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2 NONCOMMUTATIVE ALGEBRA

1 Rings
1.1 Definition. A ring is an ordered 5-tuple (R, +,-,0, 1) such that

1. (R,+,0) is an Abelian group.
2. Multiplication is associative and 1 is a multiplicative identity.
3. The left and right distributive laws both hold.

1.2 Example. 1. Some commutative rings are 7Z, fields k, k[x], Z[x], €(X), etc.
2. Let R be aring. M, (R), the n x n matrices over R, is a ring.
3. Let G be a group and k be a field. The group algebra,

kG := {Zagg | a; € k and all by finitely many are zero}
g€G
is a ring.
4. Let Abe an Abelian group. Then
End(A) :={p : M — M | ¢ is a homomorphism}
is ring under pointwise addition and composition.

1.3 Definition. Let R,S be rings and let ¢ : R — S be a map. ¢ is said to be a homomorphism if it preserves the
ring operations and ¢(1y) = 15. Furthermore:

1. ¢ is a monomorphism if it is 1-1.

 is an epimorphism if it is onto.

( is an endomorphism if R = S.

¢ is an isomorphism if it is invertible and it ¢~ is also a homomorphism.

AN S

 is an automorphism if R =S and ¢ is an isomorphism.

1.4 Definition. Let R be a ring and S CR. If

1. 0,1€S
2.85+ScCS
3.5-SCS

then S is said to be a subring of R. If

1. S+SCcS
2. RS+SRCS

then S is said to be an ideal of R. We write S < R. S is a left (resp. right) ideal if

1. S+SCS
2. RSC S (resp. SRCS)

The centre of Ris the set Z(R)={s€R|rs=sr Yr €R}

Remark. Z(R) is a commutative subring of R.
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1.5 Proposition (First Isomorphism Theorem for Rings). If ¢ : R — S is a homomorphism then ¢(R) is a
subring of S and ker ¢ is an ideal of R. Furthermore

©(R)=R/kery
1.6 Corollary. If  is 1-1 and onto then it is an isomorphism.

1.7 Example. 1. Z,(R) := {n x n upper triangular matrices} is a subring of M,,(R).
2. IfR,,...,R, arerings then Ry X --- X R, = ]_[LlRi is a ring under pointwise operations.
3. If Ris a ring and e € R is idempotent, then eRe is a ring with identity e. Generally, eRe is not a homo-

morphic image of R. If e € Z(R) then eRe = Re = eR and the map ¢ : R — Re defined by ¢(r) =re is a
homomorphism.

4. Let G be a group and k be a field. Let H <@ G be finite and define x = ZheH h. For any g € G,

xg=» hg=> gglhg= gh=gx

heH heH heH
Hence x € Z(kG). Now
x? =" "hk=>">"h(h"'m)=|H|x
heH keH meH heH

soe:= ﬁ D hen I € Z(kG) is idempotent.

2 Modules

This section follows Lambek.

2.1 Introduction

2.1 Definition. Let R be a ring. A (left) R-module is an Abelian group (M, +,0) together with a left action of R
on M given by Rx M — M : (r,m) — r - m (this is really a representation p : R — End(M) of R in End(M)),
which is to say that

r-(m+n)=r-m+r-nforallreR, myneM
r-(s-m)=(rs)-mforallr,seR,meM
.(r+s)m=r-m+s-mforallr,seR,meM

Pown e

.1-m=mforalmeM

We sometimes write M to signify that M is a left R-module. Right R-modules are defined in a similar fashion.

2.2 Example. 1. If M is a left ideal of R then zM is an R-module under ring multiplication. In particular, xR
is a module over itself.

2. If R =k is a field, then the modules of R are exactly vector spaces over k.

3. If R = Z, then the modules over R are exactly the Abelian groups. There is only one possible action in this
case, n-m=m-++---+m.
‘V—/
n times
4. R" under the action r - (r,...,1r,) =(rry,...,rr,) is called the free R-module of rank n.

2.3 Definition. If M, N are R-modules then ¢ : M — N is said to be a module homomorphism or R-homomorphism
if
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1. ¢ is a group homomorphism.
2. ¢(rm)=re(m)forallr €R and m € M.

The definitions for mono-, epi-, endo-, iso-, and auto- morphisms are analogous to the case for rings.

Remark. If ¢ : M — N is a 1-1 and onto R-homomorphism then ¢ is an isomorphism.

2.2 Submodules

2.4 Definition. A submodule N € M is a subgroup of M such that R-N € N. A quotient module M /N (where
N € M is a submodule) is the quotient group with the R-action r-(m+N) = r-m+N. This is clearly well-defined.

2.5 Example. Let R = k[x], polynomials over a field k. Let V be a d dimensional vector space over k. Take
T € £(V), a linear transformation. Make (V, T) into an R-module by defining p - v = p(T)v for any p € R and
v € V. What are the submodules? They are exactly the T-invariant subspaces of V. Let W C V be a T-invariant
subspace. Then V =W & X for some subpace X, and we can write

_ [le (I—P)TIX}
0 PT|x

where P is the projection onto X such that ker P = W. (In this case I — P is projection onto W with kernel X).
To find the quotient module V /W, notice that T(x + W) = Tx + W and T decomposes as above, hence for any

k>1,
Tk — |:(T|W)k * ]
Tl 0 (PTI)

Thus the quotient module is isomorphic to (X, PT|y) since the R-action becomes p - (x + W) = p(PT|x)x + W.

2.6 Proposition (First Isomorphism Theorem for Modules). Let R be a ring and ¢ : M — N be a module
homomorphism. Then ¢ (M) is a submodule of N and ker ¢ is a submodule of M. Furthermore,

p(M)Z M/kerp

Proor: That ¢(M) is a submodule of N and ker ¢ is a submodule of M are trivial consequences of the fact that ¢
is a homomorphism. We have the following commutative diagram by the first isomorphism theorem for groups,
where 6 : M /ker ¢ — (M) is a group isomorphism.

M—2 N
7
-
3
M/ Kker ¢
But 6 is actually a module homomorphism since, for any r € R and m € M,

O(rm+kerp) = @(rm) =re(m)=r0(m+ker ) O

2.7 Definition. The annihilator of M is
ann(M)={reR|rm=0 forallme M}

It is the kernel of the representation p of R in End(M), so it is an ideal of R. Call M a faithful module if p is a
faithful representation (that is, if p is 1-1, or ann(M) = 0).



MODULES 5

2.3 Lattices and Posets

2.8 Definition. A paritally ordered set or poset is a set S together with a relation < such that
l.a<aforallae$
2. a<band b<aimplya=b>bforalla,beSs
3.a<band b<cimplya<cforalla,b,ceS
Say a € S is maximal if a < b implies b = a. A chain is a subset C C S such that for each a, b € C either a < b or
b < a. An upper bound of a subset T € S is an element b € S such that forallae T, a < b.

Remark. Notice the difference between a maximal element and an upper bound. Nothing is bigger than a
maximal element, while an upper bound is bigger than everything.

2.9 Lemma (Zorn’s Lemma). If (S, <) is a non-empty poset and every chain in S has an upper bound then S
has a maximal element.
2.10 Definition. (L, A,V, <) is a lattice if

1. (L, <) is a poset.

2. A and V binary operations that are commutative and associative.
3. A and V satisfy both distributive laws.

4. a A b is the greatest lower bound of a and b, for all a,b € L.

5. a V b is the least upper bound of a and b, for all a, b € L.

(It is part of the definition that both of these exist and are unique.) A lattice is complete if for any chain there is
a least upper bound for that chain in the lattice.

Notation. Let M be a module. The lattice of all submodules of M is denoted by Sub(M).

Sub(M) is partially ordered by C. If A and B are submodules of M then AN B is a submodule of M and it is
the largest submodule of M contained in both of them. In general AU B is not a submodule of M. A+ B is the
smallest submodule of M that contains both A and B. Thus (Sub(M), N, +, €) is actually a lattice. It is clear that
Sub(M) is a complete lattice since the union of any chain of modules is a module that contains all of them, and
it is the smallest such module.

Sub(M) does not satisfy the distributive law (which states

aNn(bvc)=(aAb)V(aAnc)

for all a, b, c € L). For example, if A, B, C are distinct linear subspaces of a two dimensional vector space V, then
AN(B+C)=Aand (ANB)+(ANC) = 0. Sub(M) does, however, satisfy the modular law, which is the restriction
of the distributive law taken to hold only when a > b (in terms of modules,

AN(B+C)=B+(ANC)
for all A2 B, C € Sub(M)).
2.11 Proposition. Sub(M) is modular.

2.12 Proposition. Let M be an R-module, S € M, and N € M a submodule such that N NS = &. Then there is
a submodule L € M such that N € L and L NS =@ and L is maximal with respect to these properties.

Proor: Exercise. This is a trivial consequence of Zorn’s Lemma. O

2.13 Corollary. IfR is a ring and M is a proper left (resp. right) ideal then there is a maximal left (resp. right)
ideal that contains M.

ProoF: Apply the proposition to xR, taking S = {1z}. O
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2.4 Isomorphism Theorems

2.14 Proposition (Third Isomorphism Theorem for Modules). Let C C A be modules. The submodules ofA/C
correspond to submodules C € B C A via B «— B/C. Furthermore,

(A/C)/(B/C)=A/B

Proor: Let B’ € A/C be a submodule, and let B = 7~!(B’). Then C = n~*({0}) € B € A and B is a submodule of
A. By the First Isomorphism Theorem, B/C = n(B) =B’.
Let 7 and q be the canonical projections. Consider

ASA/c S (A/0)/(B/C)

q o 1 is surjective and ker(q o m) = m '(ker(q)) = n~}(B/C) = B, so by the First Isomorphism Theorem
(A/C)/(B/C)=A/B. O

2.15 Proposition (Second Isomorphism Theorem for Modules). If B,C C A are modules then
(B+C)/B=C/(BNC)

ProorF: Let i be inclusion and 7 the canonical projection. Consider

cLB+c L (B+C)/B

ker(moi)=ker(r)NC =BNC, and moi is surjective since b+c+B =0+ c+B forany b€ B and i(c) =0+c.
By the First Isomorphism Theorem (B+ C)/B=C/(BNC). O

2.16 Lemma (Zazzenhaus). Let B CB C A and C' € C C A be modules. Then

B'+(BNC) _ C'+(BNC)
B'+(BNC) C'+(B'NC)

BNC

Proor: We will show both are isomorphic to Bro 1T

By symmetry it is enough to show that one of them is
isomorphic to this.

B'+(BNC) _B'+(BNC)+(BNC)

/
B'+(BnC’) B'+(BnNC) Bneesnc
~ BncC ond I
T (B'+(BNCH)N(BNC)
N BNC
= BNBAC)TBAC) Modular Law
BncC

=~ B'CB O
(BNnC)+(BNC)

2.17 Definition. Let B, € B; C --- C B, be a chain of modules. The factor modules are B;,/B;,i =0,1...,n—1.
A refinement of the chain is a larger chain that contains each of the B;’s.

2.18 Theorem (Schreier). Suppose that0 = Ay CA; € ---CA, =M and0=By, B, C---C B, =M are
two chains of modules. Then both chains can be refined so that they have the same length and the same factors
(possibly in different order).



MODULES 7

Proor: Define A;; :=A; +(A; 41 NB;) for 0 < j <mand B, ; :=B; + (A; NBj;4) for 0 <i < n. Then A; = A, for
i=0,...,nand B; =B, ; for j =0,...,m. The refined chains are

0=App S~ CAy; S CAynCAnC - CA ;S CAp=M

and similarily for the B chain. For 0 <i <n and 0 < j < m we have

Aijr A+ (A1 NBi) | Bi+ (A1 NBy) _ By
A A;+ (A, NB)) B+ (A;NBj,) B

i,j Lj

by Zazzenhaus’ Lemma. O

2.5 Irreducibility

2.19 Definition. A module M is irreducible if it has exactly 2 submodules, namely 0 and M # 0. A composition
series for a module M is a chain of submodules 0 =Ay, S A; & -+- S A, = M which cannot be properly refined.

In a composition series, all of the factors A, /A; are irreducible. We get the following corollary to Schreier’s
Theorem.

2.20 Corollary (Jordan-Holder). If M has a composition series, then any two composition series have the same
length and the same factors up to permutation.

2.21 Proposition. An R-module M is irreducible if and only if M is isomorphic to R/A, where A is a maximal left
ideal.

ProoF: Suppose that M = R/A for some left ideal A. The submodules of M correspond to the left idealsA C B CR.
Thus M is irreducible if and only if A is maximal. Conversely, if M is irreducible then M # 0, so pick 0 # a € M.
Let ¢ : gRR — M : r — ra, a module homomorphism. Then ¢ (M) is a non-zero submodule of M, so ¢(M) = M.
Therefore M = R/ ker ¢, and ker ¢ is maximal by the observation in the first part. O

Remark. This proof also shows that if M is an irreducible R-module and 0 # a € M then M = Ra.

2.22 Example. 1. If V is a k-vector space then V is irreducible if and only if dimV = 1.
2. If R=7 and G an Abelian group then G is irreducible if and only if G = C,, for some prime p.
3. If R = M,(k) then for a € M,(k),

M, (k) if a invertible
M,(k)a = { k2 if the rank of a is 1
0 ifa=0

2.6 Noetherian and Artinian Modules

2.23 Definition. A module M is Noetherian if every non-empty set of submodules has a maximal element. A
module M is Artinian if every non-empty set of submodules has a minimal element.

2.24 Proposition. M is Noetherian if and only if Sub(M) satisfies the ascending chain condition (ACC). M is
Artinian if and only if Sub(M) satisfies the descending chain condition (DCC).

