
Theory of Computing Systems

Two-way automata characterizations of L/poly versus NL
--Manuscript Draft--

Manuscript Number:

Full Title: Two-way automata characterizations of L/poly versus NL

Article Type: Special Issue: CSR 2012 - invited only

Keywords: two-way finite automata; logarithmic space; structural complexity; descriptional
complexity

Corresponding Author: Giovanni Pighizzini, Ph.D.
Universita' degli Studi
Milano, ITALY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Universita' degli Studi

Corresponding Author's Secondary
Institution:

First Author: Christos Kapoutsis, Ph.D.

First Author Secondary Information:

Order of Authors: Christos Kapoutsis, Ph.D.

Giovanni Pighizzini, Ph.D.

Order of Authors Secondary Information:

Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation

Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Two-way automata characterizations
of L/poly versus NL

Christos A. Kapoutsis ·
Giovanni Pighizzini

Received: date / Accepted: date

Abstract Let L/poly and NL be the standard complexity classes, of languages
recognizable in logarithmic space by Turing machines which are deterministic
with polynomially-long advice and nondeterministic without advice, respec-
tively. We recast the question whether L/poly ⊇ NL in terms of deterministic
and nondeterministic two-way finite automata (dfas and nfas). We prove it
equivalent to the question whether every s-state unary nfa has an equivalent
poly(s)-state dfa, or whether a poly(h)-state dfa can check accessibility in
h-vertex graphs (even under unary encoding) or check two-way liveness in h-
tall, h-column graphs. This complements two recent improvements of an old
theorem of Berman and Lingas. On the way, we introduce new types of re-
ductions between regular languages (even unary ones), use them to prove the
completeness of specific languages for two-way nondeterministic polynomial
size, and propose a purely combinatorial conjecture that implies L/poly + NL.

Keywords Two-way finite automata · Logarithmic space · Structural
complexity · Descriptional complexity

1 Introduction

A prominent open question in complexity theory asks whether nondeterminism
is essential in logarithmic-space Turing machines. Formally, this is the question

Preliminary version presented in the 7th International Computer Science Symposium in
Russia, Nizhny Novgorod, July 3-7, 2012 [Lecture Notes in Computer Science vol. 7353,
Springer-Verlag, pp. 217-228].

C.A. Kapoutsis
LIAFA, Université Paris Diderot - Paris VII - Case 7014, F-75205 Paris Cedex 13.
E-mail: christos.kapoutsis@liafa.univ-paris-diderot.fr

G. Pighizzini
DI, Università degli Studi di Milano, I-20135 Milano.
E-mail: pighizzini@di.unimi.it

Manuscript
Click here to download Manuscript: paper.tex
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/tocs/download.aspx?id=19126&guid=784b771d-fca4-4933-bee5-0ca4a3eea038&scheme=1
http://www.editorialmanager.com/tocs/viewRCResults.aspx?pdf=1&docID=1000&rev=0&fileID=19126&msid={260CB6D4-BC0F-4B1A-A9A3-C16DC8A67277}

2

whether L = NL, for L and NL the standard classes of languages recognizable
by logarithmic-space deterministic and nondeterministic Turing machines.

In the late 70’s, Berman and Lingas [1] connected this question to the
comparison between deterministic and nondeterministic two-way finite au-
tomata (dfas and nfas), proving that if L = NL, then for every s-state
σ-symbol nfa there is a poly(sσ)-state dfa which agrees with it on all in-
puts of length ≤ s. (They also proved that this implication becomes an equiva-
lence if we require that the dfa be constructible from the nfa in logarithmic
space.)

Recently, two improvements of this theorem have been announced. On the
one hand, Geffert and Pighizzini [5] proved that if L = NL then for every
s-state unary nfa there is an equivalent poly(s)-state dfa. That is, in the
special case where σ = 1, the Berman-Lingas theorem becomes true without
any restriction on input lengths. On the other hand, Kapoutsis [8] proved
that L/poly ⊇ NL iff for every s-state σ-symbol nfa there is a poly(s)-state
dfa which agrees with it on all inputs of length ≤ s, where L/poly is the
standard class of languages recognizable by deterministic logarithmic-space
Turing machines with polynomially-long advice. Hence, the Berman-Lingas
theorem is true even under the weaker assumption L/poly ⊇ NL, even for the
stronger conclusion where the dfa size is independent of σ, and then even
in the converse direction. He also proved variants of this equivalence for other
combinations of bounds for the space usage, the advice length, and the length
of the inputs.

A natural question arising from these developments is whether the theorem
of [5] can be strengthened to resemble that of [8]: Does the implication remain
true under the weaker assumption that L/poly ⊇ NL? If so, does it then become
an equivalence? Indeed, we prove that L/poly ⊇ NL iff for every s-state unary
nfa there is an equivalent poly(s)-state dfa. Intuitively, this means that
L/poly ⊇ NL is true not only iff ‘small’ nfas can be simulated by ‘small’
dfas on ‘short’ inputs (as in [8]), but also iff the same is true for unary
inputs.

In this light, a second natural question is whether this common behavior
of ‘short’ and unary inputs is accidental or follows from deeper common prop-
erties. Indeed, our analysis reveals two such properties. They are related to
outer-nondeterministic fas (ofas, which perform nondeterministic choices
only on the end-markers [2]) and to the graph accessibility problem (gap, the
problem of checking the existence of paths in directed graphs), and use the
fact that checking whether a ‘small’ ofa M accepts an input x reduces to
solving gap in a ‘small’ graph GM (x).

• The first common property is that, both on ‘short’ and on unary inputs,
‘small’ nfas can be simulated by ‘small’ ofas (Lemma 1).

• The second common property is that, both on ‘short’ and on unary inputs,
it is possible to encode instances of gap so that a ‘small’ dfa can ex-
tract GM (x) from x (Lemma 5) and simultaneously simulate on it another
‘small’ dfa (Lemma 6).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

For ‘short’ inputs, both properties follow from standard ideas; for unary inputs,
they follow from the analyses of [3,9] and a special unary encoding for graphs.

We work in the complexity-theoretic framework of [10]. We focus on the
class 2D of (families of promise) problems solvable by polynomial-size dfas,
and on the corresponding classes 2N/poly and 2N/unary for nfas and for
problems with polynomially-long and with unary instances, respectively. In
these terms, 2D ⊇ 2N/poly means ‘small’ dfas can simulate ‘small’ nfas on
‘short’ inputs; 2D ⊇ 2N/unary means the same for unary inputs; the theorem
of [8] is that L/poly ⊇ NL ⇔ 2D ⊇ 2N/poly; the theorem of [5] is the forward
implication that L ⊇ NL ⇒ 2D ⊇ 2N/unary; and our main contribution is the
stronger statement

L/poly ⊇ NL ⇐⇒ 2D ⊇ 2N/unary . (1)

This we derive from [8] and the equivalence 2D ⊇ 2N/poly⇔ 2D ⊇ 2N/unary,
obtained by our analysis of the common properties of ‘short’ and unary inputs.

