# removing bidirectionality <br> from nondeterministic finite automata 

Christos Kapoutsis

symposium on<br>Mathematical Foundations of Computer Science<br>Gdańsk, Poland, August 2005

## 1DFA



1DFA


1NFA


## 1DFA


a 1DFA with
$\leq 2^{n}-1$ states can be converted to
every 1NFA with $n$ states

## 1DFA


a 1DFA with
$\leq 2^{n}-1$ states can be converted to
every 1NFA with $n$ states
and sometimes all these $2^{n}-1$ states are necessary

## 1DFA


a 1DFA with can be converted to every 1NFA with $n$ states
$\leq 2^{n}-1$ states
and sometimes all these $2^{n}-1$ states are necessary
"the trade-off is exactly $2^{n}-1$ "

1DFA

a 1DFA with
$\leq 2^{n}-1$ states
can be converted to
every 1NFA with
$n$ states
and sometimes all these $2^{n}-1$ states are necessary
"SUBSET CONSTRUCTION"


1NFA


1NFA


2NFA


"the trade-off is exactly ?

"??? CONSTRUCTION"

a 1NFA with can be converted to every 2NFA with
$\leq\binom{ 2 n}{n+1}$ states $n$ states
and sometimes all these $\binom{2 n}{n+1}$ states are necessary
"the trade-off is exactly $\binom{2 n}{n+1}$ "

a 1NFA with can be converted to every 2NFA with
$\leq\binom{ 2 n}{n+1}$ states $n$ states
and sometimes all these $\binom{2 n}{n+1}$ states are necessary
"FRONTIER CONSTRUCTION"

$$
\left\{\begin{array}{lll}
\leq n 2^{n^{2}} & \approx 2^{n^{2}} & \text { [Shepherdson59] } \\
\leq n(n!)^{2} & \approx 2^{2 n \lg n} & \text { [Hopcroft-UlIman79] } \\
\leq n(n+1)^{n} & \approx 2^{n \lg n} & \text { [think on Shepherdson] } \\
\leq 2^{3 n}+2 & \approx 2^{3 n} & \text { [Birget93] } \\
=\binom{2 n}{n+1} & \approx \frac{1}{\sqrt{n}} 2^{2 n} & \\
\geq 2^{n / 2} & \approx 2^{n / 2} & \text { [think on Seiferas,Damanik] } \\
\geq 2^{(n-1) / 2-1} & \approx 2^{n / 2} & \text { [Sakoda-Sipser78][Birget93] } \\
\geq 2^{(n-2) / 4} & \approx 2^{n / 4} & \text { [Seiferas73][Damanik96] }
\end{array}\right.
$$

## CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.

EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.

$[1,5,4,3,3]$

EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


[^0]EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.

$\exists$ list of crossing sequences from ([], [ $\left.q_{\text {start }}\right]$ ) to ([], [ $\left.q_{\text {accept }}\right]$ ) such that every two successive of them match under the corresponding input symbol

## CROSSING-SEQUENCE CONSTRUCTION

EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.

```
SIMULATING 1NFA: states = all crossing-sequences of the 2NFA
```

```
    start state = ([],[qstart ])
```

    start state = ([],[qstart ])
    accept state = ([],[q\mp@code{accept }])
accept state = ([],[q\mp@code{accept }])
\delta(C,a)={all crossing-sequences that match with C under a}

```
    \delta(C,a)={all crossing-sequences that match with C under a}
```

EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


EXAMPLE 2NFA: accepts names of beautiful cities, $Q=\{0,1,2, \ldots, 9\}, q_{\text {start }}=0, q_{\text {accept }}=9$.


```
SIMULATING 1NFA: states = all crossing-sequences of the 2NFA
```

```
    start state = ([],[q; %art ])
```

    start state = ([],[q; %art ])
    accept state = ([],[qaccept }]
accept state = ([],[qaccept }]
\delta(C,a)}={\mathrm{ all crossing-sequences that match with }C\mathrm{ under a}

```
        \delta(C,a)}={\mathrm{ all crossing-sequences that match with }C\mathrm{ under a}
```

TOTAL SIZE: roughly $(n!)^{2}$

WHAT'S NEW?

## WHAT'S NEW?

order is not important

|  | CROSSING-SEQUENCE | FRONTIER |
| :---: | :---: | :---: |
| EXAMPLE: | $([5,3],[1,4,3])$ | $(\{3,5\},\{1,3,4\})$ |
| DEFINITION: ( $L, R$ ) such that | $\begin{gathered} L, R \in Q^{*} \\ \&\|L\|+1=\|R\| \end{gathered}$ | $\begin{gathered} L, R \subseteq Q \\ \&\|L\|+1=\|R\| \end{gathered}$ |
| left half: right half: | - which states? <br> - in what order? <br> - which states? (+1) <br> - in what order? | - which states? <br> - which states? (+1) |

"match" of crossing-sequences

$([5,3],[1,4,3])([2],[4,8])$
$\exists$ bijection that respects
the trans.function \& the order
"match" of frontiers

$(\{3,5\},\{1,3,4\})(\{2\},\{4,8\})$
$\exists$ bijection that respects the trans.function

```
SIMULATING 1NFA: states = all frontiers of the 2NFA
    start state = (\emptyset,{q\mp@code{start }})
accept state = (\emptyset,{qaccept }}
    \delta(F,a)}={\mathrm{ all frontiers that match with }F\mathrm{ under a}
```


## 2NFA accepts $\Rightarrow$ 1NFA accepts



"match" of crossing-sequences

$\exists$ bijection that respects
the trans.function \& the order

"match" of crossing-sequences

$\exists$ bijection that respects the trans.function \& the order

2 NFA accepts $\Rightarrow 1$ NFA accepts
"match" of frontiers

$\exists$ bijection that respects the trans.function

2 NFA accepts $\Leftarrow 1$ NFA accepts


SIMULATING 1NFA: states $=$ all frontiers of the 2NFA

$$
\begin{aligned}
\text { start state } & =\left(\emptyset,\left\{q_{\text {start }}\right\}\right) \\
\text { accept state } & =\left(\emptyset,\left\{q_{\text {accept }}\right\}\right) \\
\delta(F, \mathrm{a}) & =\{\text { all frontiers that match with } F \text { under a }\}
\end{aligned}
$$

TOTAL SIZE: $\quad$ exactly $\binom{2 n}{n+1}$

- every $n$-state 2NFA has an equivalent 1 NFA with $\leq\binom{ 2 n}{n+1}$ states
- some $n$-state 2NFA has no equivalent 1NFA with $<\binom{2 n}{n+1}$ states
- hence, the trade-off from 2NFAs to 1 NFAs is exactly $\binom{2 n}{n+1}$


1DFA



2NFA


$$
2^{n}-1
$$








[^0]:    $([5,3],[1,4,3]) \quad([2],[4,8])$
    $\exists$ bijection that respects the trans.function \& the order