The ascending chain condition says that if {A,}°° ; is a sequence of submodules with A, CA,,; foralln >1

then there is N such that A, = A, ,; for all n > N. The descending chain condition is analogous.
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Proor: Exercise. O

2.25 Example. 1. If V a k-vector space then V is Noetherian and Artinian if and only if dimV < oo.

2. In ,Z, any ascending chain of ideals is finite since nZ € mZ if and only if m|n, so ,Z is Noetherian.
Z>27Z>4Z > ---,is a descending chain of ideals, so ,Z is not Artinian.

2.26 Definition. A module M is finitely generated if M = (b, ..., b,) := Z?:lei.
2.27 Proposition. A module M is Noetherian if and only if every submodule is finitely generated.

Proor: Suppose M is Noetherian and B € M is a submodule. Let  be the set of finitely generated submodules
of B. Then & C Sub(M), so . has a maximal element C,. If B # C, then there is b € B\ Cy, and Cy & Cy+Rb C B
is finitely generated, contradicting maximality of C,. Therefore for B = C, is finitely generated.

Conversely, let A; C A, C -+ be an ascending chain of submodules. Let A = U:;Am a submodule of M. Then
by assumption A is finitely generated, say A = (ay,...,qa;). But then there is some Ay such that a;,...,q; € Ay,
which implies that A C Ay. ThusA=Ay =Ay,1 = -+, S0 M satisfies the ACC. O

2.28 Proposition. Let A be a module and B C A a submodule. A is Artinian (resp. Noetherian) if and only if B
and A/B are Artinian (resp. Noetherian).

Proor: (Artinian case.) Assume A is Artinian. If S is a set of submodules of B then S is a set of submodules of
A, so there is a minimal element. If S is a set of submodules of A/B then there is a bijection between S and a set
S’ of submodules of A that contain B. S’ has a minimal element, and the corresponding element of S will be a
minimal element of S.

Assume B and A/B are Artinian. Let A; D A; D -+ be a decreasing chain of submodules of A. Then A;,NB >
A;NB D --- is a decreasing sequence of submodules of B, so there is n; > 0 such that A, NB = A, ; NB for
all n > n;. Similarily, (A, + B)/B D (A; + B)/B D --- is a decreasing sequence of submodules of A/B, so there
is ny > 0 such that (A, + B)/B = (A,41 +B)/B for all n > n,. Hence A, + B = A,;; + B when n > n,. Thus if
n > ny,n, then

An =AH n (An + B) :An n (An+1 + B) :An+1 + (An N B) :An+1 + (An+1 n B) :An+1
See the assignment for the Noetherian case. |

2.29 Corollary. A finite product M, X --- X M, of modules is Artinian (resp. Noetherian) if and only if each M;
is Artinian (resp. Noetherian).

ProoF: By induction on k, since (A x B)/B = A. |
2.30 Corollary. A module M has a composition series if and only if M is both Artinian and Noetherian.

Proor: Suppose that M has a composition series 0 = M, C --- € M, = M. The factors M;,,/M; are irreducible
and hence both Artinian and Noetherian. Therefore M is Artinian and Noetherian since any chain of submodules
of M is of length at most k.

Conversely, let C be a maximal chain of submodules of M. C exists by Zorn’s Lemma. If C is finite then it is a
composition series for M. If it is infinite either an increasing sequence or decreasing subsequence can be found
(fill in the details), contradicting either that M is Artinian or that M is Noetherian. O
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3 Radicals

This section follows Herstein.

3.1 Definition. The Jacobson radical or radical of a ring R is

J(R) := ﬂ ann(M)

M irreducible
left R-module

J(R) is well-defined since each irreducible left R-module is isomorphic to R/A for some maximal left ideal A
by Proposition 2.21. J(R) < R because each annihilator is an ideal of R.

3.2 Proposition. Let A be a maximal left ideal of a ring R. Then ann(R/A) is the largest ideal contained in A.

Proor: Let M = R/A, an irreducible R-module by Proposition 2.21. If r € ann(M) then 0 = r(1+A) =r +A, so
r € A. Hence ann(M) is an ideal that is contained in A. Suppose that I <R and I € A. Then

IM =IR/ACI/ACAJA= {0}
so I C ann(M). O
3.3 Theorem. The following are equivalent descriptions of J(R):

1. mM irreducible aHU(M)
left R-module

2. ﬂA maximal A
left ideal

3. {aeR|VreRidueR (u(l—ra)=1)}
4. The largest proper ideal J of R such that1 —a € R* foralla € J.

Furthermore, the right analogs of the first three descriptions are also equivalent to these decriptions.

PROOF: e i Cii. If M is an irreducible left R-module then M = R/A for some maximal left ideal A. The

proposition above shows ann(M) S A, s0 () irreq. A0(M) S [ 4 e A-

e ii Ciii. Suppose thata € ﬂAmaX‘A and r €RR. If R(1 — ra) is a proper left ideal of R then it is contained in
some maximal ideal A. Buta € Aand 1 —ra € A, so 1 € A, a contradiction. Therefore R(1 — ra) = R and
1 —ra is left invertible, so (), ., AS {a €R|VreRIueR (u(l-ra)=1)}.

e iv Ci. Let I <R be any ideal such that 1 —a is invertible for every a € I. Let M be an irreducible R-module.
If IM # 0 then IM = M, so there is a € I and 0 # m € M such that am # 0. Then RaM = M so there is
r € R such that ram = m. But this implies that (1 — ra)m = 0, a contradiction because 1 — ra is invertible
and m # 0. Therefore IM = O for every irreducible left R-module M, so I C ﬂM irreq. @NN(M) = J(R).

e jiiCiv.LletS={acR|VreR3dueR (u(l —ra)=1)}. S is an ideal.

1. If a,b € S and r € R then there is u such that u(1 —ra) = 1. Then u(1 —ra+rb) = 1+4urb, and there
is v such that v(1 — (—urb)) = 1. Therefore vu(l1 —r(a—b))=1,s0a— b €8S.

2. Clearlyrae S forallae S and r €R.

3. Leta € S and r, t € R. We need to show that 1—tar has a left inverse. Let u be such that u(1—rta) =1,
so that u = 1+ urta. There is v such that 1 = v(1 — (—urta) = vu. u has a left inverse and a right
inverse, so u is invertible and v = 1 — rta. Consider

1+ taur)(1 — tar) =1+ taur — tar — taurtar
=1+ taur — tar — ta(l —wr
=1+ taur — tar — taur + tar =1
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The proof of part (iii) also showed that 1 — a is invertible on both sides. Therefore since S is an ideal such
that 1 — a is invertible for all a € S, the proof for iv C i shows that S € J(R). That proof also shows that
J(R) is the largest proper ideal with this property. O

3.4 Example. Let R=7,(C) and fori =1,...,n define A; = {T € 7, | T;; = 0}. Then for each i, A; is a maximal
ideal of R since dimR/A; = 1. Suppose that A is a maximal left ideal of &, such that A ¢ A; for any i. Then for
each i there is T; € A such that (T;);; # 0. But then A contains S #Ei)iTi, which is equal to I + N for some

N with a zero diagonal. Hence N" = 0 and so o
I=(I-N+N?*—---+(-D)"IN"D(I+N)e€A

a contradiction. Therefore J(7,) = 9no, the set of upper triangular matrices with zero diagonal.

3.5 Definition. A ring R is semiprimitive if J(R) = 0 (Lambek).

Herstein uses semisimple to name this property, and this practice is common in functional analysis. Farb and
Dennis use semisimple for something stronger than this, and they do not even define this property. In these notes
I may also use semisimple to name this property, so beware.

In semiprimitive rings the irreducible representations separate points. For R = Z,, if M is an irreducible
module then M = R/A; = C with the action given by T - 1 = T;;. In this case the irreducible modules can only
tell us about the diagonal.

3.6 Theorem. LetR be a ring. Then R/J(R) is semiprimitive.

Proor: If M is a maximal left-ideal of R/J(R) and R 5 R/J(R) is the canonical projection then n~}(M) is a
maximal left ideal of R. Conversely, if N is a maximal left ideal of R then N 2 J(R) and 7(N) is a maximal left
ideal of R/J(R). It follows that

JRIJR)= (| M= () N/J(R)z( N N)/J(R)zJ(R)/J(R)zO

M max. N max.

O

N max.

3.7 Definition. A left (resp. right, 2-sided) ideal I is nil if each a € I is nilpotent. A left (resp. right, 2-sided)
ideal is nilpotent if there exists k € N such that I¥ = 0, where I¥ is defined to be the left (resp. right, 2-sided)
ideal generated by {a; ---a; | a; € I'}.

3.8 Proposition. IfI is a left (resp. right) nil ideal, then I € J(R).

ProoF: Let a €I. For any r € R we would like to show that 1 — ra has a left inverse. But ra €I so thereis k € N
such that (ra)* =0. Thus (1 —ra) ' =1+4ra+ (ra)*>+--- + (ra)*". Therefore a € J(R) by Theorem 3.3. O

3.9 Example. There are ideals which are nil but not nilpotent. Let R = Un21 J,+ClI, the unitized ring of infinite

upper triangular matrices with all but finitely many entries zero. Then J(R) = Un21 Z°. J(R) is nil but not
nilpotent since there are elements of J(R) whose powers are not zero for arbitrarily large powers.

3.10 Lemma. Ife =e? €R then J(eRe) = eJ(R)e.

Proor: Let M be an irreducible left R-module. Notice that (eRe)eM C eM, so eM is an eRe module. If eM # 0
take any m € M such that em # 0. Then Rem = M since M is irreducible and so (eRe)m = eM. Therefore eM is
an irreducible left eRe module. (This seems fishy.)

Now ann(eM) = {ere € eRe | ereM = 0} = ann(M) N eRe, so

J(eRe)= () ann(eM)= () ann(M)neRe=J(R)NeRe=eJ(R)e
M irred. M irred. O
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3.11 Theorem. For any ring R, J(M,(R)) = M, (J(R)).

Proor: Take e = E; ; € M,,(R), so that eM,,(R)e = R. By Lemma 3.10, J(R) = eJ(M,(R))e, so the top left entry of
J(M,(R)) is in J(R), and all of J(R) occurs as a top left entry of something in J(M,,(R)). But it can be shown that
all ideals of M,,(R) are of the form M, (I) for I <@ R, the result is proved. O

3.12 Theorem (Armitsur). Let A be a k-algebra such that dimy (A) < |k|. Then J(A) is nil.

ProOF: Let a € J(A), so that for all A €k, 1 — Aa is invertible in A. Then the set {(1—2Aa)™! | A € k} has the same
cardinality as k > dimy (A), so it is linearly dependent. Thus there exist A, = 0,4,...,A, €k and ¢,...,c, €Kk,
not all zero, such that

0= Xn:ciu —Aa) = (ﬁu - /ll-a)_l) Xn:ci [la-2a
i=0 i=0

i=0 j#i

Let p(x) =D, ¢ ]_[#i(l — 2;x) € k[x]. Then p(a) = 0 since [ [_,(1 — A;a)" is a unit. We would like to know
that p # 0. There are two cases:

1: If ¢y # 0 then [x"]p(x) = c, ]_[?:1(—%) #0,50p #0.

2: If ¢, = 0 then suppose that c¢; # 0 for some i > 0. Then p(%) =c¢[[.;(1- %) # 0. Hence p # 0.

i#]

Since p(a) = 0 and p # 0, we may write 0 = p(a) = a*(by + byq1a + -+ + byya') where by, # 0. Since
bei1a+ -+ bryal € J(A) and k is a field (hence by is a unit), by + bygy1a + -+ + by, a’ is invertible in A, so
ak = 0. Therefore J(A) is nil. O

This theorem has some powerful corollaries.

3.13 Lemma. Ifk is a field extension of C with dim¢k < |C| thenk = C.
Proor: The argument is the same as to the proof of the last theorem. Let a €k, so
ICI>{(A—a)tek|reC} >|C|-1=]C]

Hence this the set is linearly dependent, so there is a non-zero polynomial p € C[x] such that p(a) = 0. Since C
is algebraically closed, x € C. O

3.14 Theorem (Hilbert’s Nullstellensatz). Letp;,...,p,,q € C[xy,...,X;] be such that for alla € C*, ifp;,(a) =
0 foralli=1,...,n then q(a) = 0. Then there is t > 1 such that q* € (p4,...,p,)-

Proor: Without loss of generality we may assume that p; is not a constant polynomial for any i. Let R =
C[xy,...,x] and T : R - A=R/(p,,...,p,) be the canonical projection. Given any maximal ideal M in A,
7m~1(M) is a maximal ideal of R. By the third isomorphism theorem, A/M = R/~ !(M) is a field extension of C
with dimension at most dims R = X,. Thus A/M = C by Lemma 3.13.

Claim. If J is a maximal ideal of R then there is a € C* such that J = {p € C[x,,...,x.] | p(a) = 0}.

Consider the projection R — R/J = C. In particular, x; — a; for some q; € C for each i = 1,...,k, so
p(xy,...,x;) — play,...,a;). Since p € J if and only if p is mapped to zero, it follows that p € J if and
only if p(ay,...,a;,) =0.

Let a € C* be such that 7=}(M) = {p €R| p(a) = 0}. Since py,...,p, € (p1,...,p,) € m (M), it follows that
q € n~1(M). Hence g+({p;,...,p,) € M, and since this holds for an arbitrary maximal ideal of A, g+(p;, ..., p,) €
J(A). By Armitsur’s Theorem, J(A) is nil, so there is t > 1 such that 0 = (q + (p1,...,Pn)) =q¢" + (P1,.--,DPpn)> OF

qte(plf'-wpn)' O
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3.15 Lemma. Let G be a group and H a subgroup of G. Then CH is closed under inverses in CG.

