Peering into the obstruent-sonorant divide: The view from $\rm /v/$

Christina Bjorndahl

May 04, 2018

Cornell University, PhD Candidate Carnegie Mellon University, Visiting Scholar

Why /v/?

Final Devoicing: /D/ \rightarrow [T] /__#

- 1) [sleda] [slet] 'track (gen./nom.sg)'
- 2) [soka] [sok] 'juice (gen./nom.sg)'
- 3) [mil] * [mil] 'dear'

Final Devoicing: /D/ \rightarrow [T] /__#

- 1) [sleda] [slet] 'track (gen./nom.sg)'
- 2) [soka] [sok] 'juice (gen./nom.sg)'
- 3) [mil] * [mil] 'dear'

Final Devoicing: $/v/ \rightarrow [f] / __{\#}$

4) [prava] [praf] 'right (fem./masc.)'

Regressive Voicing Assimilation: $/D/ \rightarrow [T] / __T$

- 5) /pod-nesti/ [podnesti] 'to bring (to)'
- 6) $/pod-get \int [podget f]$ 'to set fire to'
- 7) /pod-pisat^j/ [potpisat^j] 'to sign'

8) [volk] *[volk] 'wolf'

Regressive Voicing Assimilation: /D/ \rightarrow [T] / ___T

5) /pod-nesti/ [podnesti] 'to bring (to)'
6) /pod-zet∫/ [podzet∫] 'to set fire to'
7) /pod-pisat^j/ [potpisat^j] 'to sign'
8) [volk] *[volk] 'wolf'

Regressive Voicing Assimilation: $\rm /v/ \rightarrow [f]$ / ___T

9) /v ruke/[v ruke]'in one's hand'10) /v gorode/[v gorode]'in the city'11) /v supe/[f supe]'in the soup'

Regressive Voicing Assimilation: $/T / \rightarrow [D] / _D$

- 12) $/ot-jexat^{j}/$ [otjexat^{j}] 'to ride off'
- 13) /ot-stupit^j/ [otstupit^j] 'to step back'
- 14) $/ot-brosit^{j}/$ [odbrosit^{j}] 'to throw aside'

Regressive Voicing Assimilation: /T/ \rightarrow [D] / ___D

- 12) $/ot\text{-}jexat^j/$ $[otjexat^j]$ 'to ride off'
- 13) $/ {\rm ot\text{-}stupit}^j / \ [{\rm otstupit}^j]$ 'to step back'
- 14) $/ {\rm ot\math{-}brosit}^j / ~ [{\rm odbrosit}^j]$ 'to throw aside'

Regressive Voicing Assimilation: $/T/ \rightarrow [D] / __v$

15) /ot-vesti/ [otvesti] 'lead away' *[odvesti]

Like voiced obstruents, unlike sonorants:

 $/v/ \Rightarrow [f] \text{ / } \{__\#\text{, }__\text{T}\}$

- A target for final devoicing $[prav-a] \sim [praf]$, 'right (fem./masc.)'
- A target for regressive voicing assimilation $/v \ {\rm supe}/ > [f \ {\rm supe}]$, 'in the soup'

Unlike voiced obstruents, like sonorants:

/T/ \twoheadrightarrow [D] / ____v

 Does not trigger regressive voicing assimilation /ot-vesti/ > [otvesti], 'lead away' *[odvesti]

Jakobson (1978)

"... the Standard Russian v ... occupies an obviously *intermediate* position between the obstruents and the sonorants"

Russian $\rm /v/$ in a (cross-)linguistic context

Linguists on /v/ (non-exhaustive)

Halle (1959), Lightner (1965), Andersen (1969), Coats and Harshenin (1971), Daniels (1972), Barkai and Horvath (1978), Jakobson (1978), Vago (1980), Hayes (1984), Burton and Robblee (1997), Kavitskaya (1998), Padgett (2002), Petrova and Szentgyörgyi (2004) Lulich (2004), Kiss and Bárkányi (2006), Reiss (2018) and many others...

Russian /v/ in a (cross-)linguistic context

Linguists on /v/ (non-exhaustive)

Halle (1959), Lightner (1965), Andersen (1969), Coats and Harshenin (1971), Daniels (1972), Barkai and Horvath (1978), Jakobson (1978), Vago (1980), Hayes (1984), Burton and Robblee (1997), Kavitskaya (1998), Padgett (2002), Petrova and Szentgyörgyi (2004) Lulich (2004), Kiss and Bárkányi (2006), Reiss (2018) and many others...

Languages with ambiguous patterning of /v/ (non-exhaustive)

	Final Devoicing	RVA				
	Final Devolcing	Target	Trigger			
Russian	\checkmark	\checkmark	X			
Bulgarian	\checkmark	\checkmark	×			
Slovak	$/v/ \rightarrow [w]$	\checkmark	×			
Hungarian	N/A	\checkmark	×			
Hebrew	N/A	\checkmark	×			

Cross-linguistic comparison of [v]

Does the phonological classification of /v/ correlate with the acoustic properties of [v] tokens in a given language?

