
October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

A Logical Characterization of Small 2NFAs

Christos A. Kapoutsis

Carnegie Mellon University in Qatar, Education City, P.O. Box 24866, Doha, Qatar
cak@cmu.edu

Lamana Mulaffer

Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar
fathima.mulaffer@qatar.tamu.edu

Received (Day Month Year)

Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

Let 2N be the class of families of problems solvable by families of two-way nondeter-

ministic finite automata of polynomial size. We characterize 2N in terms of families of
formulas of transitive-closure logic. These formulas apply the transitive-closure opera-

tor on a quantifier-free disjunctive normal form of first-order logic with successor and

constants, where (i) apart from two special variables, all others are equated to constants
in every clause, and (ii) no clause simultaneously relates these two special variables and

refers to fixed input cells. We prove that automata with polynomially many states are

as powerful as formulas with polynomially many clauses and polynomially large con-
stants. This can be seen as a refinement of Immerman’s theorem that nondeterministic

logarithmic space matches positive transitive-closure logic (NL = FO+posTC).

1. Introduction

A formal machine M and a logical formula ϕ are equivalent if they determine

the same language: a string w is accepted by M iff it satisfies ϕ. Such compar-

isons between machines and formulas are the topic of Descriptive Complexity The-

ory [4]. Its inaugural result was Fagin’s Theorem, which says that polynomial-time

nondeterministic Turing machines (ntms) are equivalent to formulas of existen-

tial second-order logic (NP=∃SO) [2]. An analogous result for space complexity

is Immerman’s theorem that logarithmic-space ntms are equivalent to formulas of

positive transitive-closure logic (NL=FO+posTC) [3]. Today we know many such

‘logical characterizations’ of various computational complexity classes [4].

When it comes to finite automata (on finite strings), an old result of this kind

is Büchi’s Theorem, that one-way nondeterministic finite automata (nfas) are

equivalent to formulas of monadic second-order logic with successor (mso[S]) [1]

—and thus so are, too, all automata recognizing the regular languages, including

the deterministic and/or two-way variants (dfas, dfas, nfas). But this is a

‘computability result’, in the sense that the equivalence involves no restriction on the

1

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

2 C.A. Kapoutsis and L. Mulaffer

automata resources —as opposed to Fagin’s and Immerman’s ‘complexity results’,

where the ntms are restricted to use only polynomial time or logarithmic space,

respectively. What if we focus on automata where the main resource, the number

of states, is restricted to be polynomial (in a given parameter)?

We first asked this in [6], in the context of building a size-complexity theory

of two-way finite automata, or ‘Minicomplexity Theory’ [5]. Specifically, we asked:

What is an analog of Fagin’s Theorem when we replace ntms and time with nfas

and size? Unfortunately, however, we failed to answer in full generality. Instead,

we proved such analogs only for the one-way, rotating, and sweeping restrictions of

nfas (where the input head can, respectively, only move forward; or only move

forward and jump to the start; or turn only on the end-markers).

The present paper contains the full answer to that question of [6]. In what can be

seen as a refinement of Immerman’s theorem from above, we prove that polynomial-

size nfas are equivalent to a certain class of formulas of FO+posTC. Specifically,

we focus on formulas consisting of a single, positive application of the transitive-

closure operator on a quantifier-free disjunctive normal form of first-order logic with

successor and constants, where (i) each of the conjunctive clauses equates every vari-

able, except for two special ones, to some constant, and (ii) none of these clauses

can both relate the two special variables and refer to a fixed input cell. We call such

formulas weak one-dimensional graph-accessibility disjunctive-normal-forms (weak

ga/dnf1s) and prove that they are equivalent to polynomial-size nfas, if their

clauses are polynomially many and their constants polynomially large. This com-

pletes our first step into what one could call ‘Descriptive Minicomplexity Theory’.

2. Preparation

Let Z be all integers and Z± := Z−{0}. If n ≥ 0, then we let [n] := {0, . . . , n−1},
Z+
n := {1, . . . , n}, and Z−n := {−n, . . . ,−1}. If w ∈ Σ∗ is a finite string over some

alphabet Σ, then |w| and wx are its length and x-th symbol (if 1 ≤ x ≤ |w|).

2.1. Finite automata

A two-way nondeterministic finite automaton is a tuple N = (S,Σ, δ, qs, qa) of a

set of states S, an alphabet Σ, a start state qs ∈ S, an accept state qa ∈ S, and

a set of transitions δ ⊆ S × (Σ ∪ {`,a}) × S × {l,r}, where `,a /∈ Σ are the two

end-markers and l,r are the two directions of motion for the input head.

A word w ∈ Σ∗ is presented to N between the end-markers, as `wa. The

computation starts at qs on `. At each step, the next state and head motion may

be any of those derived from δ and the current state and symbol. End-markers

are never violated, except for a if the next state is qa. So, each branch of N ’s

computation can hang inside the input; or loop; or fall off a into qa, in which case

we call it accepting. If at least one branch is accepting, we say N accepts w.

Let n = |w|. A configuration of N on w is a pair (p, x) ∈ S×[n+3]; it means N is

at state p reading wx, if x ≤ n+1 (we let w0:=` and wn+1:=a); or has fallen off a

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

A Logical Characterization of Small 2NFAs 3

q1

ca

w4w3w2w1w0

b

q2

q3

qa

(a)

qs

q1

a b c

w1 w2 w3

q2

q3

qa

(b)

qs

Figure 1. (a) The configuration graph of a 5-state nfa N on w = abc. An accepting branch in bold
arrows. (b) The inner configuration graph of N on w. Dashed arrows are caused by computations

on `w1 or w3a. E.g., (q3, 1)→ (q1, 2) is caused by (q3, 1)→ (qa, 0)→ (q2, 1)→ (q1, 2) in (a).

into p, if x = n+2. The configuration graph GN,w of N on w (Fig. 1a) is the directed

graph where vertices are configurations of N on w and an edge (p, x)→ (q, y) exists

iff N can switch from (p, x) to (q, y) in a single step, i.e., iff

y = x+1 & (p, wx, q,r) ∈ δ or y = x−1 & (p, wx, q, l) ∈ δ . (1)

Clearly, N accepts w iff GN,w has a path (qs, 0) (qa, n+2).

When n ≥ 2, a denser representation is the inner configuration graph G′N,w
(Fig. 1b), where now the vertices are only the inner configurations S × Z+

n and an

edge, or inner step, (p, x)→ (q, y) exists iff any of the following holds:

• N can switch from (p, x) to (q, y) in a single step, as in (1);

• x = 1, y = 2, and the switch can happen by a U-turn computation on `w1;

• x = n, y = n−1, and the switch can happen by a U-turn on wna.

We will need to say that N accepts w iff G′N,w has a path (qs, 1) (qa, n). But,

in general, this is false; it becomes true, if N is in the form of Def. 1 (Fact 2ii).

Conveniently, with two more states, every nfa can be put in this form (Fact 2i).

Definition 1. A nfa N = (. , Σ, δ, qs, qa) is in inner normal form (inf) if

i. δ contains (qs,`, qs,r), but no other tuple (qs,`, . , .); and

ii. δ contains every (qa, a, qa,r) for a ∈ Σ∪{a}, but no other tuple (. , . , qa,r).

Fact 2. i. Every s-state nfa is equivalent to a (s+2)-state nfa in inf.

ii. If N is in inf, then N accepts w iff G′N,w has a path (qs, 1) (qa, n).

