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Abstract. Many program verification tools provide automation via SMT
solvers, allowing them to automatically discharge many proofs. However,
when a proof fails, it can be hard to understand why it failed or how to
fix it. The main feedback the developer receives is simply the verification
result (i.e., success or failure), with no visibility into the solver’s internal
state. To assist developers using such tools, we introduce ProofPlumber,
a novel and extensible proof-action framework for understanding and
debugging proof failures. Proof actions act on the developer’s source-level
proofs (e.g., assertions and lemmas) to determine why they failed and
potentially suggest remedies. We evaluate ProofPlumber by writing a
collection of proof actions that capture common proof debugging practices.
We produce 17 proof actions, each only 29–177 lines of code.

1 Introduction

Software verification tools typically fall into two camps. The first camp relies on
interactive proof assistants, such as Coq [1] or Lean [2]. These proof assistants
show the developer the current proof state; i.e., the proof goal and all hypotheses
in scope. Developers then complete a proof by invoking tactics (user-developed
programs, e.g., in Ltac [3], that manipulate the proof state), viewing the effects
of the tactics in sophisticated IDEs. By default, these tools typically provide
less automation and generally require the developer to manipulate the proof
at a low-level. Some tactics (e.g., sledgehammer [4,5,6] or crush [7]) provide
considerably more automation, but as a result, their strengths and weaknesses
tend to match those of tools in the second camp.

In the second camp are languages and tools designed specifically for automated
program verification, e.g., Spec# [8], ESC/Java[9], VCC [10], Dafny [11], F⋆ [12],
Viper-based languages [13,14,15,16], and Verus [17]. With these tools, developers
add specifications to their programs, and the tool attempts to automatically prove
(potentially with help from developer-provided source-level assertions/lemmas)
that the spec holds. Typically this is done by reducing the problem to a logical
formula (e.g., via a weakest precondition calculus [18]) that can be checked by an
SMT solver [19,20,21,22,23]. Because SMT solvers can discharge many proofs
fully automatically, they enable developers to take large, logical steps.

However, when a proof fails, it can be hard to understand why it failed or how
to fix it. The main feedback the developer receives is simply the verification result
(i.e., success or failure), with no visibility into the solver’s internal state. Exposing
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such internal state in a useful manner is challenging, since an SMT solver might
generate millions of terms during its proof search. Hence, unlike in interactive
proof assistants, it can be difficult to answer questions like “What propositions has
the solver proven at this program point?” or “What additional facts are needed
for the solver to complete the proof?”. Indeed, because verification is generally
undecidable, the developer does not even know initially if the proof failed because
it is invalid, or because the tool’s automation is incomplete. As a result, when
developing verified code in automated program verification languages, significant
time goes into trying to figure out why the code is failing to verify and what
needs to be done to address the failure.

To assist developers using automated program verification techniques, we
introduce ProofPlumber, a novel proof-action framework for understanding and
debugging proof failures. Unlike tactics, which are primarily used to manipulate
(low-level) proof state, proof actions act on the developer’s source-level proofs (e.g.,
assertions and lemmas) to determine why they have failed and potentially suggest
remedies. ProofPlumber comes prepackaged with a set of proof actions that
automate a wide variety of standard proof debugging techniques, and it is also
fully extensible, so that as developers devise new or project-specific techniques,
those can be automated as well. Ultimately, we hope that ProofPlumber-style
proof actions will reduce tedium for experienced developers and help bootstrap
developers just starting to write verified programs.

We implement ProofPlumber1 in the context of Verus [17], a verification-
oriented language for Rust [24,25]. ProofPlumber offers three categories of APIs
(with a total of 36 API calls) for manipulating source-level Verus proofs. In §4,
we demonstrate ProofPlumber’s expressivity and extensibility by implementing a
collection of 17 proof actions, each of which requires only 29–177 lines of code.
We also show that ProofPlumber reduces Verus’ trusted computing base (TCB).

