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LIVENESS: a complete problem for this conversion

MOLES: a natural class of automata against liveness

GOAL: show that small 2D moles cannot solve liveness

THEOREM: even huge 2D moles cannot do it

nice fact to know : 1. natural class of algorithms

2. the small 1NFAs for liveness are moles

3. unrestricted bidirectionality

BUT: proof too technical: 1. many technical details (skipped here)

2. hard to extend

3. hard to reuse its parts —but do check dilemmas

class too restricted: 1. computability answer to a complexity question

2. we have definitely missed the real reasons. . .
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REASON #1: it is such a nice problem!

REASON #2: two-way determinism vs. one-way nondeterminism

L=NL?
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