removing bidirectionality from nondeterministic finite automata

Christos Kapoutsis

symposium on Mathematical Foundations of Computer Science Gdańsk, Poland, August 2005

"the trade-off is exactly $2^n - 1$ "

"SUBSET CONSTRUCTION"

"??? CONSTRUCTION"

$$\begin{cases} \leq n2^{n^2} &\approx 2^{n^2} & \text{[Shepherdson59]} \\ \leq n(n!)^2 &\approx 2^{2n \lg n} & \text{[Hopcroft-Ullman79]} \\ \leq n(n+1)^n &\approx 2^{n \lg n} & \text{[think on Shepherdson]} \\ \leq 2^{3n}+2 &\approx 2^{3n} & \text{[Birget93]} \end{cases}$$

?

$= \binom{2n}{n+1}$	$\approx \frac{1}{\sqrt{n}} 2^{2n}$	
$\geq 2^{n/2} \ \geq 2^{(n-1)/2} - 1 \ \geq 2^{(n-2)/4}$	$pprox 2^{n/2}$ $pprox 2^{n/2}$ $pprox 2^{n/4}$	[think on Seiferas,Damanik] [Sakoda-Sipser78][Birget93] [Seiferas73][Damanik96]

 \exists bijection that respects the trans.function & the order

 \exists bijection that respects the trans.function & the order

"match"

 \exists list of crossing sequences from ([], [q_{start}]) to ([], [q_{accept}]) such that every two successive of them match under the corresponding input symbol

SIMULATING 1NFA: states = all crossing-sequences of the 2NFA

start state =
$$([], [q_{start}])$$

accept state = $([], [q_{accept}])$

 $\delta(C, a) = \{ all crossing-sequences that match with C under a \} \}$

TOTAL SIZE: roughly $(n!)^2$

WHAT'S NEW?

WHAT'S NEW?

order is not important

	CROSSING-SEQUENCE	FRONTIER
EXAMPLE:	([5,3],[1,4,3])	$(\{3,5\},\{1,3,4\})$
DEFINITION: (L, R) such that	$L, R \in Q^*$ & $ L + 1 = R $	$L, R \subseteq Q$ & $ L + 1 = R $
left half:	which states?in what order?	which states?
right half:	 which states? (+1) in what order? 	• which states? (+1)

2NFA accepts \Rightarrow 1NFA accepts

2NFA accepts \Rightarrow 1NFA accepts

the trans.function & the order

2NFA accepts \Rightarrow 1NFA accepts

 \exists bijection that respects the trans.function & the order

2NFA accepts \Rightarrow 1NFA accepts

TOTAL SIZE: exactly
$$\binom{2n}{n+1}$$

- every *n*-state 2NFA has an equivalent 1NFA with $\leq \binom{2n}{n+1}$ states
- some *n*-state 2NFA has no equivalent 1NFA with $< \binom{2n}{n+1}$ states
- hence, the trade-off from 2NFAs to 1NFAs is exactly $\binom{2n}{n+1}$

 $2^{n} - 1$

 2^n-1 , $\binom{2n}{n+1}$

 2^n-1 , $\binom{2n}{n+1}$, n

$$2^n - 1$$
, $\binom{2n}{n+1}$, n , $n(n^n - (n-1)^n)$

 $2^n - 1$, $\binom{2n}{n+1}$, n, $n(n^n - (n-1)^n)$, $\sum_{i < n} \sum_{j < n} \binom{n}{i} \binom{n}{j} (2^i - 1)^j$

 $2^n - 1$, $\binom{2n}{n+1}$, n, $n(n^n - (n-1)^n)$, $\sum_{i < n} \sum_{j < n} \binom{n}{i} \binom{n}{j} (2^i - 1)^j$, ?