2 Proof Debugging Considered Painful

2.1 Background on Automated Program Verification in Verus

ProofPlumber is implemented for Verus [17], an SMT-based verification language
for formally verifying Rust programs. The basic syntax of Verus, shown in Figure 1,
is similar to that used in most languages for automated program verification.
The requires clause on line 8 describes the function’s precondition, and the
ensures clause on line 9 describes its postcondition. The assert statement on
line 20 is a static check performed by an SMT solver; when a proof fails, proof
engineers add assertions to a program to extract information from the solver.

2.2 Examples of Proof Debugging

Today, developers typically debug their failed proofs by manually adding source-
level assertions to their program. Such an assertion has no effect on the executable
1 ProofPlumber’s code and proof actions are available as open source at https://github.

com/verus-lang/verus-analyzer.

https://github.com/verus-lang/verus-analyzer
https://github.com/verus-lang/verus-analyzer
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code; instead, it breaks the proof into smaller steps, and it indirectly queries the
solver’s internal state, extracting two pieces of information: (1) Is the code’s
precondition sufficient to prove the new assertion? (determined by whether
the assertion verifies); and (2) Is the assertion sufficient to prove the code’s
postcondition? (determined by whether the postcondition now verifies).

1 spec fn fibo(n: nat) -> nat {
2 if n == 0 { 0 } else if n == 1 { 1 }
3 else { fibo(n - 2) + fibo(n - 1) }
4 }
5
6 // first attempt
7 proof fn fibo_is_monotonic(i: nat, j: nat)
8 requires i <= j,
9 ensures fibo(i) <= fibo(j), // fails

10 {
11 if i < 2 && j < 2 {}
12 else if i == j {}
13 else if i == j - 1 {
14 fibo_is_monotonic(i, j - 1);
15 } else {
16 fibo_is_monotonic(i, j - 1);
17 fibo_is_monotonic(i, j - 2);
18 }
19 // Debug by copying the failing ensures
20 assert(fibo(i) <= fibo(j)); // fails
21 }

22 // second attempt
23 proof fn fibo_is_monotonic(i: nat, j: nat)
24 requires i <= j,
25 ensures fibo(i) <= fibo(j),
26 {
27 if i < 2 && j < 2 {
28 assert(fibo(i) <= fibo(j)); // succeeds
29 } else if i == j {
30 assert(fibo(i) <= fibo(j)); // succeeds
31 } else if i == j - 1 {
32 fibo_is_monotonic(i, j - 1);
33 assert(fibo(i) <= fibo(j)); // fails
34 } else {
35 fibo_is_monotonic(i, j - 1);
36 fibo_is_monotonic(i, j - 2);
37 assert(fibo(i) <= fibo(j)); // succeeds
38 }
39 assert(fibo(i) <= fibo(j)); // fails
40 }

Fig. 1. “Stepping up” an assertion to identify the failing case.

Effective assertion choice and placement is a key part of the proof engineering
process. Choosing the wrong assertion or inserting it in the wrong place sheds
little light on the cause of the proof failure. Further, a single assertion is seldom
sufficient; instead, multiple iterations are required to further break down the
proof goal, until either the proof succeeds, or the developer determines the key
missing facts the prover needs (or finds a bug in the code).

Unfortunately, assertion-based debugging is an arcane art. Beginners find it
hard to understand what assertions to add, where to add them, and how to use
them to break down the proof goal. We frequently see beginners become stuck
randomly adding assertions that do not improve their understanding of the proof
failure. Even for experts, assertion-based debugging is tedious and error prone.

We illustrate the challenges with two simplified examples. In real verification
projects, the properties involved are much larger and more complex, making the
manual manipulation of source-level assertions a remarkably laborious, error-
prone process. While our examples are based on Verus, manipulating source-level
proofs is the standard debugging technique in automated program verification;
see, for example, Dafny’s manual assertion guide [26], F⋆’s guide [27], and various
proof debugging examples on StackOverflow [28,29].

The left side of Figure 1 presents a failing proof for fibo_is_monotonic; the
postcondition does not hold. An experienced proof engineer typically starts by
copying the failing postcondition to the end of the function, so that they can
manipulate it for further debugging. When that assertion fails (as expected), the
proof engineer still does not know which of the four branches is causing the proof
failure, so she then copies the same assertion into each branch, as shown on the
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right side of the figure. When she calls the verifier again, she observes that the
assertion in the third branch fails and can start fixing it.