Our approach returns several by-products of independent interest, already
anticipated in [7] for enriching the framework of [10]: new types of reductions,
based on ‘small’ two-way deterministic finite transducers; the completeness of
binary and unary versions of gap (bgap and ugap) for 2N/poly and 2N/unary,
respectively, under such reductions (Corollary 2); the closure of 2D under
such reductions (Corollary 3); and the realization of the central role of ofas
in this framework (as also recognized in [2]). In the end, our main theorem
(Theorem 1) is the equivalence of L/poly ⊇ NL to all these statements (and
one more):

2D ⊇ 2N/poly 2D ⊇ 2N/unary 2D ⊇ 2O 2D 3 bgap 2D 3 ugap

where 2O is the analogue of 2D for ofas. Hence, the conjecture L/poly + NL
is now the conjecture that all these statements are false. In this context, we
also propose a stronger conjecture, both in algorithmic and in combinatorial
terms.

Concluding this introduction, we note that, of course, (1) can also be de-
rived by a direct proof of each direction. In such a derivation, the forward impli-
cation is a straightforward strengthening of the proof of [5], but the backward
implication needs the encoding of ugap and the ideas behind Lemma 6.2.

2 Preparation

If x is a string, then |x|, xi, and xi are its length, its i-th symbol (1 ≤ i ≤ |x|),
and the concatenation of i copies of it (i ≥ 0). The empty string is denoted
by ε.

If h ≥ 1, we let [h]:={0, 1, . . . , h−1}, use Kh for the complete directed
graph with vertex set [h], and ph for the h-th smallest prime number. Given
a subgraph G of Kh, we consider the following two encodings. (See Fig. 1 for
an example.)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

����
2 ����

3

����
0 ����

1

-
�

-
�

6

?

6

?�
�
�
����
�
�

��	

�

�
6

�

�
?

11

3

47

37

43 19
23 5

29

17

7

41

����
2 ����

3

����
0 ����

1

-

-
�

6�
�

�
��	

Fig. 1 The complete graph K4 with a subgraph G. Each edge (i, j) of K4 is marked with
the (i·h+j+1)-th prime number (for simplicity, self-loops are not shown in the picture). The
encodings of G are 〈G〉2 = 0100101000010100 and 〈G〉1 = 03·11·17·37·43 = 0892551.

• The binary encoding of G, denoted as 〈G〉2, is the standard h2-bit encoding
of the adjacency matrix of G: arrow (i, j) is present in G iff the (i·h+j+1)-
th most significant bit of the encoding is 1.

• The unary encoding of G, denoted as 〈G〉1, uses the natural correspondence
between the bits of 〈G〉2 and the h2 smallest prime numbers, where the
k-th most significant bit maps to pk, and thus arrow (i, j) maps to the
prime number p(i,j):=pi·h+j+1.
We let 〈G〉1:=0nG , where the length nG is the product of the primes which
correspond to the 1s of 〈G〉2, and thus to the arrows of Kh which are
present in G:

nG :=
∏

bit k of 〈G〉2 is 1

pk =
∏

(i,j) is in G

p(i,j) =
∏

(i,j) is in G

pi·h+j+1 . (2)

Note that, conversely, every length n ≥ 1 determines the unique sub-
graph Kh(n) of Kh where each arrow (i, j) is present iff the corresponding
prime p(i,j) divides n. Easily, G = Kh(nG).

A prime encoding of a length n ≥ 1 is any string #z1#z2# · · · #zm ∈ (#Σ∗)∗,
where # 6∈ Σ and each zi encodes one of the m prime powers in the prime
factorization of n. Here, the alphabet Σ and the encoding scheme for the zi
are arbitrary, but fixed; the order of the zi is arbitrary.

A (promise) problem over Σ is a pair L = (L, L̃) of disjoint subsets of Σ∗.
An instance of L is any x ∈ L ∪ L̃. If L̃ = Σ∗−L then L is a language. If
L = (Lh)h≥1 is a family of problems, its members are short if every instance
of every Lh has length ≤ p(h), for some polynomial p. If M = (Mh)h≥1 is a
family of machines, its members are small if every Mh has ≤ p(h) states, for
some polynomial p.

2.1 Automata

A two-way nondeterministic finite automaton (nfa) consists of a finite control
and an end-marked, read-only tape, accessed via a two-way head. Formally, it

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

is a tuple M = (S,Σ, δ, q0, qf) of a set of states S, an alphabet Σ, a start state
q0 ∈ S, a final state qf ∈ S, and a set of transitions

δ ⊆ S × (Σ ∪ {`,a})× S × {l,r} ,

for `,a /∈ Σ two end-markers and l:=−1 and r:=+1 the two directions. An
input x ∈ Σ∗ is presented on the tape as `xa. The computation starts at q0
on `. At each step, M uses δ on the current state and symbol to decide the
possible next state-move pairs. We assume δ never violates an end-marker,
except if on a and the next state is qf. A configuration is a state-position
pair in S×[|x|+2] or the pair (qf, |x|+2). The computation produces a tree of
configurations, and x is accepted if some branch ‘falls off a into qf’, i.e., ends
in (qf, |x|+2). A problem (L, L̃) is solved by M if M accepts all x ∈ L but
no x ∈ L̃.

We consider some restricted classes of nfas.
• M is outer-nondeterministic (ofa [2]) if all nondeterministic choices are

made on the end-markers: formally, for each (q, a) ∈ S×Σ there is at most
one transition of the form (q, a, . , .).

• M is deterministic (dfa) if the previous condition holds also for each
(q, a) ∈ S×{`,a}.

• M is sweeping (snfa, sofa, sdfa) if the head reverses only on the end-
markers: formally, the set of transitions is now just

δ ⊆ S × (Σ ∪ {`,a})× S

and the next position is defined to be always the adjacent one in the di-
rection of motion; except if the head is on ` or if the head is on a and the
next state is not qf, in which two cases the head reverses.

• M is rotating (rnfa, rofa, rdfa) if it is sweeping, but modified so that
its head jumps directly back to ` every time it reads a and the next state
is not qf: formally, the next position is now always the adjacent one to
the right; except when the head is on a and the next state is not qf, in
which case the next position is on `. Restricting the general definition of
outer-nondeterminism, we require that a rofa makes all nondeterministic
choices exclusively on `.

Lemma 1 For every s-state nfa M and length bound l, there is a O(s2l2)-
state rofa M ′ that agrees with M on all inputs of length ≤ l. If M is unary,
then M ′ has O(s2) states and agrees with M on all inputs (of any length).

