

Bk,i − Bi,k.

Thus, each of the Ai, i = 1, 2, . . . , n can be expressed
as a linear function of the n(n−1)

2 functions Bk,i. Start-
ing from the expression for A1 and continuing to An−1,
these n linear equations can be sequentially solved for each
B1,2, B2,3, . . . Bn−1,n. One linear function of (n−1)

(
n
2 − 1

)
Bi,k variables then remains. We note that for each period i,
Bi,k appears in this expression for some value of k. This linear
function can be numerically evaluated for each day in the
provider’s dataset. We can then use a best-fit algorithm (e.g.
nonlinear least-squares) to estimate the parameters αj and
βj which determine the Bi,k variables and give the desired
sensitivity functions. We note that this estimation algorithm
can run offline every hour or every day and need not be done
in real time.
We test the efficiency of this algorithm by specifying pa-

tience indices as in (11) for three periods with two sensitivity
functions each. We calculate the amounts of usage shifted,
randomly perturb them by an average of 10%, and estimate
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(a) Sensitivity function for β = 0.5 (a patient user).
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(b) Sensitivity function for β = 5 (an impatient user).

Fig. 7. Sensitivity function value versus duration of shifting and reward for different values of β. As β increases, a higher reward is necessary to maintain
a given sensitivity function value.
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Fig. 8. Expected durations of shifting for several values of β under a uniform
pricing scheme.

TABLE II
ACTUAL AND ESTIMATED PARAMETER VALUES IN SIMULATION OF

SENSITIVITY FUNCTION ESTIMATION.

Period Actual Values Estimated Values Maximum
β1 β2 α1 β1 β2 α1 Percent Error

1 1 2 0.17 1.03 2.48 0.46 11.8
2 1 2.33 0.5 1.02 2.49 0.45 9.0
3 1 2.67 0.83 0.90 2.15 0.71 0.5

the sensitivity function parameters from this noisy simulated
data. The estimation errors between the estimated and actual
parameter values for the sensitivity functions are shown in
Table II. The maximum percent error is the percent error in
using the estimated instead of actual parameters to evaluate
the sensitivity functions.

IV. SIMULATIONS

In this section, we use numerical simulations with realistic
parameters to show the feasibility of our pricing algorithm
and demonstrate its ability to reduce the provider’s cost of
generating electricity and flatten electricity usage over the
day. The parameters are based on real data from the Ontario
Independent Electricity Systems Operator (hereafter referred
to as IESO). We note that while our results will likely be
qualitatively accurate in other markets, the Ontario market

Fig. 9. Distribution of electricity supply sources.

has several unique features. For instance, Ontario uses more
nuclear energy than any other Canadian province [29], [30].

The base-load plants in Ontario are both nuclear and hy-
droelectric; while all nuclear plants are treated as base-load,
only some hydroelectric plants are base-load (we assume 60%
are base-load plants) [25]. The production capacity of each
plant is taken as constant across different periods of a day
for the purposes of simulation. The intermediate-load consists
of coal (operating at 20% efficiency, as is consistent with the
data in [25]) and the remaining hydroelectric plants. Finally,
the peak plants are gas turbines, which are the most expensive
to operate [26], [31]. The distribution of energy supply from
different sources is shown Fig. 9. The slopes of the cost
functions for base-, intermediate- and peak-load plants (refer
to Fig. 6) are taken from the production estimates in [31].
The marginal costs of moving from intermediate- to peak-
load and base- to intermediate-load plants are calculated to
be $62.46/MWh and $18.54/MWh respectively. For simplicity,
we assume that the electricity generator charges the distributor
these prices; in practice, a premium would be added to the
price that the electricity generator charges the distributor.