1 // easy proof for unbounded integers
2 proof fn mul_inequality(x:int, y:int, z:int)
3 requires x <= y && 0 < z
4 ensures x * z <= y * z
5 {...}
6
7 // first attempt for bounded integers
8 proof fn mul_inequality_bounded(
9 x: int, xbound: int, y: int, ybound: int)

10 requires x < xbound && y < ybound
11 && 0 <= x && 0 <= y
12 ensures x * y <= (xbound - 1) * (ybound - 1)
13 {
14 // precondition fails for both calls
15 mul_inequality(x, xbound-1, y);
16 mul_inequality(y, ybound-1, xbound-1);
17 }

18 // second attempt for bounded integers
19 proof fn mul_inequality_bounded(
20 x: int, xbound: int, y: int, ybound: int)
21 requires x < xbound && y < ybound
22 && 0 <= x && 0 <= y
23 ensures x * y <= (xbound - 1) * (ybound - 1)
24 {
25 // Step #2: split the assertion into pieces
26 assert(x <= xbound - 1); // succeeds
27 assert(0 < y); // fails
28 // Step #1: inline precondition for first call
29 assert(x <= xbound -1 && 0 < y); // fails
30 mul_inequality(x, xbound-1, y);
31 mul_inequality(y, ybound-1, xbound-1);
32 }

Fig. 2. Inlining a precondition.

Figure 2 illustrates how proof engineers start debugging when the verifier
tells them that a function’s precondition fails to hold. In this example, after
proving mul_inequality for unbounded integers, the proof engineer tries to
prove a similar property (mul_inequality_bounded) for bounded integers. After
drafting the proof on the left side, she learns that the precondition on line 3 fails
at both callsites (lines 15 and 16). She then copies over the failing precondition,
and replaces the lemma’s formal arguments with the concrete values at the call
site, as in line 29. When she runs the verifier again, the added assertion fails as
expected. To learn which part of the conjunction fails, she splits the assertion
into two separate assertions (lines 26 and 27). After running the verifier yet again,
the proof engineer identifies the cause of the proof failure: 0 < z does not hold.

2.3 Automated Proof Debugging with Proof Actions

We observe that much of the effort of proof debugging is consumed by steps
that can clearly be automated. We therefore propose proof actions,2 which can
automatically transform a program and its proof. With proof actions, we can
capture in an automated manner the existing proof-debugging practices used by
experts. This reduces their tedium and transcription errors, and it enables the
“wisdom” that these practices represent to be easily handed to new developers.

For example, the §2.2 examples can be automated with these proof actions:
Weakest Precondition Step. This proof action moves an assertion above the

statement that precedes it: in the case of a branch statement, it moves the
assertion to the end of each of the branch statements. More generally, the proof
action implements the rules of the weakest precondition calculus.

Insert Failing Preconditions. When preconditions cannot be established at a
call site, this proof action inlines the precondition in the caller’s context.
2 Inspired by the code actions supported by the Language Server Protocol (LSP) [30].
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2.4 Challenges with Automatic Code Transformation

Automating proof debugging through proof actions is achievable but challenging,
since it is hard to write programs that automatically and correctly transform
programs [31,32,33]. Such transformations require information about the pro-
gram’s control flow, the types of expressions, and the definitions of variables,
functions, and types. To act on this knowledge, we need easy and intuitive ways
to manipulate source-level proofs. Finally, to understand proof failures, we need
to interact with the verifier in an automated way. Existing program verifiers lack
support for one or more of these features.

Furthermore, providing a fixed set of proof actions is insufficient. Since
program verification is still rapidly evolving, proof engineers will need to add new
proof actions. Moreover, different verification projects come with different proof
styles, and hence each project may benefit from project-specific proof actions.

3 ProofPlumber: An Extensible Proof Action Framework

We start with the design of ProofPlumber’s API, which provides the functionality
for developing proof actions. We then discuss the API’s implementation.