Proof Pick any nfa M = (S,Σ, δ, q0, qf) and length bound l. To simulate M
on inputs x of length n ≤ l, a rofa M ′ =

(
S′, Σ, . , (q0, 0), q′f

)
uses the states

S′ :=
(
S × [l+2]

)
∪
(
S × [l+2]× S × {l,r} × [l+1]

)
∪ { q′f } .

The event of M being in state q and on tape cell i (where 0 ≤ i ≤ n+1, cell 0
contains x0:=` and cell n+1 contains xn+1:=a) is simulated by M ′ being in
state (q, i) and on `. From there, M ′ nondeterministically ‘guesses’ among

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

all (p, d) ∈ S×{l,r} a ‘correct’ next transition of M out of q and xi (i.e., a
transition leading to acceptance) and goes on to verify that this transition is
indeed valid, by deterministically sweeping the input up to cell i (using states
of the form (q, i, p, d, j) with j < i) and checking that indeed (q, xi, p, d) ∈ δ.
If the check fails, then M ′ just hangs (in this branch of the computation).
Otherwise, it continues the sweep in state (p, i + d) until it reaches a and
jumps back to `; except if xi = a & p = qf & d = r, in which case it just
falls off a into q′f.

1

If M is unary, then it can be simulated by a sofa M̃ with s̃ = O(s2)
states [3]. Without changing the set of states, this can then be converted
into a rofa M ′ that simply replaces backward sweeps with forward ones—a
straightforward simulation, which is now presented for the sake of complete-
ness.

Suppose M̃ = (S̃, . , . , q̃0, q̃f). By inspecting the construction in [3] we can
observe that S̃ is partitioned in two sets S̃F , S̃B , such that:

• states in S̃F are used only in forward sweeps and never reached when the
head is on `,

• states in S̃B are used only in backward sweeps and never reached when the
head is on a,

• q̃0 ∈ S̃B and q̃f ∈ S̃F .2

More precisely, with the head on ` and in a state from S̃B (either the ending
state of the previous backward sweep or q̃0, in the case of the first sweep), a
forward sweep starts by moving the head to the right and visiting only states
in S̃F , up until it reaches a. There, M̃ may spawn a backward sweep, using
states in S̃B , up until it returns to `. However, on a from some states it could
be also possible to move right to accept in q̃f.

Define M ′:=(S̃ , . , . , q̃0, q̃f). Whenever in q ∈ S̃F and on 0, M ′ behaves
exactly as M̃ . Thus, forward sweeps are executed as in M̃ . On reading a, the
simulation changes: if in q ∈ S̃F M̃ can violate the end-marker to accept in q̃f
then M ′ deterministically makes the same move (hence, all other transitions
from q on a are removed in M ′); otherwise, M ′ simulates each backward sweep

1 It is tempting to consider the following, simpler simulation. From (q, i) on `, M ′ sweeps
the tape deterministically up to cell i (using states of the form (q, i, j) with j < i), where
it records xi in its memory; it then completes the sweep in state (q, i, xi), jumping back
to ` in that same state. From there, it transitions nondeterministically to states of the
form (p, i ± 1) according to the choices of M from q on xi. This can be implemented with
O(sl2+slσ) states, where σ = |Σ|. If σ is constant in s, then this is O(sl2) states, better than
in Lemma 1. If σ = poly(s), then it increases to poly(s)·l2 states, still good for Corollary 1.
But if σ is super-polynomial in s, then the size of M ′ becomes super-polynomial as well,
and Corollary 1 cannot follow.

2 Actually the construction in [3] assumes acceptance on ` in q̃f . Furthermore, q̃f can be

entered only from some states in S̃B on `, without moving the input head. To be consistent
with the acceptance condition given in Section 2.1, we make the following minor changes
to M̃ , which do not affect the set of states. Each transition entering q̃f on ` moves the head

to the right. Furthermore, in the state q̃f M̃ always moves to the right, without changing

state. This is done even on a. In this way, once q̃f is entered, M̃ completely scans the input
by remaining in q̃f , in order to accept after violating a.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

of M̃ from q and a with a forward sweep from q and `. Since reversing a unary
input does not change it, this can be done in a natural way. In particular:3

• for any q ∈ S̃F such that M̃ does not have the transition (q,a, q̃f), the
transition (q,a, q) is added in M ′ (which causes M ′ to jump back to `),4

• for any q ∈ S̃F , q′ ∈ S̃B , every transition of the form (q,a, q′) in M̃ (which
would be moving to the left) is replaced by the transition (q,`, q′) in M ′

(which moves right), and
• for any q, q′ ∈ S̃B , all the other transitions in M̃ of the form (q, 0, q′) (which

would move left) are kept in M ′ (but now they move right).
If a backward sweep of M̃ ends on ` in some p ∈ S̃B , then the corresponding
simulating forward sweep ends on a in the same state p. So, the head jumps
back to ` (since p 6= q̃f) and its configuration becomes identical to that of M̃
at the end of the backward sweep.

Clearly, M ′ behaves deterministically both on a (by construction) and on 0

(because M̃ does). So, all nondeterminism is on `, and M ′ is indeed a rofa.
Its number of states is s̃. Hence, M ′ is also of size O(s2). ut

A family of nfasM = (Mh)h≥1 solves a family of problems L = (Lh)h≥1
if every Mh solves Lh. The class of families of problems that admit small
nfas is

2N := {L | L is a family of problems solvable by a family of small nfas} .

Its restrictions to families of short and of unary problems are respectively
2N/poly and 2N/unary. Analogous classes for restricted nfas are named sim-
ilarly: e.g., the class for problems with small dfas is 2D, the class for short
problems with small rofas is RO/poly, etc.

Corollary 1 2N/poly = RO/poly and 2N/unary = RO/unary.

Proof The inclusions 2N/poly ⊇ RO/poly and 2N/unary ⊇ RO/unary follow
from the definitions. The inclusions 2N/poly ⊆ RO/poly and 2N/unary ⊆
RO/unary are proved similarly, so we prove only the first one.

Pick any L = (Lh)h≥1 ∈ 2N/poly. We know there exist polynomials p, q
and a family of nfas M = (Mh)h≥1 such that every Lh is solved by Mh

with ≤ p(h) states and has instances only of length ≤ q(h). By Lemma 1, for
each Mh there is a rofaM ′h with O(p(h)2q(h)2) = poly(h) states which agrees
with it on all inputs of length ≤ q(h), and thus solves Lh as well. Therefore,
M′:=(M ′h)h≥1 is a family of small rofas which solves L. Hence L ∈ RO, and
thus L ∈ RO/poly as well (since the problems are short). ut

2.2 Graph accessibility

The graph accessibility problem on h vertices is:

3 We remind the reader that, since M̃ is a sofa, the direction of the head in its transitions
is implicit, i.e, the set of transitions is a subset of S̃ × (Σ ∪ {`,a})× S̃ (cf. p. 5).