Proof. (i) Pick any nfa N = (S,Σ, δ, qs, qa). For two states ps, pa /∈ S, consider

the nfaN ′ = (S∪{ps, pa}, Σ, δ′, ps, pa), where δ′ augments δ with the transitions:

• (ps,`, ps,r) and (ps, a, qs, l) for all a ∈ Σ ∪ {a};
• (q,a, pa, l) for all q ∈ S such that (q,a, qa,r) ∈ δ; and

• (pa, a, pa,r) for all a ∈ Σ ∪ {`,a}.
Easily, N ′ starts with steps (ps, 0) → (ps, 1) → (qs, 0) and continues exactly as N ,

except that its final step (q, n+1)→ (qa, n+2) is replaced by (q, n+1)→ (pa, n)→
(pa, n+1) → (pa, n+2). This creates a correspondence between the accepting com-

putations of N and N ′, making the two nfas equivalent. Clearly, N ′ is in inf.

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

4 C.A. Kapoutsis and L. Mulaffer

(ii) For the forward direction, suppose N accepts w. Then GN,w has a path

(qs, 0) (qa, n+2), call it π. By Def. 1i, π starts with the step (qs, 0) → (qs, 1);

by Def. 1ii, it ends with the steps (qa, n) → (qa, n+1) → (qa, n+2). So, GN,w has

a path (qs, 1) (qa, n), call it π̂. Scan π̂ and replace every subpath of the form

(p, 1) (q, 2) over `w1 or of the form (p, n) (q, n−1) over wna with the cor-

responding edge (p, 1) → (q, 2) or (p, n) → (q, n−1), respectively, given by the

definition of G′N,w. Clearly, the resulting path π′ is a path (qs, 1) (qa, n) in G′N,w.

Conversely, suppose G′N,w has a path (qs, 1) (qa, n), call it π′. Scan π′ and re-

place every edge (p, 1) → (q, 2) or (p, n) → (q, n−1) which is not also in GN,w
with the corresponding subpath (p, 1) (q, 2) over `w1 or (p, n) (q, n−1)

over wna, respectively, which justifies its presence in G′N,w. Clearly, the result is a

path (qs, 1) (qa, n) in GN,w, call it π̂. Now, prepend to π̂ the step (qs, 0)→ (qs, 1)

and append the steps (qa, n)→ (qa, n+1)→ (qa, n+2), given by Def. 1. The result-

ing path π is a path (qs, 0) (qa, n+2) in GN,w. Hence, N accepts w.

2.2. Logical formulas

In quantifier-free first-order logic with successor and constants over alphabet Σ

(q·fo+
Σ [S,Z∗]), formulas are built out of first-order variables x0, x1, . . . , constants

±1,±2, . . . ∈ Z±, one cell predicate α(.) for each α ⊆ Σ, the equality predicate

. = . , the successor predicate S(. , .), and the connectives ¬,∧,∨. A formula ϕ is

either an atom, of the form α(t), t= t′, or S(t, t′), where each of the terms t, t′ is

either a variable or a constant; or compound, of the form ¬φ, φ∧ψ, or φ∨ψ, where

φ, ψ are simpler formulas. An atom is either local, of the form α(t); or relational, of

the form t= t′ or S(t, t′). An atom or negation of atom is a literal. A conjunction

(resp., disjunction) of literals is an ∧-clause (resp., an ∨-clause); a disjunction (resp.,

conjunction) of ≤m such clauses is an m-clause disjunctive normal form, or m-dnf

(resp., an m-clause conjunctive normal form, or m-cnf). A formula is non-trivial if

it is not identically true or identically false.

The length |ϕ| of a formula ϕ is the number of occurences of symbols in it,

ignoring punctuation and counting each variable, constant, and cell predicate as a

single symbol. More carefully, we define |ϕ| by structural induction on ϕ:

• for all α, t, t′: |α(t)| = 2 and |t= t′| = |S(t, t′)| = 3;

• for all φ, ψ: |¬φ| = 1 + |φ| and |φ ∧ ψ| = |φ ∨ ψ| = |φ|+ 1 + |ψ| .
The margin of ϕ is the maximum absolute value of a constant in it; or 0, if ϕ has

no constants. We write ϕ(x2, x5, . . .) to indicate that all variables appearing in ϕ

are among x2, x5, . . . (note that all variables are free, as there are no quantifiers).

Remark 3. Note that |ϕ|may be smaller than the length of a binary encoding of ϕ,

or ‘bit-length of ϕ’, where each variable xi counts for dlog ιe, where ι the greatest

index of a variable in ϕ; each constant c counts for dlg(2τ)e, where τ the largest

absolute value of a constant in ϕ; and each cell predicate α counts for σ := |Σ|.
We opt for ‘length’, over ‘bit-length’, for three reasons. First, measuring variables

and constants as in bit-length can increase our measurements only by a logarithmic

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

A Logical Characterization of Small 2NFAs 5

0

(c)(b)

⊥
x1

x2

x5

⊥
x1

x2 0

a

1

⊥
x1

x2

b

0

0

0

5

a

0

0

0

4

b

1

0

0

3

0

1

a

0

1

a

0

0

1

2

b

0

0

54

a

0

0

3

b

1

01

0

1

a

2

a

0(a)

Figure 2. (a) A column from Σ|V , for Σ = {a,b}, V = {x1, x2}. (b) A well-formed ŵ over Σ|V ;
here, ŵ(⊥) = aabab, ŵ(x2) = 3, ŵ(+1) = 1, ŵ(−1) = 5. (c) The word ŵ[x5/2].

factor, which is insignificant in our context —so, in this respect, length is preferable

just for simplicity. Second, our theorem takes constants into account explicitly —so,

again, simplicity makes length preferable. Finally, measuring each cell predicate as 1

is in line with our measuring automata size by number of states (as opposed to bits

in a binary encoding), which again ignores the contribution of alphabet size —so,

in this respect, length is necessary for consistency in comparing with automata.

2.2.1. Semantics.

For a set of variables V , let Σ|V be the alphabet of all functions u : {⊥} ∪ V →
Σ ∪ {0,1} which map ⊥ into Σ and variables into {0,1} (namely, u(⊥) ∈ Σ and

u(xi) ∈ {0,1} for all xi ∈ V). Intuitively, every such u is a column of 1+|V | cells,

labelled by the elements of {⊥}∪V and filled by the respective values of u (Fig. 2a).

Likewise, each word ŵ = ŵ1 · · · ŵn ∈ (Σ|V)∗ is a table of n columns and 1+|V | rows:

one row is labelled by ⊥ and hosts an n-long word over Σ; the rest are labelled by

variables and host n-long bitstrings (Fig. 2b).

We say ŵ is well-formed if n ≥ 2 and the row of each variable hosts exactly

one 1 (Fig. 2b). Then, ŵ(⊥) is the word ŵ1(⊥) · · · ŵn(⊥) ∈ Σ∗ hosted in the ⊥-row;

ŵ(xi) is the index x of the one column ŵx which has a 1 in the xi-row; and, for

c ∈ Z±, ŵ(c) is the index c of the c-th leftmost column, if c > 0, or the index n−|c|+1

of the |c|-th rightmost column, if c < 0. Moreover, for any xi /∈ V and index x ∈ Z+
n ,

ŵ[xi/x] is the well-formed word over Σ|(V ∪ {xi}) derived from ŵ by adding a row

labelled xi with its x-th bit 1 and all others 0 (Fig. 2c).

