
CYRUS: Towards Client-Defined Cloud Storage

Jae Yoon Chung
Dept. of CSE
POSTECH

dejavu94@postech.ac.kr

Carlee Joe-Wong
PACM

Princeton University
cjoe@princeton.edu

Sangtae Ha
Dept. of CS

University of Colorado
sangtae.ha@colorado.edu

James Won-Ki Hong
Dept. of CSE
POSTECH

jwkhong@postech.ac.kr

Mung Chiang
Dept. of EE

Princeton University
chiangm@princeton.edu

Abstract
Public cloud storage has recently surged in popularity. How-
ever, cloud storage providers (CSPs) today offer fairly rigid
services, which cannot be customized to meet individual
users’ needs. We propose a distributed, client-defined ar-
chitecture that integrates multiple autonomous CSPs into
one unified cloud and allows individual clients to specify
their desired performance levels and share files. We design,
implement, and deploy CYRUS (Client-defined privacY-
protected Reliable cloUd Service), a practical system that
realizes this architecture. CYRUS ensures user privacy and
reliability by scattering files into smaller pieces across mul-
tiple CSPs, so that no one CSP can read users’ data. We
develop an algorithm that sets reliability and privacy param-
eters according to user needs and selects CSPs from which to
download user data so as to minimize latency. To accommo-
date multiple autonomous clients, we allow clients to upload
simultaneous file updates and detect conflicts after the fact
from the client. We finally evaluate the performance of a
CYRUS prototype that connects to four popular commer-
cial CSPs in both lab testbeds and user trials, and discuss
CYRUS’s implications for the cloud storage market.

1. Introduction
Cloud computing, driven in large part by business stor-
age, is forecast to be a $240 billion industry in 2020 [15],
with 3.8 billion personal storage accounts in 2018 [31]. Yet
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroSys’15, April 21–24, 2015, Bordeaux, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2741948.2741951

even as storing files on the cloud becomes ever more pop-
ular, privacy and reliability concerns remain. Cloud storage
providers (CSPs) have experienced high-profile data leaks,
e.g., credit card information from Home Depot [32] and
celebrity photos from iCloud [39], as well as outages: Ama-
zon’s popular S3 service went down for almost an hour in
2013, affecting websites like Instagram and Flipboard [37];
and Dropbox went down for three hours in 2014 [18].

These performance deficiencies are especially serious for
enterprise file sharing, a fast growing market [21] that re-
quires high reliability and rapid file synchronization. File
sharing presents unique challenges to cloud storage, as dif-
ferent clients (e.g., different users or multiple devices be-
longing to one user) must be able to securely retrieve the lat-
est versions of the file from the cloud. Further complicating
this need is the fact that some clients may not always be ac-
tive, preventing reliable client-to-client communication. We
can identify several requirements for effective file sharing:

• Privacy: Users wish to prevent other parties, including
cloud providers, from accessing their data.

• Reliability: Users must be able to access data stored in
the cloud at all times.

• Latency: To effectively share files, users must be able to
quickly retrieve the latest file versions from the cloud and
upload edited versions in real time.

The performance criteria above may sometimes conflict,
e.g., greater privacy may require more client-cloud com-
munication and worsen the latency of file updates. We there-
fore seek a system design that allows clients to freely navi-
gate these tradeoffs according to their own needs and prior-
ities. To this end, we propose a cloud storage system called
CYRUS (Client-defined privacY-protected Reliable cloUd
Storage) that satisfies the above requirements by leveraging
user accounts at multiple clouds (e.g., private storage servers

Google
Drive!

Dropbox!
Enterprise

server!

CYRUS! CYRUS!

Box!

Client Control!

CYRUS!

Client Control!

Google
Drive!

Figure 1: CYRUS allows multiple clients to control files
stored across multiple CSPs.

or user accounts at CSPs like Dropbox and Box). CYRUS
controls the distribution of data across different CSPs from
user devices, allowing users to customize their achieved per-
formance requirements and trade off between them as nec-
essary. Figure 1 illustrates CYRUS’s basic architecture, with
multiple users sharing files stored at multiple CSPs.

1.1 Distributed Cloud Storage Architectures
Leveraging multiple CSPs represents an architectural change
from the usual Infrastructure-as-a-Service (IaaS) model,
which rents customized virtual machines (VMs) to users.
While some CSPs offer software-defined service level agree-
ments with customized performance guarantees [22], these
approaches fundamentally leave control at the CSP. Clients
control their VMs or specify performance through software
on the cloud and are still limited by the CSP’s functionality.
Yet CYRUS does not consist solely of autonomous clients
either, unlike peer-to-peer systems that allow each client
node to leverage resources at other connected nodes for stor-
age or computing. CYRUS does not treat CSPs as peers and
does not assume that clients can directly communicate with
each other; instead, the CSP “nodes” become autonomous
storage resources separately controlled by the clients.

CYRUS’s distributed, client-controlled architecture en-
forces privacy and reliability by scattering user data to mul-
tiple CSPs, so that attackers must obtain data from multiple
CSPs to read users’ files; by building redundancy into the
file pieces, the file remains recoverable if some CSPs fail.
File pieces can be uploaded and downloaded in parallel, re-
ducing latency. Since the client controls the file distribution,
clients can choose where to distribute the file pieces so as to
define customized privacy, reliability, and latency.

CYRUS is not the first work to recognize the benefits
of a client-defined approach to cloud storage. DepSky, a
“cloud-of-clouds” system, also controls multiple CSPs from
the client [7]. Yet while DepSky demonstrates a proof-of-
concept system with Byzantine quorum system protocols,
it does not fully address the practical challenges of real-
izing such client-controlled storage for large-scale deploy-
ment. In particular, users wishing to share files can have
stringent latency requirements, which they may wish to trade
off with privacy and reliability. For instance, higher privacy
requirements would require downloading file pieces from

slower clouds. CYRUS allows full privacy and reliability
customization and optimizes latency in realizing a deploy-
able and customizable storage system.

CYRUS’s design addresses four challenges not fully cov-
ered in previous work:

• Heterogeneous CSP file handling: CSPs have differ-
ent file management policies and APIs, e.g., tracking
files with different types of IDs and varied support for
file locking. To accommodate these differences, CYRUS
uses only the most basic cloud APIs. This limitation
makes it particularly difficult to support multiple clients
trying to simultaneously update the same file; unlike con-
flict resolution protocols such as Git [2], CYRUS must be
able to resolve conflicts without server-side support. Our
approach is inspired by large-scale, performance-focused
database systems [5, 11, 13]. We allow clients to upload
conflicting files and then resolve conflicts as necessary.
Other approaches require more client-CSP communica-
tion, increasing latency [7].

• Sharing files between clients: CYRUS’s client-based ar-
chitecture and the lack of reliable client-to-client com-
munication make sharing files between clients difficult:
clients need to share information on each file’s storage
customization. We avoid storing this data at a centralized
location, which creates a single point of failure, by scat-
tering file metadata among CSPs.

• CSP infrastructure sharing: Some CSPs may share in-
frastructure, e.g., Dropbox running its software on Ama-
zon’s servers [16]. Storing files at CSPs with the same
physical infrastructure makes simultaneous CSP failures
more likely. To maximize reliability, CYRUS infers these
sharing relationships and uses them in selecting the CSPs
where files are stored.

• Optimizing file transfer delays: Client connections to
different CSPs have different speeds. Thus, CYRUS sig-
nificantly reduces latency by optimally choosing the
CSPs from which to download file pieces, subject to
privacy and reliability constraints on the number of file
pieces needed to reconstruct the file.

We discuss other works related to distributed, client-
controlled cloud storage in Section 2.

1.2 Research Contributions
In designing, implementing, and deploying CYRUS, we
make the following research contributions:

Client-based architecture integrating multiple CSPs (Sec-
tion 3): CYRUS’s software, located at client devices, scat-
ters files across different clouds so that no one CSP can
access them, but the file can be recovered if some CSPs fail.
CYRUS is CSP-agnostic, requiring only basic APIs at each
CSP, and supports multiple clients (i.e., devices) concur-
rently accessing the same files with no increase in latency.

These devices may be owned by different users, allowing
them to share data.1

Customizable reliability, privacy, and performance (Sec-
tion 4): Users can configure reliability and privacy levels
by specifying the number of CSPs to which different files
should be scattered and the number of pieces required to re-
construct the file. We infer CSPs sharing cloud platforms and
select those that do not share infrastructure to maximize re-
liability. Users select the CSPs from which to download the
file pieces in parallel so as to minimize latency.

CYRUS operations on multiple clouds and clients (Sec-
tion 5): Users build a CYRUS cloud by calling a standard
set of APIs. CYRUS transparently aggregates file operations
on multiple CSPs, internally storing and tracking file meta-
data and CSP storage locations for efficient operations.

Prototype implementation and deployment (Sections 6
and 7): We implemented a prototype of CYRUS on Mac
OS X and Windows.2 We evaluate its performance on four
commercial CSPs and show that CYRUS outperforms other
CSP integration services in real-world scenarios. We also
present results from a small pilot trial in the U.S. and Korea.

Discussion of market implications (Section 8): While
many users today only use storage from one CSP to avoid
managing multiple CSP accounts, CYRUS encourages users
to use more CSPs for greater privacy and reliability. CYRUS
thus evens out demand across CSPs and makes it easier for
market entrants to gain users.

2. Related Work
Byzantine fault-tolerance systems have been studied for
reliable distributed storage [10, 17, 25–27]. These works
proposed protocols that can read and write with unreliable
CSPs. Realizing these protocols, however, requires running
servers at CSPs, which is not generally applicable to cloud
services based on HTTP(S) REST APIs. Similarly, object-
based distributed storage systems [9, 40] also require run-
ning code at the servers to handle multiple transactions and
synchronization. In these systems, user data are split into
smaller objects and distributed on multiple object storages.
To reconstruct files, the systems maintain metadata, includ-
ing the required objects and their storage locations.