4 Notice that M̃ has the transition (qf,a, q̃f) (cf. note 2). Hence, q 6= qf here.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

“Given a subgraph G of Kh, check that G contains a path from 0 to h−1.”

Depending on whether G is given in binary or unary, we get the following two
formal variants of the problem:

bgaph :=
(
{〈G〉2 | G is subgraph of Kh and has a path 0 h−1},
{〈G〉2 | G is subgraph of Kh and has no path 0 h−1}

)
ugaph :=

(
{0n | Kh(n) has a path 0 h−1},
{0n | Kh(n) has no path 0 h−1}

)
and the corresponding families

bgap :=(bgaph)h≥1 and ugap := (ugaph)h≥1 .

Lemma 2 bgaph and ugaph are solved by rofas with O(h3) and O(h4 log h)
states, respectively. Hence bgap ∈ RO/poly and ugap ∈ RO/unary.

Proof To solve bgaph, a rofa M2 =
(
[h] ∪ [h]×[h2], {0,1}, . , 0, h−1

)
imple-

ments the standard nondeterministic algorithm for graph accessibility. Visiting
vertex i ∈ [h] of the input graph is simulated by visiting ` in state i. From
there, M nondeterministically ‘guesses’ a ‘correct’ next vertex (i.e., one lead-
ing to h−1) among all j ∈ [h] with j 6= i and goes on to verify that arrow (i, j)
is indeed present, by sweeping the input deterministically up to the bit in
position i·h+j+1 (using states of the form (j, .)) and checking that it is 1; if
not, then it hangs (in this branch of the computation); otherwise, it continues
the sweep in state j up to a, where it either jumps back to ` in j, if j 6= h−1,
or falls off a into h−1, if j = h−1.

For ugaph, a rofaM1 =
(
[h]∪

⋃
i,j Ci,j , {0}, . , 0, h−1

)
uses the same algo-

rithm as M2. The implementation differs only in how M1 verifies the presence
of an arrow (i, j). For this, it uses a cycle of p(i,j) = pi·h+j+1 states,

Ci,j := {(i, j, k) | 0 ≤ k < p(i,j)} ,

where every state (i, j, k) transitions to state (i, j, k+1 mod p(i,j)) on 0. Enter-
ing the cycle is possible only by a transition from state i to state (i, j, 0) on `,
whereas exiting is possible only by a transition from (i, j, 0) to state j on a.
As a result, computing from ` and state i back to ` and state j is possible iff
p(i,j) divides the input length. The size of the automaton is

h+
∑
i,j∈[h]

p(i,j) = h+
∑
i,j∈[h]

pi·h+j+1

≤ h+ h2·ph2 = h+ h2O
(
h2 log(h2)

)
= O(h4 log h) ,

where we use the fact that the k-th smallest prime number is O(k log k). [6] ut

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

(a) (e)(d)(c)(b)

Fig. 2 (a) Three symbols of Γ5. (b) The string of the symbols of (a) as a multi-column
graph. (c) A symbol (A,l) ∈ ∆5. (d) A symbol (B,r) ∈ ∆′5. (e) The overlay of the symbols
of (c) and (d).

2.3 Two-way liveness

The two-way liveness problem on height h, defined over the alphabet Γh :=
P(([h]×{l,r})2) of all h-tall directed two-column graphs (Fig. 2a), is:

“Given a string x of graphs from Γh, check that x is live.”

Here, x ∈ Γ ∗h is live if the multi-column graph derived from x by identifying
adjacent columns (Fig. 2b) contains ‘live’ paths, i.e., paths from the leftmost
to the rightmost column; if not, then x is dead. Formally, this is the language

twlh:={x ∈ Γ ∗h | x is live} .

We focus on two restrictions of this problem, in which x is promised to consist
of ≤h or of exactly 2 graphs. Formally, these are the promise problems

short twlh :=
(
{x ∈ Γ≤hh | x is live}, {x ∈ Γ≤hh | x is dead}

)
compact twlh :=

(
{x ∈ Γ 2

h | x is live}, {x ∈ Γ 2
h | x is dead}

)
and the families

short twl := (short twlh)h≥1

compact twl := (compact twlh)h≥1 .

Lemma 3 twlh is solved by a nfa with 2h states. Hence short twl and
compact twl are both in RO/poly.

Proof The 2h-state nfa for twlh is straigthforward and well-known, and
it clearly solves short twlh and compact twlh. So, short twl and
compact twl are both in 2N/poly, and, by Corollary 1, also in RO/poly. ut

2.4 Relational and functional match

The relational match problem on [h] is defined over ∆h:=P([h] × [h])×{l,r},
the alphabet of all pairs of binary relations on [h] and side tags. A symbol
(A,l) denotes an h-tall two-column graph with rightward arrows chosen by A
(Fig. 2c); a symbol (B,r) denotes a similar graph with leftward arrows chosen

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

by B (Fig. 2d). If the overlay of these two graphs (Fig. 2e) contains a cycle, we
say that the symbols match, or just that A,B match. We consider the problem

rmh :=
(
{ (A,l)(B,r) | A,B ⊆ [h]×[h] & A,B match},
{ (A,l)(B,r) | A,B ⊆ [h]×[h] & A,B do not match}

)
of checking that two given relations match. We also let fmh be the restriction
of rmh to the alphabet ∆′h:=([h]⇀[h])×{l,r}, where all relations are partial
functions. We set

rel match :=(rmh)h≥1 and fun match := (fmh)h≥1 .

Lemma 4 fmh is solved by a dfa with h3 states. Hence fun match ∈ 2D.

Proof To solve fmh, a dfa M =
(
[h]3, ∆′h, . , (0, 0, 0), (0, 0, 0)

)
searches ex-

haustively for a cycle: for every i ∈ [h], it follows the unique path out of
the i-th vertex of the left column in the overlay of the two input symbols, to
check whether it returns to that vertex after ≤ 2h steps (clearly, if no cycle
of length ≤ 2h exists, then no cycle of any length does). State (i, j, k) ‘means’
that the i-th search is currently on vertex j of the outer column of the current
symbol and just before the (k+1)-th pair of successive steps. ut

Finally, rel zero-match = (rzmh)h≥1 and fun zero-match = (fzmh)h≥1
are the variants where we only check whether the given relations or functions
‘match through 0’, i.e., create a cycle through vertex 0 of the left column.

