
Deterministic moles cannot solve liveness

Christos Kapoutsis

workshop on the
Descriptional Complexity of Formal Systems

Como, Italy, July 2005



1DFAs versus 1NFAs

control

input

1DFA

head
one-way

finite



1DFAs versus 1NFAs

control

input

1DFA

head
one-way

finite

1NFA

to guess
ability+



1DFAs versus 1NFAs

control

input

1DFA

head
one-way

finite

1NFA

to guess
ability+

≤ 2n − 1 states n states

a 1DFA with every 1NFA withcan be converted to



1DFAs versus 1NFAs

control

input

1DFA

head
one-way

finite

1NFA

to guess
ability+

≤ 2n − 1 states n states

a 1DFA with every 1NFA with

and sometimes all these 2n − 1 states are necessary

can be converted to



1DFAs versus 1NFAs

control

input

1DFA

head
one-way

finite

1NFA

to guess
ability+

can be converted to

≤ 2n − 1 states n states

“the trade-off is exactly 2n − 1”

a 1DFA with every 1NFA with

and sometimes all these 2n − 1 states are necessary



1DFAs versus 2DFAs

control

input

1DFA

head
one-way

finite



1DFAs versus 2DFAs

control

input

1DFA

head
one-way

finite

2DFA

ability
to reverse+



1DFAs versus 2DFAs

control

input

1DFA

head
one-way

finite

2DFA

ability
to reverse+

“the trade-off is exactly ? ”

≤ ? states n states

a 1DFA with every 2DFA with

and sometimes all these ? states are necessary

can be converted to



1DFAs versus 2NFAs

control

input

1DFA

head
one-way

finite



1DFAs versus 2NFAs

control

input

1DFA

head
one-way

finite

to reverse+

2NFA

to guess
ability+

ability



1DFAs versus 2NFAs

control

input

1DFA

head
one-way

finite

to reverse+

2NFA

to guess
ability+

ability

≤ ? states n states

a 1DFA with every 2NFA with

and sometimes all these ? states are necessary

can be converted to

“the trade-off is exactly ? ”



the big picture

1DFA

2NFA

2DFA 1NFA



the big picture

2n − 1

1DFA

2NFA

2DFA 1NFA



the big picture

2n − 1, n(nn − (n − 1)n)

1DFA

2NFA

2DFA 1NFA



the big picture

2n − 1, n(nn − (n − 1)n),
∑

i<n

∑

j<n

(

n

i

)(

n

j

)

(2i − 1)j

1DFA

2NFA

2DFA 1NFA



the big picture

2n − 1, n(nn − (n − 1)n),
∑

i<n

∑

j<n

(

n

i

)(

n

j

)

(2i − 1)j, n

1DFA

2NFA

2DFA 1NFA



the big picture

2n − 1, n(nn − (n − 1)n),
∑

i<n

∑

j<n

(

n

i

)(

n

j

)

(2i − 1)j, n,
(

2n

n+1

)

1DFA

2NFA

2DFA 1NFA



the big picture

2n − 1, n(nn − (n − 1)n),
∑

i<n

∑

j<n

(

n

i

)(

n

j

)

(2i − 1)j, n,
(

2n

n+1

)

, ?, ?

1DFA

2NFA

2DFA 1NFA



the problem

2DFA 1NFA
how much larger?



the problem

2DFA 1NFA
how much larger?

?polynomially exponentially



the problem

2DFA 1NFA
how much larger?

determ
Turing

machine machine
Turing

nondeterm

?polynomially exponentially

how much slower?
DTM NTM



the problem

2DFA 1NFA
how much larger?

determ
Turing

machine machine
Turing

nondeterm

?polynomially exponentially

?polynomially exponentially

how much slower?
DTM NTM



the problem

P6=NP

2DFA 1NFA
how much larger?

determ
Turing

machine machine
Turing

nondeterm

?polynomially exponentially

?polynomially exponentially

how much slower?
DTM NTM

P=NP



the problem

n

2DFA 1NFA
how much larger?

determ
Turing

machine machine
Turing

nondeterm

?polynomially exponentially

how much slower?
DTM NTM

SATISFIABILITY

is there a satisfying assignment?