Patterning of ambiguous /v/ derives from its *intermediate* phonetic nature together with a cue-based approach to phonology.

Hypothesis

 $/\upsilon/$ "unstable"

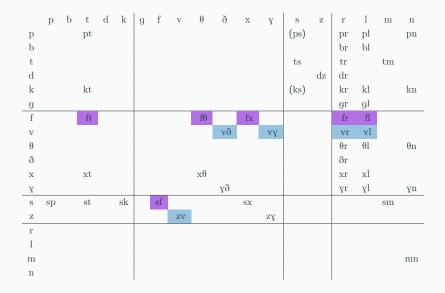
- prone to devoicing
- only realized as [v] in positions of perceptual salience (i.e., pre-sonorant)

Linguistic controls

Languages

- \bullet Greek: obstruent $/\mathrm{v}/$
- \bullet Serbian: sonorant /v/

Segments


- $/f/ \Leftarrow$ voiceless member of "pair"
- $\bullet~/s,\,z/\Leftarrow$ uncontroversial obstruent fricative pair

Other factors

- voicing languages
- no labial approximant (e.g., $/w,\,\upsilon/)$

	Labial		Interdental		Alv	eolar	Velar	
Stop	р	b			t	d	k	g
Fricative	f	v	θ	ð	s	\mathbf{Z}	х	y
Affricates					ts	d_3		
Nasal		m				n		
Lateral						1		
Rhotic						r		

Greek: Word-initial clusters

No final devoicing.

Little evidence of voicing assimilation as an active process; words can only end in vowels, $[s,\,n]$

Regressive Voicing Assimilation

16)	/tis ðino/	[tiz ðino]	'l give her'
17)	/tis varvaras/	[tiz varvaras]	'Barbara's'
18)	/tous barbaðes/	[touz barbaðes]	'the uncles, acc.'
19)	/tis mamas/	[tiz mamas]	'the mother's'
20)	[evylotos]	'eloquent'	
21)	[efsta0ia]	'steadiness'	(same prefix)

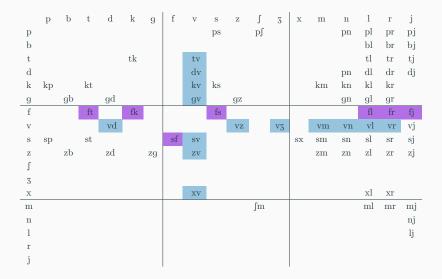
	Labial		Alveolar		Palatal				Velar	
Stop	р	b	t	d					k	g
Fricative	f	v	\mathbf{s}	\mathbf{Z}			ſ	3	х	
Affricates			ţs		t∫	dʒ	t∫	d3		
Nasal		m		n				ր		
Lateral				1				λ		
Rhotic				r						
Approximant								j		

Serbian: Word-initial clusters

	р	b	t	d	f	\mathbf{s}	v	\mathbf{Z}	х	m	n	1	r	j
р												$_{\rm pl}$	pr	(pj)
b												\mathbf{bl}	\mathbf{br}	(bj)
\mathbf{t}							tv					tl	tr	(tj)
d							dv					dl	dr	(dj)
k							kv					kl	kr	
g							gv					gl	gr	
f												fl	$^{\rm fr}$	(fj)
v												vl	vr	(vj)
\mathbf{S}	$^{\mathrm{sp}}$		st		\mathbf{sf}		$_{\rm SV}$		\mathbf{SX}	sm	sn	sl	sr	(sj)
\mathbf{Z}		$^{\rm zb}$		zd			ZV			zm	zn	zl	zr	(zj)
х							XV					xl	$\mathbf{x}\mathbf{r}$	
m												\mathbf{ml}	\mathbf{mr}	(mj)
n														(nj)
1														(lj)
r														
j														

No final devoicing.

Regressive Voicing Assimilation


22)	/s-paziti $/$	[spaziti]	'observe'
23)	/s-gaziti $/$	[zgaziti]	'trample'
24)	/s-ložiti/	[složiti]	'put together'
25)	/s-variti $/$	[svariti]	'digest'

26) [ovca] 'sheep'

Russian: Inventory

	La	bial	Dental		Palato-Alveolar		Ve	lar
Stop	р	b	t	d			k	g
	$\mathbf{p}^{\mathbf{j}}$	$\mathbf{b}^{\mathbf{j}}$	tj	d^{j}			(k ^j)	(g^j)
Affricates			ts		t∫ ^j			
Fricative	f	v	s	Z	ſ	3	x	
	$\mathbf{f}^{\mathbf{j}}$	\mathbf{v}^{j}	sj	$\mathbf{z}^{\mathbf{j}}$			(x ^j)	
Nasal		m		n				
		m^{j}		n^j				
Lateral				1				
				lj				
Rhotic				r				
				$\mathbf{r}^{\mathbf{j}}$				
Approximant						j		

Russian: Word-initial clusters

Summary of phonological identity of $\rm /v/$

	Greek	Russian	Serbian	
Undergoes FD?	N/A	yes	N/A	
Undergoes RVA?	yes	yes	no	
Triggers RVA?	yes	no	no	
	obstruent	ambiguous	sonorant	
Predicted realization:	[v]	[¥]	[υ]	