3 Transducers, reductions, and completeness

A two-way deterministic finite transducer (dft) consists of a finite control,
an end-marked, read-only input tape accessed via a two-way head, and an
infinite, write-only output tape accessed via a one-way head. Formally, it is
a tuple T = (S,Σ, Γ, δ, q0, qf) of a set of states S, an input alphabet Σ, an
output alphabet Γ , a start state q0 ∈ S, a final state qf ∈ S, and a transition
function

δ : S × (Σ ∪ {`,a})→ S × {l,r} × Γ ∗ ,

where `,a 6∈ Σ. An input x ∈ Σ∗ is presented on the input tape as `xa. The
computation starts at q0 with the input head on ` and the output tape empty.
At every step, T applies δ on the current state and input symbol to decide
the next state, the next input head move, and the next string to append to
the contents of the output tape; if this string is non-empty, the step is called
printing. We assume δ never violates an end-marker, except if the input head
is on a and the next state is qf. For y ∈ Γ ∗, we say T outputs y and write
T (x) = y, if T eventually falls off a and then the output tape contains y. For
f : Σ∗⇀Γ ∗ a partial function, we say T computes f if T (x) = f(x) for all
x ∈ Σ∗. If Γ = {0}, then T can also ‘compute’ each unary string f(x) by
printing (not the string itself, but) an encoding of its length; if this is a prime

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

encoding #z1#z2# · · · #zm (cf. p. 4) and every infix #zi is printed by a single
printing step (possibly together with other infixes), then T prime-computes f .

Now let L = (L, L̃) and L′ = (L′, L̃′) be two problems over alphabets Σ
and Σ′. A (mapping) reduction of L to L′ is any function f : Σ∗→(Σ′)∗ which
is computable by a dft and for every x ∈ Σ∗ satisfies

x ∈ L⇒ f(x) ∈ L′ and x ∈ L̃⇒ f(x) ∈ L̃′ .

Furthermore:
• f is a prime reduction if Σ′ = {0} and f is prime-computable by a dft,
• f is a homomorphic reduction if f(x) = g(`)g(x1) · · · g(x|x|)g(a) for some

homomorphism g : Σ ∪ {`,a}→(Σ′)∗ and all x ∈ Σ∗.
If such f exists, we say L (mapping-)/prime-/homomorphically reduces to L′,
and write L ≤m L′ / L �m L′ / L ≤h L′. Easily, L ≤h L′ implies L ≤m L′.

Lemma 5 If L is solved by an s-state ofa, then

L ≤m bgap2s+1 ,L �m ugap2s+1 , and L ≤h twl2s .

The first two reductions are computable and prime-computable, respectively, by
dfts with O(s4) states and O(s2) printing steps per input; the last reduction
maps strings of length n to strings of length n+2.

Proof Suppose L = (L, L̃) is solved by the s-state ofa M = (S,Σ, . , q0, qf)
and let x ∈ Σ∗. It is well-known that L ≤h twl2s via a reduction f with
|f(x)| = |x|+2 (even if M is a general nfa; e.g., see [8, Lemma 3]). So, we
focus on the first two claims.

A segment of M on x is a computation of M on x that starts and ends
on an end-marker visiting no end-markers in between, or a single-step compu-
tation that starts on a and falls off into qf. The end-points of a segment are
its first and last configurations. The summary of M on x is a subgraph G(x)
of K2s+1 that encodes all segments, as follows. The vertices represent seg-
ment end-points: vertex 0 represents (q0, 0); vertices 1, 2, . . . , 2s−1 represent
the remaining points of the form (q, 0) and all points of the form (q, |x|+1);
and vertex 2s represents (qf, |x|+2). Hence, each arrow of K2s+1 represents a
possible segment. The summary G(x) contains exactly those arrows which cor-
respond to segments that M can perform on x. Easily, every accepting branch
in the computation of M on x corresponds to a path in G(x) from vertex 0 to
vertex 2s, and vice-versa.

Now let the functions f2(x):=〈G(x)〉2 and f1(x):=〈G(x)〉1 map every x to
an instance of bgap2s+1 and of ugap2s+1. If x ∈ L, then the computation
of M on x contains an accepting branch, so G(x) contains a path 0 2s, thus
f2(x) and f1(x) are positive instances. If x ∈ L̃, then there is no accepting
branch, hence G(x) contains no path 0 2s, thus f2(x) and f1(x) are negative
instances. So, f2 and f1 are the desired reductions, if they can be computed
appropriately.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

To compute f2(x) from x ∈ Σ∗, a dft T2 iterates over all arrows of K2s+1;
for each of them, it checks whether M can perform on x the corresponding seg-
ment, and outputs 1 or 0 accordingly. To check a segment, from end-point (p, i)
to end-point (q, j), it iterates over all configurations (p′, i′) that are nondeter-
ministically visited by M right after (p, i); for each of them, it checks whether
M can compute from (p′, i′) to (q, j); the segment check succeeds if any of
these checks does. Finally, to check the computation from (p′, i′) to (q, j),
the transducer could simulate M from (p′, i′) and up to the first visit to an
end-marker. This is indeed possible, since M would behave deterministically
throughout this simulation. However, M could also loop, causing T2 to loop
as well, which is a problem.

To avoid this, T2 simulates a halting variant M ′ of M , derived as follows.

1. We remove from M all transitions performed on ` or a.
2. We add a fresh start state q′0, along with transitions which guarantee that,

on its first transition leaving q′0, the machine will be in state p′ and cell i′

(since cell i′ is adjacent to either ` or a, this requires either a single step
from q′0 to p′ on ` or a full forward sweep in q′0 followed by a single backward
step on a into p′).

3. We add a fresh final state q′f, along with transitions which guarantee that,
from state q reading the end-marker of cell j, the machine sweeps the tape
in state q′f until it falls off a (since cell j contains either ` or a, this is
either a full forward sweep followed by a single step off a, or just a single
step off a).

Now we have a dfa which first brings itself into configuration (p′, i′), then
simulates M until the first visit to an end-marker, and eventually accepts only
if this simulation reaches (q, j). So, this is a (2+s)-state dfa that accepts x
iff M can perform on x the segment from (p′, i′) to (q, j). By [4], this dfa
has an equivalent halting dfa with ≤ 4·(2+s) states. This is our M ′.

To recap, T2 iterates over all O(s2) arrows of K2s+1 and then over all O(s)
first steps of M in each corresponding segment, finally simulating a O(s)-
state dfa in each iteration. Easily, T2 needs no more than O(s4) states and
O(s2) printing transitions, each used at most once. This proves our claim
for f2.