At a high level, ProofPlumber provides APIs that allow a proof action to
(1) lookup context information (e.g., types and definitions), (2) manipulate the
source-level program and proof, and (3) interact with the verifier. Proof actions
can be exposed to proof engineers in various ways; our current implementation
does so via the engineer’s editor (e.g., Visual Studio Code), where she can, say,
click on a failing assertion to invoke an appropriate proof action.

Figure 3 illustrates the workflow of a proof action built using ProofPlumber.
Once the program text from the editor is parsed, it is lifted to a simplified
form, and type-checked. The lifted and type-checked version of the program text
is available to proof actions. After a proof action manipulates the proof using
ProofPlumber’s APIs, it is then pretty printed into the proof engineer’s editor.

3.1 ProofPlumber’s API Design

Fundamentally, a proof action is a procedure that edits the user’s source pro-
gram based on results from type checking and verification. The corresponding
data structures in ProofPlumber are: (a) Transformation-Oriented Syntax Tree
(TOST) nodes representing the user’s source code; (b) the Context, which con-
tains additional source-level information such as types and definitions; and (c) the
Verus verifier, which contains information about failing assertions.

The TOST is the core data structure that represents the source program. It is an
abstract syntax tree, with each language construct represented as an enum (e.g.,
assertExpr, blockExpr). Since the TOST is not a concrete syntax tree (CST),
it omits semantically irrelevant syntactic details. The TOST thus allows easy
manipulation of the user’s source code, ignoring trivialities like whitespace. The
TOST offers the following APIs (corresponding to 3.1 represents the program,
4. modifies program, and 5. Pretty printing in Figure 3).
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Fig. 3. Overview of ProofPlumber.

– Traverse/Edit. A TOST node allows direct access to its children. For example,
assertExpr has a field expr that contains the asserted expression, which can
be accessed and modified directly. Additionally, ProofPlumber offers a visitor
pattern for recursively filtering or transforming TOST nodes.

– Create. When developing proof actions, it is often necessary to create new
TOST nodes. While this can be done through each node’s constructor, it can
be tedious for large expressions; e.g., consider the expression “x + y * 4”,
which needs five constructor calls. To simplify this process, ProofPlumber
provides an option to parse user-provided text into a TOST node.

– Concretize. When the proof action is done modifying the TOST, it needs to
apply the changes to the program. Since the TOST is abstract, ProofPlumber
provides an API to convert it back to a CST, hiding the details of the conversion.

Context is another core data structure for writing a proof action. It contains
the following information not easily accessible from the TOST (corresponding to
3.2 reports type info and symbol def in Figure 3):
– Node in Scope. A proof action generally acts within a specific scope indicated

by the user; e.g., the user’s cursor location may identify an expression that is
inside a function, a file, a module, and a crate.

– Type. Needless to say, type information is crucial for understanding and
manipulating the source program. Rust does not require type annotations for
every variable or expression, so the type information is often unavailable at
the source (or TOST) level. However, the type of every expression has been
computed by the type checker, and this API provides that information.

– Definition. It is often necessary to look up the full definition for an identifier.
For example, when case matching on an enum variable c:Color, it is necessary
to look up the variants of Color. At the TOST level, the definition of Color
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may be in a different module or even a different crate than the occurrence of
c. This API provides the definition of an identifier, which can be a name for a
struct, an enum, a function, etc.

The Verifier (Verus driver) is the last core data structure. It allows the proof
action to interact with the verifier. A proof action does not have to finish all of its
rewriting in one pass; instead, it can make a change, invoke the verifier, and then
continue rewriting based on the verifier’s response. Corresponding to 3.3 reports
failing asserts and verification time in Figure 3, this structure provides:
– Errors. The list of failing assertions, preconditions, and postconditions.
– Time. It often helps to know how long verification takes, since proofs with

shorter verification time are often more robust [34]. If a proof takes too long,
the proof action may choose a more efficient one.