Now, given a n-long well-formed ŵ over Σ|V and a formula ϕ whose variables

are all in V , we say ŵ satisfies ϕ and write ŵ |= ϕ, if what ϕ ‘says’ about ŵ(⊥) is

true when each variable xi is interpreted as in the xi-row, namely iff:

for ϕ ≡ α(t) : ŵ(⊥)ŵ(t) ∈ α for ϕ ≡ ¬φ : ŵ 6|= φ

for ϕ ≡ t= t′ : ŵ(t) = ŵ(t′) for ϕ ≡ φ ∧ ψ : ŵ |= φ and ŵ |= ψ

for ϕ ≡ S(t, t′): ŵ(t) + 1 = ŵ(t′) for ϕ ≡ φ ∨ ψ : ŵ |= φ or ŵ |= ψ .

2.2.2. Transitive closure.

Let ϕ(x, y) be a q·fo+
Σ [S,Z∗] formula over 2k + 2 variables x = x0, . . . , xk and

y = y0, . . . , yk. Given an n-long w ∈ Σ∗, this defines a binary relation Rϕ on

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

6 C.A. Kapoutsis and L. Mulaffer

k+1-tuples of indices in Z+
n . As usual, the transitive closure of Rϕ is the binary

relation R∗ϕ which contains a pair (u, v) iff there is a sequence of tuples r0, r1, · · · , r`
such that u = r0; every (ri, ri+1) is in Rϕ; and r` = v.

We augment our logic with the transitive closure operator ‘TC’, which checks if

two tuples of indices are in the relation R∗ϕ defined by some ϕ(x, y): given ϕ and

two tuples of terms t, t′, the formula TCϕ(t, t′) (or, more legibly, TC[ϕ(x, y)](t, t′))

has length 1+|ϕ|+2k+2 and the following semantics, for all well-formed ŵ:

ŵ |= TCϕ(t, t′) iff
(

(ŵ(t0), . . . , ŵ(tk)), (ŵ(t′0), . . . , ŵ(t′k))
)
∈ R∗ϕ .

Intuitively, let Gϕ,ŵ be the directed graph with vertex set (Z+
n)k+1 and all edges

(u, v) such that ŵ[x/u, y/v] |= ϕ(x, y); then ŵ |= TCϕ(t, t′) iff Gϕ,ŵ has a path

(ŵ(t0), . . . , ŵ(tk)) (ŵ(t′0), . . . , ŵ(t′k)). We call this new logic q·fo+
Σ [S,Z∗]+tc.

2.3. Finite automata versus logical formulas

A (promise) problem over alphabet Σ is any pair L = (L, L̃) of disjoint subsets

of Σ∗.a An automaton N solves L if it accepts all w ∈ L but no w ∈ L̃. A formula

ϕ solves L if it is satisfied by all w ∈ L but no w ∈ L̃.

A family of automata N = (Nh)h≥1 (resp., of formulas F = (ϕh)h≥1) solves a

family of problems (Lh)h≥1 if every Nh (resp., ϕh) solves the respective Lh. The

automata of N (resp., the formulas of F) are small if every Nh has ≤ p(h) states

(resp., every ϕh has length ≤ p(h)), for some polynomial p. Therefore, the set

2N :=

{
(Lh)h≥1

∣∣∣∣ there exist nfas (Nh)h≥1 and a polynomial p

such that every Nh solves Lh with ≤ p(h) states

}
is the class of problem families which are solvable by families of small nfas.b

A formula ϕ(x) of q·fo+
Σ [S,Z∗]+tc is equivalent to a nfa N over Σ|x if for all

well-formed ŵ ∈ (Σ|x)∗: ŵ satisfies ϕ iff N accepts ŵ (note that |ŵ| ≥ 2).

3. Graph-Accessibility Sentences and Our Theorem

A formula of q·fo+
Σ [S,Z∗] is local, if all its atoms are local (i.e., it talks only about

the contents of certain cells); quasi-local, if every relational atom in it uses at least

one constant (i.e., it talks only about certain cells’ contents and distance from the

end-markers); and relational, if all its atoms are relational (i.e., it talks only about

the order of certain cells). Orthogonally, the formula is floating, if all its terms are

variables; quasi-floating, if every atom uses at least one variable; and anchored, if

all its terms are constants. Finally, inside an ∧-clause, a variable x is anchored if

it appears in at least one literal of the form x= c or c=x (without negation), for

some constant c; otherwise, it is floating.

aIf L̃ = L, then L is a language.
bElsewhere, this is defined as a class of families of languages, as opposed to promise problems. For
our purposes, this difference is not important.

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

A Logical Characterization of Small 2NFAs 7

Given a q·fo+
Σ [S,Z∗] formula ϕ(x, y) with x = x0, . . . , xk and y = y0, . . . , yk, a

graph-accessibility sentence (gas) with core ϕ and arity k+1 is any formula

TC
[
ϕ(x, y)

]
(s, t) (2)

where s = s0, . . . , sk and t = t0, . . . , tk are constants. If ϕ is a dnf, namely ϕ(x, y) ≡∨m
i=1 ϕi(x, y) where each ϕi is an ∧-clause and the degree m is ≥ 1, we say (2) is

a ga/dnf. If x1, . . . , xk and y1, . . . , yk are all anchored in every ϕi (so that only x0, y0
may be floating), we say (2) is one-dimensional (ga/dnf1). Finally, we say (2) is

weak if no ϕi contains both anchored local atoms and floating relational ones.

Our theorem states that nfas of polynomial size are as powerful as weak

ga/dnf1s of polynomial degree and margin; and that this holds already when the

margin is 1 and we also require polynomial length and logarithmic arity.

Theorem 4. The following are equivalent, for every family of problems L:

1. L has small nfas.

2. L has small weak ga/dnf1s of small degree, margin 1, logarithmic arity.

3. L has weak ga/dnf1s of small degree, small margin.

Proof. The implication [(2)⇒(3)] is trivial. For the other two, let L = (Lh)h≥1.

[(1)⇒(2)] Suppose some family (Nh)h≥1 of nfas and a polynomial p are such

that every Nh solves Lh with sh ≤ p(h) states. By Lemma 5, Nh is equivalent

to a weak ga/dnf1 ϕh of margin 1, arity O(log sh) = O(log p(h)) = O(log h),

degree O(s2h) = O(p(h)2) ≤ q(h), and length O(s2h log sh) = O(p(h)2 log p(h)) ≤
q(h), where q any large enough polynomial. So, (ϕh)h≥1 is a family of small weak

ga/dnf1s of polynomial degree, margin 1, and logarithmic arity that solves L.

[(3)⇒(1)] Suppose a family (ϕh)h≥1 of weak ga/dnf1s and a polynomial p are

such that every ϕh solves Lh with degree mh ≤ p(h) and margin τh ≤ p(h). By

Lemma 13, ϕh is equivalent to a nfa Nh with O(mhτh) = O(p(h)2) ≤ q(h) states,

where q any large enough polynomial. So, the small nfas (Nh)h≥1 solve L.

4. From Automata to Formulas

The simpler conversion, from automata to formulas, is treated in the next lemma.

Lemma 5. Every s-state nfa is equivalent to a weak ga/dnf1 of degree O(s2),

margin 1, arity O(log s) and length O(s2 log s).

Proof. Pick any s-state nfa N . We first switch to an equivalent nfa Ñ which

is in inf (Def. 1) and its number of states s̃ is a power of 2 not exceeding 2s + 2,

i.e., s̃ = 2r ≤ 2s+2 for some r. For this, we first apply Fact 2i to derive a nfa N ′

in inf which is equivalent to N and has s′ = s+2 states. If s′ is a power of 2,

then we are done: we let Ñ := N ′ and have s̃ = s′ = s+2 ≤ 2s+2. If not, then

there exists r such that 2r−1 < s′ < 2r; so, we let Ñ be the nfa derived from N ′

when we add 2r−s′ dummy states. Easily, Ñ is also equivalent to N and has size

s̃ = s′+(2r−s′) = 2r = 2·2r−1 ≤ 2(s′−1) ≤ 2(s+2−1) = 2(s+1), so again s̃ ≤ 2s+2.