To prime-compute f1(x) from x ∈ Σ∗, a dft T1 must print a prime encod-
ing #z1 · · · #zm of the length of 〈G(x)〉1 (also making sure no infix #zi is split
between printing steps). By (2), this length is the product of the primes pk for
which the k-th bit of 〈G(x)〉2 is 1. So, m must equal the number of 1s in T2(x)
and each zi must encode one of the trivial prime powers of the form p1k corre-
sponding to those 1s. Hence, T1 simulates T2 and, every time T2 would print
a 1 as its k-th ouput bit, T1 performs a printing step with output #z, where
z is the encoding of p1k. Easily, the state diagram of T1 differs from that of T2
only in the output strings on the printing transitions. So, the size and print
of T1 are also O(s4) and O(s2). ut

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

For two families T =(Th)h≥1 of dfts and F=(fh)h≥1 of string functions,
we say T (prime-) computes F if every Th (prime-) computes fh. Further-
more:
• the members of T are laconic if every Th performs ≤ p(h) printing steps

on each input, for some polynomial p , and
• the members of F are tight if |fh(x)| ≤ p(h)·|x| for some polynomial p,

all h, and all x.

For two problem families L=(Lh)h≥1 and L′=(L′h)h≥1, we say L reduces
to L′ in polynomial size (L ≤2D L′) if every Lh reduces to L′p(h) for some
polynomial p, and the family F of underlying reductions is computed by a
family T of small dfts. Furthemore:
• L prime-reduces to L′ in polynomial size (L �2D L′) if the problems in L′

are unary and T prime-computes F ,
• L (prime-) reduces to L′ in polynomial size/print (L ≤lac

2D L′ orL �lac
2D L′)

if the dfts in T are laconic,
• L homomorphically reduces to L′ (L ≤h L′) if every Lh homomorphically

reduces to L′p(h) ,

• L reduces to L′ under tight homomorphisms (L ≤t
h L′) if L ≤h L′ and the

underlying homomorphisms are tight.

As usual, if C is a class of problem families and ≤ a type of reductions, then
a family L is C-complete under ≤ if L ∈ C and every L′ ∈ C satisfies L′ ≤ L.

Corollary 2 The following statements are true:
1. bgap is 2N/poly-complete and 2O-complete, under polynomial-size/print

reductions (≤lac
2D).

2. ugap is 2N/unary-complete and 2O-complete, under polynomial-size/print
prime reductions (�lac

2D).
3. short twl is 2N/poly-complete under tight homomorphic reductions (≤t

h).

Proof The required memberships, of bgap in 2N/poly and 2O, of ugap
in 2N/unary and 2O, and of short twl in 2N/poly follow from Lemmas 2
and 3.

For the hardness of bgap and ugap, pick any L = (Lh)h≥1 ∈ 2N/poly ∪
2N/unary∪ 2O. By Corollary 1, we know L ∈ 2O. So, every Lh is solved by an
s-state ofa, where s = poly(h). By Lemma 5, this implies Lh ≤m bgapp(h),
where p(h) := 2s+ 1 = poly(h) and the underlying reduction fh is computed
by a dft Th with O(s4) = poly(h) states and O(s2) = poly(h) printing steps
on each input. So, F :=(fh)h≥1 is computed by the small and laconic dfts of
T :=(Th)h≥1, hence L ≤lac

2D bgap. Lemma 5 also implies that Lh �m ugapp(h),
where the underlying reduction f ′h is prime-computed by a dft T ′h with
O(s4) = poly(h) states and O(s2) = poly(h) printing steps; so, F ′:=(f ′h)h≥1 is
prime-computed by the small and laconic dfts of T ′:=(T ′h)h≥1. So, L �lac

2D

ugap.
For the hardness of short twl, suppose L ∈ 2N/poly. Then every Lh

is solved by an s-state nfa and its instances have lengths ≤ l, where s, l =
poly(h). By Lemma 5, we know Lh ≤h twl2s via a homomorphism fh such

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

that |fh(x)| = |x|+ 2 ≤ l + 2, for all instances x. Letting m:= max(2s, l + 2),
we have Lh ≤h twlm, via the modification f ′h of fh which returns the same
strings of graphs but with m − 2s additional rows, of isolated vertices. Since
|f ′h(x)| = |fh(x)| ≤ l + 2 ≤ m, every instance of twlm returned by f ′h is also
an instance of short twlm. Therefore, f ′h proves that Lh ≤h short twlm.
Since m = poly(h) and the homomorphisms in F ′:=(f ′h)h≥1 are tight (clearly),
we conclude that L ≤t

h short twl. ut

4 Closures

We now prove that 2D is closed under all of the above reductions. As usual, a
class C is closed under a type ≤ of reductions if L1 ≤ L2 & L2 ∈ C⇒ L1 ∈ C.

Lemma 6 Suppose L2 is solved by an s-state dfa. Then the following hold.
1. If L1 ≤m L2 via a reduction which is computable by an r-state dft per-

forming ≤ t printing steps on every input, then L1 is solved by a dfa with
O(rst2) states.

2. If L1 �m L2 via a reduction which is prime-computable by an r-state dft,
then L1 is solved by a dfa with O(rs2) states.

3. If L1 �m L2L1 ≤h L2, then L1 is solved by a dfa with 2s states.

Proof Part 3 is well-known (e.g., see [8, Lemma 2]), so we focus on the first
two claims, starting with 1. Suppose f : Σ∗1→Σ∗2 reduces L1 to L2. Let T =
(S,Σ1, Σ2, . , . , .) be a dft that computes f , with |S| = r and ≤ t printing
steps on every input. Let M2 = (S2, Σ2, . , . , .) be a dfa that solves L2, with
|S2| = s. We build a dfa M1 = (S1, Σ1, . , . , .) for L1.

On input x ∈ Σ∗1 , M1 simulates T on x to compute f(x), then simulates M2

on f(x) and copies its decision. (By the choice of f , this is clearly a correct
algorithm for L1.) Of course, M1 cannot store f(x) in between the two simu-
lations. So, it performs them simultaneously: it simulates T on x and, every
time T would print a string z (an infix of f(x)), M1 resumes the simulation
of M2 from where it was last interrupted and for as long as it stays within z.

The only problem (a classic, from space complexity) is that T prints f(x)
by a one-way head but M2 reads f(x) by a two-way head. So, whenever the
simulation of M2 falls off the left boundary of an infix z, the simulation of T
should not continue unaffected to return the next infix after z, but should
return again the infix before z. The solution (also a classic) is to restart the
simulation of T , continue until the desired infix is ready to be output, and then
resume the simulation of M2. This is possible exactly because of the bound t,
which implies that f(x) = z1z2 · · · zm where m ≤ t and zi is the infix output
by T in its i-th printing step. Thus M1 keeps track of the index i of the infix
currently read by the simulation of M2, and uses it to request zi−1 from the
next simulation of T .