We assume that the maximum price (i.e., that before TDP
is introduced) is $110/MWh, which is estimated from the
average peak price over the past several years offered by
IESO [23]. We use a period length of one hour (i.e., 24
periods in a day). The demand prior to TDP is obtained by
averaging the hourly demand experienced by IESO over each
day of the past several months [23], perturbed up to 5% by
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Fig. 10. Hourly electricity demand for IESO over the past 7 years.
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Fig. 11. Energy consumption over four days, with and without optimized
TDP rewards.

a uniformly distributed random number. Figure 10 shows this
data in graphical form.
The aggregate sensitivity function in each period is taken as

a sum of functions of the form (11), with β = 0.5, 1, . . . , 5.
The αj are chosen to intuitively reflect a reasonable distri-
bution of users’ willingness to shift devices. We assume a
baseline demand (i.e., amount of electricity usage that cannot
be shifted) of 1 GWh in each hour across all customers.2

Figure 11 shows the comparison in hourly electricity con-
sumption with and without time-dependent pricing over the
first four days of TDP. We see that consumption is reduced
from a peak of 19.8 GWh to a peak of 18.5 GWh, which
is only slightly above the intermediate-load capacity of 17.9
GWh. However, the demand curve is not fully flat because
some devices (e.g. microwaves, lights) are time-sensitive, and
hence much of the residual unevenness is to be expected.
The flattening of electricity usage helps reduce the cost of

generating electricity. As we observe in Fig. 11, the rewards
are calculated so as to bring electricity consumption below the
intermediate-load capacity as much as possible. In contrast, the
cost of moving from base- to intermediate-load plants is small
enough that energy consumption in low-demand periods is not
brought up to fully utilize the base-load capacity.
Figure 12 shows the rewards corresponding to Fig. 11’s

energy consumption pattern. We see that the rewards (dis-
counts) are roughly cyclical, as might be expected, and that
they are zero in peak periods. With the offered rewards shown,

2Due to the form of sensitivity functions, this baseline demand can also be
interpreted as having sensitivity functions described in (11), with β = ∞.
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Fig. 12. Optimized rewards over four days, which yield Fig. 11’s energy
consumption pattern. The nominal price in Ontario is approximately 11¢/kWh.

the electricity provider’s cost decreases from $4624 to $3396
as per the objective function in (5). Thus, offering rewards
can reduce the electricity provider’s cost by 27%. While
the quantitative results of these simulations will vary from
market to market, the qualitative results suggest that time-
dependent pricing can indeed help electricity providers to
even out consumption over the day and reduce the energy
requirements from peak-load plants.
To illustrate our results for individual users and devices, we

next simulate the behavior of two users with patience indices
for different devices as listed in Table III. The baseline usage
is taken to be lighting, with a corresponding patience index
of ∞. User 1 is generally more patient than user 2, so we
expect that user 1’s devices will shift for a longer amount of
time than user 2’s. The device usage before TDP is based on
energy consumption for typical devices in [32]. Figures 13a
and 13c show the initial distribution of usage by device for
users 1 and 2 respectively.
We next calculate the probability that each device will shift

its usage, based on the patience indices given in Table III and
the rewards for the fourth day calculated above. We then use
this probability distribution to choose the period to which each
device is shifted (if at all). The resulting distribution of usage
by device is shown in Figs. 13b and 13d for users 1 and 2
respectively. The more patient user 1 shifts dryer, vacuum and
entertainment usage, for as many as 10 hours for the dryer.
User 2, however, shifts only vacuum usage, and that for only
3 hours. User 1 thus saves more from shifting (26%) than user
2 (16%).
As our model is probabilistic, other users, even those with

the same patience indices, may have different results from
those in Figs. 13b and 13d. To account for this variation,
Figs. 13e and 13f respectively show one thousand users’ total
energy consumption with and without TDP. Half the users are
as patient as user 1 above, and the other half are impatient
like user 2. We see that the peak consumption is greatly
reduced with TDP, from 2700 to 1900 GWh, i.e., almost a 30%
reduction in peak usage. Moreover, the distribution of energy
consumption over the day is visibly much flatter with TDP
than without it. Indeed, the peak-to-average ratio of electricity
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TABLE III
PATIENCE INDICES FOR BOTH USERS AND SEVERAL DEVICES.

