From $k+1$ to k heads the descriptive trade-off is non-recursive

Christos Kapoutsis
workshop on the
Descriptional Complexity of Formal Systems London, Ontario, July 2004

2DFA ${ }_{k}$: two-way deterministic finite automaton with k heads
e.g., for $k=3$:

capabilities:

THE GAP FOR $k=3$

For $L \in\left(2 \mathrm{DFA}_{3}\right): M_{3}=$ a smallest $2 \mathrm{DFA}_{3}$ for L $M_{4}=$ a smallest $2 \mathrm{DFA}_{4}$ for L

We should have: $\quad\left|M_{4}\right| \leq\left|M_{3}\right|$.
But how larger? $\quad\left|M_{4}\right| \leq\left|M_{3}\right| \leq 2\left|M_{4}\right|$?
$\left|M_{4}\right| \leq\left|M_{3}\right| \leq\left|M_{4}\right|^{2}$?
$\left|M_{4}\right| \leq\left|M_{3}\right| \leq 2^{\left|M_{4}\right|} \quad ?$

QUESTION: If $\quad\left|M_{4}\right| \leq\left|M_{3}\right| \leq f\left(\left|M_{4}\right|\right)$, how fast does f need to grow?

ANSWER: It must grow so fast that we cannot even compute it.
. . . then we could semidecide the inadequacy of 3 heads:
$\mathrm{H}_{3}=$ "Given M a $2 \mathrm{DFA}_{4}$: is it true that no $2 \mathrm{DFA}_{3}$ solves the same problem as M ?" which is not semidecidable.

Need to prove two things:
i. f computable $\Rightarrow \mathrm{H}_{3}$ semidecidable
ii. H_{3} not semidecidable

f COMPUTABLE $\Rightarrow \mathrm{H}_{3}$ SEMIDECIDABLE

Given M a $2 \mathrm{DFA}_{4}$:

1. Compute $|M|=53$.
2. Compute $f(|M|)=f(53)=1013$.
3. Compute the list

$$
D_{1}, D_{2}, D_{3}, \ldots, D_{731}
$$

of all $2 \mathrm{DFA}_{3}$'s of size ≤ 1013 and M 's alphabet.
4. Check that M is disagrees with every D_{i} :
for all inputs x :

- cross out every D_{i} such that $D_{i}(x) \neq M(x)$.
- if the list of D_{i} 's got empty, accept.
M has no equivalent 2 DFA_{3}
\Rightarrow list eventually gets empty
\Rightarrow we accept
M has an equivalent $2 \mathrm{DFA}_{3}$
\Rightarrow list contains one
\Rightarrow we loop forever

Hence: if we could compute f, we could semidecide H_{3}

H_{3} NOT SEMIDECIDABLE

We prove:

$$
\overline{\mathrm{HALT}} \leq \mathrm{E} \leq \mathrm{H}_{3}
$$

$\overline{\text { HALT }}=$ "Given M a TM: is it true that M loops on $\langle M\rangle$?"

$\mathrm{E}=$ "Given M a terminating 2DFA ${ }_{2}^{u}$ that obeys a threshold: is it true that the language of M is empty?"
$\mathrm{H}_{3}=$ "Given M a 2 DFA $_{4}$: is it true that M has no equivalent 2DFA3?"

The following problem is not semidecidable (known):

$$
\begin{aligned}
\mathrm{E}_{\mathrm{TM}}= & \text { "Given } M \text { a } \mathrm{TM}: \text { is it true that } \\
& \text { the language of } M \text { is empty?" }
\end{aligned}
$$

What if, instead of a TM, the input machine M is:

- just a multinead 2DFA?
- ... with exactly 2 heads?
- ... and unary input alphabet?
- ... and promised to always halt?
- ... and promised to obey a threshold?

$$
\text { for some } l \leq \infty: \quad L(M)=\{x|l \leq|x|\}
$$

Does the problem get any easier?

$$
\begin{aligned}
\mathrm{E}= & \text { "Given } M \text { a terminating } 2 \mathrm{DFA}_{2}^{\mathrm{u}} \text { that } \\
& \text { obeys a threshold: is it true that } \\
& \text { the language of } M \text { is empty?" }
\end{aligned}
$$

E NOT SEMIDECIDABLE: $\overline{H A L T} \leq E$

$$
M \text { a TM } \longrightarrow ? \rightarrow \begin{aligned}
& M^{\prime} \text { a } 2 \mathrm{DFA}_{2}, \\
& \text { terminating and } \\
& \text { obeys a threshold }
\end{aligned}
$$

OUTLINE M a TM
$\longrightarrow \quad A$ a unary LBA
$\longrightarrow \quad B$ a 3-counter automaton
$\longrightarrow \quad C$ a 2-counter automaton $\longrightarrow \quad M^{\prime}$ a $2 \mathrm{DFA}_{2}^{u}$

Each of A, B, C, M^{\prime} will be terminating and obey a threshold.