(x1 ∨ x3) ∧ (x2 ∨ x1) ∧ (x3 ∨ x1 ∨ x2)



the problem

LIVENESS

2DFA 1NFA
how much larger?

determ
Turing

machine machine
Turing

nondeterm

n

how much slower?
DTM NTM

SATISFIABILITY

is there a satisfying assignment?

(x1 ∨ x3) ∧ (x2 ∨ x1) ∧ (x3 ∨ x1 ∨ x2)

n

is there a live path?



the problem

LIVENESS

2DFA 1NFA
how much larger?

determ
Turing

machine machine
Turing

nondeterm

n

how much slower?
DTM NTM

SATISFIABILITY

is there a satisfying assignment?

(x1 ∨ x3) ∧ (x2 ∨ x1) ∧ (x3 ∨ x1 ∨ x2)

n

is there a live path?



2DFA against LIVENESS

n



2DFA against LIVENESS: graph exploration

n

IDEA: depth first search!



2DFA against LIVENESS: graph exploration

n

IDEA: depth first search!



2DFA against LIVENESS: graph exploration

n

IDEA: depth first search!



2DFA against LIVENESS: graph exploration

n

IDEA: depth first search!
PROBLEM: we get lost



2DFA against LIVENESS: graph exploration

n

IDEA: depth first search!
PROBLEM: we get lost

THEOREM: no graph exploration can work



2DFA against LIVENESS: graph exploration

n

IDEA: depth first search!
PROBLEM: we get lost

THEOREM: no graph exploration can work



MOLE against LIVENESS



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits

visited

(dead)
w



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits

never
visited

(dead)
w



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits

w

never
visited

(dead)



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits

never
visited

(dead)
w



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits

never
visited

w

(dead)
w



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits

never
visited

w′

(dead)
w



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits

same computation!

never
visited

w′

(dead)
w



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits

w

same computation ⇒ same decision

never
visited

w′

(dead)



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits

w

same computation ⇒ same decision

never
visited

(live)
w′

(dead)



MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on w

⇐⇒ w is live and the mole rejects ∨ w is dead and the mole accepts

⇐= w is dead and contains a live node that the mole never visits

w

same computation ⇒ same decision

never
visited

(live)
w′

(dead)