Notice that M1 does not need to explicitly represent the infix currently
scanned by the simulation of M2. In fact, the infix z produced by T in a
printing step depends only on the current state p ∈ S and input symbol

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

a ∈ Σ1 ∪ {`,a}. Furthermore, for (q, d) ∈ S2×{l,r}, let (q′, d′) ∈ S2×{l,r}
be such that M2 from state q on the d-most symbol of z, after a sequence of
steps, will finally leave z with a transition from the d′-most symbol, entering
state q′. Hence (q′, d′), if exists, is uniquely determined from the pairs (p, a)
and (q, d). This means that a sequence of consecutive transitions of M2, which
starts by entering some infix z produced by a single step of T and ends by
leaving the same z, can be simulated by a single transition of M1, which does
not explicitly represent z.

Easily,M1 implements the above algorithm with S1:=S2×{l,r}×[t]×S×[t],
where state (q, d, i, p, j) ‘means’ that the simulation of M2 is ready to resume
from state q on the d-most symbol of zi+1, and the simulation of T (to out-
put zi+1) is in state p and past the printing steps for z1, . . . , zj . As claimed,
|S1| = O(rst2).

Now suppose Σ2={0} and T prime-computes f . Then M1 implements a
modification of the above algorithm. Now every string returned by the sim-
ulation of T is an infix not of f(x) but of a prime encoding #z1#z2# · · · #zm
of n:=|f(x)|. So, we need to change the way these infixes are treated by the
simulation of M2.

By the analyses of [9,3], it follows that there exist a length bound l = O(s)
and a O(s)-state rdfa M̃2 = (S̃2, {0}, δ̃, q̃0, q̃f) such that M̃2 agrees with M2

on all lengths ≥ l, and is in the following ‘normal form’. The states S̃2 \{q̃0,q̃f}
can be partitioned into a number of cycles C1, C2, . . . , Ck. Every rotation on
an input y starts on ` with a transition into a state q̃ of some Cj , and finishes
on a in the state p̃ of the same Cj that is uniquely determined by the entry
state q̃, the cycle length |Cj |, and the input length |y|. From there, the next
transition is either off a into q̃f to accept, or back to ` and again in p̃ to start
a new rotation. Our modified M1 will use this M̃2 for checking whether M2

accepts f(x).

In a first stage, M1 checks whether n = |f(x)| is one of the lengths < l,
where M̃2 and M2 may disagree; if so, then it halts, accepting iff M2 accepts 0n;
otherwise, it continues to the second stage below. To check whether n < l, it
iterates over all n̂ ∈ [l], checking for each of them whether n = n̂. To check
whether n = n̂, it checks whether the prime factorizations of the two numbers
contain the same prime powers. This needs 1+m̂ simulations of T on x, for
m̂ ≤ log n̂ the number of prime powers in the factorization of n̂: during the 0-th
simulation, M1 checks that every infix #zi of every string output by T encodes
some prime power of n̂; during the j-th simulation (1 ≤ j ≤ m̂), M1 checks
that the j-th prime power of n̂ (under some fixed ordering of prime powers) is
encoded by some infix #zi of some string output by T .5 Overall, this first stage
can be implemented on the state set [l] × [1 + log l] × S, where state (n̂, j, q)
‘means’ that the j-th simulation of T for checking n = n̂ is currently in state q.

5 Notice that even in this case, the string produced by T in a printing step (which contains
one or more infixes #zi) does not need to be explicitly represented: it only depends on the
simulated printing step of T .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

In the second stage, n ≥ l is guaranteed, so M1 can simulate M̃2 instead
of M2. This is done one rotation at a time. Starting the simulation of a single
rotation, M1 knows the entry state q̃ and cycle Cj to be used; the goal is to
compute the state p̃ of Cj when the rotation reaches a. Clearly, this reduces
to computing the remainder n mod lj , where lj :=|Cj | is the cycle length. If
ni is the prime power encoded by the infix #zi of T (x), then n mod lj equals(∏m

i=1 ni

)
mod lj =

((
· · ·
(
(n1 mod lj) · n2

)
mod lj · · ·

)
· nm

)
mod lj . (3)

So, to compute the value ρ of this remainder, M1 simulates T on x, building ρ
as in (3): ρ ← 1 at start, and ρ ← (ρ · ni) mod lj for every infix #zi inside
a string printed by T .6 When the simulation of T halts, M1 finds p̃ in Cj at

distance ρ from q̃. From there, if δ̃(p̃,a) = q̃f then M̃2 accepts, and so does M1;
otherwise, M̃2 starts a new rotation from state δ̃(δ̃(p̃,a),`), and M1 goes on
to simulate it, too.

Overall, the second stage can be implemented on the state set S̃2 × S ×
[|S̃2|], where state (q̃, q, ρ) ‘means’ that the simulation of T for simulating
a rotation of M̃2 from state q̃ is currently in state q and the remainder is
currently ρ.

Summing up, S1:=([l] × [1 + log l] × S) ∪ (S̃2 × S × [|S̃2|]). Hence |S1| =
O(rs2). ut

Corollary 3 2D is closed under polynomial-size/print reductions (≤lac
2D), un-

der polynomial-size prime reductions (�2D), and under homomorphic reduc-
tions (≤h).

Proof Pick any two problem families L = (Lh)h≥1 and L′ = (L′h)h≥1, and
suppose L′ ∈ 2D. Then every L′h is solved by a p(h)-state dfa, for some
polynomial p.

If L ≤lac
2D L′ then every Lh reduces to an L′h′ via a reduction com-

putable by an r-state dft performing ≤ t printing steps on every input, where
h′, r, t = poly(h). By Lemma 6.1, it follows that Lh is solved by a dfa with
O
(
r·p(h′)·t2

)
= poly(h) states. So, L ∈ 2D.

If L �2D L′ then every Lh prime-reduces to an L′h′ via a reduction prime-
computable by an r-state dft, where h′, r = poly(h). By Lemma 6.2, it
follows that Lh is solved by a dfa with O

(
r·p(h′)2

)
= poly(h) states. So,

L ∈ 2D.

If L ≤h L′ then every Lh homomorphically reduces to an L′h′ , where h′ =
poly(h). By Lemma 6.3, it follows that Lh is solved by a dfa with 2·p(h′) =
poly(h) states. So, L ∈ 2D. ut

6 When a printing step of T produces an infix #zi#zi+1 · · · #zk, M1 can compute in a single
step

((
· · ·

(
(ρ·ni mod lj)·ni+1

)
mod lj · · ·

)
·nk

)
mod lj . Since the infix depends only on the

printing step of T , this can be embedded in the transition function of M1, without explicitly
representing the infix #zi#zi+1 · · · #zk.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

5 Characterizations and conjectures

Our main theorem is now a direct consequence of [8] and Corollaries 2 and 3.

