#### **MULTI-RESOURCE ALLOCATION**

# FAIRNESS-EFFICIENCY TRADEOFFS IN A UNIFYING FRAMEWORK

Carlee Joe-Wong Princeton University

Tian Lan
George Washington University

Soumya Sen Princeton University

Mung Chiang Princeton University

March 28, 2012

**IEEE Infocom** 

#### What is Fairness?

Politics, economics, sociology, engineering...

#### How do you allocate a resource to different users?

- Variance, Jain's index, entropy (see TR for references)...
- Isoelastic or α-fairness
- Unifying axiomatic theory of decomposable fairness measures

$$\operatorname{sgn}(1-\beta) \left( \sum_{i=1}^{n} \left( \frac{x_i}{\sum_{j=1}^{n} x_j} \right)^{1-\beta} \right)^{\frac{1}{\beta}} \left( \sum_{i=1}^{n} x_i \right)^{\lambda}$$

T. Lan, et al. An Axiomatic Theory of Fairness in Network Resource Allocation. IEEE Infocom 2010.

#### **Our Question**

- Suppose you have multiple non-substitutable resources.
  - Memory
  - CPU
  - Bandwidth
- They combine to make something...
  - Jobs in a datacenter
- that multiple people want.
  - Different bundles of resource requirements
- But the resources are finite.





# Two-Resource Example



#### Generalized Fairness on Jobs (GFJ)



- Unique family of functions:  $\beta$  and  $\lambda$  parameters
  - β: type of fairness
  - $\lambda$ : importance of efficiency

# Defining "Fairness"

- An equal allocation?
  - 1 job for each user
- But not efficient





Ranking the fairness of different allocations

$$\operatorname{sgn}(1-\beta) \left( \sum_{i=1}^{n} \left( \frac{x_i}{\sum_{j=1}^{n} x_j} \right)^{1-\beta} \right)^{\frac{1}{\beta}}$$

# Defining "Efficiency"

- Maximize the total number of jobs?
  - 0 jobs to user 1
  - 3 jobs to user 2
- But not that fair



Ranking the efficiency of different allocations

$$\left(\sum_{i=1}^{n} x_i\right)^{\lambda}$$

#### Heterogeneous Users



- Different users need different mixes of resources...
- Is it fair to treat them the same way?

# Visualizing Heterogeneity



3 Users, 2 Resources

#### **Dominant Shares**

• Dominant shares  $\mu_i x_i$  for each user

$$\mu_j = \max_i \left\{ \frac{R_{ij}}{C_i} \right\}$$

Maximum share of any resource

#### Calculating Dominant Shares



- 2 of 6 apples and 3 of 4 oranges:  $\mu_1 = \max(\frac{1}{3}, \frac{3}{4})$
- 2 of 6 apples and 1 of 4 oranges:  $\mu_2 = \max(1/3, 1/4)$

# Fairness on Dominant Shares (FDS)

- Use dominant shares instead of number of jobs
- If  $\mu$  is larger, equal dominant shares for smaller number of jobs

$$\operatorname{sgn}(1-\beta) \left( \sum_{j=1}^{n} \left( \frac{\mu_j x_j}{\sum_{k=1}^{n} \mu_k x_k} \right)^{1-\beta} \right)^{\frac{1}{\beta}} \left( \sum_{j=1}^{n} \mu_j x_j \right)^{\lambda}$$

#### **GFJ**

Generalized Fairness on Jobs

#### FDS

Fairness on Dominant Shares

#### Resource Scalarization



# Desirable Properties Of Fairness Functions

#### Property 1: Pareto-Efficiency

- f(x) > f(y) whenever the allocation x Pareto-dominates y.
  - $x_i \ge y_i$  for all entries i, with strict inequality for some i
- Not an axiom: needs to be proven
- Does not hold for all parameter combinations

#### Parameter Conditions

Necessary and sufficient conditions

$$|\lambda| \ge \left| \frac{1-\beta}{\beta} \right| \qquad \beta > 0$$

- Holds for FDS and GFJ
  - Comes from the same conditions for single-resource fairness
- If  $\lambda = \frac{1-\beta}{\beta}$  and  $\beta > 0$ , fairness becomes  $\alpha$ -fairness with  $\alpha = \beta$ .

T. Lan, et al. An Axiomatic Theory of Fairness in Network Resource Allocation. IEEE Infocom 2010.

#### **Property 2: Sharing Incentive**

- Each user receives at least a  $\frac{1}{n}$  share of some resource.
  - Dominant share is over <sup>1</sup>/<sub>n</sub>
- Users don't want to share the resources equally.
- Does it hold?

#### **Parameter Conditions**

Sufficient conditions:

FDS 
$$\lambda = \frac{1-\beta}{\beta}$$
  $\beta > 1$ 

Counterexamples exist:

$$\lambda = \frac{1-\beta}{\beta} \quad \text{FDS} \quad 0 < \beta < 1 \quad \text{GFJ} \quad \beta > 0$$

#### Property 3: Envy-Freeness

- A user can process more jobs with his own rather than another user's resource allocation.
  - Users don't want to switch allocations.
- Does it hold?

