From k + 1 to k heads the descriptive trade-off is non-recursive

Christos Kapoutsis

workshop on the Descriptional Complexity of Formal Systems London, Ontario, July 2004 2DFA $_k$: two-way deterministic finite automaton with k heads

capabilities:

For $L \in (2DFA_3)$: $M_3 = a$ smallest $2DFA_3$ for L $M_4 = a$ smallest $2DFA_4$ for L

We should have: $|M_4| \le |M_3|$. But how larger? $|M_4| \le |M_3| \le 2|M_4|$? $|M_4| \le |M_3| \le |M_4|^2$? $|M_4| \le |M_3| \le 2^{|M_4|}$?

QUESTION: If $|M_4| \le |M_3| \le f(|M_4|)$, how fast does f need to grow? ANSWER: It must grow so fast that we cannot even compute it. ... then we could semidecide the inadequacy of 3 heads:

 $H_3 =$ "Given M a 2DFA₄: is it true that no 2DFA₃ solves the same problem as M?"

which is *not* semidecidable.

Need to prove two things:

- i. f computable \Rightarrow H₃ semidecidable
- ii. H_3 not semidecidable

Given M a 2DFA₄:

- 1. Compute |M| = 53.
- 2. Compute f(|M|) = f(53) = 1013.
- 3. Compute the list

$$D_1, D_2, D_3, \ldots, D_{731}$$

of all 2DFA₃'s of size \leq 1013 and *M*'s alphabet.

4. Check that M is disagrees with every D_i :

for all inputs x:

- cross out every D_i such that $D_i(x) \neq M(x)$.
- if the list of D_i 's got empty, *accept*.
- M has no equivalent 2DFA₃
 - \Rightarrow list eventually gets empty
 - \Rightarrow we accept
- M has an equivalent 2DFA₃
 - \Rightarrow list contains one
 - \Rightarrow we loop forever

Hence: if we could compute f, we could semidecide H_3

[*]

H₃ NOT SEMIDECIDABLE

We prove:

$\overline{\mathsf{HALT}} \leq \mathsf{E} \leq \mathsf{H}_3$

- $\overline{\mathsf{HALT}} = \text{``Given } M \text{ a TM: is it true that} \\ M \text{ loops on } \langle M \rangle ?''$
 - $E = "Given M a terminating 2DFA_2^u that$ obeys a threshold: is it true thatthe language of M is empty?"
 - $H_3 =$ "Given *M* a 2DFA₄: is it true that *M* has no equivalent 2DFA₃?"

The following problem is not semidecidable (known):

 E_{TM} = "Given M a TM: is it true that the language of M is empty?"

What if, instead of a TM, the input machine \boldsymbol{M} is:

- just a multihead 2DFA?
- ... with exactly 2 heads?
- ... and unary input alphabet?
- ... and promised to always halt?
- ... and promised to obey a threshold?

for some $l \leq \infty$: $L(M) = \{ x \mid l \leq |x| \}$ Does the problem get any easier?

> $\mathsf{E} = \text{``Given } M \text{ a terminating } 2\mathsf{DFA}_2^{\mathsf{u}} \text{ that}$ obeys a threshold: is it true that the language of M is empty?''

$$M \text{ a TM} \longrightarrow \bigcirc M' \text{ a } 2\text{DFA}_2^u,$$

 $M \text{ a TM} \longrightarrow terminating and obeys a threshold}$

OUTLINE:

 $M a \mathsf{TM}$

- \longrightarrow A a unary LBA
- \longrightarrow B a 3-counter automaton
- \longrightarrow C a 2-counter automaton
- $\longrightarrow M' \text{ a } 2\text{DFA}_2^{\text{u}}$

Each of A, B, C, M' will be terminating and obey a threshold.

If *M* loops on its description: $L(A) = L(B) = L(C) = L(M') = \emptyset$

If *M* halts on its description: $L(A), L(B), L(C), L(M') \neq \emptyset$ E NOT SEMIDECIDABLE: $M \to A \to B \to C \to M'$

 $M \text{ a TM} \longrightarrow A \text{ a unary LBA,}$ terminating and obeys a threshold

$$A = "On input 0^{n}:$$
1. For all $x \in \{0, 1\}^{n}:$
- if x is an accepting computation history
of M on its description, accept.
2. Reject."