If M loops on its description:

$$
L(A)=L(B)=L(C)=L\left(M^{\prime}\right)=\emptyset
$$

If M halts on its description:
$L(A), L(B), L(C), L\left(M^{\prime}\right) \neq \emptyset$

E NOT SEMIDECIDABLE: $\quad M \rightarrow A \rightarrow B \rightarrow C \rightarrow M^{\prime}$

$$
\begin{aligned}
M \text { a TM } \longrightarrow & \begin{array}{c}
A \text { a unary LBA, } \\
\text { terminating and } \\
\text { obeys a threshold }
\end{array}
\end{aligned}
$$

input alphabet $=\{0\}$
tape alphabet $=\{\sqcup, 0,1, \dot{0}, \dot{1}\}$
$A=$ "On input 0^{n} :

1. For all $x \in\{0,1\}^{n}$:

- if x is an accepting computation history of M on its description, accept.

2. Reject."
M loops on its description $\Rightarrow L(A)=\emptyset$
M halts on its description $\Rightarrow L(A) \neq \emptyset$

E NOT SEMIDECIDABLE: $\quad M \rightarrow A \rightarrow B \rightarrow C \rightarrow M^{\prime}$

A a unary LBA,

terminating and
obeys a threshold

oberminating and
obeys a threshold

input $=m$ (upper bound for the counters)
$B=$ "On input m :

- simulate A on input $\lg _{5} \lg _{30} m$."

E NOT SEMIDECIDABLE: $\quad M \rightarrow A \rightarrow B \rightarrow C \rightarrow M^{\prime}$

B on input m simulates A on input $\lg _{5} \lg _{30} m$
when A on input $n=\lg _{5} \lg _{30} m$ is in configuration:

then B on input $m=30^{5^{n}}$ is in configuration:

E NOT SEMIDECIDABLE: $\quad M \rightarrow A \rightarrow B \rightarrow C \rightarrow M^{\prime}$

input to B $m=30^{5^{n}}$

input to the simulation of A $n=\lg _{5} \lg _{30} m$

E NOT SEMIDECIDABLE: $\quad M \rightarrow A \rightarrow B \rightarrow C \rightarrow M^{\prime}$

B a DCA_{3},
terminating and

obeys a threshold \longrightarrow| C a DCA_{2}, |
| :--- |
| terminating and |
| obeys a threshold |

input $=m$ (upper bound for the counters)
$C=$ "On input m :

- simulate B on input m."

E NOT SEMIDECIDABLE: $\quad M \rightarrow A \rightarrow B \rightarrow C \rightarrow M^{\prime}$

C on input m simulates B on input m
when B on input m is in configuration:

then C on input m is in configuration:

E NOT SEMIDECIDABLE: $\quad M \rightarrow A \rightarrow B \rightarrow C \rightarrow M^{\prime}$

input to C	values of	input to B
m	counters	

E NOT SEMIDECIDABLE: $\quad M \rightarrow A \rightarrow B \rightarrow C \rightarrow M^{\prime}$

M^{\prime} on input l simulates C on input $l+1$
when C on input $m=l+1$ is in configuration:

then M^{\prime} on input $l=m-1$ is in configuration:

D a 2DFA 4 with no equivalent 2DFA3

$$
\begin{aligned}
M^{\prime}= & \text { "On input } x: \\
& \text { 1. Run } M . \text { If it accepts, accept. } \\
& \text { 2. Run } D . "
\end{aligned}
$$

$L(M)=\emptyset$
$\Rightarrow \quad L\left(M^{\prime}\right)=L(D)$
$\Rightarrow \quad M^{\prime}$ has no equivalent 2DFA $_{3}$
$L(M) \neq \emptyset$
$\Rightarrow \quad L(M)=$ exactly all sufficiently long strings
$\Rightarrow \quad L\left(M^{\prime}\right)$ cofinite, hence regular
$\Rightarrow \quad M^{\prime}$ has equivalent 2DFA 3

OVERVIEW

Some computable f is such that

$$
\left|M_{4}\right| \leq\left|M_{3}\right| \leq f\left(\left|M_{4}\right|\right)
$$

for all $L \in\left(2 \mathrm{DFA}_{3}\right)$
$\Rightarrow \quad \mathrm{H}_{3}$ is semidecidable
$\Rightarrow \quad E$ is semidecidable
[Hartmanis71]
$\Rightarrow \overline{\mathrm{HALT}}$ is semidecidable [Kutrib03] [because...]
\Rightarrow false

Because: Given M a TM
$\longrightarrow A$ a terminating unary LBA that obeys a threshold
$\longrightarrow B$ a terminating DCA_{3}
[Minsky61] that obeys a threshold
$\longrightarrow C$ a terminating DCA_{2} [Wang57] that obeys a threshold
$\longrightarrow M^{\prime}$ a terminating 2DFA ${ }_{2}^{u}$ that obeys a threshold
M loops on $\langle M\rangle \Rightarrow L\left(M^{\prime}\right)=\emptyset$
M halts on $\langle M\rangle \Rightarrow L\left(M^{\prime}\right) \neq \emptyset$

CONCLUSION

THEOREM.
Replacing a $2 \mathrm{DFA}_{4}$ with an equivalent $2 \mathrm{DFA}_{3}$ causes a blow-up in description size that only non-recursive functions can bound.
... where nothing is special about

- the 3rd gap,
- determinism, or
- the cardinality of the input alphabet.

THEOREM.
For any $k \geq 1$, and $X \in\left\{2 D F A, 2 N F A, 2 D^{u}{ }^{u}, 2\right.$ NFA $\left.^{u}\right\}$: Replacing a X_{k+1} with an equivalent X_{k} causes a blowup in description size that only non-recursive functions can bound.

COROLLARY: Same for other types of automata.