3.2 ProofPlumber’s Implementation

As Verus [17] is based on Rust, ProofPlumber extends rust-analyzer [35], the
official language server for Rust, to understand Verus. As with rust-analyzer,
ProofPlumber adheres to the Language Server Protocol (LSP) [30]. In turn,
proof actions developed with ProofPlumber are compatible with editors that
implement the client-side of the LSP. We construct our Context APIs by extending
rust-analyzer’s type checking implementation (2.2 Type Checking in Figure 3).

In our implementation, we have extended rust-analyzer’s grammar and parser
to obtain the Verus CST (1.1 Parsing in Figure 3). We then lift the CST to a
TOST, eliminating details like whitespace (2.1 Lifting in Figure 3). After a proof
action manipulates a TOST node using ProofPlumber’s APIs, our pretty printer
restores the TOST to a concrete program (5 Pretty Printing in Figure 3).

4 Evaluation

We evaluate ProofPlumber with the following three research questions.
– RQ1: Are proof actions expressive enough for real proof debugging tasks?
– RQ2: Does ProofPlumber make it easy to write proof actions?
– RQ3: Can proof actions reduce the TCB of automated program verifiers?

4.1 RQ1: Are proof actions expressive enough?

We demonstrate ProofPlumber’s expressivity by writing 17 proof actions, divided
into two groups: (1) proof actions inspired by Dafny’s reference for verification
debugging [26], which suggests a set of manual rewrites to perform while debugging
proofs, and (2) proof actions distilled from the experiences of Verus developers.
While these groups were developed independently, they overlap, as Dafny and
Verus share proof styles common to automated program verification tools.

Figure 4 presents the list of proof actions and the ProofPlumber features
used by each. As analyzed in detail below, we observe that ProofPlumber’s APIs
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are expressive enough to implement all of the suggested rewrites from Dafny,
excluding the ones that are not applicable to Verus or that are inherently manual
(see §5 for details). Furthermore, ProofPlumber provides enough expressivity to
implement eight distinct proof actions that automate the routine efforts of Verus
developers. Figure 4 also demonstrates that all of ProofPlumber’s features are
utilized to implement these proof actions.
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1 Split Implication in Ensures Dafny 48 ✓ ✓ ✓
2 Split Smaller or Equal to Dafny 70 ✓ ✓ ✓
3 Convert Implication into If Dafny 40 ✓ ✓ ✓
4 Introduce Assert Forall Dafny 42 ✓ ✓ ✓
5 Introduce Assert Forall Implies Dafny 57 ✓ ✓ ✓
6 Introduce Assume False Dafny 30 ✓ ✓ ✓ ✓
7 Reveal Opaque Function above Dafny 45 ✓ ✓ ✓ ✓
8 Reveal Opaque Function in block Dafny 45 ✓ ✓ ✓ ✓
9 Add Seq “in-bounds” predicate Dafny 54 ✓ ✓ ✓ ✓ ✓

10 Insert Assert-By Block Dafny 29 ✓ ✓ ✓
11 Weakest Precondition Step Verus/Dafny(5) 177 ✓ ✓ ✓ ✓ ✓
12 Decompose Failing Assertion Verus/Dafny(1) 88 ✓ ✓ ✓ ✓ ✓ ✓
13 Insert Failing Postconditions Verus 64 ✓ ✓ ✓ ✓
14 Insert Failing Preconditions Verus 45 ✓ ✓ ✓ ✓ ✓ ✓
15 Introduce Matching Assertions Verus 84 ✓ ✓ ✓ ✓ ✓ ✓ ✓
16 Remove Redundant Assertions Verus 74 ✓ ✓ ✓ ✓ ✓
17 Apply Induction Verus 133 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 4. For each proof action, we report the source lines of code to implement it, and the
ProofPlumber features it uses. For proof actions that overlap in both groups, the number
of corresponding Dafny rewrite suggestions is in parentheses; e.g., five of Dafny’s rewrite
suggestions are special cases of the Weakest Precondition Step. Weakest Precondition
Step and Decompose Failing Assertion generalize their Dafny counterparts.