Another approach to integrating multiple CSPs is to use
proxy servers [3, 19, 30, 35, 38]. The proxy can scatter
and gather user data to and from multiple CSPs, providing
transparent access for users. Yet while the proxy server is a
data sharing point among multiple clients, allowing greater
deduplication efficiency, it is also a single point of failure.

Cloud integration from the client has been proposed in
[6, 7, 23, 24, 29]. CYRUS, however, provides a customizable
framework that sets reliability and privacy levels while opti-
mizing user delays in accessing and storing files. Moreover,

1 In the rest of the paper, “users” and “clients” are used synonymously and
can refer to multiple devices owned by one person.
2 Demo video available at http://youtu.be/DPK3NbEvdM8.

CYRUS allows multiple clients to upload conflicting files
and resolve conflicts later, which improves the transaction
(e.g., file upload) speed compared to alternative approaches.
Table 1 compares CYRUS with similar storage systems. We
design CYRUS to achieve all of Table 1’s functions without
a central server for coordinating client’s requests.

3. CYRUS Design
We first highlight some important challenges in building
CYRUS in Section 3.1 before presenting CYRUS’s system
architecture and API for user interaction in Section 3.2.

3.1 Design Considerations
CYRUS’s operations and functionalities must reside either
on the clients, CSPs, or a combination of both. Yet in re-
alizing such functionalities, we face two main challenges:
heterogeneity in CSP file handling and the lack of reliable
direct client-to-client communication.

To illustrate CSP heterogeneity, Table 2 shows the APIs
and achieved performance for a range of CSPs. Though most
are similar, the API implementations differ in the functions
they provide and their file object handling. For example,
Dropbox uses files’ names as their identifiers, while Google
Drive uses a separate file ID. Thus, when a client uploads
a file with existing filename, Dropbox overwrites the previ-
ous file, but Google Drive does not. CYRUS accommodates
such differences by only using basic cloud API calls: authen-
ticate, list, upload, download, and delete, which are available
even on FTP servers. We therefore shift much of CYRUS’s
functionality to the clients, influencing our design choices:

Ensuring privacy and reliability: Standard replication
methods for ensuring reliability do not require significant
client or CSP resources but are not secure. Many encryption
methods, on the other hand, are vulnerable to loss of the en-
cryption key. CYRUS overcomes these limitations by split-
ting and encoding files at the client and uploading the file
pieces to different CSPs. For further security, the pieces’ file-
names are hashes of information known only to the clients.
Reconstructing the file requires access to pieces on multiple,
but not all, CSPs, ensuring both privacy and reliability.

Concurrent file access: Since most CSPs do not sup-
port file locking, CYRUS cannot easily prevent simultane-
ous file uploads from different clients: the second client will
not know that a file is being updated until the first client fin-
ishes uploading. Theoretically, since POST in HTTP is not
idempotent, the server status should change when the first
update finishes, and we could handle the conflict by over-
writing the first with the second file update. However, CSPs
do not always enforce this standard. Thus, a locking or over-
writing approach requires creating lock files and checking
them after a random backoff time, leading to long delays
[7]. CYRUS instead creates new files for each update and
then detects and resolves any conflicts from the client.

http://youtu.be/DPK3NbEvdM8

Erasure Data Concurrency Versioning Optimal CSP Customizable Client-based
coding deduplication selection reliability architecture

Attasena [6] Yes No Yes No No No No
DepSky [7] Yes No Yes Yes No No Yes
InterCloud RAIDer [23] Yes Yes No Yes No No Yes
PiCsMu [24] No No No No No No No
CYRUS Yes Yes Yes Yes Yes Yes Yes

Table 1: Comparison of CYRUS’s features with similar cloud integration systems.

CSP Format Protocol Authentication RTT (ms) Throughput (Mbps)
Amazon S3* XML SOAP/REST AWS Signature 235 1.349
Box JSON REST OAuth 2.0 149 2.128
Dropbox JSON REST OAuth 2.0 137 2.314
OneDrive JSON REST OAuth 2.0 142 2.233
Google Drive JSON REST OAuth 2.0 71 4.465
SugarSync XML REST OAuth-like 146 2.171
CloudMine JSON REST ID/Password 215 1.474
Rackspace XML/JSON REST API Key 186 1.704
Copy JSON REST OAuth 192 1.651
ShareFile JSON REST OAuth 2.0 215 1.474
4Shared XML SOAP OAuth 1.0 186 1.704
DigitalBucket* XML REST ID/Password 217 1.461
Bitcasa* JSON REST OAuth 2.0 139 2.281
Egnyte JSON REST OAuth 2.0 153 2.072
MediaFire XML/JSON REST OAuth-like 192 1.651
HP Cloud XML/JSON REST OpenStack Keystone V3 210 1.509
CloudApp* JSON REST HTTP Digest 205 1.546
Safe Creative* XML/JSON REST Two-step authentication 295 1.075
FilesAnywhere XML SOAP Custom 202 1.569
CenturyLink XML/JSON SOAP/REST SAML 2.0 293 1.082

Table 2: APIs and measured performance of commercial cloud storage providers. Throughput is calculated from the measured
RTT assuming a 0.1% packet loss rate and 65,535 byte TCP window size. All measurements were taken in Korea.

Client-based architecture: To reconstruct a file, a client
needs access to its metadata, i.e., information about where
and how different pieces of the file are stored. The easiest
way to share this metadata is to maintain a central metadata
server [8], but this solution makes CYRUS dependent on
a single server, introducing a single point of failure and
making user data vulnerable to attacks at a single server.
At the other extreme, a peer-to-peer based solution does
not guarantee data accessibility since clients are not always
available. Our solution is to scatter the metadata across all
of the CSPs, as we do with the files. Clients access the
metadata by downloading its pieces from the CSPs; without
retrieving information from multiple CSPs, attackers cannot
access user data.3 This approach ensures that CYRUS is as
consistent as the CSPs where it stores files.

Selecting CSPs: CYRUS chooses the number of file
pieces to upload or download so as to satisfy privacy and
reliability requirements. When choosing which CSPs to use,
CYRUS chooses CSPs on independent cloud platforms so
as to maximize reliability. For instance, CSPs marked with
an asterisk in Table 2 have Amazon destination IPs, so a

3 Since we store metadata pieces at all CSPs, clients can always find and
download metadata pieces.

Functionality CYRUS API call
create a CYRUS cloud s s = create()

add a cloud storage c add(s,c)

remove a cloud storage c remove(s,c)

get a file f of version v f’ = get(s,f,v)

put a file f put(s,f)

delete a file f delete(s,f)

list files under a directory d [(f,r),] = list(s,d)

reconstruct s′ s’ = recover(s)

Table 3: CYRUS’s Application Programming Interface.

single failure at Amazon’s datacenters could simultaneously
impact these CSPs, compromising reliability. The table also
shows that different CSPs have very different client connec-
tion speeds; thus, carefully selecting the CSPs from which
CYRUS downloads files can significantly reduce the latency
of file transfers.

3.2 CYRUS Architecture
Users interact with CYRUS through Table 3’s set of API
calls. These include standard file operations, such as upload-
ing, downloading, and deleting a file, as well as file recovery
and CSP addition and removal. To realize this API while
meeting the design challenges in Section 3.1, CYRUS must

perform three main functions: integrate multiple clouds,
scale to multiple clients, and optimize performance.

Integrating multiple clouds: As explained above, CYRUS
scatters file pieces to multiple CSPs so that no single CSP
can reconstruct a user’s data. We increase reliability by stor-
ing more file pieces than are necessary for recovering the
file. This idea is encapsulated in a (t, n) secret sharing
scheme, which divides user data into n shares, each stored
on a different CSP [36]. Secret sharing divides and encodes
the data in such a way that reconstructing any part of the
original data requires at least t of the file shares. Taking
t < n thus ensures reliability, and taking t > 1 ensures that
multiple CSPs are required to recover user data. Users can
reconstruct the file using the shares from any t CSPs.

Scaling to multiple clients: To download files, clients
must know the locations of the files’ shares. Thus, we main-
tain a separate metadata file for each file stored on the cloud;
as a client uploads a file, it records the share locations in this
metadata. We store the metadata in a logical tree at CSPs,
with clients maintaining local copies of the metadata tree
for efficiency. All clients can sync their local copies of the
metadata tree to track updated share and file locations. The
tree structure also allows CYRUS to handle conflicting file
updates. Clients do not lock files while modifying them but
can upload conflicting file versions as different nodes on the
metadata tree. We traverse the tree to find and resolve file
conflicts.

Optimizing cost and performance: CYRUS reduces
users’ cost by limiting the amount of data that must be stored
on CSPs. Before scattering files, we divide each file into
smaller discrete chunks. Unique chunks are then divided
into shares using secret sharing, which are scattered to the
CSPs. Figure 2 illustrates this division of files to chunks
and chunks into shares. Since different files can use the
same chunks, deduplication reduces the total amount of data
stored at CSPs, conserving storage capacity. We also limit
the amount of data that can be stored at different CSPs, e.g.,
to the maximum amount of free storage capacity.

We choose the number of shares to upload in order to sat-
isfy reliability and privacy constraints, i.e., n and t for secret
sharing. Adjusting these parameters allows CYRUS to adapt
to changes in cloud conditions and user preferences. After
choosing n, we select the CSPs so that they do not share a
cloud platform. When reconstructing files, we minimize the
latency of downloading shares.4

4. Optimized Cloud Selection
We first consider inferring which CSPs run on the same
cloud platforms in Section 4.1, which helps to ensure reli-

4 This downlink CSP selection is client-specific and does not affect other
clients’ performance: regardless of the CSPs selected for downloading the
shares, any modified shares are uploaded to the same set of CSPs for other
clients to retrieve (uplink CSP selection is discussed in Section 5.3). Thus,
when other clients retrieve the modified shares, they have the same set of
choices for CSPs from which to download the modified shares.