PrOOF: Let @ = 3}, yayh and b = 3, _; bog be such that ab = ba =e. Let b’ = 3, b,g. 1 must show

geG 78
that b = b’. Since ab =e, 1 = 3, ;ab,1 = 3, ayby1 and for every non-identity element k € G, 0 =
deG agbg-1 = D hers @by Therefore ab’ = e. Similarily, b’a = e, so b = b’ since inverses are unique. O

3.16 Theorem (Rickhart). If G is any group then CG is semiprimitive.

ProoF: Define an involution on CG by x* = (dec x,8) = deGYgg_l. (Clearly (x*)* = x, (ax)* = ax*,
(x+y)y=x*+y* and

(xy)' = (ZZXgthh)* = Zngyhh—lg—l _

g€G heG g€G heG

so it is actually an involution on CG.)

Suppose first that G is a countable group. Then CG is a C-algebra of dimension |G| <R, < |C| over C, so
J(CG) is nil by Armitsur’s Theorem. Let x € J(CG) and suppose that x # 0. Let y = x*x = ZheG(deG Xgp)h.
In particular, y, = deG ngl >0,50y #0. y* = (x*x)" = x*x = y, so y2 = y*y and by the same aregument

¥? # 0. Continuing by induction we see that yzk # 0 for any k > 0. This contradicts the fact that y € J(CG).
Therefore J(CG) =0

Now suppose that G is any group and let x € J(CG). Let H = ({g € G | x, # 0}), a countable subgroup of G.
For any r € CH, (1 —rx)"! € CG. By Lemma 3.15, (1 —rx)"! € CH, so x € J(CH) = 0. Therefore J(CG) = 0.0

4 Artinian Rings

4.1 Definition. A ring R is (left) Artinian if zR is a left Artinian R-module. A ring R is (left) Noetherian if zR is a
left Noetherian R-module. In less obfuscated terms, R is Artinian if every collection of left ideals has a minimal
element, and R is Noetherian if every collection of left ideals has a maximal element. The definitions of right
Artinian and right Noetherian are analogous.

4.2 Example. 1. IfRis a finite dimensional k-algebra then R is a left and right Artinian and Noetherian, since
R has a composition series of length equal to dimy (R).

2. LetR = ( %) R(§2) = (“Q bQ+”Q) so the cyclicly generated left ideals of R are {0}, (0 > (%8 ,
and (0 nZ) This is a complete list of submodules of 3R since all ideals of R are linear combinations of
the ones already listed. Hence R is left Noetherian but not left Artinian for the same reason that ,Z is
Noetherian but not Artinian. On the other hand, ($2)R = (“Q “Q“’Z) Hence the cyclic right ideals are
{03, ( o nZ) (3,%), and (9 2Z). The right ideals of R are linear combinations of these, so it follows again
that R is not right Artinian. R is not right Noetherian since Z C %Z C %Z C .-+ is an increasing chain of
distinct QZ modules.

3. LetR= (g Q) In the same vein as the example above, R is left Artinian and left Notherian, but neither
right Noetherian nor right Artinian.

4.3 Theorem. IfA is left Artinian then J(A) is nilpotent.

Proor: Let J = J(A). Consider J > J2 > J® D --- and note that A is Artinian, so there exists n € N such that
Jt=Jm =... Let B:=J", so that B=BJ = B2. If B # 0 then let % be the set of left ideals I such that BI # 0.
& is non-empty since B,J € . Since A is Artinian, & has a minimal element I. There exists x € I such that
Bx #0, so B(Bx) = B?x = Bx #0, so Bx €S. Bx C I, so by minimality Bx = I. Therefore there is b € B such
that bx = x, so (1 — b)x =0. But 1 — b €J and hence is invertible, a contradiction. Therefore J is nilpotent. [
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4.4 Corollary. If A is an Artinian ring then J(A) is the unique largest nilpotent ideal, and every left or right nil
ideal of A is nilpotent.

ProoF: J(A) contains all left and right nil ideals of A by Proposition 3.8. O
4.5 Lemma (Schur’s Lemma). If M is an irreducible left R-module then Endgz(M) is a division ring.

ProoF: Let ¢ € Endgz(M), ¢ # 0. ¢(M) is a non-zero submodule of M, so (M) = M. Similarily, ker ¢ is a
proper submodule of M, so ker ¢ = {0}. Therefore ¢ is an isomorphism, hence ¢~ € Endz(M). O

4.6 Example. 1. Letk be a field, R = M, (k), and V =k". R acts on V by matrix multiplication on the left. V
is irreducible since R acts transitively on V. Let T € Endz(V) € Endy(V) = M, (k) =R. Then T(rv) =rT(v)
forall r e Rand v € V, so T commutes with all elements of R. Hence Endg(V) = Z(R) =KkI,,.

2. LetR=Alg {[{7']} = { [g ‘ab] la,be IR{}. Then V = R? is an irreducible R-module. Again Endg(V) €
Endi (V) = M,(R), so we are looking for matrices that commute with R.

| B R e B P EE R

d —c a b
Therefore Endgz(R) =R, so R is a division ring.

3. We can have Endz(M) be a division ring even if M is not irreducible. Let R = Z,(C) and argue as before to
get that Endgz(R) = CI,,.

4.7 Theorem. Let M be a left ideal of a ring R.

1. If M? # 0 and Endg(M) is a division ring then M = Re for some e = e? and Endg(M) = eRe.
2. IfM is a minimal left ideal and M? # O then M = Re for some e = €.

3. IfR has no non-zero nilpotent ideals (that is, if J(R) = 0) and M = Re for some e = e? then M is minimal
if and only if eRe is a division ring (and these happen if and only if eR is a minimal right ideal).

Proor: 1. Take a € M such that Ma # 0 and define p, : M — M by p,(x) = xa. Then p, is an endomorphism
of M, so it has an inverse in Endg(M). Let e = p_'(a) € M. ea = p,(e) = a, so ea = e(ea) = e?a,
or p,(e —e?) = 0. p, is invertible, so e = e2. M = p,(M) = Ma 2 Ra 2 Ma, so M = Ra. We can
do the same thing for e that we did for a, since e € Me. Therefore M = Re. Suppose p € Endz(M).
Let b = p(e), so that b = p(e?) = ep(e) = eb = ebe, showing that b € eMe C eRe. For any x € M,
p(x) = p(xe)=xp(e) =xb = py(x), so p = p;,. Conversely, for any b € eRe, p;, is an endomorphism of
M. Finally, p, © o, = Pep = Ppuc, SO Endg(M) = eRPe.

2. Suppose that M is a minimal left ideal. Then M is an irreducible R module, so Endg(M) is a division ring
by Schur’s Lemma. Since M? # 0 we are done by part (i).

3. If M = Re is minimal then by (ii) Endgz(M) is a division ring. By (i) Endz(M) = eRPe, so eRPe is a division
ring, and this implies that eRe is also a division ring. Conversely, suppose that eRe is a division ring and
0# N C M is a left R-module. If eN = 0 then N> € MN = (Re)N = 0, a contradiction since there are
no nilpotent ideals. Take n € N such that ene = en # 0. 0 # ene € eRe, so there is ere € eRe such that
(ere)(ene) =e. Hencee € N,so M =Re C N € M and M is minimal. O

4.8 Corollary. IfR is left Artinian and semiprimitive then every non-zero left ideal J of R contains a non-zero
idempotent.
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Proor: Let & be the set of non-zero left ideals contained in J. Since R is left Artinian & has a minimal element
Io. R has no nilpotent ideals since every nilpotent ideal of R is contained in J(R) = 0. By Theorem 4.7, I, = Re
for some e = 2. O

4.9 Theorem. IfR is left Artinian and semiprimitive and M is a left ideal of R then there is e = e> € M such that
M =Re.

Proor: Consider & = {M(1—e)|e=e? € M}. & is non-empty since 0 € M, and since R is left Artinian there is
a minimal element M (1 —e,). Suppose that M(1—e;) # 0. M(1—e,) is a left ideal of R, so by Corollary 4.8 there
is a non-zero idempotent e; € M(1 —e;). Then e; = e,(1 —ey) = e; —ejey, SO e1e; = 0. Let f :=e, +e; — ege;.
Then f2=f, eof = ey, and e, f = e;. Hence

Mf 2 M(eof) = Me
Mf 2D M(eif)=Me;

It follows that M(1— f) = M(1 - f)(1 —e;) G M(1—e,) € M, a contradiction. Therefore M(1 — e,) is zero, so
Me, = M and the proof is finished since Re; = Mey ® M(1 —ey) = M. O

4.10 Corollary. IfR is left Artinian and semiprimitive and A <\ R then there is e = e € Z(R) such that A= eRe.

ProoF: Apply Theorem 4.9 to get e = e? € A such that A = Re. Let B = (1 — e)A, a right ideal of R. B2 =
((1 —e)Re)((1 —e)Re) =0, so B € J(R) = 0 Therefore A = eA = eRe. Leta €A, so ea = a = ae. If r €R then
re,er €A, sore=ce(re) =(er)e =er. Therefore e € Z(R). O

4.11 Corollary. Suppose thatR is left Artinian and semiprimitive and A < R. Then A has a unit and
R=e¢Re®(1—e)R(1—¢)

Furthermore, (1 —e)R(1 —e) < R.

4.12 Definition. A ring R is simple if the only 2-sided ideals are {0} and R.

4.13 Example. If D is a division ring then M, (D) is a simple Artinian ring.

4.14 Theorem. IfR is a left Artinian and semiprimitive then R is isomorphic to the product of finitely many
simple Artinian rings.

ProoOF: Since R is Artinian, R has minimal 2-sided ideals. Let
S ={A; =e;Re; | ¢; = ¢? € Z(R), A; a minimal 2-sided ideal}

If A; # A; then e;e; € A;NA; = 0 by minimality. If S is infinite choose a countable subset {A;}7°, and form

M := Y A foreach k > 1. Then M; 2 M, 2 - - since e;M; = Y., e;A; = 0 for any j < k. But this contradicts

that R is Artinian, so & is finite, say ¥ = {A;}_,. Lete =e; +---+e¢,. Thene = e? € Z(R). If e # 1 then
R(1—¢€)# 0, so (1 —e)R(1 — e) is an Artinian ring, which will contain a minimal ideal, contradicting that &
contains all minimal ideals of R. Therefore R = @' A; = []_, e;Re;, and the e;Re;’s are simple rings (with
identity e;). O
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4.1 Example: Some Simple non-Artinian Rings
4.15 Definition. A derivation on a ring R is a map 6 : R — R such that

1. 6(x+y)=56(x)+6(y) for all x,y €R (6 is additive).
2. 6(xy)=06(x)y +x6(y) for all x,y €R (6 satisfies the product rule).

Let R be a ring with derivation 6. Form R[x; ], the set of left polynomials with coefficients in R with the rule
that xr — rx = 6(r) for all r € R. Notice that if 6 the zero map then R[x;6] =R[x].

4.16 Lemma. x"a =}, (1)5"(a)x", where §°(a) = a.
Proor: By induction on n. When n =1, xa = ax + &(a). Suppose that the result holds for some n > 1.

x"a = x"(ax + 6(a))

( ( )5 (@)x™ k)x+2( )5’<(5(a))xn—’<
k=

n+1
)5 (a)x(n-H) k+2( )5k(a)xn—k

n

0
20
n+1
()
k=0
n+1
— (Tl 1)5k(a)x(n+l) k
k=0
by Pascal’s identity. |

4.17 Definition. A derivation is inner if there is ¢ € R such that §(r) = cr — rc =: 6.(r).
If 5 = &, is inner then x — ¢ € Z(R[x; 6]) since
(x=c)r—r(x=c)=(xr—-rx)—(cr—=rc)=6((r)—6(r)=0

We can write any polynomial as a polynomial in (x —¢), so R[x; 6] = R[t]. fR=A[y] and §(y™) = ny™ ! then
6 is not inner. Indeed, y commutes with everything in R even if A is not commutative, so cy — yc = 0 for all
ceR,buté(y)=1#0.

The Weyl algebra is constructed by taking R = Q[y] and & as above. Itis R[x; 6] = Q(x,y)/{xy —yx —1).

4.18 Theorem. Let A be a Q-algebra and & a derviation on A. Then R = A[x; 6] is simple if and only if the
following hold:

1. A is 6-simple (which means that if J <A such that 6(J) CJ thenJ =0 orJ =A).
2. 6 is not inner.

Proor: If & is inner then R = A[t], which is not simple since {(t") | n > 1} is a collection of distinct ideals. If
0 # J < Ais a proper ideal such that §(J) € J then J[x;8] := {d_.r;x' | r; € J} is a proper non-zero ideal of
R. Indeed, if r € J then xr = rx + 6(r) € J[a; 6], which shows that RJ[x;6] C J[x;6], and if a € A then
rx"a =r(Q_, (Z)5k(a)x”_k) € J[x; 5] by Lemma 4.16, which shows that J[x;6]R C J[x;5]. Therefore the
two conditions are necessary.
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Conversely, suppose that 0 # I < R. Let n be the smallest degree of a non-zero element of I. Let
J =1{0,a €A| ais a leading coefficient of p € I with degp = n}

J is a left ideal of A since left multiplication of a polynomial does not change its degree. J is a right ideal
by Lemma 4.16. Furthermore, §(J) € J since for any a € J there is p = ax" + a,_; +--- € I, and we have

5(a)x™ + 6(a,_1)x" ' +--- = xp — px € I. Hence J is 5-simple, and so by assumption we have that J = A.
Therefore p = x" +dx" ' +--- €. Forall a € A (54(a) —né(a)x" )x" ! + ... = ap — pa € I, which implies
that ap — pa = 0. Therefore 6(a) = %5d(a) = 5§(a), so 6 must be inner. Since we are assuming that this is not
the case, R must be simple. |

4.19 Corollary. Let A be a Q-algebra and & a non-inner derivation. If A is simple then R = A[x; 6] is simple and
not Artinian.