Proof Actions Inspired by Dafny. Dafny provides 29 suggested rewrites
for manual proof debugging [26], of which we have implemented 16 as proof
actions. We exclude the other 13 rewrites, as 9 of them are not applicable to
Verus, and 4 are inherently manual (§5). Of the 16 suggested Dafny rewrites
we implemented, 12 are purely syntactic. Among the remaining 4, the first (9
in Figure 4) automatically adds an “in-bounds” predicate for a sequence’s index;
it uses the Lookup Type API to decide if an assertion contains a sequence. The
second rewrite (one of the five in Weakest Precondition Step – rewrite 11 in
Figure 4) adds the precondition and postcondition of a function at the callsite.
The last two (7 and 8 in Figure 4) are related to reveal, which is used to control
the visibility of a function to the verifier. These automatic rewrites lookup the
function’s definition and the function’s “proof visibility”.
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Proof Actions for Verus. We implemented 7 additional proof actions to auto-
mate routine proof engineering tasks in Verus. We discuss Weakest Precondition
Step and Insert Failing Preconditions in §2.3, and the rest below.

Decompose Failing Assertion. When a complex assertion fails to verify, it is
not always obvious which portion of the failing expression is responsible. This
proof action automates the process of decomposing and isolating the failing
sub-formulas. We discuss it in more detail in §4.2.

Insert Failing Postconditions. A common proof failure is that a procedure’s
postconditions cannot be established. Since there can be multiple postconditions
and multiple exit points (e.g., due to an early return), developers often employ
a tedious manual process to pinpoint the failing conditions at each exit point.
This proof action automatically adds the failing postcondition(s) at each exit.

Introduce Match Case Assertions. A special case of assertion decomposition
is when the assertion is about an enum. Today, the developer tediously writes a
match statement for the enum and then adds assertions to each case to identify
where the problem lies. This proof action emits a boilerplate match statement
for the enum, but only presents the failing variants.

Remove Redundant Assertions. During proof debugging, to understand the
solver’s state, proof engineers typically introduce multiple assertions, most of
which are redundant (i.e., they help the human, not the verification). Hence,
after debugging a proof, to maintain source code readability, developers manually
remove these redundant assertions. This proof action mechanizes the process.

Apply Induction. If the selected variable is a natural number or an abstract
datatype, this proof action generates the boilerplate code for an inductive proof,
including the base and inductive cases. When the selected variable is an enum,
it introduces a match statement with an empty proof block for each variant,
generating the recursive call to the lemma when the variant is defined recursively.

4.2 RQ2: Does ProofPlumber make it easy to write proof actions?

Figure 4 shows that each proof action from §4.1 needs only 29–177 lines of code.
To qualitatively illustrate how ProofPlumber’s API enables the easy creation of a
proof action, Figure 5 presents a snippet from Decompose Failing Assertion
from §4.1. This proof action uses all three of ProofPlumber’s APIs to analyze a
failing assertion with a conjunction of clauses and present the specific clauses
that fail. Specifically, the proof action retrieves the surrounding function using
the Context API (line 6). Inside the function, the original assertion is replaced
(using the TOST API) with an assertion of one conjunct (line 11). The proof action
then uses the Verifier API to invoke the verifier on this modified function (line
12) and check if the new assertion fails. If so, it is added to the source code.

While ProofPlumber primarily focuses on automating proof debugging, we
observe that ProofPlumber’s extensibility also supports the broader proof engi-
neering process. In §4.1, we described Remove Redundant Assertions which helps
with proof refactoring, and Apply Induction which helps with proof development.
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1 fn decompose_failing_assertion(
2 api: &AssistContext<’_>, // handle for API calls
3 assertion: AssertExpr, // TOST Node to modify
4 ) -> Option<BlockExpr> { // ‘‘None’’ indicates the proof action is not applicable
5 let split_exprs = split_expr(&assertion.expr)?; // split into logical conjuncts
6 let this_fn = api.tost_node_in_scope::<Fn>()?; // Find assertion’s enclosing ‘‘Fn’’
7 let mut stmts: StmtList = StmtList::new();
8 for e in split_exprs {
9 // make each logical conjunct into an assertion of its own

10 let split_assert = AssertExpr::new(e);
11 let modified_fn = api.replace_statement(&this_fn, assertion, split_assert)?;
12 if api.run_verus(&modified_fn)?.is_failing(&split_assert) {
13 stmts.statements.push(split_assert.into());
14 }
15 }
16 stmts.statements.push(assertion.into()); // restore the original assertion
17 Some(BlockExpr::new(stmts))
18 }

Fig. 5. Main routine for the Decompose Failing Assertion proof action.