File!

Chunk! Chunk! …! Chunk!

…!Share!

Share!

Share!

Share! Share!

Share!

Figure 2: Mapping files to shares.

Amazon

Datacenter

Core

Network

Access

Network

Figure 3: Clustering of Table 2’s CSPs. The root and leaf
nodes represent the client and CSPs respectively.

ability by avoiding correlated CSP failures. Given this lack
of correlation, we then consider how many shares to upload
to CSPs (Section 4.2) and present an algorithm for choosing
the CSPs from which to download shares in Section 4.3.

4.1 CSP Platform Independence
Storing shares of the same chunk at CSPs on a common
cloud platform increases the chance that client data will not
be recoverable, which is particularly serious during long-
term CSP outages. To prevent this scenario, clients that
highly value reliability can cluster their CSP accounts by
cloud platform and store a chunk’s shares on at most one
CSP from each cluster. Since infrastructure locations rarely
change, the clustering need only be done once and updated
when the client adds a new CSP account.

Since some users will have many CSP accounts, manu-
ally clustering CSPs by cloud platform is often infeasible.
We can therefore infer the CSP clusters by either network
probing to detect the client-CSP routing paths or by ge-
olocation based on destination IPs. CYRUS takes the first
approach, as geolocation can only detect approximate geo-
graphical proximity, while routing traces can more precisely
identify shared infrastructure. We use traceroute to find
the path between a given user and each CSP and construct
the minimal spanning tree of the resulting graph.5 Figure 3
shows an example of the tree from a single client to the CSPs

5 With some CSPs, clients connect to endpoint APIs that are separate from
the file storage locations. We can read the subsequent internal CSP connec-
tion to the file storage location to infer its true IP address.

from Table 2. We hierarchically cluster the CSPs by horizon-
tally cutting the tree at a given level. For example, we find
five CSPs deployed on Amazon, which are marked with as-
terisks in Table 2.

4.2 Balancing Privacy and Reliability
Users specify CYRUS’s privacy and reliability levels by
setting the secret sharing parameters n and t for each chunk.
The user first specifies the privacy level by choosing t, or the
number of shares required to reconstruct a chunk: since we
upload at most one share to each CSP, t specifies the number
of CSPs needed for reconstruction. Taking t = 2 is sufficient
to ensure that no one CSP can access any part of users’ data,
but more privacy-sensitive users may specify a larger t.

The user then specifies reliability in terms of an upper
bound ε on the overall failure probability (i.e., the probabil-
ity that we cannot download t shares of a chunk due to CSP
failure). The failure probability of any given CSP, which we
denote by p, is estimated using the number of consistent
failed attempts to contact CSPs.6 Users specify a threshold,
e.g., one day, of time; if a CSP cannot be contacted for that
length of time, then we count a CSP failure. The probabil-
ity that we cannot download t shares equals the probability
that more than n − t CSPs fail, which we calculate to be∑t−1
s=0 C(n, s) (1− p)

s
pn−s. We then bound this probabil-

ity below ε by searching for the minimum n such that

t−1∑
s=0

C(n, s) (1− p)
s
pn−s ≤ ε. (1)

We find n by increasing its value from t to its maximum
value (the total number of CSPs or clusters); taking the
minimum such n limits the data stored on the cloud. The
chunk share size is independent of n, so uploading n shares
requires an amount of data proportional to n.

4.3 Downlink Cloud Selection
CYRUS chooses the n CSPs to which shares should be up-
loaded using consistent hashing on their SHA-1 hash values.
To download a file, a client must choose t of the nCSPs from
which to download shares. Since we choose t < n for reli-
ability, the number of possible selections can be very large:
suppose that R chunks need to be downloaded at a given
time, e.g., if a user downloads a file with R unique chunks.
There are then C(t, n)R possible sets of CSPs, which grows
rapidly with R. We thus choose the CSPs so as to minimize
download completion times.

We suppose that file shares are stored at C CSPs. We
index the chunks by r = 1, 2, . . . , R and the CSPs by

6 We do not consider link failures, as CYRUS is designed to reduce the
impact of failures at CSPs. Thus, CSP failure probabilities are taken as uni-
form, which is observed in practice within an order of magnitude [12, 34],
and independent, since we choose CSPs with distinct physical infrastruc-
ture. If CSPs have different failure rates, we can simply set p to be the
largest, so that we conservatively overestimate the probability of joint CSP
failures.

c = 1, 2, . . . , C, defining dr,c as an indicator variable for
the share download locations: dr,c = 1 if a share of chunk r
is downloaded from CSP c and 0 otherwise. Denoting chunk
r’s share size as br, the total data downloaded from CSP c
is
∑
r brdr,c. We use βc to denote the download bandwidth

allocated to chunk c and find the total download time

max
c

(∑
r

brdr,c
βc

)
. (2)

While minimizing (2), the selected CSPs must satisfy
constraints on available bandwidth and feasibility (e.g., se-
lecting exactly t CSPs).

Bandwidth: The bandwidth allocated to the CSP connec-
tors is restricted in two ways. First, each CSP has a maxi-
mum achievable download bandwidth, which may vary over
time, e.g., as the CSP demand varies. We express these max-
ima as upper bounds: βc ≤ βc for all CSPs c. Second,
the client itself has a maximum download bandwidth, which
must be shared by all parallel connections. We thus constrain∑

c

βc ≤ β, (3)

where β denotes the client’s total downstream bandwidth.7

Feasibility: CYRUS must download t of shares of each
chunk, and can only download shares from CSPs where they
are stored. We thus introduce the indicator variables ur,c,
which take the value 1 if a share of chunk r is stored at CSP
c and 0 otherwise. Our feasibility constraints are then∑

c

dr,c = t, dr,c ≤ ur,c. (4)

CYRUS’s download optimization problem is thus

min
y,d,β

y (5)

s.t.

∑
r brdr,c
βc

≤ y; c = 1, 2, . . . , C (6)∑
c

βc ≤ β, βc ≤ βc,
∑
c

dr,c = t, dr,c ≤ ur,c (7)

Exactly solving (5–7) is difficult: first, the constraints
on y are non-convex, and second, there are integrality con-
straints on dr,c. We thus propose a heuristic algorithm that
yields a near-optimal solution with low running time. More-
over, our algorithm is solved online: we iteratively select
the CSPs from which each chunk’s shares should be down-
loaded, allowing us to begin downloading chunk shares be-
fore finding the full solution. This allows us to outperform a
heuristic that downloads shares from the CSPs with the high-
est available bandwidth. In that case, all chunk shares will
be downloaded sequentially from the same t CSPs, so some

7 Each client maintains local bandwidth statistics to all CSPs for different
network interfaces.

1 for η = 1 to R do
2 Solve convexified, relaxed (5–7) with fixed CSP selections dr,c

for r < η;
3 Fix bandwidths βc;
4 Constrain dη,c ∈ {0, 1} for all c;
5 Solve for the dr,c with fixed bandwidths;
6 Fix CSP selections dη,c;
7 end

Algorithm 1: CSP and bandwidth selection.

Cloud Storage!

Metadata Storage!

CYRUS!

Cloud
Communication!

Cloud 2!

Cloud 1!

Cloud n!

…
!

Metadata
Sync !

File Sync!

Chunk &
Share Creation!

Efficient
metadata lookup!

Private, reliable
share transfers!

Figure 4: Decoupling metadata and file control.

shares will wait a long time before being downloaded. Our
algorithm downloads shares in parallel from slower CSPs.

Our solution proceeds in two stages. First, we compute
a convex approximation to (5–7) that does not consider
the integer constraints on dr,c. To do so, we first convex-
ify (6) by defining Dr,c ≡ d

1/2
r,c . The resulting constraints∑

r brD
2
r,c/βc ≤ y are then convex, with the non-convexity

moved to the new constraints Dr,c = d
1/2
r,c . These are ap-

proximated with linear over-estimators D̂r,c ≥ d
1/2
r,c that

minimize the discrepancy between D̂2
r,c and dr,c.8 We find

that the closest linear estimator is D̂r,c = 31/4dr,c/2 +
3−1/4/2. On adding these constraints to (5–7) and replacing
(6) with

∑
r brD̂

2
r,c/βc ≤ y, we can solve the convexified

version of (5–7) for the optimal y, βc, dr,c, and D̂r,c.
We then fix the optimal bandwidths βc, turning (5–7)

into a linear integer optimization problem that can be solved
with the standard branch-and-bound algorithm. Branch-and-
bound scales exponentially with the number of integer vari-
ables, so we impose integer constraints on one chunk’s vari-
ables at a time; thus, only C variables are integral (dr,c for
one chunk r). We constrain chunk 1’s d1,c variables to be
integral and re-solve (5–7), then re-solve the convex approx-
imation, fix the resulting bandwidths, constrain d2,c to be
integral, etc. Algorithm 1 formalizes this procedure.

