Deterministic moles cannot solve liveness

Christos Kapoutsis

workshop on the Descriptional Complexity of Formal Systems Como, Italy, July 2005

"the trade-off is exactly $2^n - 1$ "

 $2^n - 1$, $n(n^n - (n - 1)^n)$

 $2^n - 1$, $n(n^n - (n-1)^n)$, $\sum_{i < n} \sum_{j < n} {n \choose i} {n \choose j} (2^i - 1)^j$

 $2^n - 1$, $n(n^n - (n-1)^n)$, $\sum_{i < n} \sum_{j < n} {n \choose i} {n \choose j} (2^i - 1)^j$, n

 $2^n - 1$, $n(n^n - (n-1)^n)$, $\sum_{i < n} \sum_{j < n} {n \choose i} {n \choose j} (2^i - 1)^j$, n, ${2n \choose n+1}$

 $2^n - 1$, $n(n^n - (n-1)^n)$, $\sum_{i < n} \sum_{j < n} {n \choose i} {n \choose j} (2^i - 1)^j$, n, ${2n \choose n+1}$, ?, ?

polynomially ? exponentially

polynomially ? exponentially

IDEA: depth first search!

IDEA: depth first search!

IDEA: depth first search!

IDEA: depth first search! PROBLEM: we get lost

IDEA: depth first search! PROBLEM: we get lost

THEOREM: no graph exploration can work

IDEA: depth first search! PROBLEM: we get lost

THEOREM: no graph exploration can work

PROOF PLAN: Construct a string of graphs w such that:

the mole fails on \boldsymbol{w}

w is live and the mole rejects $\lor w$ is dead and the mole accepts

 \boldsymbol{w} is dead and contains a live node that the mole never visits
the mole fails on w

w is live and the mole rejects $\lor w$ is dead and the mole accepts

the mole fails on w

w is live and the mole rejects $\lor w$ is dead and the mole accepts

the mole fails on w

w is live and the mole rejects $\lor w$ is dead and the mole accepts

the mole fails on w

w is live and the mole rejects $\lor w$ is dead and the mole accepts

the mole fails on w

w is live and the mole rejects $\lor w$ is dead and the mole accepts

the mole fails on w

w is live and the mole rejects $\lor w$ is dead and the mole accepts

the mole fails on w

w is live and the mole rejects $\lor w$ is dead and the mole accepts

 \boldsymbol{w} is dead and contains a live node that the mole never visits

same computation!

the mole fails on w

w is live and the mole rejects $\lor w$ is dead and the mole accepts

 \boldsymbol{w} is dead and contains a live node that the mole never visits

same computation \Rightarrow same decision

the mole fails on w

w is live and the mole rejects $\lor w$ is dead and the mole accepts

 \boldsymbol{w} is dead and contains a live node that the mole never visits

same computation \Rightarrow same decision

the mole fails on w

w is live and the mole rejects $\lor w$ is dead and the mole accepts

 \boldsymbol{w} is dead and contains a live node that the mole never visits

same computation \Rightarrow same decision

•	٠	٠	•	•	٠	٠	•	٠	•	٠	٠	•	•	٠	٠	٠	•	•	•	•	٠	٠	•	•	٠	٠	٠	٠	٠
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	•	٠	•	•	•	•	•	٠	٠	•	٠	٠	•	•	•	•
٠	٠	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	•	٠	٠	•	٠	•	٠	٠	٠	٠	•	٠	•	٠	٠	٠	•	•	•	•	٠	٠	•	٠	٠	•	٠	٠	٠

odd	even	odd	even	even
even	odd	even	odd	odd
odd	even	even	even	odd
odd	odd	odd	odd	even
even	odd	even	odd	even
odd	even	even	even	odd

	\neg	\neg / / /		\sim
odd	even	odd	even	even
even	odd	even	odd	odd
odd	even	even	even	odd
odd	odd	odd	odd	even
even	odd	even	odd	even
odd	even	even	even	odd

odd	even	odd	even	even
even	odd	even	odd	odd
odd	even	even	even	odd
odd	odd	odd	odd	even
even	odd	even	odd	even
odd	even	even	even	odd

	\times		\times	
000	even	Odd	even	even
even	odd	even	odd	odd
odd	even	even	even	odd
odd	odd	odd	odd	even
even	odd	even	odd	even
odd	even	even	even	odd

			\sim	
odd	even	odd	even	even
even	odd	even	odd	odd
odd	even	even	even	odd
odd	odd	odd	odd	even
even	odd	even	odd	even
odd	even	even	even	odd

odd	even	odd	even	even
even	odd	even	odd	odd
odd	even	even	even	bbo
odd	odd	odd	odd	even
even	odd	even	odd	even
odd	even	even	even	odd

odd	even	odd	even	even
even	odd	even	odd	odd
odd	even	even	even	odd
odd	odd	odd	odd	even
even	odd	even	odd	even
odd	even	even	even	odd

odd	even	odd	even	even
even	odd	even	odd	odd
odd	even	even	even	odd
odd	odd	odd	odd	even
even	odd	even	odd	even
				•
odd	even	even	even	odd

odd	even	odd	even	even
even	odd	even	odd	odd
odd	even	even	even	odd
odd	odd	odd	odd	even
even	odd	even	odd	even
odd	even	even	even	odd

PROBLEM: can small 2DFAs simulate small 1NFAs?

LIVENESS: a complete problem for this conversion

- MOLES: a natural class of automata against liveness
 - GOAL: show that **small** 2D moles cannot solve liveness

THEOREM: even huge 2D moles cannot do it

PROBLEM: can small 2DFAs simulate small 1NFAs?

LIVENESS: a complete problem for this conversion

- MOLES: a natural class of automata against liveness
 - GOAL: show that small 2D moles cannot solve liveness

THEOREM: even huge 2D moles cannot do it

nice fact to know: 1. natural class of algorithms

- 2. the small 1NFAs for liveness are moles
- 3. unrestricted bidirectionality

PROBLEM: can small 2DFAs simulate small 1NFAs?

- LIVENESS: a complete problem for this conversion
 - MOLES: a natural class of automata against liveness
 - GOAL: show that small 2D moles cannot solve liveness

THEOREM: even huge 2D moles cannot do it

nice fact to know: 1. natural class of algorithms

- 2. the small 1NFAs for liveness are moles
- 3. unrestricted bidirectionality
- BUT: *proof too technical*: 1. many technical details (skipped here)
 - 2. hard to extend
 - 3. hard to reuse its parts —but do check dilemmas
PROBLEM: can small 2DFAs simulate small 1NFAs?

- LIVENESS: a complete problem for this conversion
 - MOLES: a natural class of automata against liveness
 - GOAL: show that small 2D moles cannot solve liveness

THEOREM: even huge 2D moles cannot do it

nice fact to know: 1. natural class of algorithms

- 2. the small 1NFAs for liveness are moles
- 3. unrestricted bidirectionality
- BUT: *proof too technical*: 1. many technical details (skipped here)
 - 2. hard to extend
 - 3. hard to reuse its parts —but do check dilemmas
 - class too restricted: 1. computability answer to a complexity question
 - 2. we have definitely missed the real reasons...

REASON #2: two-way determinism vs. one-way nondeterminism

REASON #1: it is such a nice problem!

REASON #2: two-way determinism vs. one-way nondeterminism