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

8 C.A. Kapoutsis and L. Mulaffer

Now, for simplicity, we rename the states of Ñ so that Ñ = ([s̃], Σ, δ̃, 0, s̃−1).

We need a weak ga/dnf1 TC[ϕ(x, y)](s, t) such that, for all w of length n ≥ 2:

Ñ accepts w ⇐⇒ w |= TC[ϕ(x, y)](s, t) . (3)

By definition, the right-hand side holds iff the graph Gϕ,w induced by ϕ (cf. p. 6)

has a path (s0, s1, . . . , sk) (t0, t1, . . . , tk), where k+1 the arity of ϕ. By Fact 2ii,

the left-hand side holds iff the inner configuration graph G′Ñ,w induced by Ñ has a

path (0, 1) (s̃−1, n). So, we simply need to pick ϕ so that Gϕ,w is actually G′Ñ,w,

and then pick s, t so that they are actually (0, 1) and (s̃−1, n).

First, we must represent each vertex of G′Ñ,w, namely each inner configuration

(p, x) ∈ [s̃]×Z+
n , as a vertex of Gϕ,w, namely a tuple u = (u0, u1, . . . , uk) of indices

from Z+
n . Of course, x can be represented by any component of u, say u0. As for p, we

represent it in ‘binary’ using the other components u1, . . . , uk: we pick k := r = lg s̃

(to ensure we have enough ‘bits’) and use indices 1 and n (which are distinct, as

n ≥ 2) as 0 and 1, respectively. E.g., if s̃ = 16 (so, k = 4) and n = 50, then

the configuration (p, x) = (2, 22) maps to u = (22, 1, 1, 50, 1). Note that (0, 1) and

(s̃−1, n) map to (1, 1, . . . , 1) and (n, n, . . . , n), i.e., to the interpretations of the

tuples of constants (+1,+1, . . . ,+1) and (−1,−1, . . . ,−1).

Given this representation, we now need a ϕ(x, y) which states that the edge

(x, y) exists in G′Ñ,w, namely that Ñ can switch in a single inner step from the

inner configuration (x0, x1, . . . , xk) to the inner configuration (y0, y1, . . . , yk).

As a start, for every state p ∈ [s̃] we need a formula ξp(u) which says that the

state of the inner configuration (u0, u1, . . . , uk) is p. E.g., if n = 50 and p = 2 as

above, then w |= ξp(u) should hold iff u is of the form (. , 1, 1, 50, 1), and thus ξp(u)

should be u1 = +1 ∧ u2 = +1 ∧ u3 =−1 ∧ u4 = +1. In general, we let

ξp(u) :=

k∧
i=1

(ui = pi) , (4)

where each pi is either +1 or −1 depending on whether the i-th most significant bit

in the k-bit binary representation of p is 0 or 1.

Additionally, for every two states p, q ∈ [s̃] and each direction of head motion,

we need the set of symbols which allow the corresponding transition:

αl
p,q := {a ∈ Σ | (p, a, q, l) ∈ δ̃} , αr

p,q := {a ∈ Σ | (p, a, q,r) ∈ δ̃} . (5)

Similarly, for every two states p, q ∈ [s̃] and each end-marker, we need the set of

symbols which, together with the end-marker, allow the corresponding U-turn:

α`p,q := {a ∈ Σ | computing on `a from p on a, Ñ can exit right into q} ,

αap,q := {a ∈ Σ | computing on aa from p on a, Ñ can exit left into q} .
(6)

Using the ∧-clauses of (4) and the cell predicates for the sets of (5) and (6), we

now build a formula ϕ(x, y) which says that, in a single inner step, Ñ can switch

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

A Logical Characterization of Small 2NFAs 9

from cell x0 and ‘state’ (x1, . . . , xk) to cell y0 and ‘state’ (y1, . . . , yk):

ϕ(x, y) :=
∨

p,q∈[s̃]

{ [
ξp(x) ∧ ξq(y) ∧ S(x0, y0) ∧ αr

p,q(x0)
]

(7)

∨
[
ξp(x) ∧ ξq(y) ∧ S(y0, x0) ∧ αl

p,q(x0)
]

(8)

∨
[
ξp(x) ∧ ξq(y) ∧ x0 = +1 ∧ S(x0, y0) ∧ α`p,q(x0)

]
(9)

∨
[
ξp(x) ∧ ξq(y) ∧ x0 =−1 ∧ S(y0, x0) ∧ αap,q(x0)

] }
(10)

Intuitively, ϕ says that there exist states p, q such that the state of inner configura-

tion x is p, the state of inner configuration y is q, and: y is exactly to the right of x,

and the symbol read in x allows a right-moving transition p → q (line (7)); or y is

exactly to the left of x, and the symbol read in x allows a left-moving transition

p → q (line (8)); or x, y are on cells 1, 2 and the symbol read in x together with `
allows a left U-turn from p to q (line (9)); or y, x are on cells n−1, n and the symbol

read in x together with a allows a right U-turn from p to q (line (10)).

Overall, our gas is that of (3) with ϕ as in (7)–(10) and s = (+1, . . . ,+1) and

t = (−1, . . . ,−1). As promised, the margin is 1 (all constants are ±1) and the

arity is k+1 = O(log s). Also, each bracket in (7)–(10) is an ∧-clause of length

O(log s), as the conjunction of two ∧-clauses of length O(k) = O(log s) and two

or three atoms of length O(1); hence, ϕ is a disjunction of 4s̃2 = O(s2) ∧-clauses,

of total length O(s2 log s); and thus our gas in (3) is a ga/dnf of degree O(s2)

and length O(s2 log s), too. Finally, each bracket in (7)–(10) anchors each one of

x1, . . . , xk and y1, . . . , yk (inside ξp and ξq) and contains no anchored local atoms,

making our gas in (3) both one-dimensional and weak, as promised.

5. From Formulas to Automata

We now show how to convert a weak ga/dnf1 to a nfa. Facts 6–11 analyze the

structure of the given sentence and its sub-formulas; their proofs are straightforward

and mostly syntactic. Lemmas 8–12 build two-way automata which simulate those

sub-formulas. The final nfa for the given sentence is built in Lemma 13.

Fact 6. Let ϕ(x, y) =
∨m
i=1 ϕi(x, y) be the core of a ga/dnf1 of arity k+1. Then

every ∧-clause ϕi(x, y) is equivalent to an ∧-clause of the form

(x1 = c1)∧ · · · ∧ (xk = ck) ∧ (y1 = d1)∧ · · · ∧ (yk = dk) ∧ ϕ̂(x0, y0) ,

for some constants c1, . . . , ck, d1, . . . , dk and some ∧-clause ϕ̂(x0, y0).

Proof. Pick any ϕi. By one-dimensionality, x1 is anchored in ϕi, so at least one

literal is of the form x1 = c1 or c1 =x1, for some constant c1. Consider the following

modifications: (1) if the literal is c1 =x1, change it to x1 = c1; (2) bring the literal

upfront; (3) replace any other occurence of x1 with c1. Easily, this brings ϕi into

the equivalent form (x1 = c1)∧ϑ1(x0, x2, x3, . . . , xk, y). Similarly, x2 is also anchored

in ϕi, so by repeating modifications (1)–(3) for it, we bring ϕi to the equivalent form

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

10 C.A. Kapoutsis and L. Mulaffer

(x1 = c1) ∧ (x2 = c2) ∧ ϑ2(x0, x3, x4, . . . , xk, y). Continuing like this for all anchored

variables, we eventually get the desired equivalent form (x1 = c1)∧ · · · ∧ (xk = ck)∧
(y1 = d1) ∧ · · · ∧ (yk = dk) ∧ ϑ2k(x0, y0).

