
removing bidirectionality

from nondeterministic finite automata

Christos Kapoutsis

symposium on
Mathematical Foundations of Computer Science
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≤ n2n2 ≈ 2n2
[Shepherdson59]

≤ n(n!)2 ≈ 22n lgn [Hopcroft-Ullman79]

≤ n(n + 1)n ≈ 2n lgn [think on Shepherdson]

≤ 23n + 2 ≈ 23n [Birget93]

=
(

2n
n+1

)

≈ 1√
n
22n

≥ 2n/2 ≈ 2n/2 [think on Seiferas,Damanik]

≥ 2(n−1)/2 − 1 ≈ 2n/2 [Sakoda-Sipser78][Birget93]

≥ 2(n−2)/4 ≈ 2n/4 [Seiferas73][Damanik96]
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CROSSING-SEQUENCE CONSTRUCTION

SIMULATING 1NFA: states = all crossing-sequences of the 2NFA

start state =
(

[], [qstart]
)

accept state =
(

[], [qaccept]
)

δ
(

C, a
)

= {all crossing-sequences that match with C under a}

TOTAL SIZE: roughly (n!)2
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order is not important

CROSSING-SEQUENCE FRONTIER

EXAMPLE:
(

[5,3], [1,4,3]
) (

{3,5}, {1,3,4}
)

DEFINITION: L, R ∈ Q∗ L, R ⊆ Q
(L, R) such that & |L|+ 1 = |R| & |L|+ 1 = |R|

left half: • which states?
• in what order?

• which states?

right half: • which states? (+1)
• in what order?

• which states? (+1)



order is not important
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the trans.function & the order

∃ bijection that respects

(

[2], [4,8]
)(

[5,3], [1,4,3]
)

“match” of crossing-sequences
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the trans.function

∃ bijection that respects

(

{2}, {4,8}
)(

{3,5}, {1,3,4}
)

“match” of frontiers
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FRONTIER CONSTRUCTION

SIMULATING 1NFA: states = all frontiers of the 2NFA

start state =
(

∅, {qstart}
)

accept state =
(

∅, {qaccept}
)

δ
(

F, a
)

= {all frontiers that match with F under a}

TOTAL SIZE: exactly
( 2n

n + 1

)



FRONTIER CONSTRUCTION

2NFA accepts ⇒ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇒ 1NFA accepts
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the trans.function & the order

∃ bijection that respects
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[2], [4,8]
)
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FRONTIER CONSTRUCTION

2NFA accepts ⇒ 1NFA accepts
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the trans.function & the order

∃ bijection that respects

(

[5,3], [1,4,3]
) (

[2], [4,8]
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)
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(
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FRONTIER CONSTRUCTION

2NFA accepts ⇒ 1NFA accepts
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∃ bijection that respects

(

{2}, {4,8}
)(
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) (

∅, {9}
)

qstart =

= qaccept
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the trans.function

(

{3,5}, {1,3,4}
)(

∅, {0}
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2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts

g d n s ka
= qacceptqstart =
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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= qacceptqstart =

2

5

1

3

4

0 6

8

8

7

5

2

9

6

3

2 5 1

2

3

5

2

4

8

7

1

0 3

5

2

9

7



FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

2NFA accepts ⇐ 1NFA accepts
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FRONTIER CONSTRUCTION

SIMULATING 1NFA: states = all frontiers of the 2NFA

start state =
(

∅, {qstart}
)

accept state =
(

∅, {qaccept}
)

δ
(

F, a
)

= {all frontiers that match with F under a}

TOTAL SIZE: exactly
( 2n

n + 1

)



outline

• every n-state 2NFA has an equivalent 1NFA with ≤
(

2n
n+1

)

states

• some n-state 2NFA has no equivalent 1NFA with <
(

2n
n+1

)

states

• hence, the trade-off from 2NFAs to 1NFAs is exactly
(

2n
n+1

)



the big picture
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2n − 1,
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, n, n(nn − (n− 1)n)
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(2i − 1)j
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the big picture

2n − 1,
(

2n
n+1

)

, n, n(nn − (n− 1)n),
∑

i<n

∑

j<n

(

n
i

)(

n
j

)

(2i − 1)j, ?

1DFA

2NFA

2DFA 1NFA