5. CYRUS Operations
We now present CYRUS’s operations realizing Section 3’s
architecture. To do so, we first note that CYRUS’s perfor-
mance depends on not only its CSP selection algorithm (Sec-
tion 4) but also storage of file metadata (i.e., records of
a file’s component chunks and share locations). Since the
metadata is both much smaller than the actual shares and

8 By requiring that these approximations be over-estimators, we ensure that
if the constraints maxc

∑
r brD̂

2
r,c/βc ≤ y hold, then (6) holds as well.

g0,0	
 g0,1	
 g0,2	
 …	

g1,0	
 g1,1	
 g1,2	
 …	

g2,0	
 g2,1	
 g2,2	
 …	

d0	

d1	

d2,	

…	

*	
 =	

c0	

c1	

c2	

T	
 columns	

N
	
 ro

w
s	

T	

el
em

en
ts
	

N
	
 e
le
m
en

ts
	

c0	
 at	
 cloud0	

c1	
 at	
 cloud3	

c2	
 at	
 cloud6	

…	

M
	
 c
lo
ud

	
 st
or
ag
es
	

Dispersal	
 Matrix	
 Data	
 Coded	

Shares	

Cloud	
 alloca:on	

Figure 5: A non-systematic Reed-Solomon erasure code.

accessed more often, we separate file and metadata control
(Figure 4). We describe our file and metadata storage in Sec-
tions 5.1 and 5.2 respectively and then show how these are
used to upload, download, and sync files at multiple clients.

5.1 Storing Files as Shares
CYRUS divides files into chunks and then divides the
chunks into shares, which are stored at CSPs.

Constructing file chunks: CYRUS divides a user’s file
into chunks based on content-dependent chunking, and
stores only unique chunks to reduce the amount of data
stored at CSPs. When a file is modified, content-dependent
chunking only requires chunks to be modified if their con-
tents are changed, unlike fixed-size chunking, which changes
all chunks. We determine chunk boundaries using Rabin’s
Fingerprinting [33], which computes the hash value of the
content in a sliding window wi, where i is the offset on the
file ranging from 0 ≤ i < file size−window size. When
the hash value modulo a pre-defined integer M equals a
pre-defined value K with 0 ≤ K < M , we set the chunk
boundary and move on to find the next chunk boundary.

Dividing chunks into shares: After CYRUS constructs
chunks from a file, it uses (t, n) secret sharing [36] to divide
each chunk into n shares. We implement this secret sharing
as a non-systematic Reed-Solomon (R-S) erasure code [28].
As shown in Figure 5, with R-S coding the coded shares
(c0, c1, ...) do not contain the original elements (d0, d1, ...),
so no data can be recovered from the file chunk with an in-
sufficient number of shares. Indeed, R-S coding goes further
than secret sharing: it can recover a chunk’s data even if there
are errors in the t shares used to reconstruct the chunk, with
n/t times storage overhead.9 To improve security, we take
the R-S code’s dispersal matrix as the Vandermonde matrix
generated by a t-dimensional vector computed from a con-
sistent hash of the user’s key string. Since R-S decoding re-
quires the dispersal matrix (Figure 5), reconstructing a chunk
from a given set of shares (c0, c1, . . .) requires the key string.

Naming: We name each share as H ′(index,H(chunk.
content)), whereH is the SHA-1 andH ′ any hash function.
This naming scheme ensures that no CSP can discover the

9 R-S codes need n times the storage space of the original data.

File Metadata!
…
!

File Metadata!

ChunkMap! Id, offset, length, t, n!

chunkId, cId, idx! 7e3a, 2, 1!
7e3a, 5, 2!

ShareMap! …!

Id! prevId! name! clientId! isDelete! time! length!

3d841 ! 4918e! a.txt! 2! false-! 1392832122! 49381!

7e3a, 0, 4829, 2, 3! …!

File Metadata!
Id! prevId! name!

ab3a2! 4918e! a.txt!…
!

Root!

…!
…!

FileMap!

Id! prevId! name!

37e14! 4918e! a.txt!…
!

…!
…!

ab31, 896, 4811, 2, 3!

ab31, 1, 1!
ab31, 2, 2!

Figure 6: Metadata data structures.

index of a given share, but that it can be recovered by the
client. Moreover, each share is guaranteed to have a unique
file name, since a share’s content is uniquely determined by
the chunk contents, the share creation index, and t. Thus,
we only overwrite the existing file share if its content is the
same, reducing the risk of data corruption.

5.2 Metadata Data Structures
CYRUS maintains metadata for each file, which stores its
modification history and share composition. The metadata
are stored as a logical tree with dummy root node (Figure 6);
subsequent levels denote sequential file versions. New files
are represented by new nodes at the first level. Each node
consists of three tables:

FileMap: This table stores the file Id, or SHA-1 hash of
its content, and prevId, its parent node’s ID (prevID= 0
for new files). We also store the clientID, indicating the
client creating this version of the file, as well as the file name,
whether it has been deleted, last modified time, and size.

ChunkMap: This table provides the information to re-
construct the file from its chunks. It includes the Id, or SHA-
1 hash, of each chunk in the file; offset, or positions of the
chunks in the file; the chunk sizes; and the t and n values
used to divide the chunks into shares.

ShareMap: This table stores the shares’ CSP locations.
The chunkId is the chunk content’s SHA-1 hash value, idx
is the share index, and cId gives the CSP where it is stored.

In addition to file-specific metadata, CYRUS maintains a
global chunk table listing the chunks whose shares are stored
at each CSP. We store the metadata files using (t,m) secret
sharing at a fixed set of m CSPs. Clients maintain local
copies of the metadata tree for efficiency and periodically
sync with the metadata stored at the CSPs.

5.3 Uploading and Downloading Files
Uploading files: Algorithm 2, illustrated in Figure 7, shows
CYRUS’s procedure for uploading files. The client first up-
dates its metadata tree to ensure that it uses the correct par-
ent node when constructing the file’s metadata (steps 1 and

1 Function Upload(file)
2 head = getHead(file)
3 newHead = SHA1(file)
4 UpdateHead(file, head, newHead)
5 chunks = Chunking(file)
6 for chunk in chunks do
7 UpdateChunkMap(newHead, chunk)
8 Scatter(chunk)
9 end

// Wait until uploading all chunks

10 UploadMeta(getMeta(file))
11 Function Scatter(chunk)
12 clouds = ConsistentHash(chunk.id)
13 if chunk is not stored then
14 shares = RSEncode(chunk, t, n)
15 for share in shares do
16 conn = clouds.next()
17 conn.Requester(PUT, share)// Async event

requester

18 end
19 end

Algorithm 2: Uploading files.

ec11!…
!

…
!

ec11! 1245!

1) Find current
file version
(line 1)!

2) Check if modified
(lines 2—4)!

File!

3) Chunk the file
(line 5)!

5) Create and upload
shares of new chunks!
(lines 6—9, 13—19)!

4) Find new chunks
(line 12)!

Client! Cloud!

Figure 7: Uploading a file (lines refer to Algorithm 2).

2 in Figure 7). We then divide the file into chunks (step 3)
and avoid uploading redundant chunks by checking whether
shares of each chunk are already stored in the cloud (step 4).
New chunks are divided into shares, as in Section 5.1, and
the shares scattered to CSPs (step 5). CYRUS uses consistent
hashing [20] to select the n CSPs at which to store shares of
each chunk, allowing us to balance the amount of data stored
at different CSPs and minimize the necessary share reallo-
cation when CSPs are added or deleted (Section 5.5). The
CSPs are selected by mapping the hash value of the chunk
content to a position on the consistent hash ring, which is
partitioned among CSPs. We then select the first n CSPs en-
countered while traversing the ring and send upload requests
to the corresponding cloud connectors. The returns of the re-
quests are handled asynchronously, as explained below. We
upload the file metadata to CSPs (line 10 in Algorithm 2)
only after receiving returns from all upload requests, so that
no other client will attempt to download the file before all
shares have been uploaded.

Downloading files: CYRUS follows Algorithm 3 to
download a file. First, the client checks for the latest file
version by sync-ing its metadata tree with the cloud (line
2). CYRUS then identifies the file’s chunks and gathers
their shares, selecting the download CSPs using Algorithm 1
(lines 3–5) and handling returns from the download requests

1 Function Download(file)
2 meta = downloadMeta(file)
3 for chunk in meta.chunkMap do
4 Gather(chunk,meta.shareMap[chunkId])
5 end

// Wait until downloading all chunks

6 if checkConflict(meta) then
7 meta.conflict = True
8 end
9 updateSnapshot(file, snapshot)

10 Function Gather(chunk, shareMap)
11 clouds = OptSelect(chunk, shareMap)
12 for share in chunk.shares do
13 conn = clouds.next()
14 conn.Requester(GET, share)// Async event

requester

15 end
Algorithm 3: Downloading files.

as asynchronous events (lines 12–15). Finally, CYRUS
checks for file conflicts and prompts users to resolve them
(lines 6–8); we elaborate on this step in Section 5.4.

Asynchronous event handling: Due to CSPs’ differ-
ent link speeds and shares’ different sizes, CYRUS re-
quires asynchronous event handling for uploads and down-
loads. Upon receiving response messages from CSPs (in
most cases an HTTP response message with status code),
CYRUS’s cloud connectors send the events to a registered
event receiver at the CYRUS core. The receiver can receive
four types of share transmission events: GET META, PUT
META, GET, and PUT; and maintains three boolean vari-
ables: ShareComplete, ChunkComplete, and FileComplete.
ShareComplete is set to 1 if the share is successfully up-
loaded or downloaded, and ChunkComplete is set to 1 if
n shares are successfully uploaded or t shares successfully
downloaded. FileComplete is set to 1 if all chunks of a file
are successfully uploaded or downloaded.

5.4 Synchronizing Files
Synchronization service: Clients sync files by detecting
changes at their local storage and CSPs. Changes at the local
storage can be detected by regularly checking last-modified
times and file hash values. Changes at CSPs can be seen
by looking up the list of metadata files stored in the cloud,
since a new metadata file is created with each file upload
(Algorithm 2). As explained in Section 5.2, the metadata are
stored at a fixed subset of CSPs, making this lookup efficient.