User Air Conditioning Vacuum Dryer Television Lighting
1 4 0.5 1 2 ∞
2 4 1 2 4 ∞

Lighting’s infinite patience index means it is never shifted.

usage decreases from 2.55 without TDP to 1.88 with TDP.

V. CONCLUSION

This paper introduces a new model for smart grid TDP,
and in particular accounts for device-level heterogeneity in
delay tolerances. By directly modeling users’ willingness to
shift energy consumption to lower-price periods, we formulate
a highly tractable optimization problem to determine cost-
minimizing time-dependent prices for electricity providers.
Since these prices incentivize users to shift their energy
consumption, we introduce a complete feedback loop between
users and providers, allowing real-time estimates of user
behavior and corresponding adjustments to the prices offered.
Numerical results indicate that our optimized prices can help
electricity providers significantly reduce electricity generation
costs. We demonstrate these results for the estimated energy
consumption and the offered rewards by using realistic param-
eters to simulate price generation for consecutive days.
The model and ideas presented in this work can be applied

to several variations on time-dependent pricing. For instance,
TDP can be used to determine when to obtain and store
electricity, e.g. in batteries, which can help flatten demand
[33]. One can also consider two sets of time-dependent prices:
one for providers selling electricity to users, and one for
users selling back individually-generated renewable energy,
for instance from photovoltaic cells. Such ideas are gaining
traction through such policies as feed-in tariffs [34].
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APPENDIX
PROOF OF PROP. 2

The main idea of the proof is to take the second derivative of
the objective function (5) and show that it is positive-definite
in the range of feasible rewards (i.e., when the marginal cost of
offering the reward is lower than the reward itself). Moreover,
this range of feasible rewards is a convex set. For simplicity,
we assume one device requiring one unit of electricity in each
period, with corresponding sensitivity function si in period i.
Moreover, we suppress the time-dependence of the si.
For ease of notation, we denote the function cil

max(x, 0)
by fil

. Moreover, the amount of demand

Di −
∑
k �=i

si(rk) +
∑
k �=i

sk(ri)

in each period is denoted by xi.

Taking the first derivative of (5) yields∑
k �=i

(ris
′
k(ri) + sk(ri)) + di +

∑
l=1,2

∑
k �=i

f ′
il
(xi − Cil

)s′k(ri)

−
∑
l=1,2

∑
k �=i

f ′
kl

(xk − Ckl
)s′k(ri). (13)

We note that each f ′
il
is a constant, as the provider operates

on a linear segment of the piecewise-linear function fil
. Thus,

each f ′
il
is independent of the ri; then the second derivative

matrix of (5) is diagonal, with the ith entry the derivative of
(13):∑

k �=i

(2s′k(ri) + ris
′′
k(ri)) +

∑
l=1,2

∑
k �=i

f ′
il
(xi − Cil

)s′′k(ri)

−
∑
l=1,2

∑
k �=i

f ′
kl

(xk − Ckl
)s′′k(ri). (14)

It suffices to show that (14) is positive at for each i. We can
regroup (14) as∑

k �=i

2s′k(ri)+

⎛
⎝ri +

∑
l=1,2

∑
k �=i

f ′
il
(xi − Cil

) − f ′
kl

(xk − Ckl
)

⎞
⎠ s′′k(ri).

Since the sk are increasing,
∑
k �=i

2s′k(ri) > 0. We thus must

show that

ri ≤
∑
l=1,2

∑
k �=i

f ′
kl

(xk − Ckl
) − f ′

il
(xi − Cil

),

which must be true, as the right-hand side is the marginal
benefit of offering a reward, and ri is the reward offered.
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(a) User 1 (a patient user), before TDP.
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(b) User 1, with TDP.
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(c) User 2 (an impatient user), before TDP.
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(d) User 2, with TDP.
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Peak−to−Average Ratio: 2.55

(e) Aggregated over 1000 users, before TDP.
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(f) Aggregated over 1000 users, with TDP.
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