the main argument



the main argument



the main argument



the main argument



the main argument



the main argument



the main argument



the main argument



the main argument



the main argument



the main argument



the main argument

odd



the main argument

odd even



the main argument

odd even evenodd even



the main argument

even

even

odd

odd

odd

even

even

even

odd

odd

odd

even

odd evenodd

odd

odd

odd

odd

odd

odd

odd

even

even

even

even

even

even

even

even



the main argument

even

even

odd

odd

odd

even

even

even

odd

odd

odd

even

odd evenodd

odd

odd

odd

odd

odd

odd

odd

even

even

even

even

even

even

even

even



the main argument

even

even

odd

odd

odd

even

even

even

odd

odd

odd

even

odd evenodd

odd

odd

odd

odd

odd

odd

odd

even

even

even

even

even

even

even

even



the main argument

even

even

odd

odd

odd

even

even

even

odd

odd

odd

even

odd evenodd

odd

odd

odd

odd

odd

odd

odd

even

even

even

even

even

even

even

even



the main argument

even

even

odd

odd

odd

even

even

even

odd

odd

odd

even

odd evenodd

odd

odd

odd

odd

odd

odd

odd

even

even

even

even

even

even

even

even



the main argument

even

even

odd

odd

odd

even

even

even

odd

odd

odd

even

odd evenodd

odd

odd

odd

odd

odd

odd

odd

even

even

even

even

even

even

even

even



the main argument

even

even

odd

odd

odd

even

even

even

odd

odd

odd

even

odd evenodd

odd

odd

odd

odd

odd

odd

odd

even

even

even

even

even

even

even

even



the main argument

even

even

odd

odd

odd

even

even

even

odd

odd

odd

even

odd evenodd

odd

odd

odd

odd

odd

odd

odd

even

even

even

even

even

even

even

even



the main argument

even

even

odd

odd

odd

even

even

even

odd

odd

odd

even

odd evenodd

odd

odd

odd

odd

odd

odd

odd

even

even

even

even

even

even

even

even



overview

PROBLEM: can small 2DFAs simulate small 1NFAs?

LIVENESS: a complete problem for this conversion

MOLES: a natural class of automata against liveness

GOAL: show that small 2D moles cannot solve liveness

THEOREM: even huge 2D moles cannot do it



overview

PROBLEM: can small 2DFAs simulate small 1NFAs?

LIVENESS: a complete problem for this conversion

MOLES: a natural class of automata against liveness

GOAL: show that small 2D moles cannot solve liveness

THEOREM: even huge 2D moles cannot do it

nice fact to know : 1. natural class of algorithms

2. the small 1NFAs for liveness are moles

3. unrestricted bidirectionality

BUT: class too restricted: 3. hard to reuse its parts —but do check dilemmas



overview

PROBLEM: can small 2DFAs simulate small 1NFAs?

LIVENESS: a complete problem for this conversion

MOLES: a natural class of automata against liveness

GOAL: show that small 2D moles cannot solve liveness

THEOREM: even huge 2D moles cannot do it

nice fact to know : 1. natural class of algorithms

2. the small 1NFAs for liveness are moles

3. unrestricted bidirectionality

BUT: proof too technical: 1. many technical details (skipped here)

2. hard to extend

3. hard to reuse its parts —but do check dilemmas

BUT: class too restricted: 3. hard to reuse its parts —but do check dilemmas



overview

PROBLEM: can small 2DFAs simulate small 1NFAs?

LIVENESS: a complete problem for this conversion

MOLES: a natural class of automata against liveness

GOAL: show that small 2D moles cannot solve liveness

THEOREM: even huge 2D moles cannot do it

nice fact to know : 1. natural class of algorithms

2. the small 1NFAs for liveness are moles

3. unrestricted bidirectionality

BUT: proof too technical: 1. many technical details (skipped here)

2. hard to extend

3. hard to reuse its parts —but do check dilemmas

class too restricted: 1. computability answer to a complexity question

2. we have definitely missed the real reasons. . .



why care about this problem

REASON #1:

REASON #2:

2DFA
?

poly(n) states n states

1NFA



why care about this problem

REASON #1:

REASON #2:

2DFA
?

poly(n) states n states

1NFA2



why care about this problem

REASON #1:

REASON #2:

2DFA2

?

poly(n) states n states

1NFA2



why care about this problem

REASON #1:

REASON #2:

2n states

?

n states

1NFA22DFA2



why care about this problem

REASON #1:

REASON #2:

2n states

?

n states

1NFA22DFA4



why care about this problem

REASON #1:

REASON #2:

222n

states

?

n states

1NFA22DFA4



why care about this problem

REASON #1:

REASON #2:

2DFA1000000

222n

states

?

n states

1NFA2



why care about this problem

REASON #1:

REASON #2:

any # states

?

n states

1NFA22DFAany #



why care about this problem

REASON #1:

REASON #2:

L=NL?

n states

1NFA22DFAany #

any # states



why care about this problem

REASON #1:

REASON #2: two-way determinism vs. one-way nondeterminism

L=NL?

n states

1NFA22DFAany #

any # states



why care about this problem

REASON #1: it is such a nice problem!

REASON #2: two-way determinism vs. one-way nondeterminism

L=NL?

n states

1NFA22DFAany #

any # states