Despite regular metadata sync-ing, nonzero network de-
lays make it possible for two CYRUS clients to attempt to
modify the same file at the same time. Clients cannot prevent
such conflicts by locking files while modifying them; some
CSPs do not support locking.10 We instead assign unique
names to uploaded shares as described in Section 5.1 and let

10 For instance, if two clients try to modify the same file at the same time,
Dropbox allows both to create a locking file but changes one locking file’s
name. Thus, only one client can delete its locking file, allowing us to create
a lock. On Google Drive, however, we cannot create a lock: both clients’
locking files retain their original names and can be created and deleted.

9b9af694!

ab3a363c! 3d84621d!

7dba2abd! 8f456eda!
File roots!

Conflict 1!

Conflict 2!

Figure 8: Two types of file conflicts.

clients upload conflicting file updates. Clients identify and
resolve the resulting conflicts when downloading files (line
7 in Algorithm 3).

Distributed conflict detection: We identify two types of
file conflicts, as shown in Figure 8. First, two clients may
create files with the same filename but different contents,
resulting in different metadata file names, e.g., metadata
7dba2abd and 8f456eda. Second, one client can modify
the previous version of a file due to delays in sync-ing
metadata. We then find two child nodes from one parent, e.g.,
ab3a363c and 3d84621d in the figure. Each node represents
an independent modification of the parent node’s file.

When new metadata is downloaded from the cloud, we
check for conflicts by first checking if it has a parent node.
If so, we check for the first type of conflict by searching
for other nodes with the same filename. The second type of
conflict arises if the new node has a parent. We traverse the
tree upwards from this node, and detect a conflict if we find
a node with multiple children.

File deletion and versioning: Clients can recover pre-
vious versions of files by traversing the metadata tree up
from the current file version to the desired previous version.
CYRUS also allows clients to recover deleted files by locat-
ing their metadata. When clients delete a file, CYRUS marks
its metadata as “deleted,” but does not actually delete the
metadata file.11 Shares of the file’s component chunks are
left alone, since other files may contain these chunks.

5.5 Adapting to CSP Changes
Over time, a user’s set of viable CSPs may change: users
may add or remove CSPs, which can occasionally fail. Thus,
CYRUS must be able to adapt to CSP addition, removal, and
failure. We consider these three cases individually.

Adding CSPs: A user may add a CSP to CYRUS by
updating the list of available CSPs at the cloud. Once this
list is updated, subsequently uploaded chunks can be stored
at the new CSP. Moreover, the new CSP does not affect
the reliability or privacy experienced by previously uploaded
chunks. Since uploading shares to the new cloud can use a
significant amount of data, we do not change the locations
of already-stored shares. Shares of the file metadata can be
stored at the new CSP, with appropriate indication in the
list of available CSPs, if the user wishes to increase the
reliability of the metadata storage.

11 Since file metadata is very small, metadata from deleted files does not
take up much CSP capacity.

Cloud 1! Cloud 2! Cloud 3! Cloud 4!

Chunk A! A1! A2!

Chunk B! B1! B2!

Chunk C! C2!

2) Download share C1 to construct a
file of chunks B and C!

C1!

Chunk B!

B2!

3) Construct and upload
share B2!

Chunk C!

1) Remove Cloud 2!

Figure 9: Share migration when removing a CSP.

Metadata Manager!

C
YR

U
S U

ser Interface!

File Constructor!

C
SP Selector!

Cloud
Connector!

Scatter!

C
SP APIs!

Authentication!

Downloader!

Chunk
List!

Meta
files!

…

CSP 1!

CSP
Table!

CSP 2!

CSP n!
Gather!

Chunk
Aggregator!

Share
Decoder!

Uploader!Chunk
Constructor!

Share
Encoder!

Event H
andler!

Figure 10: Client-based CYRUS implementation.

Removing CSPs and failure recovery: CYRUS detects
a CSP failure if it fails to upload shares to that CSP; once
this occurs, CYRUS periodically checks if the failed CSP is
back up. Until that time, no shares are uploaded to that CSP.
CSP removal can be detected by repeated upload failures
or a manual signal from users. A failed or removed CSP is
marked as such in the list of available CSPs.

Unlike adding a CSP, removing a CSP reduces the reli-
ability of previously uploaded chunks and shares. Thus, to
maintain reliability we must reconstruct the removed shares
and upload them to other CSPs. We similarly migrate the file
metadata that was stored on the deleted CSP. However, while
the metadata is relatively small and can be migrated without
excessive overhead, uploading all of the file chunk shares
requires uploading a large amount of data. Indeed, from a
user’s perspective, a cloud may fail temporarily (e.g., for a
few hours) but then come back up; it is therefore impractical
to move all shares at once. Instead, we note that reliability
matters most for frequently accessed shares and use a “lazy
addition” scheme. Whenever a client downloads a file, we
check the locations of its chunks’ shares. Should one of these
locations have been removed or deleted, we create a new
share and upload it to a new CSP. Figure 9 shows the proce-
dure of adding these shares: after a CSP is removed, a client
downloads a file. If a share of one of the file’s chunks was
stored at the removed CSP, we reconstruct the share from the
chunk and upload it to a new CSP.

6. CYRUS Implementation
We have prototyped CYRUS on three representative plat-
forms (Mac OS X, Windows, and Linux) using Python and

C, with the software architecture shown in Figure 10. The
prototype has seven main components: 1) a graphical user
interface, 2) C modules implementing content-based chunk-
ing and (t, n) secret sharing, 3) threads uploading and down-
loading contents to and from CSPs, 4) a metadata manager
that constructs and maintains metadata trees, 5) an event
handler for upload and download requests, 6) a cloud selec-
tor selecting CSPs for uploading and downloading shares,
and 7) cloud connectors for popular commercial CSPs. Our
CYRUS prototype consists of 3500 lines of Python code.

Our implementation integrates the CYRUS APIs (Ta-
ble 3) and provides a graphical interface for people to use
CYRUS. To increase efficiency, we use C modules to im-
plement file chunking (Rabin’s fingerprinting) and dividing
chunks into shares (Reed-Solomon coding). We implement
the cloud selection algorithm in Python.

To ensure transparency to different CSPs, we create
a standard interface to map CYRUS’s file operations to
vendor-specific cloud APIs. This task involves creating a
specific REST URL with proper parameters and content. We
utilize existing CSP authentication mechanisms for access to
each cloud, though such procedures are not mandatory. We
have implemented connectors for Google Drive, DropBox,
SkyDrive (now called OneDrive), and Box, with connec-
tors to more CSPs planned in the future. These providers, as
shown in Table 2, use standard web authentication mecha-
nisms. Open source cloud connectors like Jclouds [4] can be
used in place of CYRUS’s own connectors.

Figure 11 shows screenshots of our user interface. Figure
11a shows a list of CSP accounts connected to CYRUS,
while Figure 11b lists the files and folders uploaded to
CYRUS’s directory. Figure 11c shows the history of a file
within CYRUS; users can view and restore previous versions
of each file. A demo video of the prototype is available [1].

7. Performance Evaluation
CYRUS’s architecture and system design ensure that it sat-
isfies client requirements for privacy, reliability, and latency.
This section considers CYRUS’s performance in a testbed
environment before presenting real-world results from a
comparison with similar systems and trial deployment.

7.1 Erasure Coding
R-S decoding requires an attacker to possess at least t shares
of a given file chunk as well as the dispersal matrix used to
encode the chunk. Since we generate the dispersal matrix
from hash values of the user’s key string, recovering the
dispersal matrix requires the user’s key string, providing an
initial layer of privacy. Even if the dispersal matrix is known,
the attacker must still gain access to t of n shares of each
file chunk. Since we store the shares on physically separate
CSPs (Section 4.1), such a coordinated breach of users’ CSP
accounts is unlikely.

(a) Connected CSP accounts. (b) Files stored on CYRUS. (c) File history in CYRUS.

Figure 11: Screenshots of the CYRUS user interface.

 0

 100

 200

 300

 400

 500

 600

2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
[M

B
/s

]

t

Encoding
Decoding

(a) Changing t with n=11.

 0

 100

 200

 300

 400

 500

 600

3 4 5 6 7 8 9 10 11

T
h
ro

u
g
h
p
u
t
[M

B
/s

]

n

Encoding
Decoding

(b) Changing n with t=2.

Figure 12: Empirical overhead of 100 MB chunk encoding
and decoding while changing t and n.

If the attacker knows parts of the dispersal matrix or re-
covers t′ < t shares, it would be computationally expensive
to guess the remaining information. The dispersal matrix is
generated by a vector of length t, each of whose elements
belongs to a finite field of size 2m, where m is an integer
encoding parameter chosen by the user. Similarly, the non-
systematic R-S code can use t′ shares to recover the origi-
nal file up to t − t′ linear equations, or equivalently t − t′

unknowns. Since each unknown has 2m possible values, an
exhaustive search would be computationally expensive.

We implement the share encoding and decoding with the
well-known zfec library [41]. Figure 12 shows the empir-
ical overhead of the share encoding and decoding. As we
would expect, a larger t leads to longer decoding times (i.e.,
lower throughput), with a minimum throughput of around
100MB/s for t=10. The encoding throughput depends more
on n rather than t, reaching a minimum of around 100MB/s
when n=11. In our experiments, we take (t, n) between (2,3)
and (3,5), so the encoding and decoding throughputs are at
least 200 and 300 MB/s respectively. The completion time
bottleneck in our experiments below is therefore data trans-
fer rather than encoding and decoding overhead.