Fact 7. Every non-trivial ∧-clause ϕ(x, y) is equivalent to a formula of the form

φ∧χ(x)∧ψ(y)∧ω(x, y), where each of φ, χ, ψ, ω is an ∧-clause; φ is anchored local;

χ, ψ are quasi-floating quasi-local; and ω is floating relational.

Proof. We simply rearrange the literals of ϕ based on which variables they use:

If they use both variables, we push them back into a sub-clause ω(x, y). Clearly,

every such literal is relational and floating, so ω is also floating relational.

If they use neither variable, then we pull them forward into a sub-clause φ.

Clearly, φ is anchored. But we may also assume that it is local: Indeed, any non-local

literal in φ is of the form c= c′, S(c, c′), ¬(c= c′), or ¬S(c, c′), for some constants c, c′,

and thus trivial, namely always true or always false. We know it cannot be the latter,

because then the entire ϕ would be false, and thus trivial, which is a contradition.

So, every non-local literal in φ is necessarily always true, and thus can be dropped

from the conjunction altogether.

If they use only x, then we group them into a sub-clause χ(x). Clearly, χ is

quasi-floating. But we may also assume that it is quasi-local: Indeed, the only way

for χ not to be so is to contain one of x=x, S(x, x), ¬(x=x), or ¬S(x, x). But each

of these literals is trivial and thus, as before, either impossible (if always false, since

it would make ϕ trivial, which is a contradiction) or redundant (if always true).

If they use only y, then we collect them into a sub-clause ψ(y) which is again

quasi-floating quasi-local (by the same analysis as for χ).

Lemma 8. Suppose ϕ is an anchored local ∧-clause of margin τ . Then there exists

a O(τ)-state dfa which, whenever run on a string w from the cell of `, returns

on that same cell and accepts iff w |= ϕ.

Proof. Formula ϕ is a conjunction of literals of the form α(c) and ¬α(c), where

α ⊆ Σ and c ∈ Z+
τ ∪ Z−τ . We may assume that every such c appears in exactly

one literal of the form α(c): Indeed, if it appears in none, then we add the true

literal Σ(c); if it appears in exactly one, but of the form ¬γ(c), then we replace

this with the equivalent γ(c); if it appears in more than one, then we replace the

conjunction β1(c) ∧ · · · ∧ βr(c) ∧ ¬γ1(c) ∧ · · · ∧ ¬γs(c) of these literals with the

equivalent single literal α(c) where α := β1 ∩ · · · ∩ βr ∩ γ1 ∩ · · · ∩ γs.
So, ϕ is essentially a list of 2τ conditions, one for each of the τ leftmost and

the τ rightmost cells of w, and w |= ϕ iff all are true. To test this, a dfa M

starting from ` scans the leftmost cells, counting up to τ and confirming all respec-

tive conditions; then sweeps to a; then scans the rightmost cells backwards, again

counting up to τ and confirming all respective conditions; then sweeps to ` and

accepts —if any condition fails or any cell does not exist (because w is too short),

then M rejects. Easily, this can be implemented with O(τ) states.

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

A Logical Characterization of Small 2NFAs 11

Fact 9. Every quasi-local formula is equivalent to a formula in which every atom

is of the form α(.) or x= c, where α ⊆ Σ, x is a variable, and c is a constant.

Proof. Suppose ϕ is quasi-local. We just need to prove that every relational atom

in it can be either replaced by an equivalent atom of the form x= c or removed

altogether. So, pick any such atom, t= t′ or S(t, t′). Since ϕ is quasi-local, at least

one of t, t′ is a constant, and thus the following list of cases is exhaustive:

• x= c: This is of a desired form, so we keep it.

• c=x: This we replace by the equivalent x= c.

• S(x, c) for c 6= +1: This we replace by the equivalent x= c−1.

• S(c, x) for c 6= −1: This we replace by the equivalent x= c+1.

• c= c′ or S(c, c′) or S(x,+1) or S(−1, x): Each of these is either always true or

always false, so we remove it altogether and then simplify ϕ appropriately.

After all replacements, every atom is indeed of the form α(.) or x = c.

Lemma 10. Suppose ϕ(x) is a quasi-floating quasi-local ∧-clause of margin τ .

Then there exists a O(τ)-state dfa which, whenever run on a string w from a

cell 1 ≤ x∗ ≤ |w|, returns on that same cell and accepts iff w[x/x∗] |= ϕ(x).

Proof. By Fact 9, by the margin τ , and since ϕ is quasi-floating with x as the only

variable, we may assume that every atom is of the form α(x) or x= c, where α ⊆ Σ
and c ∈ Z+

τ ∪ Z−τ .

So, each literal has the form α(x), ¬α(x), x= c, or ¬(x= c), for some α and c.

As in the proof of Lemma 8, we may assume the first two forms contribute exactly

one literal: the literal α(x), for α the intersection of Σ, of all β from occuring

literals β(x), and of all γ from occuring literals ¬γ(x). We may also assume that

the third form contributes at most one literal for collectively all c > 0 and at most

one literal for collectively all c < 0: if there are two literals x= c1, x= c2 for distinct

c1, c2 > 0, then ϕ is always false, and thus the dfa is just the trivial one which

simply halts and rejects —similarly for c1, c2 < 0.

Overall, without loss of generality, we may assume that ϕ(x) consists of: exactly

one α(x) for α ⊆ Σ; an optional x= c for c ∈ Z+
τ ; an optional x= c for c ∈ Z−τ ; and

zero or more ¬(x= c) for c ∈ Z+
τ ∪ Z−τ .

To test w[x/x∗] |= ϕ, a dfa run on w from cell x∗ first verifies α(x) by testing

that wx∗ ∈ α. It then scans left counting down from τ , until its counter is 0 or it

sees ` (whichever happens first), and then returns to cell x∗; during this trip, it

tests the optional x= c and the zero or more ¬(x = c) for c > 0. It then performs

a symmetric trip of ≤ τ steps to the right of cell x∗ and back, during which it tests

the optional x= c and the zero or more ¬(x = c) for c < 0. Finally, it accepts if all

tests succeeded. Easily, O(τ) states are enough.

Fact 11. Every not-identically-false floating relational ∧-clause ϕ(x, y) is equiva-

lent to S(x, y), x= y, S(y, x), or a conjunction of ¬S(x, y), ¬(x= y), ¬S(y, x).

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

12 C.A. Kapoutsis and L. Mulaffer

Proof. We know ϕ is an ∧-clause where no constants occur (‘floating’); x, y are

the only variables (notation ‘ϕ(x, y)’); and every atom is of type . = . or S(. , .)

(‘relational’). Hence, ϕ is simply some conjunction of x=x, y= y, x= y, y=x,

S(x, x), S(y, y), S(x, y), S(y, x), and their negations. However:

• If an atom is y=x: Then it can be replaced by the equivalent x= y.

• If an atom is x=x or y= y: Then it is always true. So, the respective literal

is either always true (if positive) or always false (if negative). But the latter

is impossible, as then ϕ would be identically false —a contradiction. So, the

literal is always true, and thus can be dropped from ϕ altogether.

• If an atom is S(x, x) or S(y, y): Then it is always false. So, as before, the

respective literal is negative and always true (it cannot be positive and

always false, because then ϕ would be identically false —a contradiction),

and thus can be dropped from ϕ altogether.