Proor: Clearly A being simple implies that A is 6-simple. 6 is not inner, so R is simple by the above Theorem.
R2Rx 2Rx? 2--- is a decreasing sequence of ideals, so R is not Artinian. O

5 Primitive Rings and Density

5.1 Definition. A ringR is called (left) primitive if there exists a faithful irreducible left R-module. An ideal A< R
is a primitive ideal if A= ann(M) for some irreducible R module M (so that R/A is a primitive ring, with faithful
irreducible left module M).

Remark. Primitive rings are semiprimitive since if M is a faithful irreducible left R-module then ann(M) = 0 so
J(R) = 0. We can reformulate the definition of the Jacobson radical as the intersection of all of the primitive
ideals.

5.2 Proposition. IfR is simple and left Artinian then R is primitive.

Proor: Since R is left Artinian it has minimal left ideals. Let M be one of these ideals, so that M is also an
irreducible left R-module. ann(M) < R and the containment is strict by definition of ideal, so ann(M) = 0 since
R is simple. Therefore M is a faithful module. O

If M is an irreducible left R module then there is 0 # m € M such that Rm = M. So if n € M then there is
r € R such that rm = n. We say that R acts transitively on M. For example, if R = M, (C) acts on C", then we
can send any non-zero vector to any other with a linear transformation. But we can do much better, in fact we
can move any linearly independent set of n vectors to any other linearly independent set of n vectors. By Schur’s
lemma we know that D = Endgz(M) is a division ring, so ,M is a D vector space, with R — Endz(M). This will
become important later on.

5.3 Definition. Let R be a ring, M an irreducible R-module, and D = Endgz(M). We say that R acts densely on
M if foralln e N, if v;,...,v, € M are D-linearly independent and wy,...,w, € M then there is r € R such that
rv;=w; foralli=1,...,n.

5.4 Theorem (Density Theorem). Let R be a primitive ring, M a faithful irreducible left R-module, and D =
Endg(M). Then R acts densely on M.

Proor: First we must prove a small lemma.

Claim. If V C M finite dimensional D vector space then for any m € M \ V there is r € R such that rV = 0 and
rm # 0.
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Proceed by induction on dimy, V. If V is the zero vector space then r = 1 is sufficient. Assume the claim holds
for all W € M with dim, W < n. Decompose V =V, + Dv and let A= {r € R | rV; = 0}, a left ideal of R. We are
looking for a € A such that av = 0 and am # 0. If we can find such an a then we are done. Suppose otherwise.
It follows that av = 0 implies am = 0 for all a € A. By the induction hypothesis Av # 0, and it is a submodule of
M since A is a left ideal of R. Therefore Ay = M = Am since M is irreducible. Then let ¢ : M — M be defined by
p(av) = am for all a € A. Then ¢ is well-defined. For any r € R ¢(rx) = ¢(rav) = ram = re(am), so ¢ is a
module homomorphism. Therefore ¢ € Endg(M) =D and 0 = ¢(av) —am = a(¢(v) —m for all a € A. Again by
the induction hypothesis, ¢(v) —m € V. But then m € span,{V}), v} = V, a contradiction.

Given v, ..., v, linearly independent there are a; € R such that a;v; = 6, ;v; for all i,j = 1,...,n. Now Raq;v;
is a non-zero submodule of M, so it is all of M. Hence there is r; € R such that r;a;v; = w;, for any w; € M. Let
rzzzl:l ria;. Then rv; =w; fori=1,...,n. O

5.5 Definition. If D is a division ring and R is a D-algebra then there is a D vector space M such that R C
End,(M). We say that R is transitive if for all v # 0,w € M there is r € R such that rv = w. R is doubly transitive
if for all v;, v, and w;, w,, linearly independent pairs in M there is r € R such that rv; =w; fori =1, 2.

5.6 Corollary. IfR C End, (M) is doubly transitive, then Endz(M) =k and R acts densely on M.

5.7 Corollary. Let R be a primitive ring, M a faithful irreducible R-module, and D = Endgz(M). Then one of the
following holds:

1. R M,(D)
2. For alln > 1, there is a subring S,, C R and an epimorphism S, — M, (D).

Proor: Let n =dimj M. There are two cases:

1: If n < oo then p,M has a basis v,...,v,. We have already seen that R — Endz(M) and R commutes with
Endz(M) = D, so R — Endp(M). For any wy,...,w, € M there is r € R such that rv; = w; since R acts
densely on M. Hence R € End,(M) = M,(D) CR.

2: If n = oo then choose a linearly indpendent sequence v;,v,,... and let V; = spanp{vi,...,v}. Let S, =
{reR|rvV, € Vi}and T = {s € S; | sV, = 0}. Then T, < S and S, /T, — End,(V,). For any A € End(V,),
let w; =Av; fori =1,...,k. The Density theorem gives r € R such that rv; =w; fori =1,...,kand rv; =0
for i > k, so r € S; and the inclusion map is onto. |

5.8 Theorem (Artin-Wedderburn). If R is simple and Artinian then there is a division ring D such that R =
M, (D). Furthermore, D and n are uniquely determined.

PrRoOOF: R%2 =R, so J(R) # R, therefore J(R) = 0. R is simple, so it is primitive. Let M be a faithful irreducible
R-module. By Corollary 5.7, either the theorem is proved or M is infinite dimensional over D = Endgz(M). If the
latter, pick v;,v,,... linearly independent and let L, = {r € R| rv; =0 fori=1,...,k}. Then L; G L, because
by the Density theorem there is r € R such that rv; =0 fori =1,...,k and v, = Vx,1. Then L; is a descending
chain of ideals, contradicting that R is Artinian.

Therefore R = M,,(D), where D = Endi(R) and n? = dimp(R). For uniqueness, you will just have to wait. O

5.9 Theorem (Artin-Wedderburn Structure Theorem). Let R be Artinian and semiprimitive. Then R is isomor-
phic to a finite direct sum of matrix rings over division rings, M, (D1) @ --- @ M,, (D), and this decomposition is
unique.
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Proor: We showed earlier that R is the direct sum of finitely many simple Artinian rings. Applying the Artin-
Wedderburn theorem for simple rings, we get the result.

To prove uniqueness, suppose that R =R; @ - -+ @ R,,, where R; = Re; for some minimal idempotent e; = e? €
Z(R).If f = f*€ Z(R) is minimal, then f = f1=f(e; +...e,) =fe; +---+ fe, and (fe;)* = f2e? = fe;. Since
f is minimal, there is i, such that f = fe; <e; and fe; =0 for all j # iy. Since e; is minimal, f =e¢; . It follows
that the minimal central idempotents from the matrix decomposition correspond the e;’s, so this decomposition
is the same. O

5.10 Corollary. If k is an algebraically closed field and R is a finite dimensional semiprimitive k-algebra then
R=M, (k)& --& M,,(k)

5.11 Example. Let G be a finite group and let R = CG. Then R is semiprimitive by Rickhart’s theorem, and R is
Artinian because dim¢(R) = |G| < 0.

1. If G is Abelian, then R is commutative. M,(C) is commutative if and only if n = 1, so R = C/°|. Thus there
are |G| idempotents ey, ..., e with R = }_, Ce;. For each i we get a group homomorphism y; : G — T :
g — ge;. G =Hom(G, T) is called the dual group.

2. Let G=6;=(0,7|0®=12=1,707 = 02). Now dim(C&;) = 6 and we know CS, is a direct sum
of matrix rings, so we must be able to write 6 as a sum of squares. Since 6=14+14+14+14+1+1 and
6 = 1+ 1+4 are the only ways of writing 6 as a sum of squares, either C&; = C® or C&; = C® C M,(C).
The later must be correct since CS5 is not commutative. The normal subgroups are 0, (o), and G5, so
the only possible maps from G4 into T are the trivial map and the sgn map. These correspond to the one
dimensional factors.

5.12 Theorem (Maschke). Let G be a finite group and k a field of characteristic p. Then kG is semiprimitive if
and only if p does not divide |G|.

Proor: dimy(kG) = |G| < oo, so kG is Artinian. It follows by Theorem 4.3 that J(kG) is nilpotent. Assume
that x € J(kG) is non-zero, so that x;, # 0 for some h € G. Then h™'x = x,e + Deh x,(h™'g) € J(kG). But
kG — End, (kG) = M| (k) via the left regular representation. Now {A, | g € G} is a basis for this representation,
and Tr(A,) = 6,,|G|. Therefore Tr(A;-1,) = x;|G| # 0 since p { |G|. But nilpotent elements always have trace
zero, so this is a contradiction.

Conversely, suppose that p | |G|. Let a = dec g € Z(kG). Then a? = |Gla = 0 in k. Observe that Ra is

nilpotent since (Ra)?> = RaRa = R?a? = 0, so Ra C J(kG) since Ra is a nilpotent 2-sided ideal. O

5.13 Theorem (Wedderburn). IfA is a finite dimensional algebra over an algebraically closed field k, and A has
a basis of nilpotent elements, then A is nilpotent.

Remark. 1. This algebra need not have an identity. If A does not have an identity then the unitization of A is
A, =k®A. A, has a unit and A< A;.

2. We don’t actually need k to be algebraically closed for this theorem to hold, but without this the proof
requires some ideas that we haven’t covered yet.

PrOOF: A is Artinian, so J(A) is nilpotent. If J(A) = A then we are done. Otherwise A/J(A) is a non-trivial
semiprimitive Artinian ring. The homomorphic image of a nilpotent element is nilpotent and the image of a
spanning set is a spanning set, so the quotient also has a basis of nilpotent elements. By the Artin-Wedderburn
Theorem, A/J(A) = M, (k)®---® M, (k). We may take further quotients onto M,, (k), which will have a basis of
nilpotents. But nilpotents always have trace 0, contradicting that there are elements of M, (k) with trace other
than zero. O
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5.14 Proposition. Let G be a finite p-group and k an algebraically closed field of characteristic p. Then J(kG) =
{deG xgg | ZgEG Xg = 0}

Proor: Let I be the right hand side of the above equation. I is an ideal. Indeed, for any x € I and y € kG,
Xy = deG D nec(Xgyn)gh and deG e (X Vi) = Dipeg Y dec x, = 0. Thus xy € I, and similarily yx € I.
As [ is defined by a linear condition, I +1 € I. Observe that I = span{g —e | g € G\ {e}} since x € I implies
x = Zg# X, (g —e)+ Zg# xge+ x.e, and the two right summands add to zero since x € I. (g — e)Pk = gpk —e
for any k since we are working in characteristic p, so taking k such that |G| = p* we see that (g — e)Pk =0, so
g — e is nilpotent. Therefore I is spanned by nilpotents, so by Theorem 5.13, I is nilpotent. Therefore I € J(kG).
But I has codimension one, that is, kG =k @ I, so since J(kG) is a proper ideal we must have J(kG) =I. O

6 Semisimple Modules

6.1 Definition. An R-module M is called semisimple if every submodule N € M is a direct summand. That this,
there is another N’ € M such that M = N & N’

6.2 Proposition. If M is semisimple then every submodule and every quotient module is semisimple.
6.3 Lemma. If M is a non-zero semisimple left R-module then M has an irreducible submodule.

Proor: Take 0 # m € M. Let ¥ be the set of all submodules that are contained within Rm but do not contain m.
& is not empty since it contains the zero module. By Zorn’s Lemma % has a maximal element Ny. Rm = N, ®N’,
and N’ is irreducible. (If not then there is 0 # N” & N’, and Ny ® N” 2 N,,. By maximality Rm € N, @ N” € Rm,
so N = N’, a contradiction.) O

6.4 Theorem. Let M be a left R-module. The following are equivalent:

1. M is semisimple.
2. M is the direct sum of some irreducible submodules.
3. M is the sum of all of its irreducible submodules.

Proor: Suppose M is semisimple. Let M; be the sum of all irreducible submodules of M. If M; # M then
M =M, & Mj, and M; is semisimple so it contains an irreducible submodule which should have been added to
M;. Therefore (i) = (iii) and (ii).

On the other hand, suppose that M is the sum of all of its irreducible submodules. Let N € M be an irreducible
proper submodule. We will find N’ € M that is a direct sum of irreducible modules such that M = N & N’. Let

S = {S is a collection of irreducible submodules | Z L is direct, and Z LNN = O}
Les Les

Order & by inclusion and apply Zorn’s Lemma. If 6 is a chain in # then let S; = | J6. Then S, is clearly
an upper bound for 6. Furthermore S, € % since each of these properties is algebraic (that is, finite), so if S,
were to fail to be in & it would have to have failed at some finite stage. Let S be a maximal element of & and
N'=) ;L. Let M; =N @®&N’. If M; # M then we can find an irreducible submodule L such that L ¢ M;. Then
LN M; =0 since L is irreducible. Therefore M; + L =M; ®@L =N & (N’ & L), a contradiction because N’ & L is a
direct sum of irreducibles and NN (N’ ® L) =0, but N & L g N’, which contradicts maximality. Therefore M is
semisimple. O

6.5 Definition. A ring R is (left) semisimple if zR is a semisimple R-module. In less obfuscated terms, R is
semisimple if for every left ideal I of R there is a left ideal J of R such that R=1&®J.
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6.6 Corollary. IfR is a left semisimple ring then every left R-module is semisimple.

Proor: If M is a left R-module then M = ZmeM Rm, so given Theorem 6.4 it suffices to prove the result for cyclic
modules. But Rm = R/N, where N = {r € R | rm = 0}. So R semisimple implies that Rm is semisimple, which

implies that Rm = )1 iredL, 0 Rm is semisimple. Therefore M = ZmeM Rm is semisimple. a
LCRm

6.7 Lemma. Let D be a division ring and R = M, (D). Then every irreducible R-module is isomorphic to gD",

the n dimensional vector space over D with R acting by matrix multiplication on the left. Therefore M,(D) has a

unique class of irreducible modules.

