
removing bidirectionality

from nondeterministic finite automata

Christos Kapoutsis

symposium on
Mathematical Foundations of Computer Science

Gdańsk, Poland, August 2005

1DFAs ←− 1NFAs

control

input

1DFA

head
one-way

finite

1DFAs ←− 1NFAs

control

input

1DFA

head
one-way

finite +

1NFA

to guess
ability

1DFAs ←− 1NFAs

control

input

1DFA

head
one-way

finite +

1NFA

to guess
ability

every 1NFA withcan be converted to

≤ 2n − 1 states n states

a 1DFA with

1DFAs ←− 1NFAs

control

input

1DFA

head
one-way

finite +

1NFA

to guess
ability

every 1NFA withcan be converted to

and sometimes all these 2n − 1 states are necessary

≤ 2n − 1 states n states

a 1DFA with

1DFAs ←− 1NFAs

control

input

1DFA

head
one-way

finite +

1NFA

to guess
ability

every 1NFA with

and sometimes all these 2n − 1 states are necessary

can be converted to

“the trade-off is exactly 2n − 1”

≤ 2n − 1 states n states

a 1DFA with

1DFAs ←− 1NFAs

control

input

1DFA

head
one-way

finite +

1NFA

to guess
ability

a 1DFA with every 1NFA withcan be converted to

and sometimes all these 2n − 1 states are necessary

≤ 2n − 1 states n states

“SUBSET CONSTRUCTION”

1NFAs ←− 2NFAs

1NFA

1NFAs ←− 2NFAs

1NFA

1NFAs ←− 2NFAs

1NFA

+

2NFA

ability
to reverse

1NFAs ←− 2NFAs

1NFA

+

2NFA

ability
to reverse

can be converted to every 2NFA with

and sometimes all these ? states are necessary

“the trade-off is exactly ? ”

≤ ? states n states

a 1NFA with

1NFAs ←− 2NFAs

1NFA

+

2NFA

ability
to reverse

can be converted to every 2NFA with

and sometimes all these ? states are necessary

“??? CONSTRUCTION”

≤ ? states n states

a 1NFA with

1NFAs ←− 2NFAs

1NFA

+

2NFA

ability
to reverse

can be converted to every 2NFA with

“the trade-off is exactly
(

2n
n+1

)

”

and sometimes all these
(

2n
n+1

)

states are necessary

≤
(

2n
n+1

)

states n states

a 1NFA with

1NFAs ←− 2NFAs

1NFA

+

2NFA

ability
to reverse

can be converted to every 2NFA with

“FRONTIER CONSTRUCTION”

and sometimes all these
(

2n
n+1

)

states are necessary

≤
(

2n
n+1

)

states n states

a 1NFA with

1NFAs ←− 2NFAs

?



































































































































≤ n2n2 ≈ 2n2
[Shepherdson59]

≤ n(n!)2 ≈ 22n lgn [Hopcroft-Ullman79]

≤ n(n + 1)n ≈ 2n lgn [think on Shepherdson]

≤ 23n + 2 ≈ 23n [Birget93]

=
(

2n
n+1

)

≈ 1√
n
22n

≥ 2n/2 ≈ 2n/2 [think on Seiferas,Damanik]

≥ 2(n−1)/2 − 1 ≈ 2n/2 [Sakoda-Sipser78][Birget93]

≥ 2(n−2)/4 ≈ 2n/4 [Seiferas73][Damanik96]

M

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

[1,5,4,3,3]

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

(

[5,3], [1,4,3]
)

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

(

[5,3], [1,4,3]
)

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

(

[5,3], [1,4,3]
)

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

(

[5,3], [1,4,3]
)

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

(

[5,3], [1,4,3]
)

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

(

[2], [4,8]
)(

[5,3], [1,4,3]
)

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

(

[2], [4,8]
)(

[5,3], [1,4,3]
)(

[], [0]
)

= qaccept

4

qstart =

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

(

[2], [4,8]
)(

[5,3], [1,4,3]
) (

[], [9]
)(

[], [0]
)

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

(

[2], [4,8]
)(

[5,3], [1,4,3]
) (

[], [9]
)(

[], [0]
)