Hence, without loss of generality, we can assume that ϕ is some conjunction of

S(x, y), x= y, S(y, x), and their negations. Now:

• If the literal S(x, y) is present: Then the literals ¬S(x, y), x= y, S(y, x)

cannot be present, as then ϕ would be identically false —a contradiction.

Moreover, the literals ¬(x= y) and ¬S(y, x) can be dropped, since they are

always true in the presence of S(x, y).

• If the literal x= y is present: Then, similarly, the literals S(x, y), ¬(x= y),

S(y, x) cannot be present (as then ϕ would be identically false —a contra-

diction) and the literals ¬S(x, y) and ¬S(y, x) can be dropped (as always

true in the presence of x= y).

• If the literal S(y, x) is present: Then, as above, each of the other five literals

is again either absent (as ϕ is not identically false) or redundant (as true).

• Otherwise: Then the only present literals are ¬S(x, y), ¬(x= y), ¬S(y, x).

Overall, we see that ϕ is indeed equivalent to either a single positive literal from

S(x, y), x= y, and S(y, x), or a conjunction of their negations.

Lemma 12. Suppose ϕ(x, y) is an ∧-clause of margin τ which does not contain

both anchored local and floating relational atoms. Then there exists a O(τ)-state

nfa which, whenever run on a string w from a cell 1 ≤ x∗ ≤ |w|, computes so

that, for all 1 ≤ y∗ ≤ |w|:
a computation path which

halts & accepts on cell y∗ exists
⇐⇒ w[x/x∗, y/y∗] |= ϕ(x, y) . (11)

Proof. If ϕ is trivial, then the nfa is also trivial: If ϕ(x, y) is identically false,

then our nfa is simply the one which immediately halts and rejects. If ϕ(x, y)

is identically true, then our nfa is the one which first resets its head to `, then

sweeps the entire input and, on each cell, spawns a new branch which simply halts

and accepts. Easily, in both cases, the nfa can be implemented with O(1) states.

Now assume ϕ is non-trivial. Let φ, χ(x), ψ(y), ω(x, y) be the ∧-clauses by Fact 7.

Then φ or ω is empty, as anchored local and floating relational atoms do not co-exist.

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

A Logical Characterization of Small 2NFAs 13

Case 1. Suppose ω is empty. Then, when run on w from cell x∗, our nfa N must

create nondeterministic branches which collectively accept on every cell y∗ such

that φ ∧ χ(x) ∧ ψ(y) holds if x = x∗ and y = y∗. For this, N first checks χ on

cell x∗; then resets its head (forgetting x∗) and reads the ends of w to check φ; then

sweeps w and, on every cell y∗, guesses and verifies that ψ is true on y∗.

Specifically, let Φ,X, Ψ be the O(τ)-state dfas given by Lemma 8 for φ and

by Lemma 10 for χ and ψ, respectively. Starting on cell x∗, N first simulates X.

This brings it back to x∗ having checked χ on x∗. Then N goes to ` and starts

simulating Φ. This brings it back to ` having checked φ. Then N scans w and, on

every cell y∗, spawns a new branch which simulates Ψ , eventually returning to y∗

having checked ψ on y∗. Finally, N accepts (in that branch) iff all checks succeeded.

Easily, N satisfies (11) and has size O(|Φ|+|X|+|Ψ |) = O(τ).

Case 2. Suppose φ is empty. Then ϕ is equivalent to χ(x) ∧ ψ(y) ∧ ω(x, y), where

ω is not identically false (since ϕ is non-trivial), and thus is equivalent to one of

S(x, y), x= y, S(y, x), or to a conjunction of their negations (Fact 11).

2a. If ω is equivalent to S(x, y): Then the branches of N must collectively accept

on every cell y∗ such that χ(x) ∧ ψ(y) ∧ S(x, y) holds when x = x∗ and y = y∗.

Because of S(x, y), the only possible y∗ of this kind is x∗+1. So, N should just

accept on cell x∗+1 iff χ(x) ∧ ψ(y) holds when x = x∗ and y = x∗+1. Hence,

N starts on x∗ by simulating X. This brings it back to x∗ having checked χ on x∗.

Then it moves one cell to the right, checks that it is not a, and starts simulating Ψ ,

eventually returning to the cell, having checked ψ on x∗+1. In the end, N accepts

iff all checks succeeded. Note that N is, in fact, deterministic.

2b. If ω is equivalent to x= y: Then ϕ is equivalent to χ(x) ∧ ψ(y) ∧ x= y, so

the only possible y∗ is x∗. Hence, N works as in Case 2a, but without the one step

to the right between the simulations of X and of Ψ .

2c. If ω is equivalent to S(y, x): Then ϕ is equivalent to χ(x)∧ψ(y)∧ S(y, x), so

the only possible y∗ is x∗−1. So, N works as in Case 2a, except that, between the

simulations of X and of Ψ , it moves left and checks that it does not read `.

2d. If ω is equivalent to a conjunction of ¬S(x, y), ¬(x= y), ¬S(y, x): Then ω ex-

cludes a certain set of cells Yω ⊆ {x∗−1, x∗, x∗+1} from being accepted. So, N must

accept on cell y∗ iff χ(x) ∧ ψ(y) holds for x = x∗, y = y∗ and y∗ /∈ Yω. As above,

N starts on x∗ by simulating X, and returns on it after checking χ on x∗. Then

it spawns five branches, one for each of the five cases as to where cell y∗ is with

respect to cell x∗: before x∗−1, on x∗−1, on x∗, on x∗+1, or after x∗+1.

• In the first branch: N moves left by two cells, checking that neither is `. It

then sweeps up to ` and, on each cell y∗, spawns a branch which simulates Ψ

and eventually returns on y∗ having checked ψ on it.

• In the second branch: If x∗−1 ∈ Yω (i.e., ω contains ¬S(y, x)), then N just

rejects. Otherwise, it moves left once, checks that it is not on `, then simu-

lates Ψ . This brings it back to the same cell x∗−1, having checked ψ on it.

• In the third and fourth branches: N works similarly to the second one.

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

14 C.A. Kapoutsis and L. Mulaffer

It just rejects, if x∗ ∈ Yω (i.e., ω contains ¬(x= y)) or if x∗+1 ∈ Yω
(i.e., ω contains ¬S(x, y)), respectively. Otherwise, it simulates Ψ after,

respectively, not moving at all or moving once to the right.

• In the last branch: N works symmetrically to the first one. It moves right

by two cells checking against a, and then simulates Ψ on each cell before a.

In all cases, N accepts in a given branch iff all checks along it have succeeded.

Easily, in all four cases, N satisfies (11) and contains one copy of each of X

and Ψ , plus O(1) more states, for a total size of O(|X|+|Y |) = O(τ).

Lemma 13. Every weak ga/dnf1 of degree m and margin τ is equivalent to a nfa

with O(mτ) states.

Proof. Let ψ = TC[ϕ(x, y)](s, t) be as in the statement. Let the arity be k+1. Then

s0, . . . , sk, t0, . . . , tk ∈ Z+
τ ∪ Z−τ and the core ϕ has the form

∨m
i=1 ϕi(x, y), where

(Fact 6) each ϕi is equivalent to:

(x1 = ci1)∧ · · · ∧ (xk = cik) ∧ (y1 = di1)∧ · · · ∧ (yk = dik) ∧ ϕ̂i(x0, y0) , (12)

for some constants ci1, . . . , c
i
k, d

i
1, . . . , d

i
k ∈ Z+

τ ∪ Z−τ and an ∧-clause ϕ̂i of margin τ

where anchored local and floating relational atoms do not co-exist (as ψ is weak).

