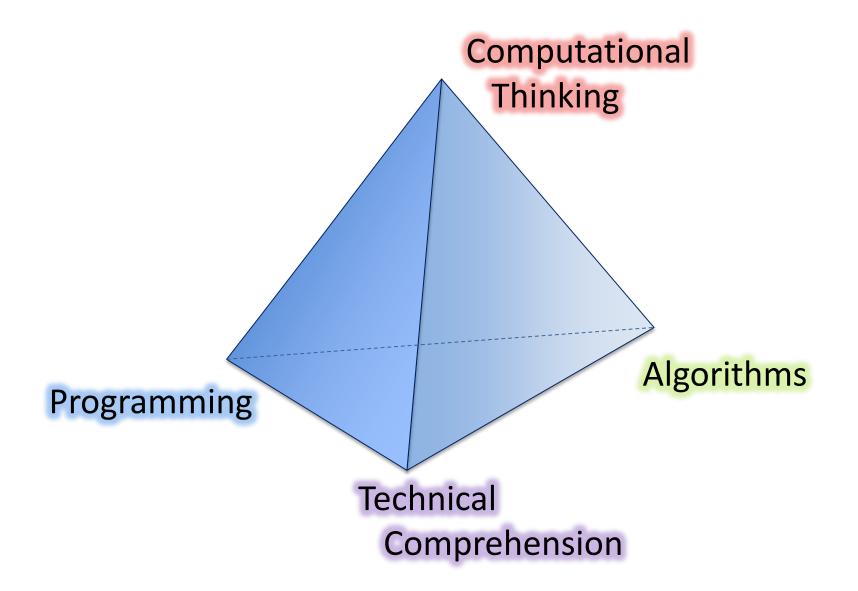
15-122: Principles of Imperative Computation

Iliano Cervesato, Dilsun Kaynar


https://cs.cmu.edu/~15122

Overview

- Goals of this course
- Interactions
 - Lectures, labs, recitations, office hours
- Assessment
 - Homework, exams, activities

The course begins ...

Goals

Programming Skills

- Transforming algorithmic ideas into code
 - Code that works the first time around
 - Deliberate programming
 - ... well, *nearly* the first time around
 - Writing tests
- Imperative programming in C and C0
- Basic Unix skills

Algorithmic Knowhow

- Asymptotic complexity
 - time/space
 - worst case/average case/amortized analysis
 - important classes: O(1), $O(\log n)$, $O(n \log n)$, $O(n^k)$, ...
- Important ideas like order and randomness
- Lots of fundamental data structures

(Psst... this is often what tech interviews test on!)

Computational Thinking

- From programmer to computer scientist
 - Systematic approach to solving a problem
 - Finding solutions that are correct
 - Finding solutions that are efficient

Technical Comprehension

- Learning to read technical specifications is an important skill you will be acquiring in this class
 - Problem statements will get longer
 - Dots to be connected will be further apart
 - + You will become more confident
 - + You will try more things on your own

What you will get out of 15-122

- Confidence to write small programs correctly
 - up to a couple thousand lines of code
- Knowledge of lots data structures
 - and algorithms too
- (Some) experience with C
- Systematic approach to solving problems
- Good time management

The Big Picture

- Pre- or co-requisites
 - either 15-151 (Math Foundations for CS)
 - or 21-127 (Concepts of Mathematics)
- Counterpart
 - 15-150 (Principles of Functional Programming)
- Pre-requisite for
 - 15-213 (Introduction to Computer Systems)
 - 15-210 (Parallel and Sequential Data Structures and Algorithms)
 - 15-214 (Principles of Software System Construction)

Overview

- Goals of this course
- Interactions
 - Lectures, recitations, office hours
- Assessment
 - Homework, exams, activities
- The course begins ...

Lectures

- Tuesdays and Thursdays
- Please be here, please be active
 - ask and answer questions, pay attention
 - lecture notes, slides and online modules for review
- Laptops for note-taking only
 - In the back unless you can't see the board
 - Too distracting for other students
 - No surfing, email, games, homework, ...

Labs and Recitations

- Labs Monday (programming exercises)
- Recitations Friday (review & written exercises)
- <u>Collaborative</u> problem solving
 - Help others if you are done early!
- How-to programming and tool support
- Attend the lab/recitation you're registered for

Getting-started Help

- Laptop setup office hours
 - Set up the C0 tools with Andrew Linux
 - Wednesday, 6 to 8pm in TBA
 - Drop in for half an hour
 - or do it yourself: "C0 at CMU" at https://c0.cs.cmu.edu
- Linux workshops
 - Learn useful Linux commands
 - Thursday 7:30 to 9:30 on Zoom
 - or next Tuesday 4:30 to 6:30 on Zoom

Online Resources

- Course home page http://cs.cmu.edu/~15122
 - Schedule, calendar, contact info...
 - Lecture notes, slides, OLI modules
 - Links to all resources
- C0 home page https://c0.cs.cmu.edu
 - Tutorial, reference, examples, binaries

Online communication

- Diderot for announcements, questions, and communication with course staff
 - Get help, help each other!
- Autolab and Gradescope for homework
- Grades from course home page
- Cluster Linux machines and SSH to shared machines for assignments

Help through the Semester

- Office hours
 - Calendar on course web page
- Student Academic Success Center support
 - Supplemental Instruction: TBA
 - Peer Tutoring: TBA

Overview

- Goals of this course
- Interactions
 - Lectures, recitations, office hours
- Assessment
 - Homework, exams, activities
- The course begins ...

Assessment

50% - Exams (2 midterms and a final)

Written 1 already Out.

Due this Monday

- 45% Weekly Homework
 - Written due Monday by 9pm ET on Gradescope
 - No late days: 50% penalty if handed in by 8am Tuesday
 - ∞ submissions
 - Programming due Thursdays 9pm ET on Autolab
 - Download assignments and code from Autolab or Diderot
 - 3 late days, at most 1 per homework
 - Extensions only for emergencies
- 5% In-class activities and labs
 - In-class activities in lectures
 - Attend, make a good effort, get credit

Academic integrity

- Homework and exams must be your own
 - You are here to learn, not to get a grade
- NOT OK: discussing hw answers, sharing code
- OK: discussing course material, practice problems, blank assignments, study sessions, handed-back homework

If you make a mistake, come to us, don't let us come to you

How to do Well in this Course

- Do not stress over grades
- Participate
- Manage your time wisely
 - Don't use late days in 1st half of course
- Start homework early
- Get all the help you need
 - ask for help, tell us when you're having trouble
- Make time for fun

Overview

- Goals of this course
- Interactions
 - Lectures, recitations, office hours
- Assessment
 - Homework, exams, activities
- The course begins ...