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

aa

(

[5,3], [1,4,3]
) (

[2], [4,8]
)(

[2], [4,8]
)(

[5,3], [1,4,3]
) (

[], [9]
)(

[], [0]
)

qstart =

= qaccept

4

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

aa

(

[5,3], [1,4,3]
) (

[2], [4,8]
)(

[2], [4,8]
)(

[5,3], [1,4,3]
) (

[], [9]
)(

[], [0]
)

qstart =

= qaccept

4

1

5

3

4

3

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

aa

(

[5,3], [1,4,3]
) (

[2], [4,8]
)(

[2], [4,8]
)(

[5,3], [1,4,3]
) (

[], [9]
)(

[], [0]
)

qstart =

= qaccept

4

1

5

3

2

8

4

4

3

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

aa

(

[5,3], [1,4,3]
) (

[2], [4,8]
)(

[2], [4,8]
)(

[5,3], [1,4,3]
) (

[], [9]
)(

[], [0]
)

qstart =

= qaccept

4

1

5

3

2

8

4

4

3

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

aa

the trans.function & the order

∃ bijection that respects

(

[5,3], [1,4,3]
) (

[2], [4,8]
)(

[2], [4,8]
)(

[5,3], [1,4,3]
) (

[], [9]
)(

[], [0]
)

qstart =

= qaccept

4

1

5

3

2

8

4

4

3

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

aa

the trans.function & the order

∃ bijection that respects

(

[5,3], [1,4,3]
) (

[2], [4,8]
)(

[2], [4,8]
)

“match”

(

[5,3], [1,4,3]
) (

[], [9]
)(

[], [0]
)

qstart =

= qaccept

4

1

5

3

2

8

4

4

3

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

aa

the trans.function & the order

∃ bijection that respects

(

[5,3], [1,4,3]
) (

[2], [4,8]
)(

[2], [4,8]
)

“match”

(

[5,3], [1,4,3]
) (

[], [9]
)(

[], [0]
)

qstart =

= qaccept

4

1

5

3

2

8

4

4

3

∃ list of crossing sequences from ([], [qstart]) to ([], [qaccept]) such that
every two successive of them match under the corresponding input symbol

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

SIMULATING 1NFA: states = all crossing-sequences of the 2NFA

start state =
(

[], [qstart]
)

accept state =
(

[], [qaccept]
)

δ
(

C, a
)

= {all crossing-sequences that match with C under a}

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

2

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

2

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

8

6

82

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

8

6

82

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

8

6

8 7

2

3

2

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

8

6

8 7

2

3

2

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

8

6

8 7

2

3 5

2

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

8

6

8 7

2

3 5

2

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

8

6

8 7

2

3 5 2

1

42

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

8

6

8 7

2

3 5 2

1

42

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

8

6

8 7

2

3 5 2

1

4

2

2

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
0 3

1

4

5

8

6

8 7

2

3 5 2

1

4

2

2

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

n s ka
0 3

1

4

5

8

6

8 7

2

3 5 2

1

4

2 5

3

72

g d

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

d n s ka
0 3

1

4

5

8

6

8 7

2

3 5 2

1

4

2 5

3

72

g

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

n s ka
0 3

1

4

5

8

6

8 7

2

3 5 2

1

4

2 5

3

7

9

2

g d

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

d n s ka
0 3

1

4

5

8

6

8 7

2

3 5 2

1

4

2 5

3

7

9

2

g

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
qstart = = qaccept0 3

1

4

5

8

6

8 7

2

3 5 2

1

4

2 5

3

7

9

2

CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, Q = {0,1,2, . . . ,9}, qstart = 0, qaccept = 9.

g d n s ka
qstart = = qaccept0 3

1

4

5

8

6

8 7

2

3 5 2

1

4

2 5

3

7

9

2

CROSSING-SEQUENCE CONSTRUCTION

SIMULATING 1NFA: states = all crossing-sequences of the 2NFA

start state =
(

[], [qstart]
)

accept state =
(

[], [qaccept]
)

δ
(

C, a
)

= {all crossing-sequences that match with C under a}

TOTAL SIZE: roughly (n!)2

WHAT’S NEW?

order is not important

WHAT’S NEW?

order is not important

order is not important

CROSSING-SEQUENCE FRONTIER

EXAMPLE:
(

[5,3], [1,4,3]
) (

{3,5}, {1,3,4}
)

DEFINITION: L, R ∈ Q∗ L, R ⊆ Q
(L, R) such that & |L|+ 1 = |R| & |L|+ 1 = |R|

left half: • which states?
• in what order?

• which states?

right half: • which states? (+1)
• in what order?

• which states? (+1)

order is not important

1

4

3

5

3

2

8

4

the trans.function & the order

∃ bijection that respects

(

[2], [4,8]
)(

[5,3], [1,4,3]
)

“match” of crossing-sequences

a

1

3

4

3

5

2

8

4

the trans.function

∃ bijection that respects

(

{2}, {4,8}
)(

{3,5}, {1,3,4}
)

“match” of frontiers

a

FRONTIER CONSTRUCTION

SIMULATING 1NFA: states = all frontiers of the 2NFA

start state =
(

∅, {qstart}
)

accept state =
(

∅, {qaccept}
)

δ
(

F, a
)

= {all frontiers that match with F under a}

TOTAL SIZE: exactly
(2n

n + 1

)