We build a nfa N which accepts an input w ∈ Σ∗ of length n ≥ 2 iff w |= ψ,

i.e., iff the graph Gϕ,w (see p. 6) has a path from s to t. To check this, N nondeter-

ministically guesses such a path in stages, in the standard way: starting each stage,

it remembers only the last vertex u of the path guessed so far (originally, u := s);

then it checks whether u = t and, if so, accepts; otherwise, it nondeterministically

selects a neighbor v of u and updates its memory to u := v, completing the stage.

To implement this algorithm, N needs a way of remembering u. Clearly, u will

always be a vertex reachable from s, so the following fact becomes important:

Claim 1. If u is reachable from s, then (u1, . . . , uk) = (s1, . . . , sk) or there is i =

1, . . . ,m such that (u1, . . . , uk) = (di1, . . . , d
i
k); either way, u1, . . . , uk ∈ Z+

τ ∪ Z−τ .

Proof. If u = s, the claim is trivial. Suppose u 6= s. Then the path s u has

≥ 1 step. Let v → u be the last one. Then (v, u) is an edge in Gϕ,w, so w[x/v, y/u]

satisfies ϕ(x, y); hence, it satisfies some ϕi(x, y); so, it satisifes the corresponding

(y1 = di1)∧ · · · ∧ (yk = dik); which implies that (u1, . . . , uk) = (di1, . . . , d
i
k).

So, N separates u into (1) its ‘bounded components’ u1, . . . , uk ∈ Z+
τ ∪ Z−τ ; and

(2) its ‘unbounded component’ u0 ∈ Z+
n . To remember (1), it keeps in its state

an index 0 ≤ i ≤ m such that (u1, . . . , uk) = (di1, . . . , d
i
k) —for convenience, let

(d01, . . . , d
0
k) := (s1, . . . , sk). To remember (2), it places its head on cell u0 of w.

Overall, each state of N is of the form (i, σ), where i identifies (as described)

the list u1, . . . , uk and σ shows the status of the current stage. As a special case,

σ = B means the stage has just begun. So, if N is in state (i, B) on cell u∗, then it

has reached vertex u = (u∗, di1, . . . , d
i
k) and is now beginning the next stage.

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

A Logical Characterization of Small 2NFAs 15

With this representation, the search for a path s t takes N through configura-

tions ((i0, B), u∗0), ((i1, B), u∗1), . . . , ((il, B), u∗l), where u∗0 = s0, i0 = 0; and the search

succeeds iff u∗l = t0 and (dil1 , . . . , d
il
k) = (t1, . . . , tk). To complete the description

of N , we must explain how N navigates through these configurations.

In a special first stage, N alters its configuration from (qs, 0) to ((i0, B), u∗0) =

((0, B), s0). For this, it moves its head to cell s0 (by counting s0 steps from `, if

s0 > 0; or by moving to a and counting s0 steps backwards, if s0 < 0) and switches

to state (0, B). Easily, this can be done with O(s0) = O(τ) states.

From then on, whenever at a configuration ((i, B), u∗), our N works as follows.

First, it checks if u = t, i.e., if (1) u∗ = t0 and (2) (di1, . . . , d
i
k) = (t1, . . . , tk).

Check 2 is hardwired, so it needs no extra states. Check 1 involves a trip to the

left (if t0 > 0) or right (if t0 < 0) for t0 steps or up to the end-marker, and back

to cell u∗. There, if both checks succeeded, N accepts; otherwise, it switches to a

special state (i, C). Overall, this uses O(t0) = O(τ) states of the form (i, .).

State (i, C) means that N is about to choose the next vertex v among the out-

neighbors of u, so as to switch to the appropriate next configuration ((. , B), .).

Note that v is an out-neighbor of u iff (u, v) is an edge of Gϕ,w; i.e., iff w[x/u, y/v]

satisfies some ∧-clause ϕj(x, y) as in (12); i.e., iff there exists j such that

• the bounded components v1, . . . , vk of v are equal to the second tuple of

constants dj1, . . . , d
j
k in one of the ϕj whose first tuple of constants cj1, . . . , c

j
k

are the bounded components di1, . . . , d
i
k of u, namely:

(di1 = cj1)∧ · · · ∧ (dik = cjk) ∧ (v1 = dj1)∧ · · · ∧ (vk = djk) ; and

• the unbounded component v0 of v together with the unbounded compo-

nent u∗ of u satisfy the respective ϕ̂j : w[x0/u
∗, y0/v0] |= ϕ̂j(x0, y0).

So, to nondeterministically choose such a v, our N works in two sub-stages:

• First, it chooses v1, . . . , vk, by simply choosing the index j of some ∧-clause

(if any) whose first tuple of constants is exactly di1, . . . , d
i
k. This selection

is hardwired and takes N to a special state (j, D) still on cell u∗.

• Then, it chooses v0, by simulating the O(τ)-state nfa given by Lemma 12

for ϕ̂j , from cell u∗ up to all cells v∗ such that w[x0/u
∗, y0/v

∗] |= ϕ̂j(x0, y0).

This needs O(τ) states of the form (j, .) and ends at a state (j, B).

Overall, the result is a nondeterministic computation whose accepting branches

take N to all configurations ((j, B), v∗) such that v = (v∗, dj1, . . . , d
j
k) is an out-

neighbor of u = (u∗, di1, . . . , d
i
k). This concludes our description of a full stage.

In total, N uses O(τ) states for the special first stage and, for each i, another

O(τ) + O(1) + O(τ) = O(τ) states for every stage that starts after state (i, B). So,

the total number of states is O(τ) + (1+m) ·O(τ) = O(mτ), as promised.

6. Tightness

Having completed the proof of Theorem 4, we can now also show that it is

‘tight’, in two respects: first, its sentences are rightly one-dimensional, because two-

dimensional sentences can solve non-regular problems; and second, its sentences are

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

16 C.A. Kapoutsis and L. Mulaffer

rightly in dnf, because sentences in cnf can solve problems outside 2N. Specifically,

Theorem 14 below shows that a weak two-dimensional ga/dnf can solve the well-

known non-regular problem of checking that a binary string is a palindrome; and

Theorem 15 shows that a weak one-dimensional gas with core in cnf can check that

a string has length 2h, which is well-known to require exponentially large nfas.

Theorem 14. palindrome binary = {w ∈ {a, b}∗ | w is palindrome } is solved

by a weak two-dimensional ga/dnf of arity 2, margin 1, degree 2, and length 27.

Proof. As a gas of arity 2 and margin 1, our formula is of the form

TC[ϕ(x0, x1, y0, y1)](s0, s1, t0, t1) , (13)

where s0, s1, t0, t1 ∈ {+1,−1}. Therefore, for any w ∈ {a, b}∗ of length n ≥ 2, the

graph Gϕ,w has as vertex set the integer grid (Z+
n)2, where every vertex corresponds

to two cells of w. (Fig. 3r.) On this grid, we want an edge from vertex (x0, x1) to

vertex (y0, y1) iff both of the following hold:

• The two vertices are successive along a forward-upward diagonal, i.e., y0 =

x0+1 and y1 = x1−1; or, equivalently, S(x0, y0) ∧ S(y1, x1).

• The cells x0 and x1 referred to by the first vertex contain the same symbol,

i.e., (α(x0) ∧ α(x1)) ∨ (β(x0) ∧ β(x1)), where α := {a} and β := {b}.
So, we let ϕ be the 2-clause dnf of length 27 which combines these two conditions,

without using any anchored variables or anchored local atoms:

ϕ(x0, x1, y0, y1) :=
(
S(x0, y0) ∧ S(y1, x1) ∧ α(x0) ∧ α(x1)

)
∨
(
S(x0, y0) ∧ S(y1, x1) ∧ β(x0) ∧ β(x1)

)
.