Proor: Let M be an irreducible R module. If 0 #2 m € M then M = Rm = R/N, where N is the left ideal
{r € R| rm = 0}. R is Artinian and semiprimitive, so there is e = e? € R such that N = Re. Then M = R/N =
R/Re 2 R(1—e). Let f =1—e, so f = f2 and Rf is irreducible and therefore a minimal left ideal. R acts
transitively on RE; ; = zD", so RE;; is an irreducible R module. ann(RE;;) = 0 since R is simple, so fRE; ; # 0.
Pick r € R such that frE; ; # 0. Define ¢ : Rf — RE; ; : x — xr,fj. Clearly ¢ is an R-module map. ker ¢ G Rf,
so ker ¢ = 0. Similarily, ¢ is onto, so ¢ is an isomorphism. |

6.8 Corollary. IfR = M, (D) then D and n are unique.
This corollary finishs the proof of the Artin-Wedderburn Theorem.

Remark. If R = M, (D), then xR = >."_ RE;;. We get a composition series {Z{=1REi,i}}l=1: where the factors
are RE; ;, which are irreducible. The Jordan-Holder Theorem implies that every composition series has the same

factors.

6.9 Corollary. IfR=M, (D,)®---®M, (Dy), where the D;’s are division rings then R has k isomorphism classes
of irreducible modules, namely D?i as a module over e;R, where e; is the minimal central idempotent projecting
onto the i™ summand.

6.10 Theorem. LetR be a ring. The following are equivalent:

1. R is left semisimple.
2. gR is a finite direct sum of irreducible left R-modules.
3. R is left Artinian and semiprimitive.

The right analogues are also all equivalent. We call such rings semisimple.
Proor: Exercise. Use the Artin-Wedderburn Theorem and the corollaries and remark above. O

6.11 Theorem (Hopkins-Levitzki). IfR is a ring then R is Artinian if and only if

1. R is Noetherian
2. J(R) is nilpotent
3. R/J(R) is semisimple

ProorF: If R is Artinian then we have already shown that J(R) is nilpotent and that R/J(R) is Artinian and
semiprimitive. It follows that R/J(R) is semisimple.

Assume that R satisfies (ii) and (iii) and that R is either Artinian or Noetherian. We will show that R has a
composition series, and so by the Jordan-Holder Theorem R is both Artinian and Noetherian. Write J = J(R).
ThenR > J > J% D --- D J" = 0 for some n, by (ii). It suffices to find a composition series for each J*/Jk+1,
k=0,...,n—1. But J*/J**! is a module over R/J because for x € J*, (r +J)(x +J*1) = rx +J**!. Therefore
J¥/Jk+1 is semisimple and hence a direct sum of irreducibles. Since R is either Artinian or Noetherian, this sum
must be finite. Therefore each J*/J**! has a composition series, so R has a composition series. O
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6.12 Example. Let A= {% € Q| nis odd}, a commutative ring. If 0 # I <1 A, let k be the smallest integer such

that 2 € I. Then 2FAC I, and if a € I \ 2kA then a = % where m = 2!m, with m, odd and I < k. But then

2l = mla € I, a contradiction. Therefore I = 2A and A is Noetherian. A g 2A g 4A g -+ is a decreasing chain of
0

ideals, so A is not Artinian. If a € 2Athen a = 27’“, sol—a= % € A*, since n—2m is odd. Therefore J(A) = 2A.

J(A)k = 2kA, which is not nilpotent, but A/2A = Z, is a field, so it is semisimple.

6.13 Theorem (Levitzki). Let R be a Noetherian ring. Then R contains a largest nilpotent ideal, and it contains

every left or right nil ideal. (So nil ideals in a nilpotent ring are nilpotent.)

ProoF: Let & = {nilpotent ideals of R}. Since R is Noetherian & has a maximal element N,. If N; is another

nilpotent ideal, say le ' =0and N: ¢ = 0. Form N; +N,, a nilpotent ideal of R. Indeed, (N; +N,)** € le '+Ny =Ny

since N is an ideal. Ny € N; + Nj and N is maximal, so this containment is an equality, implying that N; € Nj,.
Let A be a left or right nil ideal of R. Factor out by N, to get A, a left or right nil ideal of R. We would like to

show that A= 0, so that A C N,. Suppose not, and let 0 # a €A.

Claim. aR is a right nil ideal

If A is a right ideal then aR C A is nil. If A is a left ideal then for any r € R, ra € A and so nilpotent of order k.
But then (ar)**' = a(ra)*r =0, so aR is nil.

For each b € aR, let L(b) = {r € R | rb = 0}, a left ideal of R. Let ¥ = {L(b) | 0 # b € aR}. Since R
is left Noetherian ¥ has a maximal element L(b,). For all r € R, L(br) 2 L(b), for any b € aR. But for by,
either L(byr) = L(by) or byr = 0. For any r € R, byr € aR, so there is k such that (byr)* = 0 # (byr)*™! or
byr = 0. In the first case, byr € L(byr)~! = L(by), so byrby, = 0 (clearly this holds in the other case as well).
Therefore byRb, = 0, but 0 # RbyR < R is a nilpotent ideal of R. This is a contradiciton because we factored out
the nilpotent ideals long ago! O

7 Tensor Products

7.1 Definition. Let k be a commutative ring (as it will be for the rest of this section. The important cases are
for k field or Z.) Let V,W be k-modules and let X = P, ,,\cy xw kv @ w, the free module over k with generators
{vow|veV,we W} Let X, be the submodule generated by

{favow)—(av)ow,a(vow)—vo(aw),,ow+v, 0w —(v; +v,) Ow,
VOW, +vOWw,—vO (w;+wy)|ack,v,eV,w,eW} (1)
Define the tensor product of V and W (over k) as V ®, W := X /X, and write v Qw = [v @ w].
7.2 Definition. A k-bilinear map of k-modules f : V x W — P is a map that is linear in each coordinate.
7.3 Example. By construction of V® W, the mapi:VxW -V QW : (v,w) — v ®w is bilinear.

7.4 Proposition (Universal Property of Tensor Products). If V and W are k-modules then there is a unique
pair (M, j) consisting of a k-module M and a map j : V x W — M bilinear such that whenever (P, f) is a pair
consisting of a k-module P and a bilinear map f : VX W — P

VXW =M
J{f
LA
p
And this unique object is (V @ W, i).
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Proor: For existence, we have the diagram

Define F : X — P by F(v ®©w) = f(v,w) and extend by linearity. It is easy to check that ker F 2 X, by definition
of X,. Therefore there is a unique map f : V® W — P such that F = f oq. Then f(i(v,w)) = f(v®w) =
f(q(v ow))=Fvow)=Ff(v,w), so foi =f since {v®@w |veV,weW} generates V@ W.

For uniqueness, suppose that (M, j) is another such pair (we have already seen that the pair (V®W, i) works).
Chase this diagram for the result.

R TH
w O
7.5 Proposition. Letk be a field and V and W be k-vector spaces. Let {v;};c; SV and {w;};c; € W, respectively.
Then

1. IfV = span{v;} and W = span{w;} then V @ W = span{v; ® w;}.
2. If{v;} and {w;} are linearly independent then {v; ® w;} is linearly independent.
3. If {v;} and {w;} are are bases then {v; ® w;} is a basis.

Proor: Exercise. O

7.6 Example. Let n,m € N such that gcd(n,m) = 1. Then Z/nZ ® Z/mZ = 0. Indeed, the Euclidean algorithm
says that there are a, b € Z such that an + bm = 1. For any v € Z/nZ and w € Z/mZ we have

vw=(1v)®w=(an+bm)v@w =a(nv)®w + (bv) @ (mw) =0
7.7 Proposition. Ifk is a commutative ring and V, W, X are k-modules then

1. k®VV

2VOWEWRV

3. (VW)X 2V e(WeXx)

4. (VOW)®X X (VeX)d(WeX)

Proor: Exercise. (iv) will be done as an example. Consider the following commutative diagram:

VOW)xX — = (Vew)®X

Vex)eWex)

where j((v,w),x) = (v®x,w®x) and h(v®x,w®x) = (v,w)®x. Then hojoi = idyew)ex 1, SO by uniqueness
hoj= idyewex- ] is surjective so j is as well, whence j is right invertible and bijective. O
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7.8 Proposition. Ifk is a field and A and B are k-algebras then A® B is also a k-algebra, with
(a; ® by)(a; ® by) = (a;a;) ® (byby)

Proor: A® B is a k-modules, so we only need to find a multiplication. For a € A, b € B, consider the following
commutative diagram attempting to define right multiplication by a ® b:

AxB—'>A®B
fl o ETN
A®B

where f(a;, b;) = (a;a) ® (b;b), which is clearly bilinear. Next consider the following diagram which defines
multiplcation in general:

AxB—'—>A®B
l 4 AF
End,(A® B)

where F(a, b) = F, ;. Hence multiplication is defined by

(a; ® by)(ay ® by) = (F(ay, by))ay, by) = (aya,) ® (b1 b,)
By the properties of the endomorphism ring, we are done. (Check this.) O

Notice that A and B embed in A® B in such a way that they commute. In fact, A® B is called the universal
algebra containing A and B as commutative subrings.

7.9 Example. 1. k[x]®k[y] =k[x, y] via the homomorphism x ® y — xy.
2. A® M, (k) = M, (A) by considering the standard basis of M, (k) and multiplication on it.

3. C®z C =span{l,1®1i,i®1,i ® i}, a 4-dimensional commutative R-algebra. Notice that e = w is
idempotent. Let j = e(i ® 1), so that j2 = —e. Then it is easy to see that eC ® C = span{e, j} = C.

Similarily, (e = 1)C®z C=C,s0 CQzC=C®C.
4. Ifkis a field and K is a field extension and A is a k-algebra, let Ay = K A a K-algebra. If {q;},; is a basis

of A then {1 ® a;};¢; is a basis Ay that acts the same in terms of multiplication. (Indeed, if a;a; = > ca;
then (1 ® al')(l ® aJ) =1Q® ch’ai = Zci(l ® al').)

7.10 Theorem (Generalized Wedderburn). IfA is a finite dimensional k-algebra, where k is a field, and if A has
a basis of nilpotents then A is nilpotent.

ProorF: Let K be the algebraic closure of k. Then Ai has a basis of nilpotents (the embedded basis of A), so it is
nilpotent by Wedderburn’s Theorem. Since A embeds into Ag, A is nilpotent. |

7.11 Definition. A k-algebra A is central if Z(A) =k.

7.12 Example. 1. M, (k) is central and simple.
2. The quaterion ring H is central (over R) and simple. Indeed, H = span{1,i,j,k} with ij = k = —ji and
i2=j2=k*=—1. If x = a+ bi +cj + dk € Z(H) then in particular, ix — xi = 0, so 2ck — 2dj = 0, and
hence ¢ =d = 0. Similarily 0 = jx — xj so b =0 and x € R.
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7.13 Lemma. Let A and B be k-algebras with B central and simple. If 0 #J <A® B then J NA# 0.

Proor: Amoung the non-zero elements of J, pick an element z = Zle a; ® b; € J such that £ is minimal. Then

{ay,...,a,} is linearly independent since ¢ is minimal. B is simple, so Bb,B = B. Hence there are x;, y; € B such
k

that 1 = ijl x;byy;. Then z’ := Z;{:l(l ®x)z(1®y;) € J.
¢k ¢ k ¢
Z=> > (18x)q®b)1®y)=> 4,8 x;by;= > ;8D
i=1 j=1 i=1 =1 i=1
Now b} =1 so 2" # 0 since the a;’s are linearly independent. For all b € B, J contains
¢ ¢ ¢
(1®b)' —z(18b)=» (1®b)(a;®b)) —(a;®b)(A®b) = > a; ® (bb] — bb) = > a; ® (bb — b/b)
i=1 i=1 i=2

If, for some b € B and some i, bb; — b;b # 0 then J contains a non-zero element which is representable as a sum
of less than { terms. This is a contradiction. Therefore b; € Z(B) =k for each i, so

Ogéz’:ze:ai@b{: (z[:aibf) ®1lcA
i=1

i=1

7.14 Theorem. Let A and B be k-algebras with B central and simple. Then

1. every ideal of A® B has the form I ® B, where [ < A.
2. Z(A®B)=Z(A) k= Z(A).

Proor: LetJ <AQ®; B and let I =J NA, so that I ® B CJ. Consider the canonical projection
q:A®B— (A/I)®B:a®b—a®b

Choose a basis {x;};c; for I and extend it to a basis {x;};cg U {y;};cy for A. If z € A® B then there are b;,c; €B
such that z = D x; ® b; + >, y; ® ¢; and q(z) = >, y; ® ¢;. But {y;} forms a basis of A/I, so q(z) = 0 if and
only if ¢; = 0 for all j € J. Therefore ker(q) = I ® B. q(J) < (A/I) ® B, so apply Lemma 7.13 and find
qU)NA/I=q(JNA)=q(I)=0,s0q(J)=0andJ =1 ®B.

Suppose that x = Zle a; ® b; € Z(A® B), where we may assume that the a;’s are linearly independent. By
the same argument as in Lemma 7.13, b; € Z(B) = k for each i. It follows that x € Z(A) ® 1 = Z(A). O

7.15 Corollary. IfA, B are both central and simple k-algebras then A® B is a central simple k-algebra.
7.16 Proposition. Let D be a central division ring over k such that dimy, D < co. Then dimy, D is a square integer.

Proor: Let K be the algbraic closure of k. Form Dy = K ®, D. Then dimg Dy = dimy D. D is a simple finite
dimension algebra over K. By the Artin-Wedderburn Theorem, Dy = M, (K). |

7.17 Corollary. IfA is a finite dimensional central simple k-algebra then dim, A is a square integer.

Proor: The Artin-Wedderburn Theorem implies that A = M, (D) for some finite dimensional division ring D over
k. Then Z(A) = Z(D) =k so dimy D = n? and hence dim; A = (kn)?. O

7.18 Example. Try out these results with D = H.
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7.19 Theorem. IfA is a finite dimensional central simple algebra over k of dimension n? and A is its opposite
algebra then A®, A%’ = M,2(k).