Environments

- word-initial stressed (WIS)
- word-medial unstressed (WMU)
- flanking vowels /a, o/ (no palatalization, spirantization)
- C₁VC₂V(C)
- real words

- 7 speakers
- Cornell University or University of Toronto
- SD722 digital recorder; 44100 Hz, 16-bit
- Hand-segmented in Praat
- Resampled to 22050 Hz & analysed in Praat

Greek

[eyrapsa _____tris fores]

Serbian

[kaʒe jetsa ____opet]

Russian

[sveta skazala ____opet]

- 1. Harmonicity
- 2. Spectral centroid

Measure of the relative contribution of voicing and frication in the acoustic signal; measure of the degree of acoustic periodicity. Computed over middle 80% of consonant to avoid vowel transitions.

Motivation

Hamann and Sennema (2005) used harmonicity to distinguish German and Dutch labiodentals.

Acoustic measures: Spectral centroid

Measure of the average frequency of spectrum, weighted by energy; concentration of energy in frequency domain.

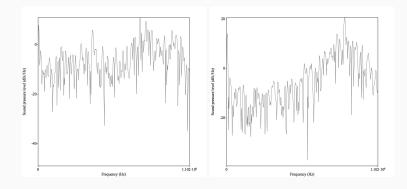


Figure 1: [f]

Figure 2: [s]

Calculated on 1500Hz high-pass filtered signal to remove effect of voicing and first several harmonics, so a measure of noise portion of the spectrum.

Modulo the effect of voicing, is the frication of voiced and voiceless members the same?

- 1. Harmonicity: lmer(Harmonicity \sim Language + (1|Sp)) Only compared /v/ tokens.
- 2. Spectral centroid: lmer(CoG ~ Seg*Lang + (1|Sp)) Implemented deviation coding; compares mean of dependent variable to overall mean

Within a given environment:

Harmonicity

 ${\sf Serbian} > {\sf Russian} > {\sf Greek}$

Spectral centroid

 $\mathsf{Serbian} < \mathsf{Russian} < \mathsf{Greek}$

		WIS		WMU					
	β	SE	<i>t</i> -value	<i>p</i> -value	β	SE	<i>t</i> -value	<i>p</i> -value	
Se - Ru	-0.63	2.03	-0.31	.95	-0.59	1.77	-0.33	.94	
Se-Gr	0.84	2.03	0.41	.91	-2.11	1.77	-1.19	.46	
Ru - Gr	1.47	2.03	0.72	.75	-1.52	1.77	0.86	.67	

Results: Harmonicity

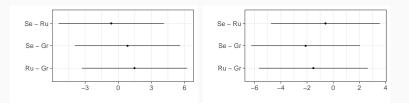
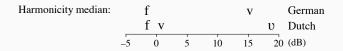
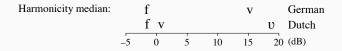




Figure 3: WIS

Figure 4: WMU

Figure 5: Harmonicity values of German and Dutch labiodentals, reproduced from Hamann and Sennema (2005)

Figure 5: Harmonicity values of German and Dutch labiodentals, reproduced from Hamann and Sennema (2005)

Dutch [v] is known to be mostly voiceless (Gussenhoven and Bremmer Jr., 1983)

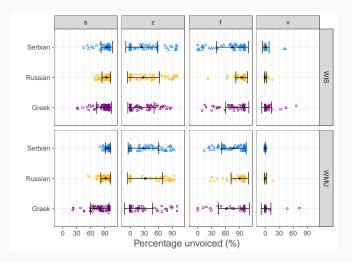


Figure 6: Voicing percentage

Results: Spectral Centroid

	· · ·		<i>z</i> -value	,
Ru — Se Gr — Se	1144.7	149.2	7.674	< .0001
Gr-Se	1612.3	235.9	6.836	< .0001
Gr-Ru				

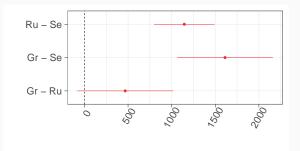


Figure 7: Post-hoc tests (WIS)

Results: Spectral Centroid

	β	SE	<i>z</i> -value	<i>p</i> -value
Ru — Se	303.6	146.0	2.080	0.113
Gr-Se	1673.7	234.2	7.147	< .0001
Gr-Ru				

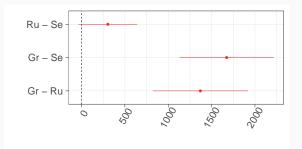


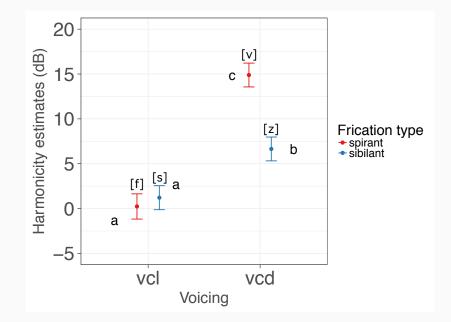
Figure 8: Post-hoc tests (WMU)

These results suggest that, to the extent that Russian $\left[v\right]$ is special, it is due to the variability in its realization, not due to inherent intermediacy.