7.2 Privacy and Reliability
We first show that CYRUS improves CSP reliability in Fig-
ure 13, which shows the simulated number of cloud fail-
ures with single CSPs and CYRUS with different configu-
rations. We base the simulations on real-world monitoring
data from four commercial CSPs whose downtime varies
from 1.37 to 18.53 hours per year [12]. At the end of a sim-
ulation with 107 trials, even the most reliable CSP returned
approximately 1,500 failed requests, while CYRUS showed

Extension # of files Total bytes Avg. size (bytes)
pdf 70 60,575,608 865,366
pptx 11 12,263,894 1,114,899
docx 15 9,844,628 656,309
jpg 55 151,918,946 2,762,163
mov 7 351,603,110 50,229,016
apk 10 4,872,703 487,270
ipa 4 47,354,590 11,838,648

Total 172 638,433,479 3,711,823

Table 4: Testbed evaluation dataset.

 1

 10

 100

 1000

 10000

 100000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

C
u

m
u

la
ti
v
e

 f
a

ilu
re

s

Trial

Single CSP
CYRUS(2,3)

CYRUS(3,4)
CYRUS(4,5)

Figure 13: Simulated number of cumulative CSP failures.

only 44 failures with (t, n) = (3, 4) and no failures with
(t, n) = (2, 4). However, as we show in testbed experiments
below, taking (t, n) = (3, 4) improves upload and download
completion times compared to other configurations.

Testbed setup: We construct a testbed with a MacBook
Pro client and seven private cloud servers as our CSPs, con-
nected with 1Gbps ethernet links. We emulate CSP cloud
performance by using tc and netem to change network con-
ditions for the different servers. We set maximum through-
puts of 15MB/s for four cloud servers (the “fast” clouds) and
2MB/s for the remaining three clouds (the “slow” clouds).

We evaluate CYRUS’s performance on a dataset of sev-
eral different file types. Table 4 summarizes the number and
size of the dataset files by their extensions. The total dataset
size is 638.43 MB, with an average file size of 3.71 MB. We
use content-based chunking to divide the files into chunks
with an average chunk size of 4MB, following Dropbox [14].

Performance results: We first consider the effect of
changing reliability and privacy on file download comple-
tion times. We test three configurations: (t, n) = (2, 3),
(2, 4), and (3, 4). Compared to the (2, 3) configuration,
(t, n) = (2, 4) is more reliable, while (t, n) = (3, 4) gives

 0

 50

 100

 150

 200

 250

 300

(2,3) (2,4) (3,4)

C
o
m

p
le

ti
o
n
 t
im

e
 [
s
e
c
]

CYRUS
Heuristic
Random

(a) Mean completion time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Download speed [MB/s]

CYRUS
Heuristic
Random

(b) Throughput, (t, n) = (2, 3).

Figure 14: Testbed download performance of random,
heuristic, and CYRUS cloud selection.

more privacy. We compare the performance of three down-
load CSP selection algorithms: CYRUS’s algorithm from
Section 4, random, and heuristic.12 The random algorithm
chooses CSPs randomly with uniform probability, and the
heuristic algorithm is a round-robin scheme.

The download completion times are shown in Figure 14a.
For all configurations, CYRUS’s algorithm has the short-
est download times. The random algorithm has the longest,
likely due to the high probability of downloading from a
slow cloud. Figure 14b shows the distribution of through-
puts achieved by all files; we see that the throughput with
CYRUS’s algorithm is decidedly to the right of (i.e., is larger
than) the random and heuristic algorithms’ throughputs.

The completion time of CYRUS’s algorithm when (t, n) =
(3, 4) is especially short compared to the other (t, n) values
(Figure 14a). Since the share size of a given chunk equals the
chunk size divided by t, higher values of t will yield smaller
share sizes, lowering completion times for (parallel) share
downloads. However, the random and heuristic algorithms’
completion times do not vary much with the configurations.
With (t, n) = (3, 4), CYRUS must download shares from
three clouds instead of two with the other configurations, in-
creasing the probability that these algorithms will use slow
clouds and canceling the effect of smaller shares.

Figure 15 shows the cumulative upload and download
times for all files with CYRUS’s algorithm. As expected,
the more private (3, 4) configuration has consistently shorter
completion times, especially for uploads. The more reliable
(2, 4) and (2, 3) configurations yield more similar comple-
tion times; their shares are the same size. The (2, 4) configu-
ration has slightly longer upload times since the shares must
be uploaded to all 4 clouds, including the slowest ones.

7.3 Real-World Benchmarking
We benchmark CYRUS’s upload and download performance
on Dropbox, Google Drive, SkyDrive, and Box. We com-
pare CYRUS to DepSky [7], a “cloud-of-clouds” system that
also uses R-S coding to store files at multiple CSPs. Dep-
Sky’s upload and download protocols, however, differ from
CYRUS’s: they require two round-trip communications with

12 We did not compare the true-optimal performance, since finding the true
optimum would require searching over ∼ C(t, n)300 possible download
configurations, which is prohibitively expensive.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180C
u

m
u

la
ti
v
e

 c
o

m
p

le
ti
o

n
 t

im
e

 [
s
e

c
]

File id

(2,3)
(2,4)
(3,4)

(a) Upload.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160 180C
u

m
u

la
ti
v
e

 c
o

m
p

le
ti
o

n
 t

im
e

 [
s
e

c
]

File id

(2,3)
(2,4)
(3,4)

(b) Download.

Figure 15: Testbed completion times of different privacy
and reliability configurations.

 0

 50

 100

 150

 200

 250

 300

 350

Upload Time Download Time

C
o

m
p

le
ti
o

n
 t

im
e

 [
s
e

c
]

CYRUS
DepSky
Full Rep

Full Stripe

Figure 16: Completion times of different storage schemes.

CSPs to set lock files, preventing simultaneous updates, and
a random backoff time after setting the lock. Moreover, Dep-
Sky uses a greedy algorithm that always downloads shares
from the fastest CSPs, in contrast to CYRUS’s optimized
CSP selection. To compare the two systems, we implement
DepSky within CYRUS.

Figure 16 shows the upload and download completion
times for a 40 MB file with CYRUS, DepSky, and two other
baseline storage schemes. Full Replication stores a 40 MB
replica and Full Striping a 10 MB fragment at each of the
four CSPs. Both CYRUS and DepSky use (t, n) = (2, 3),
so each share is 20 MB.13 Since full striping uploads the
least amount of data to each CSP, it has the shortest upload
completion times. However, full striping is not reliable, as
any CSP failure would prevent the user from retrieving the
file. CYRUS has the second-best upload performance. Dep-
Sky’s upload time is more than twice as long as CYRUS’s
and longer than Full Replication’s, though Full Replication
uploads twice as much data as DepSky to each CSP.

CYRUS’s optimized downlink CSP selection algorithm
allows it to achieve the shortest download completion time.
DepSky shows longer completion times than either CYRUS
or Full Striping, which must download from all four CSPs,
including the slowest. Full Replication has the longest down-
load time, since we averaged its performance over all four
CSPs. Its download time would have been shorter (24.118
seconds) with the optimal CSP, but longer (519.012 seconds)
with the slowest.

13 For ease of comparison to full striping and full replication, we do not
chunk the file with CYRUS or DepSky. We can thus verify that CYRUS’s
download CSP selection is perfectly optimal, as only C(t, n) shares need
to be downloaded from the CSPs.

 0

 10

 20

 30

 40

 50

CSP1 CSP2 CSP3 CSP4

C
o

m
p

le
ti
o

n
 t

im
e

 [
S

e
c
]

CYRUS
DepSky

(a) Upload.

 0

 10

 20

 30

 40

 50

CSP1 CSP2 CSP3 CSP4

C
o

m
p

le
ti
o

n
 t

im
e

 [
S

e
c
]

CYRUS
DepSky

(b) Download.

Figure 17: Completion times with CYRUS and DepSky.

 0

 5

 10

 15

 20

 25

 30

 35

CSP1 CSP2 CSP3 CSP4

#
 o

f
S

h
a

re
s

CYRUS
DepSky

(a) Upload.

 0

 5

 10

 15

 20

 25

 30

 35

CSP1 CSP2 CSP3 CSP4

#
 o

f
S

h
a

re
s

CYRUS
DepSky

(b) Download.

Figure 18: Share distribution with CYRUS and DepSky.

We next compare CYRUS’s and DepSky’s achieved up-
load and download completion times for a 1MB file, with
upload and download measurements taken every hour for
two days. Figure 17 shows box plots of the resulting com-
pletion times. CYRUS achieves significantly shorter com-
pletion times to all CSPs; DepSky’s upload times are partic-
ularly large at nearly twice those of CYRUS.

Figure 18 shows the number of shares uploaded to each
CSP. DepSky stores more shares at consistently faster CSPs:
it starts uploads to all CSPs and cancels pending requests
when n uploads complete, while CYRUS distributes shares
evenly. CYRUS thus ensures that no one CSP will run out
of capacity before the others, while DepSky’s approach can
cause one CSP to quickly use all of its capacity, hindering the
distribution of shares to multiple clouds. Similarly, CYRUS
spreads share downloads more evenly across CSPs.

7.4 Deployment Trial Results
We recruited 20 academic (faculty, research staff, and stu-
dent) users from the United States and Korea to participate
in a small-scale trial. We deployed trial versions of CYRUS
for OS X and Windows that send log data to our develop-
ment server. Over the course of the trial in summer 2014, we
collected approximately 35k lines of logs. Since clients in-
stalled CYRUS on their laptops and desktops, we observed
little client mobility within the U.S. or Korea; we thus report
average results for each country and do not separate the trial
results for different client locations within the countries.

We compare upload and download times for trial par-
ticipants in the U.S. and Korea in Figure 19, which shows
CYRUS’s completion times to upload a 20 MB test file when
connected to Dropbox, Google Drive, SkyDrive, and Box.
We use (t, n) = (2, 3) and (2, 4), so that uploading a file

 0

 10

 20

 30

 40

 50

 60

Upload Download

C
om

pl
et

io
n

tim
e

[s
ec

]

CSP1
CSP2
CSP3

CSP4
CYRUS (2,3)
CYRUS (2,4)

(a) U.S.