Proor: Endy(A) = M,:(k). Embed A in End(A) by left multiplication and embed A°? in End(A) by right multipli-
cation. Left and right multiplication commute, so by Assignment 3, question 5, there is a unique homomorphism
¢ from A®, A®® into End(A) such that ¢(a ® b) = L R;. Since A and A% are central and simple, so is A ®; A°®,
and so ¢ is 1-1.

dimy A ®, A°? = (n?)(n?) = n* = dim, End(A)

Therefore ¢ is onto as well, so ¢ is an isomorphism. a

7.20 Definition. Put an equivalence relation ~ on the finite dimensional central simple k-algebras by defining
A ~ B if there exists m,n € N such that A® M,,(k) = B ® M, (k). Put a multiplication on the equivalence classes
by [A][B] = [A® B]. Let B(k) denote the set of equivalence classes with this multiplication. This is called the
Brauer group.

7.21 Theorem. Multiplication on B(k) is well defined and B(k) is an Abelian group with this multiplication.
Proor: If A; ~ A, and B, ~ B, then A; ® M,,, (k) = A, ® M,,,(k) and B, ® M,, (k) = B, ® M,, (k). Hence
(Al ® Bl) ® Zwmlnl %Al ® Bl ® IVIml ® Mnl = (Al ® Mml) ® (Bl ® Mnl) = (AZ ®B2) ® Zwmzn2

so the multiplication is well defined. It is commutative and associative because the tensor product is commutative
and associative. The identity element is [k] because A® k = A. By the last theorem, the inverse of [A] is [A°P].
Therefore B(k) is a group. O

Note that every element of B(k) has the form [D] for some finite dimensional division ring D over k since
A= M, (D) implies that [A] = [D].

7.22 Example. If k is algebraically closed and A is a finite dimensional central simple k-algebra, then by the
Artin-Wedderburn Theorem A = M, (D) for some division ring D over k, with dim, D < oco. Therefore [A] =
[M, (k)] = [k], so B(k) = 0.

7.23 Lemma. Let D be a finite dimensional division ring over a field k and k € K € D be a subfield. Then
C(K) = K if and only if K is a maximal subfield of D. (C(K) is the centralizer, all of the elements of D that
commute with everything inK.)

7.24 Theorem. Let D be a finite dimensional division ring over k of dimension n. Let K be a maximal subfield
of D. Then Dy := D ®, K = M, (K) and dim, K = n = 4/dim; D.

PrOOF: Dy is simple since it is the tensor product of simple algebras. dimy Dy = dim, D = n?, so

Dy 2D ®, K € D ® D 2 Endy (D) = M, (k)

Find Endj, (D). D is an irreducible D module, so it is an irreducible Dy module. Take T € Endy (D) such that
T commutes with Dg. Let t = T1 € D. Then T is right multiplication by t. D < End; (D) by left multiplication.
K — Endy (D) by right multiplication. Conclude that Endp, (D) = K = Z(Dg). Dy simple Artinian implies that
Dy = M,,(K) for some m.

(This is not complete.) O

7.25 Theorem (Noether-Skolem). Let R be a finite dimensional central simple k-algebra, A be a simple k-
algebra, and ¢, 5 : A — R be algebra homomorphisms. Then there is r € R* such that ¢,(a) = ry,(a)r™?
for all a € A.
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Proor: R = M, (D) for some division ring D, and Z(R) = Z(D) = k. A is simple, so ¢4, p, are 1-1. Therefore
dimy A < dimy R < 00. A®y D is also simple, so extend ¢; to a D-linear map ¢; : A® D — R. Let V be an n
dimensional D-module, so that R = Endj (V). Make V into an A® D module in two ways, via a - v = g;(a)v for
i=1,2. A® D is simple and Artinian, so it is semisimple. Therefore is has a unique irreducible module W, and
V; = (V, ;) decomposes as a sum of copies of W.

dimpV;  n
dimpW  dimp W

# of copies =: p; =

Therefore p; = p,, and note for reference that dim, W | dimp, V;. Therefore V; = V, as A® D modules, so there
is T : V; = V, D-linear. Hence T(p;(a)v) = @,(a)T(v) foralla€ A®D,ve V. T € Endp(V) =R and T is an
isomorphism, so it is invertible. O

7.26 Corollary. Take R = M, (k) and A = M,,(k). Then there exists a homomophism ¢ : A — R if and only if
m | n. If is another such homomorphism then there is T € M, (k) such that TT ! = 1.

Proor: Take V =k"™ and W =k™ in the proof above. O

7.27 Corollary. IfR is a finite dimensional central simple k-algebra then every k-linear automorphism of R is
inner.

Proor: The identity map is an automorphism, and any automorphism is similar to the identity map. O
7.28 Corollary. IfR is a finite dimensional central simple k-algebra then every k-linear derivation of R is inner.

ProoF: Let & be any derivation on R. Note that M,(R) is also a finite dimensional central simple k-algebra. Let
01 :R—>My[R):a— (42) and ¢, :R— My(R) :a — (g E(Ha)). Then

oo(@)pq(b) = (aob a5(b);2)5(a)b) _ (aOb SEIabb)) — ,(ab)

By the Noether-Skolem Theorem, there is T € M,(R)* such that Tp;(a)T ™! = p,(a) for all a € R. Suppose that
T = (Y %) and take it from there. O

7.29 Lemma. IfG is finite group and H < G then Ugec gHg ' #G.

Proor: Let N(H) be the normalizer of H, a subgroup of G. The number of conjugates of H in G is [G : N(H)] <
[G:H]
G|

<[G:NEI(HI -1 < [G:HI(H| =1 =G| = — # |G \ {e}]

‘ s\ fehe™ i

geiG

unless H = G. O

7.30 Theorem (Wedderburn’s Little Theorem). Every finite division ring is a field.

ProoF: Let D be a finite division ring. k = Z(D) is a finite field, say of characteristic p > 1. Suppose dim, D = n?.

Let K be a maximal subfield of D, so that dim, K = n and dimy D = n. If d € D \ k then k(d) is a subfield of
D, so it is contained in some maximal subfield L. Since dimy L = n as well, |K| = |k|" = |L|, so K = L. By the
Noether-Skolem Theorem there is d € D such that dKd ™' = L. In particular, | J,., dK*d~' = D*, a contradiction
to Lemma 7.29 a

7.31 Corollary. Ifk is a finite field then B(k) = 0.



REPRESENTATIONS OF FINITE GROUPS 27

7.32 Theorem (Frobenius). Let D be a finite dimensional division ring which is an algebra over R. Then D €
{R,C, H}.

Proor: If D is a field that is algebraic over R, then D =R or D = C because C is the algebraic closure of R and
any algebraic extension of C is just C. Suppose that D is noncommuting. Choose a maximal subfield R € K C D,
so K =R or K =C. If n =dimg K € {1,2} then dimy D = n? € {2,4}. D is noncommutative, so dimp D = 4 and
K = C. Z(D) is a field containing R. If Z(D) # R then pick d € D\ Z(D). Z(D)(d) is a Z(D) vector space of
dimension at least 2, hence of real dimension at least 4. It follows that the dimension is 2 and D = Z(D)(d), a
commutative ring. Therefore R = Z(D).

Conjugation gives a real linear algebra automorphism of K = C. Since D is central simple and K is simple,
the Noether-Skolem Theorem implies that there is d € D such that z = dzd~!. In particular, di = —id and so
d?i = id?, so d®> commutes with {R,i,d}, which implies d € K, since K is equal to its centralizer. i does not
commute with d, so d?> € R. If d? > 0 then d is a root of x? — d? = 0 in R(d), which would implies that d € R.

Hence d? < 0. Let j = \/d_dz and k =ij. Then D = spang{1,i,j, k} and it can been seen that D = H. O

7.33 Corollary. B(R) = C,

8 Representations of Finite Groups

Though we will only consider complex representations, most of the results in this section hold for any alge-
braically closed field k such that the characteristic of k does not divide the order of the group.

8.1 Definition. A representation of a finite group G is a pair (V, ¢), where V is a finite dimensional complex
vector space and ¢ : G — End(V) is a group homomorphism with ¢(e) = I,.

There is a unique way to extend (V, ¢) to a homomorphism ¢ : CG — End(V), namely linearly. The linear
extension is obviously linear, and it is multiplicative because it is multiplicative on the elements of the group.
Therefore V is a CG-module. Conversely, given a CG-module we can obtain a group representation by restricting
the scalar multiplication to only the elements of the group.

We already know a lot about CG and its modules. By Maschke’s Theorem (or Rickhart’s Theorem), CG is
semiprimitive. If G is finite then CG is Artinian and hence semisimple. By the Artin-Wedderburn Theorem, since
C is algebraically closed, CG = M,, (C) & --- & M, (C), for some positive integers n, ..., n. It follows that V is
a semisimple module, so it decomposes as a direct sum V = Vfl DD th" of irreducible submodules (V;,);),
where V; = C" with M,, (C) acting on V; by matrix multiplication.

One may begin to think that all of the ring theory we have done so far this term has been developed precisely
for this purpose, and in some respects, one would be correct.

8.2 Definition. If (V, ) is a representation of G and W C V is a CG submodule then (W, ¢|,,) is a subrepresen-
tation of (V, ¢).

8.3 Example. The left regular representation (CG, A) is defined by A(g)h = gh and extending linearly. We can
write V = Vln1 QD Vk”k since M,(C) = (C")". If (V,4) is a representation (usually irreducible) then we will

. . . . k
write ny to mean ) @--- @1 actingon V"' =V @ --- @ V. In this notation, A = Zi:l n;4; and
n n

k k
dim. CG = |G| = Zni dimV, = Zn?
i=1

i=1
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Schur’s Lemma becomes the statement that if (V,1)) is an irreducible CG module then End(V) = C. As a
quick corollary, we get that if V and W are irreducible CG modules then

0 ifvVZEW

Homcg(V, W) = . . . .
Cy if p:V — W is an isomorphism

8.4 Proposition. If(V, ) is a representation of G then there is a G-invariant inner product on V. Hence ¢(g) is
unitary for all g € G.

PrOOF: Pick a basis {v;}!_, for V and define

[Z Vi, Z ﬁivi] = Z aiﬁi
i=1 i=1 i=1

Define an inner product (+,+) : V2 — C by

)= =3 lg-v.g-w]

|G| g€G

Then for any g € G and v,w €V,

(gv,gw)=— Gl Z hgv,hgw] = Gl Z v,w] =(v,w)

heG g€G

It follows that ¢(g) is unitary since it is invertible and ||gv||> = (gv, gv) = (v,v) = ||v]2. m|

8.1 Tensor Products

8.5 Definition. Let (V;, ¢;) and (V,, p,) be two representations of G. The tensor product representation (V; ®
V,, 1 ® ) is defined by letting ¢, ® ¢, : G = End(V, ® V,) : g — ¢,(g) ® p,(g). This extends uniquely to CG
and the module is just V; ® V, as a CG-module.

Generally, if ¢, and ¢, are irreducible then ¢, ® ¢, need not be irreducible.

8.6 Example. Let (V, ) be a representation of G and define 8 : VOV - V®V : v, ® vy, — v, ® v;. Then
62 =idy, so O has eigenvalues %1. Let {e,,...,e,} be a basis for V and define

Sym?(V)={x € V®V | 8(x) = x} =span{e; ®e;,e; ®e;+e; ®e;}

and
VAV =AI(V)={x€eV®V|O(x)=—x}=spanie; ®e; —e; ®e;}

n(n+1) n(n 1)

The spanning sets given have dimension and , respectively. Since dimq(V ® V) = n?, the spanning

sets given are bases and V ® V = Sym?(V) @ Alt*(V).

8.7 Theorem. Let G be a finite group. The one dimensional representations of G are exactly (C, ), where
¢ € Hom(G,T) = G/G’. (G’ is the commutator subgroup of G, G’ = (ghg 'h™! | g,h € G).) Moreover, if
v € Hom(G, T), the corresponding one dimensional central idempotent in CG is

=g Zw(g)g

geG
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Proor: If ¢ : G — C is a representation, then for g € G, (¢(g))° = ¢(g°) = ¢(e) = 1. Therefore ¢ €
Hom(G,T). Conversely, if ¢ € Hom(G,T) then ¢ is a one dimensional representation. Since T is Abelian,
ker p 2 G’, so Hom(G, T) = Hom(G/G’,T). If C is a cyclic subgroup of T then Hom(C, T) =Z Hom(C) Z C. G/G’
is a finite Abelian group, so G/G' = C, X -+ X C,,.

Hom(G/G’,T) £ Hom(C,, ,T) X - -+ x Hom(C,,,T) = C, x---xC, £G/G

Finally, if ¢ € Hom(G, T) then

e = |G|2 > P (high

g,heG

> ¢lghigh

g,heG

=G )

geiG

IGI2

= ew
so ey, is an idempotent. Furthermore, for any g € G,

gey = |G|Zso(h)gh |G|¢(g)2w(gh>gh W(gdey

heG heG O

8.8 Corollary. If G is a finite Abelian group then CG = C!°! and all of the representations are given by G =
Hom(G, T).

8.9 Corollary. If ¢, € Hom(G, T) then ¢ ® ) = p).

8.10 Corollary. If ¢ is a one dimensional representation and ) is an irreducible representation then ¢ ® 1) is
irreducible.