#### **Parameter Conditions**

Sufficient conditions:

FDS 
$$\lambda = \frac{1-\beta}{\beta}$$
  $\beta > 1$ 

Counterexamples exist:

$$\lambda = \frac{1-\beta}{\beta} \quad \text{FDS} \quad 0 < \beta < 1 \quad \text{GFJ} \quad \beta > 0$$

#### **Sufficient Conditions**

| Fairness | Pareto-Efficiency                                                | Sharing Incentive                                                              | Envy-Freeness                                                               |
|----------|------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| FDS      | $ \lambda  \ge \left  \frac{1-\beta}{\beta} \right ,  \beta > 0$ | $\lambda = \frac{1-\beta}{\beta}, \beta > 1$ $\lambda = 0, \text{ any } \beta$ | $\lambda = \frac{1-\beta}{\beta}, \beta > 1$<br>$\lambda = 0$ , any $\beta$ |
| GFJ      | $ \lambda  \ge \left \frac{1-\beta}{\beta}\right ,  \beta > 0$   | _                                                                              | _                                                                           |

# Existence of a Counterexample

| Fairness | Sharing                                                                                       | g Incentive                                                                                               | Envy-Freeness                                                                                 |                                                                                                           |  |
|----------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| FDS      | $\lambda = \frac{1-\beta}{\beta}, 0 < \beta < 1$                                              | $\lambda=\infty$ , any $\beta$                                                                            | $\lambda = \frac{1-\beta}{\beta}, 0 < \beta < 1$                                              | $\lambda=\infty$ , any $\beta$                                                                            |  |
| GFJ      | $\lambda = \frac{1-\beta}{\beta}, \beta > 0$ $ \lambda  < \frac{ 1-\beta }{\beta}, \beta > 1$ | $\lambda = \infty \text{ or } 0, \text{ any } \beta$ $ \lambda  > \frac{ 1-\beta }{\beta}, 0 < \beta < 1$ | $\lambda = \frac{1-\beta}{\beta}, \beta > 0$ $ \lambda  < \frac{ 1-\beta }{\beta}, \beta > 1$ | $\lambda = \infty \text{ or } 0, \text{ any } \beta$ $ \lambda  > \frac{ 1-\beta }{\beta}, 0 < \beta < 1$ |  |

C. Joe-Wong, et al. Multi-Resource Allocation: Fairness-Efficiency Tradeoffs in a Unifying Framework. Tech report, available http://www.princeton.edu/~chiangm/multiresourcefairness.pdf

# What about Efficiency?

# Fair, Efficient, or Both?



#### Existence of a Tradeoff

- Nonlinear, non-separable, multidimensional, continuous statespace knapsack problem
  - Maximize fairness function subject to multiple linear capacity constraints
  - Allow fractional jobs





Resource 1

### Equal Allocations at Maximum Efficiency

Number of tight resource constraints = number of users

$$\sum_{j=1}^{n} \gamma_{ij} x_j \le 1 \ \forall \ i$$

FDS 
$$\sum_{j=1}^n rac{\gamma_{ij}}{\mu_j} = 
ho$$
 GFJ  $\sum_{j=1}^n \gamma_{ij} = r$ 

### **Efficiency Operating Range**



Optimal allocations for a range of  $\beta$  and  $\lambda$ 

Dominant Resource Fairness (DRF): max-min fairness on dominant shares

#### **Job Allocation**



Optimal allocations for  $\alpha = \beta$ -fairness

### Numerical Example



- Fairness: DRF-fairness divided by maximal DRF value
- Efficiency: Total jobs divided by maximum number of jobs

# **Psychological Perceptions**

C. Joe-Wong, et al. Multi-Resource Allocation: Fairness-Efficiency Tradeoffs in a Unifying Framework. Tech report, available http://www.princeton.edu/~chiangm/multiresourcefairness.pdf

#### Parameter Values

- What parameters are compatible with the responses?
  - Do they satisfy Pareto-efficiency, etc.?
- Do people agree with each other?
- Online survey asking people to rank datacenter allocations

|                       | Allocated to Client A |    | Allocated to Client B                    |     |    | Total no. of                             |                   |
|-----------------------|-----------------------|----|------------------------------------------|-----|----|------------------------------------------|-------------------|
| Allocation<br>Options | CPU                   | ТВ | No. of Jobs<br>Completed for<br>Client A | CPU | ТВ | No. of Jobs<br>Completed for<br>Client B | Jobs<br>Completed |
| Allocation 1          | 24                    | 96 | 24                                       | 84  | 28 | 28                                       | 52                |

# Are People Very Different?



# Actually They're Pretty Similar

- Cluster 1 prefers efficiency to fairness
- Cluster 2 prefers fairness to efficiency



#### All Responses



# Compatible Parameters (GFJ)



The darker the square, the more participant rankings were compatible. Lines represent Pareto-efficient frontiers.

#### Back to the Motivation



#### **Questions Answered**

- How do we define fairness?
  - GFJ and FDS
- Are these properties satisfied?
  - Pareto-efficiency
  - Envy-freeness
  - Sharing incentive
- Does a fairness-efficiency tradeoff exist?
- What parameters are consistent with actual preferences?
  - Users fall into 2 clusters



Photo: Cam Barker

Thank you!

Questions?