small sweeping 2NFAs are not closed under complement

Christos Kapoutsis

international colloquium on Automata, Languages and Programming Venice, Italy, July 2006 the main problem

1DFA

NFA

a 1DFA with
$$\leq 2^n-1$$
 states $\begin{array}{c} \text{can be converted to} \\ & \text{every 1NFA with} \\ & n \text{ states} \end{array}$

a 2DFA with \leq ? states and sometimes all these ? states are necessary

"the trade-off is exactly ?"

a 2DFA with \leq ? states and sometimes all these ? states every 2NFA with n states

the trade-off is $\Omega(n^2)$ and $2^{O(n^2)}$

is the trade-off polynomial?

CONJECTURE: the trade-off from 2NFAs to 2DFAs is exponential

[Seiferas73]	question posed, hard problems
	small single-pass 2DFAs cannot solve one-way liveness

[BermanLingas77] if $2D\neq 2N$ on short inputs, then $L\neq NL$

[SakodaSipser78] complexity classes, reductions, complete problems

[Sipser79] small sweeping 2DFAs cannot solve one-way liveness

[Berman80] [Micali81] full 2DFAs can be much smaller than sweeping ones

[Kannan83] under positional simulation, the trade-off is $2^{\Omega(\lg^k n)}$

[Chrobak86] the $\Omega(n^2)$ lower bound (even from unary 1NFAs)

[Birget92] positional simulation of 2NFAs by 2DFAs is always possible

[Leung01] separation of [S79] holds even on binary alphabets

[GeffertMereghettiPighizzini03] on *unary* inputs, the trade-off is $2^{O(\lg^2 n)}$

[HromkovicSchnitger03] small oblivious 2DFAs cannot solve one-way liveness

[K05] deterministic *moles* cannot solve one-way liveness

[GeffertMereghettiPighizzini05] small unary 2NFAs are closed under complement

[Seiferas73]	question posed, hard problems small <i>single-pass</i> 2DFAs cannot solve one-way liveness
[BermanLingas77]	if $2D\neq 2N$ on <i>short</i> inputs, then $L\neq NL$
[SakodaSipser78]	complexity classes, reductions, complete problems
[Sipser79]	small sweeping 2DFAs cannot solve one-way liveness
[Berman80] [Micali81]	full 2DFAs can be much smaller than sweeping ones
[Kannan83]	under <i>positional simulation</i> , the trade-off is $2^{\Omega(\lg^k n)}$
[Chrobak86]	the $\Omega(n^2)$ lower bound (even from unary 1NFAs)
[Birget92]	positional simulation of 2NFAs by 2DFAs is always possible
[Leung01]	separation of [S79] holds even on binary alphabets
[GeffertMereghettiPighizzini03]	on <i>unary</i> inputs, the trade-off is $2^{O(\lg^2 n)}$
[HromkovicSchnitger03]	small oblivious 2DFAs cannot solve one-way liveness
[K05]	deterministic moles cannot solve one-way liveness

[GeffertMereghettiPighizzini05] small unary 2NFAs are closed under complement

[Seiferas73]	question posed, hard problems small single-pass 2DFAs cannot solve one-way liveness
[BermanLingas77]	if $2D\neq 2N$ on <i>short</i> inputs, then $L\neq NL$
[SakodaSipser78]	complexity classes, reductions, complete problems
[Sipser79]	small sweeping 2DFAs cannot solve one-way liveness
[Berman80] [Micali81]	full 2DFAs can be much smaller than sweeping ones
[Kannan83]	under <i>positional simulation</i> , the trade-off is $2^{\Omega(\lg^k n)}$
[Chrobak86]	the $\Omega(n^2)$ lower bound (even from unary 1NFAs)
[Birget92]	positional simulation of 2NFAs by 2DFAs is always possible
[Leung01]	separation of [S79] holds even on binary alphabets
[GeffertMereghettiPighizzini03]	on <i>unary</i> inputs, the trade-off is $2^{O(\lg^2 n)}$

[HromkovicSchnitger03] small *oblivious* 2DFAs cannot solve one-way liveness

[K05] deterministic *moles* cannot solve one-way liveness

[GeffertMereghettiPighizzini05] small *unary* 2NFAs are closed under complement

about sweeping 2NFAs...