Proor: First consider the trivial representation ¢;(g) =1 for all g € G. Then
(p1®Y)()(1®V)=p1(g)®Y(g)(v) =18 Y(g)(v)
so V,, =V, ®V,. Now suppose that V,, ® V,, = W; & W, is a decomposition. Then
Vy SV, ®Vy 2V, @V, ®Vy =V, @ W) & (V1 ® Wy)
which is a contradiction. O

8.11 Theorem. The number of inequivalent irreducible representations of G is equal to the number of conjugacy
classes of G.

Proor: We know that the distinct irreducible representations of G are in one to one correspondence with the
summands of CG, so the number is just dim: Z(CG). For g € G, let C(g) = {hgh™! | h € G}, the conjugacy class
of g. Define ¢, = Zhec( ) h, so that we get a distinct element for each conjugacy class. For k € G,

= > kh= ( >, khkl)kz ( >, h)kzcgk
heC(g) heC(g) heC(g)
Conjugacy classes are disjoint, so {c, | g € G} is linearly independent. Take z = > ccG28 €Z (CG). Then for all
k€G, ksk™ =2,50 3,25 (kgk™) = X, %14k8 50 Zp1gx = %, for all g,k € G. Therefore the coefficients
%, are constant on conjugacy classes, so z = Zwm classes ZgCg € span{c }. Therefore dim¢ Z(CG) is equal to the
number of conjugacy classes of G. O
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8.2 Permutation Groups

Recall that we can write a permutation as a product of disjoint cycles. Two permutations are conjugate if and
only if they have the same cycle structure. It follows that the conjugacy classes of G, are determined by partitions
(in the C&O sense of the word) of n. There are 5 partitions of n = 4, so &, has 5 irreducible representations.
There are

e 6 4-cycles.

e 8 permutations with cycle structure (3,1)
e 3 permutations with cycle structure (2,2)
e 6 2-cycles

e 1 identity permutation

S, < 6, is a proper subgroup that contains all 3-cycles, 2-cycles, and the identity, so &, = A,. Of course,
for n > 5, A, is the only proper normal subgroup of &,. We have &,/A, = C,, so Hom(&,,T) = C, = C,.
Specifically, these are the trivial map and the sgn map. The sgn map corresponds to what is known as the

alternating representation U’. &, acts on C" by permuting the basis vectors. Let v, = Z?zl e;. Then gvy = v, for

all g € G,,. It follows that Cvj is a subrepresentation isomorphic to the trivial representation U. Write C* = U@V
V is called the standard representation of S,,. For n =4,

V= {24:&1@1‘ |24:ai =O}
1 i=1

i=

V is irreducible and 3 dimensional. (Check this.) Now consider V' = U’ ® V, a 3 dimensional irreducible
representation that is not isomorphic to V. (Check this too.) There is a fifth representation, call it W. Since
24 =12+ 12+ 3% 4+ 32 + (dimg W)?, dimc W = 2. &, contains V as a normal subgroup, and G;/V = &,. It
follows that W is the standard representation of &5.

8.3 Characters

8.12 Definition. If vy : G — V is a representation of a finite group G, the character of v is the function

xv:G—C:g—Tr(y(g))
The character is an invariant of the representation and is independent of the basis chosen.
8.13 Proposition. 1. IfV; =V, then yy, = yy,
2. yy(e)=dimV

(g™ =xv(g)

xv(hgh™) = x,(g) (xv is a class function)
Ivev, = Xv, T Xv,

Xviev, = Xv, XV,

S kAW

PROOF: 1. Trace is a class function and is invarient under change of bases.
2. ple)=1.
3. If A4,..., A, are the eigenvalues of ¢(g) with multiplicity then y,(g) = Z:.lzl Ai. 0(9)19 =1, so each A;

is a root of unity. The eigenvalues of p(g™!) = ¢(g)~! are exactly the inverses, % =2, 50 yy(g™H) =
k _ - 1
Zi:] A= xv(8)
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4. xy(hgh™") =Tr(p(hgh™")) = Tr(p(M)w(g)p(W) ") = Tr(p(g)) = xv(g)
_ | ¥i(g) 0
s eie v =[5 001
6. Tr(p1(g) ® w2(g)) = Tr(v;1(g)) Tr(2(g)) (look up “Kronecker product”) O
8.14 Lemma (Orthogonality). Let(V;,
group G. Fix bases {e;,

1) and (V,, ,) be non-isomorphic irreducible representations of a finite
..,en} for Vi and {fy,..., f,} for V,. If¢(g) =

then for all i, j, k,l we have

1

[ai,j(g)]mxm and wz(g) - [bi,j(g)]nxn
ﬁ Yeec 4j(8)bri(g7) =0

L jfj=kandi=1
ﬁ deG ai,j(g)ak,l(gil) = {m

0 otherwise

PROOF For the moment, drop the restriction that V; and V, are non-isomorphic. Let A € Hom¢(V5, V;), and let
- IG\ g€G ©1(8)Ap,(g™"). For h e G,

o1 (A= |G|th1(hg)Ag02(g ' )pa(h) = Aga(h)

ge€G

_ 0 ifV,2V,
Therefore A € Homgg(V,, V;) = L % '
(C lf Vz - V1

1. LetV; 2V, and A=Ej;, so that A= 0 Then

A= |G|Z a;(8)bei(s ™)

g€aq
2. LetV;, =

V, and A= E; ;, so that A= AI for some A € C

TrA= — Gl ZTr(%(g)A%(g )=

|G|ZTrA TrA= 5
g€G

geiG
Therefore A =

51 ., and so

|G|Z l](g)akl(g ) All_{ ifj#Zkori#

= + ifj=kandi=1

8.15 Theorem (Orthogonality Relation for Characters). Let V; and V, be irreducible CG-modules. If (-,-) is
the standard inner product on C° then

( = 0 ifV, 2V,
Aol =11 jry, 2,
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PrOOF:
(v 2v,) = Gl G| Z 2, (@), (8)
geiG
=T =S e ™
gei
- (Z i,i(g)) (Z bk,k(g-l))
geiG k=1
= ZZ Zal {()bii(g™)
i=1 k=1 gEG
By the previous lemma, if V; # V, then (yy,, xy,) = 0, and if V; 2V, then (yy,, xy,) = Zzn 1 % =1. O

8.16 Corollary. If G is a finite group and V;,...,V, are all of the distinct irreducible representations of G then
Xv- -+ Xy, forms an orthonormal basis for the space of class functions on G.

ProOF: yy, is a class function for each i, and by the previous theorem the characters form an orthonormal (and
hence hnearly independent) set. Moreover, k is number of conugacy classes of G, which is the dimension of the
space of class functions. O

8.17 Corollary. If W is a finite dimensional representation of G with W = Vla1 @ - ® V™, then a; = (yw, 2v,)
for alli. Thus W is determined up to isomorphism by its character.

k
PROOF: yy = D1 diXv.- ]

8.18 Corollary. W is an irreducible representation of G if and only if ||y || = 1.

ProOF: If W = V" @--- @ V,* then ||xy |* = Zi{ L a2, so the result follows. O

8.4 Character Tables

For a group G, the character table of G is a table containing information describing all of the irreducible char-
acters. Namely, the columns are conjugacy classes of G and the rows are irreducible representations. Each cell
contains the value of the character function for a given row evaluated on the conjugacy class of the given column.

8.19 Example. &, has 5 irreducible representations; the trivial representation U, the alternating representation
U’, the standard representation V (such that U @ V is the action of &, on C*), V/ = U’ ® V, and a leftover 2
dimensional representation W.

(1,1,1,1) | (2,1,1) | (2,2) | (3,1) | (D)
U 1 1 1 1 1
U’ 1 -1 1 1 -1
Vv 3 1 -1 0 -1
v’ 3 -1 -1 0 1
w 2 0 2 -1 0

Table 1: Character Table for &,
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8.20 Proposition. The columns of the character table are orthogonal. Specifically,

4 jfrnec,

ZXV @y (m) = { 1l

Proor: Consider the k x k matrix with columns indexed by conjugacy classes of G and rows indexed by irre-

otherwise

ducible representations of G, where the (V, C,)-entry is ﬂ xv(g). The inner product of rows V and W is

Gl ZC ICel2v(g) xw(g) = 8y, by Theorem 8.15. Since the rows are orthonormal, the matrix must be unitary,
so the columns are orthonormal as well. Therefore

k .

|Cg| |Ch| e 1 lfhEC
E: Zel [ n) = g
2\ el V gl @ =1, ifh¢ C,

and the result follows. O

8.21 Theorem. Let G be a finite group and (V, ¢) an irreducible representation of dimension n. The central
idempotent e € CG mapping to the summand M, (C) associated with V is given by e = Gl dec xv(g)g.

Proor: Let Vj,...,V, be all of the irreducible representations of G, with n, = dimV; and ¢, the action of G on
V,, for each s. Let ¢, (g) = [afsj)(g)]nsxns for all s and define A, = I%SI Yecc Xv,(8)g. We would like to show that
A, = e;, where e,CG = M, (C). Well,

ng — ()
= @)

Gl &2

|G|Z(Z “)(g-l)) a9(g)

g€CG

1
ZHSkZEEZ a (g Ma()(g)

g€CG

we(Ay) ;=

by the orthogonality lemma

_JO ifsFtoriF#]j
|1 ifs=tandi=j

0 ifs#t
Th A)=
wot={) 7

A =es. O

. Hence A; picks out M,, (C) when acting on CG = M,, (C)&---® M, (C). Therefore

8.22 Corollary. If (W, ¢) is a representation of G, say W = V"' @ --- @ V¥, then the projection onto V" is
ple)= |é| cec Xv,(8)e(g).

8.23 Proposition. If W = V," &--- &V and X = Vlb1 S ka" are representations of G then

k k
Homeq(W,X) = PHom(Ve:, v =P M, , (C)
s=1 s=1

In particular, )y, xx) = dimgz Homgg(W,X) = Zs 10sb.
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8.5 Induced Representations
8.24 Definition. Let H be a subgroup of G.

1. Let (V, ¢) be a representation of G. Then the restriction of (V, @) to H is Rest(V) = (V,¢|y), a representa-
tion of H.

2. If (V,¢) and (W, ¢) are representations of G and H, respectively, then W induces V if

(@) W =Res§(V)
(b) V= ®U€G/HGW

8.25 Theorem. Given H < G and W a representation of H, there is a unique representation V of G induced by
W. This is denoted Indg(W) and is called the representation induced by W .

8.26 Proposition. Let H be a subgroup of G, W a representation of H and U a representation of G. Given
¢ € Homg (W, Res(U)), there is a unique extension p € Homg(Ind(W ), U) (so that |y, |y = ). That is,

Homy (W, Res(U)) = Homg;(Ind(W), U)

ProoF: Let V=Ind(W)=€D,c;/; W. Any G-module extension must satisfy

oW ? U
N A
8 ¢

So §(gow) = g, ¢(w). This is a well definition since if g;w; = g,w, then w; = g;' g,w,, and since these are in
the same coset we get g, lg, =h € H. Therefore

P(g1w1) = g19(wW1) = g19(hwy) = g1hp(wy) = g0 (W) = §(gaw,)
Therefore the extension is unique and well-defined. O

8.27 Corollary (Frobenius Reciprocity). Let H be a subgroup of G, W a representation of H, and U a represen-
tation of G. Then (v, Xresv))H = {Xmdw)> Xu)c-

Proor: By Proposition 8.23

(Xw> Xres(uy)u = dimHomy (W, Res(U)) = dimHomg(Ind(W), U) = (¥1ndaw), Xv)c O

8.28 Proposition. Let H be a subgroup of G, W a representation of H. Define y, on G by

(g)= | ¥w(8) ifgeH
Awis 0 ifg¢H

Then g w)(8) = IIIJ_\ D ec xw(k™'gk). For g € G, let C(g) be the conjugacy class of g in G. Then C(g)NH =
D, LI---1I D,, where the D, are disjoint conjugacy classes of H. Hence

x (g)=E2r: il xw(Di)
Ind (W) H| & (M
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8.29 Example. Let G = C, Xy C3. Then G = {(n,i) | n € C,,i € C3}, where (n,i)(m,j) = (n+ 0'(j),i + j). Then

C((0,0)) = {(0,0)}
€((1,0)) =1{(1,0),(2,0), (4,0}
C((=1,0)) ={(=1,0),(=2,0),(=4,0)}
C((0,1)={(n,1) | n€ C7}
C((0,2)) ={(n,2) | n € C7}

(0,0) | (1,0) | (=1,0) | (0,1) | (0,2)
U 1 1 1 1 1
U’ 1 1 1 w w?
u” 1 1 1 w? w
W, | 3 a a 0 0
W, 3 a a 0 0

p1:C7—>V1=(C:k>—>C’;
Wy = Indg (V)

8.6 The Representation Ring and Artin’s Theorem

8.30 Definition. The representation ring of G is R(G) is the Z-span of the characters of G.

The set of characters is closed under addition and multiplication because yy+yw = Yvew and XvXw = Xvew-
If yq,...,x, are the irreducible characters of G, then every character has the form y = n;y; + -+ + ng .y, for
n, € N. Soif y = Zle niy; for n; € Z then y = 3, onixi — 2., <o Inilx;. Therefore R(G) = {p — ¢ |
@, are characters} = y,Z+ - + yZ, a free Abelian group. Furthermore R(G) is a commutative ring.

Now R(G) is a subring of the algebra of class functions on G. (Indeed, the algebra of class functions is just
the C-span of the characters.) Suppose that H < G. Then Resfl : R(G) — R(H) (defined by restriction) is a
homomorphism of rings. Indg : R(H) — R(G) is additive but not multiplicative. Indg(R(H )) < R(G) since, for
¢ €R(H) and ¢ € R(G), Ind(¢)y = Ind(pRes(v)) by Assignment 5.