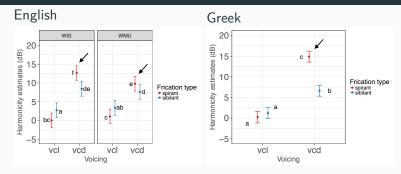
Phonetics: Relationship between voicing and frication

Assumption: voiced fricatives are a unified class

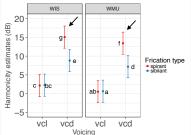
/v/:/f/::/z/:/s/.

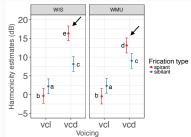

Question

Does the acoustic relationship between [v] and [f] parallel the acoustic relationship between [z] and [s]?


- Same data, but within-language investigation
- English:
 - 8 speakers
 - nonce words <*CahCa>*

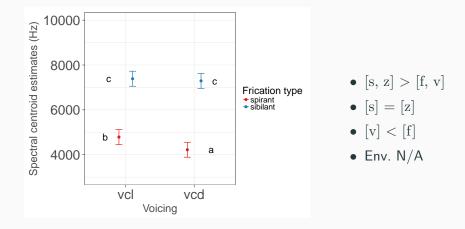
- Linear mixed model; 1me4 package
- Random effect: Speaker; random slopes not fit (convergence)
- Fixed effects:
 - Environment
 - Voicing type (voiced vs. voiceless)
 - Frication type (spirant vs. sibilant)
- Model selection: based on BIC AIC used when BIC was not definitive

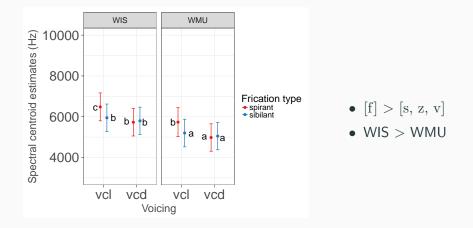

Interaction plots: Greek harmonicity


Harmonicity results: summary

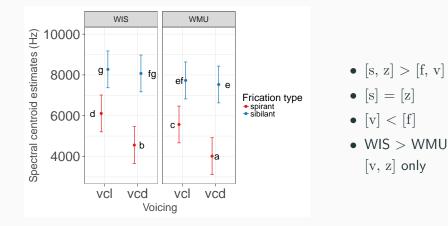
Serbian

Russian

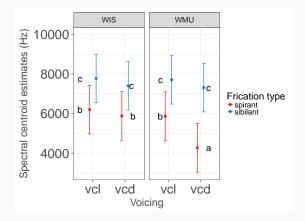

Question


Does the acoustic relationship between [v] and [f] parallel the acoustic relationship between [z] and [s]?

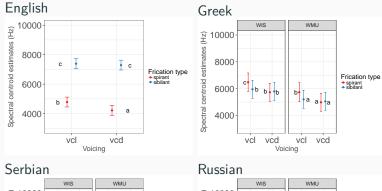
Answer

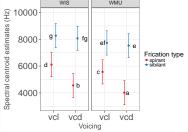

No, according to harmonicity.

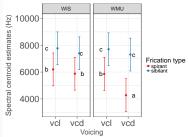
Spectral centroid results: English



Spectral centroid results: Serbian




Spectral centroid results: Russian



- $\bullet \ [s,\,z] > [f,\,v]$
- [s] = [z]
- $\bullet \ \mathsf{WIS:} \ [v] = [f]$
- WMU: [v] < [f]

Spectral centroid results: summary

Question

Does the acoustic relationship between [v] and [f] parallel the acoustic relationship between [z] and [s]?

Answer

- English, Greek, Russian WIS 🗸
- Serbian, Russian WMU 🗡

$\rm /v/$ as a voiced spirant

Non-sibilant voiced fricatives $/\beta,\,v,\,\eth,\,\chi/$ make bad obstruents:

Non-sibilant voiced fricatives $/\beta,\,v,\,\eth,\,\chi/$ make bad obstruents:

- Typology: Violate implicational relations of voicing
- Phonetics: Weak (possibly absent) frication
- Phonology: Can pattern with sonorants

Non-sibilant voiced fricatives $/\beta,\,v,\,\eth,\,\chi/$ make bad obstruents:

- Typology: Violate implicational relations of voicing
- Phonetics: Weak (possibly absent) frication
- Phonology: Can pattern with sonorants

Terminology

Voiced, non-sibilant fricatives $/\beta$, v, δ , $\gamma/:$ voiced spirants. Fricatives: spirants and sibilants together.