 0

 100

 200

 300

 400

 500

 600

Upload Download

C
om

pl
et

io
n

tim
e

[s
ec

]

CSP1
CSP2
CSP3

CSP4
CYRUS (2,3)
CYRUS (2,4)

(b) Korea.

Figure 19: Completion times during the trial.

to individual CSPs is neither as reliable nor as private as
CYRUS.

In the U.S. (Figure 19a), CYRUS encounters a bottleneck
of limited total uplink throughput from the client, slowing
its connections to each individual CSP and lengthening up-
load completion time. When (t, n) = (2, 3), CYRUS is still
faster than all but one CSP. However, when (t, n) = (2, 4),
CYRUS uploads twice as much data in total than just up-
loading the file to one CSP; (2, 4)’s upload time is therefore
longer than that of all single CSPs. In Korea (Figure 19b),
connections to individual CSPs are much slower than in the
U.S., so CYRUS does not encounter this client throughput
bottleneck with either configuration. Since we upload less
data to each CSP, both CYRUS configurations give shorter
upload times than all individual CSPs.

CYRUS’s download times for both configurations are
shorter than those from individual CSPs. In both the U.S.
and Korea, CYRUS has slightly longer download times than
the fastest CSP, as it downloads shares from two CSPs. How-
ever, its download times are shorter than those from all other
CSPs. Comparing the (t, n) = (2, 3) and (2, 4) configura-
tions, we see that the (t, n) values affect download times
more in Korea, due to the slower CSP connections there. Us-
ing (t, n) = (2, 4) instead of (2, 3) requires uploading an ad-
ditional share, increasing the upload time in the U.S. by 7.78
seconds with little decrease in the download time. However,
in Korea, using (t, n) = (2, 4) does not appreciably increase
the upload time and saves 33.805 seconds of download time.
For any (t, n) values, CYRUS shortens the average upload
time in Korea, where client bandwidth is not a bottleneck,
and the average download time in both countries.

7.5 User Experience
After our trial, we informally surveyed the participants
to understand their experience in using CYRUS and their
thoughts on whether such a storage service would be useful
in practice. While the survey represents a limited subset of
academic users who are familiar with computer usage, their
responses demonstrate CYRUS’s potential to be practical
and useful for the general population.

Most of our users had accounts at multiple CSPs but
only used one or two regularly, likely due to the overhead
in tracking which files were stored at which CSP. CYRUS
thus allowed them to better utilize space on all of their cloud

accounts without additional overhead. In fact, two users in
Korea thought CYRUS was faster than uploading files to
individual CSPs, as is consistent with the upload results in
Figure 19b. The remaining users in the U.S. and Korea did
not notice any difference in upload or download speed with
CYRUS. Users mainly used CYRUS to store documentation
and image files, with almost all files <10 MB in size.

All but one user found CYRUS’s interface easy-to-use.
Users liked having a separate folder for CYRUS’s files (Fig-
ure 11b), with one U.S. user saying that “CYRUS is [as]
good as any other application when we consider file di-
alogs.” They also appreciated the ability to view files’ his-
tory without accessing a web app (Figure 11c), with one
user reporting that “the fact that it[’]s visible on the App
[made] it easier to use and to access.” Users reported that
registering their CSP accounts with CYRUS was their main
source of inconvenience; our prototype seeks to minimize
this overhead by locally caching authentication keys so that
users need only login to their CSPs once.

All users expressed interest in using CYRUS in the future,
but made some suggestions for improvement. One user, for
instance, suggested adding a feature to import files already
stored at CSPs. The most common suggestion, made by
nearly half of the users, was to implement CYRUS on mobile
devices so that files could be shared between their laptops
and smartphones. We plan to add mobile support in our
future work.

8. Promoting Market Competition
While commoditization often decreases market competition
by favoring large economies of scale, CYRUS may instead
promote competition, as its privacy and reliability guaran-
tees depend on users having accounts at multiple CSPs.

Without CYRUS, users experience a phenomenon known
as “vendor lock-in:” After buying storage from one CSP, a
user might not use storage from other CSPs due to the over-
head in storing files at and retrieving them from multiple
places. Since different CSPs enter the market at different
times, vendor lock-in can thus lead to uneven adoption of
CSPs and correspondingly uneven revenues. To combat ven-
dor lock-in, many CSPs offer some free storage for individ-
ual (i.e., non-business) users. However, persuading users to
later pay for more storage is still difficult, unless the new
CSP offers much better service than the previous one. Busi-
ness users, who do not receive free storage, have no incentive
to join more than one CSP, exacerbating vendor lock-in.

CYRUS eliminates vendor lock-in for its users by remov-
ing the overhead of storing files at multiple CSPs. In fact,
CYRUS encourages users to purchase storage at multiple
CSPs, which increases its achievable reliability and privacy:
users can store more chunk shares at different CSPs. As-
suming comparable CSP prices, a given user might then pur-
chase storage at all available CSPs, even-ing out CSP market
shares. CSPs entering into the market would also be able to

gain users. Some CSPs could gain a competitive advantage
by providing faster connections or better coordination with
CYRUS, but user demand would still exist at other CSPs.

Since CYRUS’s secret sharing scheme increases the
amount of data stored by a factor of n/t, users would need to
purchase more total cloud storage with CYRUS. Total CSP
revenue from business users might then increase, though it
would likely be more evenly distributed among CSPs. CSP
revenue from individual users, however, might decrease:
some users could collect free storage from different CSPs
without needing to purchase any additional storage. Thus,
CYRUS may discourage CSPs from offering free introduc-
tory storage to individual users, in order to boost revenue.

9. Conclusion
CYRUS is a client-defined cloud storage system that in-
tegrates multiple CSPs to meet individual users’ privacy,
reliability, and performance requirements. Our system de-
sign addresses several practical challenges, including op-
timally selecting CSPs, sharing file metadata, and concur-
rency, as well as challenges in improving reliability and pri-
vacy. CYRUS’s client-based architecture allows multiple,
autonomous clients to scatter shared files to multiple CSPs,
ensuring privacy by dividing the files so that no one CSP can
reconstruct any of the file data. Moreover, we upload more
shares than are necessary to reconstruct the file to ensure
reliability. CYRUS optimizes the share downloads so as to
minimize the delay in transferring data and simultaneously
allows file updates from multiple clients, detecting any con-
flicts from the client. We evaluate CYRUS’s performance in
both a testbed environment and real-world deployment.

By realizing a client-defined cloud architecture, CYRUS
flips the traditional cloud-servicing-clients model to one
of clients controlling multiple clouds. CYRUS thus opens
up new possibilities for cloud services, as similar systems
may disrupt the current cloud ecosystem by commoditizing
CSPs; thus, these services represent not just a technological,
but also an economic change. These wide-ranging impli-
cations make client-defined cloud architectures an exciting
area for future work.

Acknowledgments
This research was supported by the Princeton University IP
Acceleration Fund and the MSIP (Ministry of Science, ICT
and Future Planning), Korea, under the ICT/SW Creative
Research program (NIPA-2014-H0510-14-1009) supervised
by the NIPA (National IT Industry Promotion Agency).

References
[1] CYRUS demo video, 2014. http://youtu.be/

DPK3NbEvdM8.

[2] Git merge, 2015. http://git-scm.com/docs/git-merge.

[3] ABU-LIBDEH, H., PRINCEHOUSE, L., AND WEATHER-
SPOON, H. Racs: A case for cloud storage diversity. In Proc.
of ACM SoCC (New York, NY, USA, 2010), ACM, pp. 229–
240.

[4] APACHE. What is apache JClouds?, 2013. http://

jclouds.apache.org/.

[5] APACHE SOFTWARE FOUNDATION. HBase, 2014. http:

//hbase.apache.org/.

[6] ATTASENA, V., HARBI, N., AND DARMONT, J. Sharing-
based privacy and availability of cloud data warehouses. In
9mes journes francophones sur les Entrepts de Donnes et
l’Analyse en ligne (EDA 13), Blois (Paris, Juin 2013), vol. B-
9 of Revues des Nouvelles Technologies de l’Information,
Hermann, pp. 17–32.

[7] BESSANI, A., CORREIA, M., QUARESMA, B., ANDRÉ, F.,
AND SOUSA, P. Depsky: Dependable and secure storage in
a cloud-of-clouds. In Proc. of ACM EuroSys (New York, NY,
USA, 2011), ACM, pp. 31–46.

[8] BESSANI, A., MENDES, R., OLIVEIRA, T., NEVES, N.,
CORREIA, M., PASIN, M., AND VERISSIMO, P. Scfs: A
shared cloud-backed file system. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Confer-
ence (Berkeley, CA, USA, 2014), USENIX ATC’14, USENIX
Association, pp. 169–180.

[9] BOWERS, K. D., JUELS, A., AND OPREA, A. Hail: A high-
availability and integrity layer for cloud storage. In Proc. of
ACM CCS (New York, NY, USA, 2009), ACM, pp. 187–198.

[10] CACHIN, C., AND TESSARO, S. Optimal resilience for
erasure-coded Byzantine distributed storage. In Proc. of IEEE
DSN (Washington, DC, USA, 2006), IEEE Computer Society,
pp. 115–124.

[11] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C.,
WALLACH, D. A., BURROWS, M., CHANDRA, T., FIKES,
A., AND GRUBER, R. E. Bigtable: A distributed storage sys-
tem for structured data. ACM Trans. Comput. Syst. 26, 2 (June
2008), 4:1–4:26.

[12] CLOUDSQUARE. Research and compare cloud providers
and services, Mar. 2015. https://cloudharmony.com/

status-1year-of-storage-group-by-regions.