8.31 Definition. If G is any finite group, let T(G) = > n<g Indg(R(H )), the group of virtual characters
cyclic

which are integer combinations of IndFGI(p) for p € H, the one dimensional representations of cyclic sub-

groups. For H cyclic, R(H) is the Z span of the one dimensional representations of H, given by H. Therefore the
elements of T(G) are linear combinations of Indg(p), for p € H. T(G) < R(G) because it is a sum of ideals.

8.32 Theorem (Artin). R(G)/T(G) is finite. In particular, |G|R(G) € T(G).
Proor: If H is a cyclic group, define 8y, : H — Z by 6, (h) = |H| if h generates H and 6 (h) = 0 otherwise. Then
6y is a class function on H. Therefore Ind(6y) is defined.

Ind§(0;) = — > 0, (k"' gk)

1
|H| keG

Claim. If G is a finite group then Y n<g Indg(GH) =|G|.
cyclic
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Each k~!gk generates a unique cyclic subgroup.
Claim. 6y € R(H)

By induction on |H|. If |H| =1 then 6, = y; € R(H). Assume the result for all cyclic subgroups of order less than
|H|. By the first claim, ), _,, Ind} (6x) = |[H| € R(H), so by induction we must have 6 = Ind};(6;;) € R(H).
By the claims, |G| € T(G). But T(G) < R(G), so ¢ € R(G) implies that |G|y € T(G). O

8.33 Corollary. Every character of G is a rational combination of characters induced from cyclic subgroups. That
is, Q® T(G)=QQ®R(G).

8.7 Algebraic Integers

8.34 Definition. If k is a commutative ring, then we say that x € k is integral if there is a monic polynomial
p(X)=X"+a, ;X" 1 +---+a, €k[X] such that p(x) = 0. a € C is an algebraic integer if a is integral.

8.35 Example. 1. Every root of unity is an algebraic integer.
2. If a € Q is an algebraic integer then a € Z.

8.36 Proposition. Letk be a commutative ring and x € k. The following are equivalent:

1. x is integral.
2. Z[x] is a finitely generated Z-module.
3. Z[x] is contained in a finitely generated 7Z-submodule of k.

Proor: (iii) implies (ii) because Z is Noetherian, so ZF is a finitely generated (hence Noetherian) Z-module.
Any finitely generated Z-module is a quotient of Z, so it is Noetherian. Submodules of Noetherian modules are
Noetherian.

The rest are trivial. a

8.37 Corollary. The set of algebraic integers of k is a subring of k.

Proor: If x and y are algebraic integers, then Z[x] and Z[y] are finitely generated. Therefore Z[x] ®, Z[y] is
finitely generated. Z[x, y] is finitely generated since it is a homomorphic image of Z[x]®, Z[y]. But xy,x+y €
Z[x,y], so the set of integral elements is closed under +, —, x and it contains 1, so it is a subring. O

8.38 Proposition. Let (V, ¢) be a representation of G. If g € G then y(g) is an algebraic integer.
Proor: yy(g) is the sum of the eigenvalues of p(g), each of which is a root of unity, hence an algebraic integer.(]

8.39 Proposition. Ifz € Z(CG) andz = Y. 2eG 4g8> where each a, is an algebraic integer, then z is integral in
Z(CG).

Proor: Recall that Z(CG) is the span of elements of the from ¢, = Zhec h, where C, is the conjugacy class of g.
&g
In particular, a, = ay, if h € C,. Write z = ZC a,c,. Look at Z[{c,}] and notice that {c,} forms a ring basis for
8

this ring (that is, the product of two c,’s is a Z-sum of c,’s). Therefore Z[{c,}] is finitely generated, so each c, is
integral in Z(CG). Therefore Z is a sum of integral elements, so it is integral. O

8.40 Corollary. Let z € CG be integral. Let V, be an irreducible representation of G, with character y, and
dimension n,. Then nl xs(2) is an algebraic integer.
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Proor: We claim that ni Xslz(ce) (xg may be extended linearly to all of CG), is a homomorphism. Recall that

Z(CQG) has a basis consisting of the minimal central idempotents e, = I%I > €6 x:(g)g. But

n, (1

1 — 1 ift=s
e =1 (Eth(g)xs(g)) - {0 Cheroice

geG

SO nls Xslz(ce) is projection onto the s® coordinate. Homomorphisms map integral elements to integral elements,

o) nl xs(2) is integral. O

8.41 Corollary. IfV, is an irreducible representation of G of dimension n, then ny | |G]|.

PROOF: ln_(iles =) €6 xs(g)g is integral. Therefore % is an algebraic integer in the rationals, so it is an integer
and n, | |G|. O

8.8 Applications to Solvable Groups

8.42 Lemma. Let G be a finite group and (V, @) a representation of G. Then N = {g € G | |yy(g)| = yv(e)} is a
normal subgroup of G and N = {g € G | p(g) is scalar}.

8.43 Lemma. Let (V;,;) be an irreducible representation of G of degree n,. For any g € G, let h, be the size of
the conjugacy class of g. If gcd(n,, hy) =1 then yy, (g) = 0 or(g) is scalar.

8.44 Theorem. Let G be a finite group and g € G. Suppose that h, := |C,| = p*, where p is a prime and a > 1.
Then G is not simple.

ProorF: Let (V;,1),) for 1 <s < k be the irreducible representations of G, with characters y,. By orthogonality
of the columns of the characters table, Zle nyxs(g) = 0. Take (V;,4;) to be the trivial representation, so

1+ Zf:z n;x,(g) = 0. Fixs > 2. Consider N = {h € G | y,(h)isscalar}. Then N < G andif 0 #N & G
then G is not simple. If N = G then v, is one dimensional, but v # ;. Let Ny = {h € G | ¢,(h) = 1} < G.
G/Ny =4(G) S T. N, is not trivial because G is not Abelian if C, has more than one element. Therefore G is not
simple. Finally, if N = 0 then 1)), is not scalar for any s > 2. Apply Lemma 8.43 to see that either ged(p®,n,) =1

and y,(g) =0or ged(p®,n,)#1and p | n,. But0=1+ Zf:z nyx,(g) =1 (mod p), a contradiction. O

8.45 Theorem (Burnside’s p,q-Theorem). IfG is a finite group with |G| = p®q®, where p and q are primes and
a,b € Ny, then G is solvable.

Proor: It suffices to find a proper normal subgroup N < G. If we have shown this then we can prove the theorem
by induction on |G|. Assume true for all smaller groups than G. Then if N < G, both N and G/N are pq-groups
of strictly smaller size.

Assume without loss of generality that a > 1. Let H be a p-Sylow subgroup of G. Then Z(H) # {e}, so let

e#heH. Then H C Cg(h), so |Cy| = |C|G(‘h) = ¢° for some c, since |H| = p®. By Theorem 8.44, G is not simple. (]
G

9 More about the Symmtric Group

There is a natural pairing between the conjugacy class of &,, and the irreducible representations — something
that is not known for any other group.
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9.1 Definition. A Young tableau is the diagram of a partition A of n elements filled in with {1,...,n} in any order.
Given a tableau D, define two subgroups of &,:

P, ={g €6, | g preserves the rows of D}
Qp = {g €6, | g preserves the columns of D}

Setap = Zpepr and by, = quQD sgn(q)q, and ¢, = apby. Let V, = (CS,)cp.

9.2 Theorem. There exists an integer nj, > 0 such that ¢} = npcp. V), is a minimal left ideal of C&,,, and thus
determines an irreducible representation. Furthermore, V;, =V, if and only if . = A’ where D is a tableau on A
and D’ is a tableau on 2.

9.3 Example.

1. If A is of cycle type (n) then V, = U, the trivial representation.
2. If A is the identity permutation then V, = U’, the alternating representation.

9.4 Lemma. If ) is a partition of n and D, D’ are tableaux on A then Vp, = V.

ProoF: There exists a permutation g € &, such that gD = D’. Let h € P;,. Then ghg™! preserves the rows of D’.
Indeed, suppose that (ghg ™ )(i’) = j’. Leti = g~ '(i’) and j = g"*(j*). Then h(i) = j so they are in the same row
of D. But i’ = g(i) and j’ = g(j), so they are in the same row of D’. Similarily, gP,g~! = P,y and gQpg~ ' =Qp .
Therefore

Vp = ((C@n)CD’ = (CGH)gCDg71 = VDg71

Rg-1: Vp — Vpr is a C&,-module map with inverse R, : V,y — V;,. Therefore they are isomorphic. |

9.5 Example.

1. If Ais of cycle type (n—1, 1) then V;, is the standard representation. Indeed, P, = &,,_; and Qp, = {e, (1 n) =
s}. Thenap =3, _, p and by =e —s. Hence cp = 25,1, & — 2oy - Vo = CSycp. Forany k € G,

kep= Y kg— Y. kh= > g— > h=:v,

g(m)=n h(1)=n g(m=j h(1)=j

Therefore Vj, = span{vy,...,v,}. But 2., v; = Xl ce & = Dypee t = 0. We claim that this is the only

relation. If Z?:l a;v; = 0 then look at the coefficient of (j n), for j >2. 0=a; —a;,s0a; =a, =+ = a,.
Therefore the dimension of V, is n — 1. &, acts on C" =: W by permutation of basis, and W = U@V,
where U = (CZ:‘:l e; is the trivial representation and V is the standard representation. Map V, to V via

n

n 1 n n
JZQJVJ%ZGJCJ_H(ZCI]) E ej
i=1 i=1 j=1 j=1

Then J is well-defined and J is a module isomorphism.

2. V, ® U' 2 V,,, where A’ is the conjugate partition to A (obtained by flipping the diagram for A along the
diagonal).

9.6 Lemma. Let D be a Young tableau. For any g € 6,,, g € P,Qy, if and only if no two symbols a and 3 occur
in the same row in of D but the same column of gD.
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ProoF: Suppose that g € P,Qp, say g = pq. Take two symbols a and f§ in some row of D. Then a and 8 belong
to the same row of pD. pgD = (pqp )pD, so q’ :=pqp ™' € Qpp by Lemma 9.4. Since a and f3 are in different
columns of pD, they remain in different columns in pgD = gD.

Conversely, consider the first column of gD. Each entry comes from a different row of D. So there is an
element p; € P, which interchanges each element a in this column with the first element of the row of D in
which a lies. Look in turn at each other column. Find p, € P;, such that p,p; gD has the elements of the second
column of D in the second column (leaving the first column fixed). Eventually we arrive at p,---p;gD = D/,
where the columns of D’ are the columns of D permuted. That is, there is ¢ € Q) such that D’ = gD. Hence
gD = pgD where p = (py---p;) ™" O

9.7 Definition. The lexicographical order on partitions is defined according to A > u if and only if A; = u; for
i <igand A; >y, . This is just as you would expect.

9.8 Lemma. Let A > u be partitions of n, D a tableau on A and E a tableau on u. Then ap(C&,)b; = 0. In
particular, ccp = 0.

ProoF: It is enough to consider apgby = ap(gbrg ')g = apby g, where E/ = gE, where g € &,. Hence it is
enough to show that a, bz = 0. By the pigeonhole principle, there must be two symbols a and 8 so that o and
B lie in the same row of D but in the same column of E’. Therefore t = (a 8) € P, N Qg . But

apbs = (apt)(thy) = (Z pr) ( 3 rqsgn(q)) — ap(=by) = —aphy
PEPp qeQp
Therefore ap by = 0. O
9.9 Corollary. If A < u then b,(C&,)ay =0, so in particular, cpcg = 0.
9.10 Lemma. Let A be a partition of n and D a tableau on A.

1. pap =app=ap forallp € Py
2. sgn(q)qbp = bpsgn(q)q = by, forallq € Qp
3. If x e CS,, and x = px(sgn(q)q) for all p € P;, and q € Q, then x € Ccp.

ProOF: Write x = de@n x,g. Then for all p € P, and q € Qp, x = px(sgn(q)q), so x; = sgn(q)x,y, for all
p € Pp and q € Qp. Taking h = e we see that sgn(q)x, = x,,. Therefore

X=X, Z sgn(q)pq + Z Xg8 = XeCp
PEPp g¢PpQp
q€Qp

since if g ¢ PpQp then by Lemma 9.6 there are a, § that lie in the same row of D but in the same column of gD.
Let t = (a 8) and notice that t € P, NQ,p =P, NgQpg ™", 50 g 'tg €Qp. Hence x, = sgn(g ™ tg)X gy 1) =
O

—Xg, S0 Xy = 0. Therefore x € Ccp.

9.11 Corollary. c2 = njcy, where nj, € Z.

Proor: pc?sgn(q)q = (pa)ba(bsgn(q)q) = abab = c?, so c? = yc for some y € C. But ¢ has coeffients in {£1, 0},
and c? has integers coeffiencts, so y = ¢, € Z. O

9.12 Theorem.

1. V, is an irreducible representation of G,,.
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2. V, 2V, ifand only if A = .
n!
dimV,

3. n; =

Proor: 1. V, 2V, =(C&,)cp is a CS,-module. CS,, is semisimple, so there is an idempotent e € C such
that Vp = (CS,)e. ¢pVp = cp(CS,)cp € Ccp by Lemma 9.8.

Suppose that W C V}, is a submodule. Either ¢, € W, which implies that W = (CS,)W 2 (CS,)cp =V, or
cp ¢ W, in which case c; W C W NcpV =W NCcp = {0}. If W # 0 then W = (CS,)f, with f2 = f. Then
W2 C VW =(C&,)cp,W = 0, a contradiction since f € W2. Therefore V is irreducible.

2. Davidson lost me here. Ask Aaron.

3. See above. O

Suppose that A = (44,...,4,) is a partition of n. Let P;(x) = Zi;l xf, 8(x) = [l cicjp xi — x;, and ¢; =
Ait+k—ifori=1,... k.

9.13 Theorem (Frobenius). If C; is a conjugacy class for the partition i = (iy,...,i,) then

p
22(C) =[xy x 1800 | [Py
j=1
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