Implicational relations of voicing (Maddieson, 1984)

- 1. Voiceless sonorants \Rightarrow voiced sonorants
- 2. Voiced stops \Rightarrow voiceless stops
- 3. Voiced fricatives \Rightarrow voiceless fricatives

Implicational relation for stops is robust

	Number of series			
	1	2	3	4
Plain voiceless	98.0%	90.1%	89.5%	96.0%
Plain voiced	2.0%	81.5%	69.7%	88.0%
Aspirated voiceless	0.0%	16.0%	63.2%	52.0%
Voiceless ejective or voiceless laryngealized	0.0%	3.7%	42.1%	56.0%
Voiced implosive or voiced laryngealized	0.0%	1.2%	27.6%	48.0%

Table 2: Frequency of stop series by number of series (Maddieson, 1984)

- only 2% of languages violate implicational relation (as series)
- gaps most common for $/\mathrm{p}/$ and $/\mathrm{g}/$

Fricative pair	Unpaired voiced fricative /	Exceptions as %
	total voiced fricative	of cases
/s, z/	0/96	0.0%
/ʃ, ʒ/	2/51	3.9%
/f, v/	11/51	21.5%
/x, y/	15/40	37.5%
/θ, ð/	12/21	57.1%
$/\Phi, \beta/$	24/32	75.0%

 Table 3: Voiced fricatives without corresponding voiceless fricatives, adapted from (Maddieson, 1984)

Jumping over the divide

Maybe voiced spirants that incur violations are in fact sonorants (*cf.* Botma and van't Veer (2013, 2014))

Jumping over the divide

Maybe voiced spirants that incur violations are in fact sonorants (*cf.* Botma and van't Veer (2013, 2014))

		obs.		
		yes	no	
son.	yes	15	13	
S	no	8 (3)	34	

Table 4: Number of languages where unpaired voiced spirants pattern with sonorants/obstruents; n = 70, data from Botma and van't Veer (2014)

Jumping over the divide

Maybe voiced spirants that incur violations are in fact sonorants (*cf.* Botma and van't Veer (2013, 2014))

		obs.		
		yes	no	
son.	yes	15	13	
S	no	8 (3)	34	

Table 4: Number of languages where unpaired voiced spirants pattern with sonorants/obstruents; n = 70, data from Botma and van't Veer (2014)

Voiced spirants make iffy sonorants:

- Are rarely syllabic
- Descriptions often include both fricative and approximant allophones
- Often have voiceless counterparts
- Obstruent and sonorant versions rarely (if ever) contrast strictly in terms of manner

Voiced spirants make iffy sonorants:

- Are rarely syllabic
- Descriptions often include both fricative and approximant allophones
- Often have voiceless counterparts
- Obstruent and sonorant versions rarely (if ever) contrast strictly in terms of manner

Reclassification won't solve the problem of Russian /v/.

Features of voiced spirants

Clements and Osu (2003): both [obstruent] and [sonorant] are required.

Me: Russian /v/ is [+sonorant, +obstruent]

[sonorant]

Defined acoustically: sounds with periodic, well-defined formant structure

[obstruent]

Defined articulatorily: presence of pressure increase due to constriction

 $\label{eq:construction} \begin{array}{ll} /p,\,t,\,k,\,b,\,d,\,g,\,f,\,s,\,z/ & [-\texttt{sonorant, +obstruent}] \\ /m,\,n,\,l,\,r,\,j,\,w/ & [+\texttt{sonorant, -obstruent}] \end{array}$

Ikwere surface consonants

Set A: obstruents							
voiceless explosive stops	р	t	с	k	\mathbf{k}^{w}		
voiced explosive stops	b	d	j	g	g^w		
voiceless fricatives	f	S					
voiced fricatives	v	Z					
Set B: oral nonobstruents							
voiced nonexplosive stop	ķ						
glottalized nonexplosive stop	'b						
lateral approximant		1					
central approximants		r	у	y	W		
aspirates					h	h^w	
Set C: nasal nonobstruents							
plain nasal stops	m	n					
glottalized nasal stop	'n						
central approximants		ŗ	ỹ	ĩ	W		
aspirates						h	h^{w}

Ikwere nonexplosive stops $[\dot{b}, \dot{b}]$ are [-sonorant, -obstruent].

Stop classification (Clements and Osu, 2003, pg. 89)

	explosive stops	nonexplosive stops	sonorant stops
[obstruent]	+	—	—
[sonorant]	—	—	+

	Analysis 1	Analysis 2
/v/	[-sonorant, -obstruent]	[+sonorant, +obstruent]
/p, t, k, b, d, g, s, z/	[-sonorant, +obstruent]	[-sonorant, +obstruent]
/m, n, l, r/	[+sonorant, -obstruent]	[+sonorant, -obstruent]
Triggers of RVA	[+obstruent]	[-sonorant, +obstruent]
Targets of RVA & FD	[—sonorant]	[+obstruent]

Definitions of [sonorant] and [obstruent] consistent with Analysis 2

Russian voicing phenomena rules

RVA: [+obstruent] \rightarrow [α voice] / ____ [-sonorant, +obstruent, α voice] ED:

$$[+obstruent] \rightarrow [-voice] / ____ #$$

Claim is that RVA is inherently asymmetric.

