Deterministic moles cannot solve liveness

Christos Kapoutsis

workshop on the
Descriptional Complexity of Formal Systems

Como, Italy, July 2005

1DFA

1DFA

1NFA

1DFA

1NFA


```
                        can be converted to
                                    every 1NFA with
                                    n states
< 2n}-1\mathrm{ states
        and sometimes all these 2n}-1\mathrm{ states are necessary
```

 "the trade-off is exactly \(2^{n}-1\) "
 1DFA

1DFA

2DFA

"the trade-off is exactly
?

1DFA


```
a 1DFA with can be converted to every 2NFA with
< ? states
every 2NFA with \(n\) states and sometimes all these ? states are necessary
```

"the trade-off is exactly \square ?

1DFA

$2^{n}-1, n\left(n^{n}-(n-1)^{n}\right)$

polynomially ? exponentially

polynomially ? exponentially

polynomially ? exponentially

polynomially ? exponentially

polynomially ? exponentially

$\begin{aligned} \text { polynomially } & ? \quad \begin{array}{l}\text { exponentially } \\ P=N P\end{array} \quad P \neq N P\end{aligned}$

polynomially ? exponentially

is there a satisfying assignment?

IDEA: depth first search!

IDEA: depth first search!

IDEA: depth first search!

IDEA: depth first search! PROBLEM: we get lost

IDEA: depth first search! PROBLEM: we get lost

THEOREM: no graph exploration can work

IDEA: depth first search! PROBLEM: we get lost

MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w
w is live and the mole rejects $\quad \vee \quad w$ is dead and the mole accepts
w is dead and contains a live node that the mole never visits

MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w
w is live and the mole rejects $\quad \vee \quad w$ is dead and the mole accepts

$$
w \text { is dead and contains a live node that the mole never visits }
$$

MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w
w is live and the mole rejects $\quad \vee \quad w$ is dead and the mole accepts w is dead and contains a live node that the mole never visits

MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w
w is live and the mole rejects $\quad \vee \quad w$ is dead and the mole accepts
w is dead and contains a live node that the mole never visits

MOLE against LIVENESS

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w
w is live and the mole rejects $\quad \vee \quad w$ is dead and the mole accepts w is dead and contains a live node that the mole never visits

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w w is live and the mole rejects $\quad v \quad w$ is dead and the mole accepts w is dead and contains a live node that the mole never visits

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w
w is live and the mole rejects $v \quad w$ is dead and the mole accepts w is dead and contains a live node that the mole never visits

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w
w is live and the mole rejects $\quad v \quad w$ is dead and the mole accepts w is dead and contains a live node that the mole never visits

same computation!

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w
w is live and the mole rejects $v \quad w$ is dead and the mole accepts w is dead and contains a live node that the mole never visits

same computation \Rightarrow same decision

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w
w is live and the mole rejects $v \quad w$ is dead and the mole accepts w is dead and contains a live node that the mole never visits

same computation \Rightarrow same decision

PROOF PLAN: Construct a string of graphs w such that:
the mole fails on w
w is live and the mole rejects $\quad v \quad w$ is dead and the mole accepts w is dead and contains a live node that the mole never visits

same computation \Rightarrow same decision

the main argument

the main argument

the main argument

the main argument

the main argument

the main argument

the main argument

the main argument

odd	even	odd	even
odd	even	odd	oven

odd
even

odd			
even	even	odd	even

odd			
even	even	odd	even

odd	even	odd	even

odd	even	odd	even

PROBLEM: can small 2DFAs simulate small 1NFAs?
LIVENESS: a complete problem for this conversion
MOLES: a natural class of automata against liveness
GOAL: show that small 2D moles cannot solve liveness
THEOREM: even huge 2D moles cannot do it

PROBLEM: can small 2DFAs simulate small 1NFAs?
LIVENESS: a complete problem for this conversion
MOLES: a natural class of automata against liveness
GOAL: show that small 2D moles cannot solve liveness
THEOREM: even huge 2D moles cannot do it
nice fact to know: 1. natural class of algorithms
2. the small 1NFAs for liveness are moles
3. unrestricted bidirectionality

PROBLEM: can small 2DFAs simulate small 1NFAs?
LIVENESS: a complete problem for this conversion
MOLES: a natural class of automata against liveness
GOAL: show that small 2D moles cannot solve liveness
THEOREM: even huge 2D moles cannot do it
nice fact to know: 1. natural class of algorithms
2. the small 1NFAs for liveness are moles
3. unrestricted bidirectionality

BUT: proof too technical: 1. many technical details (skipped here)
2. hard to extend
3. hard to reuse its parts -but do check dilemmas

PROBLEM: can small 2DFAs simulate small 1NFAs?
LIVENESS: a complete problem for this conversion
MOLES: a natural class of automata against liveness
GOAL: show that small 2D moles cannot solve liveness
THEOREM: even huge 2D moles cannot do it
nice fact to know: 1. natural class of algorithms
2. the small 1NFAs for liveness are moles
3. unrestricted bidirectionality

BUT: proof too technical: 1. many technical details (skipped here)
2. hard to extend
3. hard to reuse its parts -but do check dilemmas
class too restricted: 1. computability answer to a complexity question
2. we have definitely missed the real reasons...

REASON \#1:

REASON \#2:

REASON \#1:

REASON \#2: two-way determinism vs. one-way nondeterminism


```
REASON #1: it is such a nice problem!
```

REASON \#2: two-way determinism vs. one-way nondeterminism