M loops on its description $\Rightarrow L(A) = \emptyset$ M halts on its description $\Rightarrow L(A) \neq \emptyset$

E NOT SEMIDECIDABLE: $M \to A \to B \to C \to M'$

A a unary LBA,		B a DCA ₃ ,
terminating and	\longrightarrow	terminating and
obeys a threshold		obeys a threshold

input = m (upper bound for the counters)

B on input m simulates A on input $\lg_5 \lg_{30} m$

when A on input $n = \lg_5 \lg_{30} m$ is in configuration:

then B on input $m = 30^{5^n}$ is in configuration:

E NOT SEMIDECIDABLE: $M \to A \to \boxed{B \to C} \to M'$

B a DCA ₃ ,	C a DCA ₂ ,
<i>terminating</i> and \longrightarrow	terminating and
obeys a threshold	obeys a threshold

input = m (upper bound for the counters)

$$C =$$
 "On input m:
— simulate B on input m."

E NOT SEMIDECIDABLE: $M \to A \to \boxed{B \to C} \to M'$

 ${\cal C}$ on input m simulates ${\cal B}$ on input m

when B on input m is in configuration:

then C on input m is in configuration:

E NOT SEMIDECIDABLE: $M \to A \to B \to C \to M'$

C a DCA ₂ ,	M' a 2DFA $_2^{\sf u}$,
<i>terminating</i> and \longrightarrow	<i>terminating</i> and
obeys a threshold	obeys a threshold

M' on input l simulates C on input l+1

when C on input m = l + 1 is in configuration:

then M' on input l = m - 1 is in configuration:

M' = "On input x: 1. Run M. If it accepts, accept. 2. Run D."

$$L(M) = \emptyset$$

$$\Rightarrow L(M') = L(D)$$

$$\Rightarrow M' \text{ has no equivalent } 2DFA_3$$

 $\begin{array}{l} L(M) \neq \emptyset \\ \Rightarrow \quad L(M) = \text{exactly all sufficiently long strings} \\ \Rightarrow \quad L(M') \text{ cofinite, hence regular} \\ \Rightarrow \quad M' \text{ has equivalent } 2\text{DFA}_3 \end{array}$

Some $computable f$ is such that	1	
$ M_4 \le M_3 \le f\big(M_4 \big)$		
for all $L \in (2DFA_3)$		
\Rightarrow H ₃ is semidecidable		[Hartmanis71]
\Rightarrow E is semidecidable		[Kutrib03]
\Rightarrow HALT is semidecidable		[because]
\Rightarrow false		
Because: Given M a TM		
$\longrightarrow A$ a terminating unary I BA		

$\longrightarrow A$ a terminating unary LBA that obeys a threshold	
$\longrightarrow B$ a terminating DCA ₃ that obeys a threshold	[Minsky61]
$\longrightarrow C$ a terminating DCA ₂ that obeys a threshold	[Wang57]
$\longrightarrow M'$ a terminating 2DFA ₂ ^u that obeys a threshold	
$\begin{array}{ll} M \text{ loops on } \langle M \rangle \implies L(M') = \emptyset \\ M \text{ halts on } \langle M \rangle \implies L(M') \neq \emptyset \end{array}$	

THEOREM.

Replacing a $2DFA_4$ with an equivalent $2DFA_3$ causes a blow-up in description size that only non-recursive functions can bound.

- ... where nothing is special about
- the 3rd gap,
- determinism, or
- the cardinality of the input alphabet.

THEOREM.

For any $k \ge 1$, and $X \in \{2\mathsf{DFA}, 2\mathsf{NFA}, 2\mathsf{DFA}^{\mathsf{u}}, 2\mathsf{NFA}^{\mathsf{u}}\}$: Replacing a X_{k+1} with an equivalent X_k causes a blowup in description size that only non-recursive functions can bound.

COROLLARY: Same for other types of automata.