[13] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULA-
PATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMA-
NIAN, S., VOSSHALL, P., AND VOGELS, W. Dynamo: Ama-
zon’s highly available key-value store. In Proc. of ACM SOSP
(2007), ACM, pp. 205–220.

[14] DRAGO, I., MELLIA, M., M. MUNAFO, M., SPEROTTO, A.,
SADRE, R., AND PRAS, A. Inside Dropbox: Understanding
personal cloud storage services. In Proc. of ACM IMC (New
York, NY, USA, 2012), ACM, pp. 481–494.

[15] DUMON, M. Cloud storage industry continues rapid
growth. Examiner.com, 2013. http://www.examiner.
com/article/cloud-storage-industry-continues-

rapid-growth.

[16] FINLEY, K. Three reasons why amazon’s new storage service
won’t kill dropbox. Wired, 2014. http://www.wired.com/
2014/07/amazon-zocalo/.

[17] GOODSON, G. R., WYLIE, J. J., GANGER, G. R., AND

REITER, M. K. Efficient byzantine-tolerant erasure-coded
storage. In Proc. of IEEE DSN (Washington, DC, USA, 2004),
IEEE Computer Society, pp. 135–.

[18] GUPTA, A. Outage post-mortem. Dropbox Tech Blog,
2014. https://blogs.dropbox.com/tech/2014/01/

outage-post-mortem/.

[19] HU, Y., CHEN, H. C. H., LEE, P. P. C., AND TANG, Y.
Nccloud: Applying network coding for the storage repair in
a cloud-of-clouds. In Proc. of USENIX FAST (Berkeley, CA,
USA, 2012), USENIX Association, p. 21.

[20] KARGER, D., SHERMAN, A., BERKHEIMER, A., BOGSTAD,
B., DHANIDINA, R., IWAMOTO, K., KIM, B., MATKINS, L.,
AND YERUSHALMI, Y. Web caching with consistent hashing.
Comput. Netw. 31, 11-16 (May 1999), 1203–1213.

[21] KEPES, B. At last some clarity about who is win-
ning the cloud file sharing war... Forbes, 2014.
http://www.forbes.com/sites/benkepes/2014/

03/03/user-numbers-or-revenue-for-cloud-file-

sharing-vendors-which-is-most-important/.

[22] LANGO, J. Toward software-defined slas. Commun. ACM 57,
1 (Jan. 2014), 54–60.

[23] LING, C. W., AND DATTA, A. InterCloud RAIDer: A do-
it-yourself multi-cloud private data backup system. In Dis-
tributed Computing and Networking. Springer, 2014, pp. 453–
468.

[24] MACHADO, G., BOCEK, T., AMMANN, M., AND STILLER,
B. A cloud storage overlay to aggregate heterogeneous cloud
services. In Local Computer Networks (LCN), 2013 IEEE
38th Conference on (Oct 2013), pp. 597–605.

[25] MALKHI, D., AND REITER, M. Byzantine quorum systems.
In Proc. of ACM STOC (New York, NY, USA, 1997), ACM,
pp. 569–578.

[26] MALKHI, D., AND REITER, M. K. Secure and scalable
replication in Phalanx. In Proc. of IEEE SRDS (Washington,
DC, USA, 1998), IEEE Computer Society, pp. 51–.

[27] MARTIN, J.-P., ALVISI, L., AND DAHLIN, M. Minimal
Byzantine storage. In Proc. of DISC (London, UK, UK,
2002), Springer-Verlag, pp. 311–325.

[28] MCELIECE, R. J., AND SARWATE, D. V. On sharing secrets
and Reed-Solomon codes. Communications of the ACM 24, 9
(1981), 583–584.

[29] MU, S., CHEN, K., GAO, P., YE, F., WU, Y., AND ZHENG,
W. µ-libcloud: Providing high available and uniform ac-
cessing to multiple cloud storages. In Proc. of ACM/IEEE
GRID (Washington, DC, USA, 2012), IEEE Computer Soci-
ety, pp. 201–208.

[30] PAPAIOANNOU, T. G., BONVIN, N., AND ABERER, K.
Scalia: An adaptive scheme for efficient multi-cloud storage.
In Proc. of IEEE SC (Los Alamitos, CA, USA, 2012), IEEE
Computer Society Press, pp. 20:1–20:10.

http://youtu.be/DPK3NbEvdM8
http://youtu.be/DPK3NbEvdM8
http://git-scm.com/docs/git-merge
http://jclouds.apache.org/
http://jclouds.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
https://cloudharmony.com/status-1year-of-storage-group-by-regions
https://cloudharmony.com/status-1year-of-storage-group-by-regions
http://www.examiner.com/article/cloud-storage-industry-continues-rapid-growth
http://www.examiner.com/article/cloud-storage-industry-continues-rapid-growth
http://www.examiner.com/article/cloud-storage-industry-continues-rapid-growth
http://www.wired.com/2014/07/amazon-zocalo/
http://www.wired.com/2014/07/amazon-zocalo/
https://blogs.dropbox.com/tech/2014/01/outage-post-mortem/
https://blogs.dropbox.com/tech/2014/01/outage-post-mortem/
http://www.forbes.com/sites/benkepes/2014/03/03/user-numbers-or-revenue-for-cloud-file-sharing-vendors-which-is-most-important/
http://www.forbes.com/sites/benkepes/2014/03/03/user-numbers-or-revenue-for-cloud-file-sharing-vendors-which-is-most-important/
http://www.forbes.com/sites/benkepes/2014/03/03/user-numbers-or-revenue-for-cloud-file-sharing-vendors-which-is-most-important/

[31] PATTERSON, S. Personal cloud storage hit 685
petabytes this year. WebProNews, 2013. http:

//www.webpronews.com/personal-cloud-storage-

hit-685-petabytes-this-year-2013-12.

[32] PERLROTH, N. Home Depot data breach could
be the largest yet. The New York Times, 2014.
http://bits.blogs.nytimes.com/2014/09/08/home-

depot-confirms-that-it-was-hacked/.

[33] RABIN, M. Fingerprinting by Random Polynomials. Center
for Research in Computing Technology. Aiken Computation
Laboratory, Univ., 1981.

[34] RAWAT, V. Reducing failure probability of cloud storage ser-
vices using multi-cloud. Master’s thesis, Rajasthan Technical
University, 2013.

[35] RESCH, J. K., AND PLANK, J. S. AONT-RS: Blending
security and performance in dispersed storage systems. In
Proc. of the 9th USENIX FAST (Berkeley, CA, USA, 2011),
USENIX Association, pp. 14–14.

[36] SHAMIR, A. How to share a secret. Commun. ACM 22, 11
(Nov. 1979), 612–613.

[37] STONE, B. Another Amazon outage exposes the
cloud’s dark lining. Bloomberg Businessweek, 2013.
http://www.businessweek.com/articles/2013-08-

26/another-amazon-outage-exposes-the-clouds-

dark-lining.

[38] STRUNK, A., MOSCH, M., GROB, S., THOB, Y., AND

SCHILL, A. Building a flexible service architecture for user
controlled hybrid clouds. In Proc. of ARES (Washington, DC,
USA, 2012), IEEE Computer Society, pp. 149–154.

[39] WAKABAYASHI, D. Tim Cook says Apple to add security
alerts for icloud users. The Wall Street Journal, 2014.
http://online.wsj.com/articles/tim-cook-says-

apple-to-add-security-alerts-for-icloud-users-

1409880977.

[40] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG,
D. D. E., AND MALTZAHN, C. Ceph: A scalable, high-
performance distributed file system. In Proc. of OSDI (Berke-
ley, CA, USA, 2006), USENIX Association, pp. 307–320.

[41] WILCOX-OHEARN, Z. zfec package 1.4.24. https://

pypi.python.org/pypi/zfec.

http://www.webpronews.com/personal-cloud-storage-hit-685-petabytes-this-year-2013-12
http://www.webpronews.com/personal-cloud-storage-hit-685-petabytes-this-year-2013-12
http://www.webpronews.com/personal-cloud-storage-hit-685-petabytes-this-year-2013-12
http://bits.blogs.nytimes.com/2014/09/08/home-depot-confirms-that-it-was-hacked/
http://bits.blogs.nytimes.com/2014/09/08/home-depot-confirms-that-it-was-hacked/
http://www.businessweek.com/articles/2013-08-26/another-amazon-outage-exposes-the-clouds-dark-lining
http://www.businessweek.com/articles/2013-08-26/another-amazon-outage-exposes-the-clouds-dark-lining
http://www.businessweek.com/articles/2013-08-26/another-amazon-outage-exposes-the-clouds-dark-lining
http://online.wsj.com/articles/tim-cook-says-apple-to-add-security-alerts-for-icloud-users-1409880977
http://online.wsj.com/articles/tim-cook-says-apple-to-add-security-alerts-for-icloud-users-1409880977
http://online.wsj.com/articles/tim-cook-says-apple-to-add-security-alerts-for-icloud-users-1409880977
https://pypi.python.org/pypi/zfec
https://pypi.python.org/pypi/zfec

	Introduction
	Distributed Cloud Storage Architectures
	Research Contributions

	Related Work
	CYRUS Design
	Design Considerations
	CYRUS Architecture

	Optimized Cloud Selection
	CSP Platform Independence
	Balancing Privacy and Reliability
	Downlink Cloud Selection

	CYRUS Operations
	Storing Files as Shares
	Metadata Data Structures
	Uploading and Downloading Files
	Synchronizing Files
	Adapting to CSP Changes

	CYRUS Implementation
	Performance Evaluation
	Erasure Coding
	Privacy and Reliability
	Real-World Benchmarking
	Deployment Trial Results
	User Experience

	Promoting Market Competition
	Conclusion