So, (13) is indeed a ga/dnf of degree 2, weak, and two-dimensional, as desired.

Now, clearly, a path (1, n) (n, 1) from bottom left to top right exists iff the

main forward-upward diagonal contains all its edges (i, n−i+1) → (i + 1, n−i);
namely iff the cells i and n−i+1 contain the same symbols, for all i = 1, . . . , n;

namely iff w is a palindrome. Therefore, (13) is exactly what we want, if we pick

(s0, s1) = (+1,−1) and (t0, t1) = (−1,+1).

Theorem 15. For all h ≥ 1, longlengthh = {02h} is solved by a weak ga/cnf1
of arity h+1, margin 1, degree O(h2), and length O(h2).

Proof. As a ga/cnf1 of arity h+1 and margin 1, our formula is of the form

TC[ϕ(x0, . . . , xh, y0, . . . , yh)](s0, . . . , sh, t0, . . . , th) , (14)

where s0, . . . , sh, t0, . . . , th ∈ {+1,−1} and each of x1, . . . , xh, y1, . . . , yh is anchored

to ±1 in each of the ∨-clauses of the cnf ϕ.

Hence, for any w ∈ {0}∗ of length n ≥ 2, the vertex set of the graph Gϕ,w is

(Z+
n)h+1. However, because of one-dimensionality, a vertex (x0, x1, . . . , xh) is non-

isolated only if x1, x2, . . . , xh ∈ {1, n}. Viewing 1 as 0 and n as 1, we see every

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

A Logical Characterization of Small 2NFAs 17

0

8

88 8

x1 x3x2

11 1

1 1 8

11 8

1 8 8

8 11

8 1 8

8

1 2 3 4 5 6x0→ 7 8

0 0 0 0 0 00

1

8

b

a

a

b

a6

1

2

5

3

4

1 2 3 4 5 6x0→

←
x
1

aa b a bb

b

b

a

7

b
8

a

7

Figure 3. (l) The ‘active’ part of the graph Gϕ,w for ϕ the core of (14), h = 3, and w = 08: every
edge is one step along a forward-downward diagonal. (r) The graph Gϕ,w for ϕ the core of (13)

and w = abaaba: every edge is one step along a forward-upward diagonal and exists iff the two

symbols at its origin are the same.

such ‘active’ vertex as an index x0 ∈ Z+
n in w together with a binary number

x̃ := x1x2 · · ·xh ∈ [2h]. So, the corresponding ‘active’ part of Gϕ,w can be viewed

as the integer grid Z+
n × [2h]. (Fig. 3l.)

On this grid, we want an edge from vertex (x0, x̃) to vertex (y0, ỹ) iff the two

vertices are successive along a forward-downward diagonal, namely iff both (1) y0 =

x0+1 and (2) ỹ = x̃+1. Clearly, Condition 1 can be written as S(x0, y0).

Condition 2 says that the ‘bits’ y1y2 · · · yh are derived by a single increment from

the ‘bits’ x1x2 · · ·xh. Recall that to increment a binary number is to complement

(i) its rightmost 0 and (ii) all 1s to the right of that 0. In other words, a bit is

complemented if all bits to its right are 1; otherwise, at least one bit to its right is 0

and the bit stays the same. So, every yi is either n+1−xi (i.e., the ‘complement’

of xi), if for all j > i it is xj = n (i.e., the ‘bit’ xj is 1); or equal to xi, if for

some j > i it is xj = 1 (i.e., the ‘bit’ xj is 0). Thus, the formula

[(h∧
j=i+1

xj =n
)
−→ yi =xi

]
∧
[h∧
j=i+1

(xj = 1 −→ yi =xi)
]

(15)

says that yi has the correct value. Replacing 1 and n with ±1 and taking cases as

to the value of xi, we can rewrite the two brackets of (15) respectively as:

[(

h∧
j=i+1

xj =−1) ∧ xi = +1 → yi =−1] ∧ [(

h∧
j=i+1

xj =−1) ∧ xi =−1 → yi = +1] ,

h∧
j=i+1

(xj = +1 ∧ xi = +1 → yi = +1) ∧
h∧

j=i+1

(xj = +1 ∧ xi =−1 → yi =−1) .

October 20, 2016 15:51 WSPC/INSTRUCTION FILE submit

18 C.A. Kapoutsis and L. Mulaffer

Now, by the identity X → Y ≡ ¬X ∨ Y , DeMorgan’s Law, and since all variables

here are either 1 or n (i.e., ±1), we can further rewrite the brackets as:

[(

h∨
j=i+1

xj = +1) ∨ xi =−1 ∨ yi =−1] ∧ [(

h∨
j=i+1

xj = +1) ∨ xi = +1 ∨ yi = +1] ,

h∧
j=i+1

(xj =−1 ∨ xi =−1 ∨ yi = +1) ∧
h∧

j=i+1

(xj =−1 ∨ xi = +1 ∨ yi =−1) .

Calling them χi and ψi respectively, we see that χi is a 2-clause cnf of length

O(h−i), whereas ψi is a 2(h−i)-clause cnf of length O(h−i). So, (15) is equivalent

to the formula χi ∧ ψi, which is a O(h−i)-clause cnf of length O(h−i). Thus,

φ(x1, . . . , xh, y1, . . . , yh) :=

h∧
i=1

(χi ∧ ψi)

is also a cnf, with O(h2) clauses and length O(h2), whose meaning is that every

‘bit’ yj has the correct value, namely that ỹ = x̃+1, namely Condition 2.

Using the formulas for Conditions 1 and 2, we can now write the core of (14) as:

ϕ(x0, x1, . . . , xh, y0, y1, . . . , yh) := S(x0, y0) ∧ φ(x1, . . . , xh, y1, . . . , yh) .

So, ϕ is also a cnf, with just one more clause than φ; hence, much like φ, it also

has O(h2) clauses and length O(h2). Moreover, its only floating variables are x0, y0
and none of its atoms is local. Overall, (14) is indeed a weak ga/cnf1, of margin 1,

degree O(h2) and length O(h2), as promised.

Finally, it should be clear that a path (1, 1, . . . , 1) (n, n, . . . , n) from top

left to bottom right exists iff the grid is square, namely iff n = 2h. So, (14) is

exactly what we want, so long as we pick (s0, s1, . . . , sh) = (+1,+1, . . . ,+1) and

(t0, t1, . . . , th) = (−1,−1, . . . ,−1).

Acknowledgments

L. Mulaffer was supported by the CMU-Qatar Undergraduate Research Program.

Bibliography

[1] R. J. Büchi, Weak second-order arithmetic and finite automata, Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik 6(1-6) (1960) 66–92.

[2] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, Com-
plexity of Computation, ed. R. M. Karp AMS-SIAM Symposia in Applied Mathematics
VII (1974), pp. 43–73.

[3] N. Immerman, Nondeterministic space is closed under complementation, SIAM Jour-
nal of Computing 17(5) (1988) 935–938.

[4] N. Immerman, Descriptive complexity (Springer-Verlag, 1998).
[5] C. Kapoutsis, Minicomplexity, Journal of Automata, Languages and Combinatorics

17(2–4) (2012) 205–224.
[6] C. Kapoutsis and N. Lefebvre, Analogs of Fagin’s Theorem for small nondeterministic

finite automata, Proceedings of DLT , (2012), pp. 202–213.