Russian /v/ as a trigger for RVA

- a) /pod vsemi/ [potfsemi] 'underneath everyone'
- b) /ot vdovi/ [odvdovi] 'from the window'
- c) /k vzdoxam/ [gvzdoxam] 'to the sighs'

Variable non-feeding of FD when /v/-final

 $[tr^{j}esf] \sim [tr^{j}ezf]$ 'sober (short adj.)'

a) /pod vsemi/ [potfsemi] 'underneath everyone' ✓
b) /ot vdovi/ [odvdovi] 'from the window' ??
Kulikov (2012)

"Voicing in /tvd/ clusters was observed less often, but it was a regular pattern for speakers 3, 6, and 11 even when reading the list. The other speakers did not assimilate /t/s before /v/ followed by a voiced obstruent in the list condition. Speakers 8 and 13 produced half of underlying /t/s in /tvd/ clusters as voiced and half as voiceless."

Variability is unique to $/\mathrm{v}/\text{,}$ and is a result of its dual specification and positional tensions.

Variability is unique to $/\mathrm{v}/\text{,}$ and is a result of its dual specification and positional tensions.

To hear my speculations on this, let's talk over beer.

		$/\mathrm{vt}/$	/tv/	
(rus)	Russian	[ft]	$[\mathrm{tv}]$ / $[\mathrm{tv}]$	Padgett (2002)
(bul)	Bulgarian	[ft]	[tv] / [tf]	Scatton (1993)
(mkd)	Macedonian	[ft]	[tv] / [tf]	Friedman (1993)
(ces)	Czech	[ft]	[tv] / [tf]	Hall (2003)
(hun)	Hungarian	[ft]	[tv] / [tf]	Kiss and Bárkányi (2006)
(heb)	Hebrew	[ft]	[tv] / [tf]	Barkai and Horvath (1978)

Table 5: Ambiguous /v/ languages. Variable and/or gradient devoicing of /v/ after voiceless obstruents is attested in all cases.

	[+sonorant]	[-sonorant]
[+obstruent]	Russian	Maltese
[-obstruent]	Serbian	N/A

• German

- very sonorous realization
- [kvit∫ən] 'squeaks'
- $/{\rm aktiv}/ \rightarrow [{\rm aktif}]$ 'active'
- distributional data often shows dual specification:
 - Icelandic
 - Swedish
 - Georgian

Polish is often used as example of language with true obstruent $/{\rm v}/,$ but realization variable (Gussmann, 2007, pg. 308).

Polish alternations

a)
$$\begin{split} & \left[\int \epsilon v \epsilon k \right] & \text{`seam, dim.'} \\ & \left[\int f \tilde{i} \right] \sim \left[\int v \tilde{i} \right] & \text{`seam, nom. sg.'} \\ & \text{b)} & \left[t s \epsilon r \epsilon c v n \tilde{i} \right] & \text{`Orthodox, n.sg.'} \\ & \left[t s \epsilon r k f^j i \right] \sim \left[t s \epsilon r k v^j i \right] & \text{`Orthodox church, g.sg.'} \\ \end{split}$$

Polish distributions

 $\begin{array}{lll} \mbox{c)} [{\rm dva}] & \mbox{`two'} & [{\rm tfuj}] \sim [{\rm tvuj}] & \mbox{`your (nom. sg. m.)'} \\ \mbox{d)} [{\rm dzv}^j{\rm ik}] & \mbox{`crane'} & [{\rm tf}{\rm fartck}] \sim [{\rm tf}{\rm vartck}] & \mbox{`Thursday'} \\ \end{array}$

RVA triggered by /v/ in Warsaw Polish across boundaries

- a) <*gotów pisać*> [gotuf p^jisac] 'ready to write' *<gotów drukować>* [gotuv drukowa] 'ready to print'
- b) *<smak wina>* [smag v^jina] 'taste of wine'

<los wygrany> [loz vigrani] 'winning number'

(Gussmann, 2007, pg. 309)

	La	bial	Alv	eolar	Pal	atal	Ve	lar	Glottal
Stop	р	b	t	d			k	g	?
Affricate			ts	dz	t∫	d_3			
Fricative	f	v	\mathbf{S}	\mathbf{Z}	ſ	3			h
Nasal		m		n					
Lateral				1					
Rhotic				r					
Approximant		W				j			

Table 6: Maltese consonant inventory

Maltese RVA

a) $/\int + venn$ [3venn] 'what van' b) $/\int + vers/$ [3vers] 'what a verse'

Maltese RVA

a) $/\int + venn$ [3venn] 'what van' b) $/\int + vers/$ [3vers] 'what a verse'

Maltese Romance quadrilateral plurals

- a) ber[r]ítta brí:ret 'cap'
- b) furkétta frí:ket 'fork'
- c) čavétta čwí:vet 'key'
- d) kappéll kpí:pel 'hat'
- e) bastún bsa:ten 'walking stick'

- Attested
- Not as common as tacitly assumed
- Contrast with ipa/w, V/ may bias [-sonorant, +obstruent], but:
 - not necessary: Polish word-internal forms
 - not sufficient: Greek