4.3 RQ3: Can proof actions reduce the verifier’s TCB?

ProofPlumber can reduce a verification tool’s TCB by replacing baked-in de-
bugging support. For example, Verus provides a command line option called
––expand-errors, which tries to localize the cause of a proof failure. The code
implementing this functionality is intertwined with the process of verification con-
dition generation (VCG). However, this functionality is essentially a combination
of Decompose Failing Assertion, Insert Failing Postconditions, and Insert Failing
Preconditions. Similarly, Dafny’s VCG includes custom code similar to our Apply
Induction. In both cases, we can replace functionality inside the trusted VCG
with external, untrusted proof actions. Given the importance of the VCG for
sound verification results, this enhances the trustworthiness of those results.

5 Limitations

While ProofPlumber provides automation for most of the existing proof debugging
practices for automated program verification, some debugging practices are
still not automatable. To illustrate this, we elaborate on Dafny’s four rewrite
suggestions that we considered inherently manual in §4.1.

The first two are related to quantifiers (exists and forall). If a failing
assertion contains a forall, the Dafny manual suggests that the proof engineer
should replace the forall binding with a “guessed” concrete value that is likely to
fail. Similarly, if a failing assertion contains an exists, the manual suggests that
the proof engineer should replace the exists binding with a “guessed” concrete
value for which the updated assertion is likely to hold. The “guessing” part is
inherently manual as SMT solvers often do not produce a useful concrete model
(which could be used to build the source-level counterexample) when they return
an “unknown” result, which is the common case when a Verus or Dafny proof
fails.

The other two rewrite suggestions are about controlling “proof visibility” when
proof engineers encounter a very slow and/or unstable proof [34]. In Dafny, a
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function’s body is available to the solver by default. If an engineer suspects
a function definition is contributing to the proof’s problematic performance,
the Dafny manual first suggests making the function’s body invisible to the
solver. This change can cause the proof to fail in several locations that previously
relied on information about the function’s body. Therefore, it then suggests
making the function’s definition locally available to the solver “only when it is
necessary”. Deciding if the definition is necessary for the proof to succeed often
involves the proof engineers’ judgment regarding the proof context, potentially
relevant lemmas (that might complete the proof without revealing the function’s
definition), and their tolerance for proof instability.

6 Related Work and Conclusion

Frameworks such as Meta-F⋆ [36] for F⋆ [12] and Tacny [37] for Dafny [11] focus
on developing tactics to help write proofs, whereas ProofPlumber’s primary focus
is on proof debugging. Another line of work [38,39,40] attempts to reconstruct a
source-level counterexample from an SMT solver’s model [41]. However, when
the solver returns ‘unknown’, the common case in program verification queries,
the model is typically only partial and may be inconsistent with in-scope quanti-
fiers, due to the incomplete heuristics used to for quantifier instantiation. Such
inconsistency can be quite confusing for developers.

In everyday software engineering, a counterexample is critical in debugging,
as a software engineer can inspect the program’s concrete state, and hence
localize the error. In contrast, a verification failure can happen for various
reasons, including incorrect executable code, incorrect proofs, or even the SMT
solver’s incompleteness. Therefore, proof engineers still need debugging support
to understand the failure.

Conclusion We have presented ProofPlumber, a framework for understanding
and debugging proof failures in automated program verification proofs. Proof-
Plumber supports custom proof actions, which act on the developer’s source-level
proofs to determine why they have failed and potentially suggest remedies. Our
evaluation shows that ProofPlumber can automate today’s manual debugging
practices and provides the extensibility needed for a rapidly evolving area.
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