FRONTIER CONSTRUCTION

2NFA accepts ⇒ 1NFA accepts

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

a

qstart =

= qaccept

4

FRONTIER CONSTRUCTION

2NFA accepts ⇒ 1NFA accepts

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

aa

the trans.function & the order

∃ bijection that respects

(

[5,3], [1,4,3]
) (

[2], [4,8]
)(

[2], [4,8]
)

“match” of crossing-sequences

(

[5,3], [1,4,3]
) (

[], [9]
)(

[], [0]
)

qstart =

= qaccept

4

1

5

3

2

8

4

4

3

FRONTIER CONSTRUCTION

2NFA accepts ⇒ 1NFA accepts

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

aa

the trans.function & the order

∃ bijection that respects

(

[5,3], [1,4,3]
) (

[2], [4,8]
)(

{2}, {4,8}
)

“match” of crossing-sequences

(

{3,5}, {1,3,4}
) (

∅, {9}
)

qstart =

= qaccept

4

1

5

3

2

8

4

4

3

(

∅, {0}
)

FRONTIER CONSTRUCTION

2NFA accepts ⇒ 1NFA accepts

0 4

31

1 4

3

2

4

1 5 9

6

1

7

5

8

g d n s k

2 4

2

1

3

aa

∃ bijection that respects

(

{2}, {4,8}
)(

{2}, {4,8}
)(

{3,5}, {1,3,4}
) (

∅, {9}
)

qstart =

= qaccept

4

1

5

3

2

8

4

4

3

“match” of frontiers

the trans.function

(

{3,5}, {1,3,4}
)(

∅, {0}
)

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka
0

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka

2

5

1

3

4

0

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka

2

5

1

3

4

0

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka

2

5

1

3

4

0 6

8

8

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka

2

5

1

3

4

0 6

8

8

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

s ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2

g d n

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

g d n s

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

d n s ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

g

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

7

1

0

g d n s

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

7

1

0

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

a

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

7

1

0 3

5

7

2

5

g d n s k

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

n s ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

7

1

0 3

5

7

2

5

g d

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

s ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

7

1

0 3

5

7

2

5

9

g d n

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

d n s ka

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

7

1

0 3

5

7

2

5

9

g

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka
= qacceptqstart =

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

7

1

0 3

5

7

2

5

9

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

5

g d n s ka
= qacceptqstart =

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

7

1

0 3

5

2

9

7

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

5

g d n s ka
= qacceptqstart =

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

7

1

0 3

5

2

9

7

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

5

d n s ka
= qacceptqstart =

2

5

1

3

4

0 6

8

8

5

2

9

6

3

5 1

2

3

5

2

4

8

7

1

0 3

5

2

9

7

7

2

g

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

5

0 6

8

8

5

2

9

6

3

5 1

2

8

7

1

0 3

5

2

9

7

4

2

5

3

7

2

g d n s ka
= qacceptqstart =

2

5

1

3

4

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

5

7

4

2

5

3

7

5

2

9

3

261

3

2

5

8

g d n s ka
= qacceptqstart =

4

0

8

6

5 1

2

8

7

1

0 3

5

2

9

FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

5

7

1

0 3

5

2

9

73

2

4

2

5

g d n s ka
= qacceptqstart =

2

5

1

3

4

0 6

8

8

9

6

3

5

2

7

5 1

2

8

FRONTIER CONSTRUCTION

SIMULATING 1NFA: states = all frontiers of the 2NFA

start state =
(

∅, {qstart}
)

accept state =
(

∅, {qaccept}
)

δ
(

F, a
)

= {all frontiers that match with F under a}

TOTAL SIZE: exactly
(2n

n + 1

)

outline

• every n-state 2NFA has an equivalent 1NFA with ≤
(

2n
n+1

)

states

• some n-state 2NFA has no equivalent 1NFA with <
(

2n
n+1

)

states

• hence, the trade-off from 2NFAs to 1NFAs is exactly
(

2n
n+1

)

the big picture

1DFA

2NFA

2DFA 1NFA

the big picture

2n − 1

1DFA

2NFA

2DFA 1NFA

the big picture

2n − 1,
(

2n
n+1

)

1DFA

2NFA

2DFA 1NFA

the big picture

2n − 1,
(

2n
n+1

)

, n

1DFA

2NFA

2DFA 1NFA

the big picture

2n − 1,
(

2n
n+1

)

, n, n(nn − (n− 1)n)

1DFA

2NFA

2DFA 1NFA

the big picture

2n − 1,
(

2n
n+1

)

, n, n(nn − (n− 1)n),
∑

i<n

∑

j<n

(

n
i

)(

n
j

)

(2i − 1)j

1DFA

2NFA

2DFA 1NFA

the big picture

2n − 1,
(

2n
n+1

)

, n, n(nn − (n− 1)n),
∑

i<n

∑

j<n

(

n
i

)(

n
j

)

(2i − 1)j, ?

1DFA

2NFA

2DFA 1NFA