		/v/#	$/\mathrm{vt}/$	/tv/	
(hbs)	Serbo-Croatian	N/A ([v])	[vt]	[tv]	Browne (1993)
(ukr)	Ukrainian	N/A ([w])	[wt]	[tv]	Shevelov (1993)
(bel)	Belarusian	[w]	[wt]	[tv]	Mayo (1993)
(slv)	Slovene	[u̯]	[mt]	[tw]	Herrity (2000)
(lav)	Latvian	[w]	[wt]	[tv]	Kariņš (1996)
(lit)	Lithuanian	[w]	[wt]	$[t\upsilon]$	Mathiassen (1996)

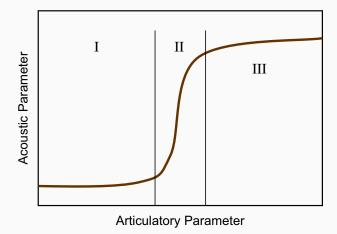
Table 7: Sonorant /v/ realizations.

Nope.

Inconsistent with definitions of [sonorant], [obstruent]

Implicational relations of FD/RVA

No languages group spirants and stops to the exclusion of sibilants with respect to RVA/FD:


- Turkish, Dutch: stops vs. {sibilants, spirants}
- Most Slavic languages: {stops, sibilants} vs. spirants
- Unattested: {stops, spirants} vs. sibilants

Russian /v/ is both an obstruent and a sonorant, and in virtue of this, it is neither an exclusive obstruent nor an exclusive sonorant. Exclusive obstruents and sonorants give the illusion of a divide.

C_1/C_2	Labial	Coronal	Dorsal	
Labial	*	pt pt ^s pd ps bs ft ft ^s fs fz vt ^s vz (pz bz)	pk fk (vk)	
Coronal	tp tb tf tv t ^s p t ^s f t ^s v sp sb sf sv zv (t ^s b)	t ^s z	tk t ^s k sk	
Dorsal	kv (kp)	kď ks (kt ^s)	*	

Figure 9: Tsou onset clusters (Kehrein and Golston, 2004)

Where do [obstruent] and [sonorant] come from?

Figure 10: Schematization of relation between articulatory and acoustic parameters, from Stevens and Keyser (2010)

• QT proposes that distinctive features are universal and correspond to regions of stability

- QT proposes that distinctive features are universal and correspond to regions of stability
- Instead: regions of stability universally correspond to certain feature-segment combinations

- QT proposes that distinctive features are universal and correspond to regions of stability
- Instead: regions of stability universally correspond to certain feature-segment combinations
 - voiceless stops [+obstruent], [-sonorant]

- QT proposes that distinctive features are universal and correspond to regions of stability
- Instead: regions of stability universally correspond to certain feature-segment combinations
 - voiceless stops [+obstruent], [-sonorant]
 - exclusive sonorants [-obstruent], [+sonorant]

- QT proposes that distinctive features are universal and correspond to regions of stability
- Instead: regions of stability universally correspond to certain feature-segment combinations
 - voiceless stops [+obstruent], [-sonorant]
 - exclusive sonorants [-obstruent], [+sonorant]
- [obstruent] \neq [sonorant]

- QT proposes that distinctive features are universal and correspond to regions of stability
- Instead: regions of stability universally correspond to certain feature-segment combinations
 - voiceless stops [+obstruent], [-sonorant]
 - exclusive sonorants [-obstruent], [+sonorant]
- [obstruent] \neq [sonorant]
- regions of disagreement induced by the learner
 - [+sonorant, +obstruent]
 - [-sonorant, -obstruent]

Where are the regions of stability?

[sonorant]

Defined acoustically: sounds with periodic, well-defined formant structure

 \Rightarrow articulatory-acoustic / acoustic-perceptual?

[obstruent]

Defined articulatorily: presence of pressure increase due to constriction

 \Rightarrow articulatory-aerodynamic?

Future research: disentangling articulatory, aerodynamic, acoustic, perceptual relationships

Regions of stability are universal and delineate boundary cases for features.

Learner induces featural specifications.

- Greek, Serbian: consistent cues, distribution/patterning
- Russian: variable cues, distribution/patterning

1. Contrast

Contrast
 /v/ vs. /β, ð, γ/

- 1. Contrast
- 2. /v/ vs. $/\beta,\,\eth,\, \chi/$
- 3. Timing of laryngeal and supralaryngeal gestures

- Russian $/\mathrm{v}/:$ "Idiosyncratic behaviour of a single segment in a single language"
- -Me, when I started this project

Russian /v/: "Idiosyncratic behaviour of a single segment in a single language" -Me, when I started this project

 $/\mathrm{v}/$ represents fault lines of phonology, which cross right over the obstruent-sonorant divide

Thank you!