What about just *sweeping* automata?

2NFA

SNFA (sweeping 2NFA)

What about just *sweeping* automata?

What about just sweeping automata?

THEOREM. In the *sweeping* case: $SN \neq coSN$.

What about just sweeping automata?

no small sweeping 2NFA can solve the complement of one-way liveness

no small sweeping 2NFA can solve the complement of one-way liveness

is there a *live* path?

is there a *live* path? no.

is there a *live* path?

is there a *live* path?

is there a *live* path? yes.

is there a *live* path?

is there no live path?

proof outline

proof outline

proof outline

PROOF

Suppose some k-state sweeping 2NFA S solves the complement of liveness.

We will construct $N \times N$ "hard" inputs, where $N := (2^n - 1)^2$.

S behaves "appropriately" on all these inputs $\implies k^2 + {k^2 \choose 2} \ge N$

Therefore $k = 2^{\Omega(n)}$.

QED

STEP 1

- ullet find a y that "exhausts" the machine in either direction
- ullet check the machine's behavior on yxy for any x from a list x_1,x_2,\ldots,x_N

STEP 1

- ullet find a y that "exhausts" the machine in either direction
- ullet check the machine's behavior on yxy for any x from a list x_1,x_2,\ldots,x_N

STEP 2

ullet repeat STEP 1 for any y from a list of "exhausting" strings y_1,y_2,\ldots,y_N

	x_1	 	 	 	$\cdot x_N$
y_1					
•					
:					
:					
:					
•					
y_N					

	x_1		x_j					$\cdot x_N$
y_1	×							
:	✓	×						
	~	<	×					
:	✓	>	>	×				
:	✓	>	>	\	×			
\dot{y}_i	✓	\	>	~	~	×		
:	~	\	\	~	~	✓	×	
\dot{y}_N	✓	>	>	>	✓	✓	✓	×

	x_1							$\cdot x_N$
y_1	×							
•	✓	×						
:	✓	\	×					
:	✓	\	✓	×				
:	✓	~	√	√	×			
:	✓	\	✓	✓	✓	×		
:	✓	~	√	✓	~	✓	×	
\dot{y}_N	✓	✓	✓	✓	✓	>	✓	×

	x_1							$\cdot x_N$
y_1	yes							
	no	yes						
	no	no	yes					
	no	no	no	yes				
	no	no	no	no	yes			
	no	no	no	no	no	yes		
	no	no	no	no	no	no	yes	
y_N	no	no	no	no	no	no	no	yes

	x_1			x_i				$\cdot x_N$
y_1	yes							
	no	yes						
:	no	no	yes					
y_i	no	no	no	yes				
:	no	no	no	no	yes			
	no	no	no	no	no	yes		
•	no	no	no	no	no	no	yes	
y_N	no	no	no	no	no	no	no	yes

the hard inputs

the hard inputs

the hard inputs

	x_1			x_i				$\cdot x_N$
y_1	yes							
	no	yes						
:	no	no	yes					
y_i	no	no	no	yes				
:	no	no	no	no	yes			
	no	no	no	no	no	yes		
•	no	no	no	no	no	no	yes	
y_N	no	no	no	no	no	no	no	yes

	x_1			x_i				$\cdot x_N$
y_1	yes							
:	no	yes						
	no	no	yes					
y_i	no	no	no	♦				
:	no	no	no	no	yes			
	no	no	no	no	no	yes		
•	no	no	no	no	no	no	yes	
y_N	no	no	no	no	no	no	no	yes

$$k^2 + \binom{k^2}{2} \ge N$$

proof outline

PROOF

Suppose some k-state sweeping 2NFA S solves the complement of liveness.

We will construct $N \times N$ "hard" inputs, where $N ::= (2^n - 1)^2$.

S behaves "appropriately" on all these inputs $\implies k^2 + \binom{k^2}{2} \ge N$

Therefore $k = 2^{\Omega(n)}$.

QED

no small sweeping 2NFA can solve the complement of one-way liveness