References

- Andersen, Henning. 1969. The phonological status of the Russian 'labial fricatives'. Journal of Linguistics 5:121–127.
- Barkai, Malachi, and Julia Horvath. 1978. Voicing assimilation and the sonority hierarchy: evidence from Russian, Hebrew and Hungarian. *Linguistics* 212:77–88.
- Botma, E.D., and B.M. van't Veer. 2014. Voiced fricatives as a phonological borderline disorder. *Phonological Studies* 111–114.
- Botma, E.D., and M. van't Veer. 2013. A fraction too much friction: The phonological status of voiced fricatives. Linguistics in the Netherlands 30:46–60.
- Browne, Wayles. 1993. Serbo-Croat. In *The slavonic languages*, ed. Bernard Comrie and Greville G. Corbett, chapter 7, 306–387. London and New York: Routledge.
- Burton, Martha W., and Karen E. Robblee. 1997. A phonetic analysis of voicing assimilation in Russian. Journal of Phonetics 25:97–114.
- Clements, G. Nick, and Sylvester Osu. 2003. Ikwere nasal harmony in typological perspective. In *Typologie des langues d'Afrique et universaux de la grammaire*, ed. Patrick Sauzet and Anne Zribi-Hertz, volume II, chapter Ikwere Nasal Harmony in Typological Perspective, 70–95. L'Harmattan.
- Coats, Herbert S., and Alex P. Harshenin. 1971. On the phonological properties of Russian U. The Slavic and East European Journal 15:466–478.

Daniels, W. J. 1972. Assimilation in Russian consonant clusters: I. Papers in 5:366-380.

References ii

Friedman, Victor A. 1993. Macedonian. In Scatton (1993), chapter 6, 249-305.

Gussenhoven, Carlos, and R. H. Bremmer Jr. 1983. Voiced fricatives in Dutch: Sources and present-day usage. Nowele 2.

Gussmann, Edmund. 2007. The phonology of Polish. Oxford University Press.

Hall, Daniel Currie. 2003. Laryngeal feature specifications in West Slavic languages. Toronto Working Papers in Linguistics 20:93–114.

Halle, Morris. 1959. The sound pattern of russian. Mouton & Co.'s-Grevenhage.

- Hamann, Silke, and Anke Sennema. 2005. Acoustic differences between German and Dutch labiodentals. ZAS Papers in Linguistics 42:33–41.
- Hayes, Bruce. 1984. The phonetics and phonology of Russian voicing assimilation. In *Language sound structure*. Cambridge, Massachusetts: The MIT Press.

Herrity, Peter. 2000. Slovene: A comprehensive grammar. London & New York: Routledge.

Jakobson, Roman. 1978. Mutual assimilation of Russian voiced and voiceless consonants. Studia Linguistica 32:107–110.

Kariņš, A. Krišjānis. 1996. The prosodic structure of Latvian. Doctoral Dissertation, University of Pennsylvania.

Kavitskaya, Darya. 1998. Voicing assimilation and the schizophrenic behaviour of /v/ in Russian. In Formal Approaches to Slavic Linguistics: The Seattle Meeting, 1998, ed. Katarzyna Dziwirek, Herbert Coats, and Cynthia M. Vakareliyska, 225–244. Ann Arbor: Michigan Slavic Publications.

Kehrein, Wolfgang, and Chris Golston. 2004. A prosodic theory of laryngeal contrasts. Phonology 21:325-357.

Kiss, Zoltán, and Zsuzsanna Bárkányi. 2006. A phonetically-based approach to the phonology of [v] in Hungarian. Acta Linguistica Hungarica 53:175–226.

Kulikov, Vladimir. 2012. Voicing and voice assimilation in Russian stops. Doctoral Dissertation, University of Iowa.

References iii

Lightner, Theodore. 1965. Segmental phonology of Modern Standard Russian. Doctoral Dissertation, MIT.

Lulich, Steven. 2004. Russian [v]: An acoustic study. Folia Linguistica 38:63-85.

- Maddieson, Ian. 1984. Patterns of sounds. Cambridge Studies in Speech Science and Communication. Cambridge: Cambridge University Press.
- Mathiassen, Terje. 1996. A short grammar of Lithuanian. Slavica Publishers, Inc.
- Mayo, Peter. 1993. Belarusan. In *The Slavonic languages*, ed. Bernard Comrie and Greville Corbett, chapter 16, 887–946. London / New York: Routledge.
- Padgett, Jaye. 2002. Russian voicing assimilation, final devoicing, and the problem of [v] (or, The mouse that squeaked). Unpublished paper.
- Petrova, Olga, and Szilárd Szentgyörgyi. 2004. /v/ and voice assimilation in hungarian and russian. Folia Linguistica 38:87–116.
- Reiss, Charles. 2018. Contrast is irrelevant in phonology: A simple account of Russian /v/ as /v/. In Beyond markedness in formal phonology, ed. Bridget D. Samuels, 23–46. John Benjamins Publishing Company.
- Scatton, Ernest A. 1993. Bulgarian. In *The Slavonic languages*, ed. Bernard Comrie and Greville Corbett, chapter 5, 188–248. London / New York: Routledge.
- Shevelov, Y., George. 1993. Ukrainian. In *The slavonic languages*, ed. Bernard Comrie and Greville G. Corbett. Routledge.
- Stevens, Kenneth N., and Samuel Jay Keyser. 2010. Quantal theory, enhancement and overlap. Journal of Phonetics 38:10–19.
- Vago, Robert. 1980. The sound pattern of Hungarian. Washington, D.C.: Georgetown University Press.