Theorem 1 The following statements are equivalent to L/poly ⊇ NL:

1. 2D ⊇ 2N/poly 3. 2D ⊇ 2N/unary 5. 2D ⊇ 2O

2. 2D 3 bgap 4. 2D 3 ugap 6. 2D 3 short twl

Proof We have L/poly ⊇ NL iff (1), by [8]; (1)⇔(2)⇔(5), by Corollary 2.1
and the closure of 2D under polynomial-size/print reductions; (3)⇔(4)⇔(5)
by Corollary 2.2 and the closure of 2D under polynomial-size prime reductions;
and (1)⇔(6) by Corollary 2.3 and the closure of 2D under homomorphic re-
ductions. ut

The statements of Theorem 1 are believed to be false. In particular (state-
ment 6), it is conjectured that no poly(h)-state dfa can check liveness on
inputs of height h and length ≤h. It is thus natural to study shorter inputs.
In fact, even inputs of length 2 are interesting:

How large need a dfa be to solve compact twlh?

Although it can be shown (by Savitch’s algorithm [11]) that 2O(log2 h) states
are enough, it is not known whether this can be reduced to poly(h). We con-
jecture that it cannot. In other words, we conjecture that L/poly + NL because
already:

Conjecture A 2D 63 compact twl.

We find this conjecture quite appealing, because of its simple and symmetric
setup: just one dfa working on just two symbols. Still, this is an algorithmic
statement (it claims the inexistence of an algorithm), engaging our algorithmic
intuitions. These are surely welcome when we need to discover an algorithm,
but may be unfavorable when we need to prove that no algorithm exists. It
could thus be advantageous to complement this statement with an equivalent
one which is purely combinatorial. Indeed, such a statement exists: it says that
we cannot homomorphically reduce relational to functional match (cf. p. 9).

Conjecture B rel match 6≤h fun match.

To get a feel of this conjecture, it is useful to note first that rmh ≤h fm2h2 ,7

and then that this does not imply rel match ≤h fun match, because of
the super-polynomial blow-up from h to 2h. So, Conjecture B claims that this
blow-up cannot be made poly(h) or, more intuitively, that no systematic way

7 Fix any bijection π from the binary relations on [h] to the numbers in [2h
2
]. Then the

homomorphic image f(A,l) of a left symbol (A,l) is the partial function that only maps the
number π(A) to itself. The image f(B,r) of a right symbol (B,r) is the partial function in
which a number i can only map to itself, and this holds iff i = π(A) for some A that matches
with B. Clearly then, A,B match iff f(A,l), f(B,r) match (by the one two-step cycle going
from π(A) on the left column to π(A) on the right column and back).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

of replacing h-tall relations with poly(h)-tall functions respects the existence
of cycles.

To prove the equivalence of the two conjectures, we first show that checking
for cycles is ≤h-equivalent to checking for cycles through the top left vertex.

Lemma 7 The following reductions hold:
1. rel zero-match ≤h rel match and rel match ≤h rel zero-match.
2. fun zero-match ≤h fun match and fun match ≤h fun zero-match.

Proof For part 1, we prove that rzmh ≤h rm2h2 and that rmh ≤h rzm1+h3 .
Both homomorphisms map ` and a to ε, every (A,l) to a (Ã,l), and ev-
ery (B,r) to a (B̃,r).

For the first reduction, we divide [2h2] into 2h levels of h items each, and
refer to items by level index l ∈ [2h] and index-within-level i ∈ [h]; i.e., we
view [2h2] as [2h]×[h]. Then:
• Every (A,l) ∈ ∆h maps to (Ã,l) ∈ ∆2h2 , where Ã consists of h ‘copies’

of A: on each level of even index l, every arrow i→j ∈ A induces the arrow
(l, i)→(l + 1, j), with the corresponding end-points on levels l and l + 1.

• Symmetrically, every (B,r) maps to (B̃,r), where B̃ copies B: on each
level of odd index l, every arrow j←i ∈ B with j 6= 0 induces the arrow
(l+1, j)←(l, i); in addition, every arrow 0←i induces the arrow (0, 0)←(l, i).

Clearly, every arrow in the overlay of (Ã,l) and (B̃,r) either increases the level
index or points to the left-column vertex (0, 0). (For an example, see Fig. 3c-d.)
Hence, this vertex is visited by all cycles (if any) in the overlay, so Ã, B̃ match
iff they match through 0. Moreover, the overlay of (A,l) and (B,r) contains a
k-long cycle through the left-column vertex 0 iff the overlay of (Ã,l) and (B̃,r)
contains a k-long cycle through the left-column vertex (0, 0), where the t-th
step moves from level t−1 to level t, and the last step moves from level k−1
to level 0 (here 1 ≤ t < k ≤ 2h). So, A,B match through 0 iff Ã, B̃ do, and
thus iff Ã, B̃ match.

For the second reduction, we divide [1 + h3] into 1 + h2 levels: one single-
item level, plus h2 levels of h items each. The item of the first level is called 0,
and the items of the other levels are called by level index (i, j) ∈ [h]×[h] and
index-within-level u ∈ [h]; i.e., we view [1+h3] as {0}∪([h]×[h])×[h]. Then:
• Every (A,l) ∈ ∆h maps to (Ã,l) ∈ ∆1+h3 , where Ã contains h2 copies

of A: on each level (i, j), every arrow u→v ∈ A induces the arrow
(i, j, u)→(i, j, v) of the corresponding end-points; in addition, the arrows
0→(i, j, j) and (i, j, i)→0 are added whenever i→j ∈ A.

• Symmetrically, every (B,r) maps to (B̃,r), where B̃ contains the arrow
0←0, plus h2 copies of B: on each level (i, j), every arrow v←u ∈ B induces
the arrow (i, j, v)←(i, j, u).

Clearly, every cycle in the overlay of (A,l) and (B,r) copies itself on every h-
item level of the overlay of (Ã,l) and (B̃,r); in addition, every forward arrow
i→j ∈ A of the cycle induces the cycle

0
Ã−→ (i, j, j)

B̃−→ · · · B̃−→ (i, j, i)
Ã−→ 0

B̃−→ 0 , (4)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

{(0, 1)

{(2, 0)

{(2, 2)

0

{0

{1

{2

{3

{4

{5

(a) (b)

(c) (f)(e)(d)

Fig. 3 Proof of Lemma 7.1. (a) Two symbols (A,l), (B,r) ∈ ∆3. (b) The overlay of the
symbols of (a). (c) The symbols (Ã,l), (B̃,r) ∈ ∆18 obtained by the reduction rzmh ≤h

rm2h2 . (d) The overlay of the symbols of (c). (e) The symbols (Ã,l), (B̃,r) ∈ ∆28 obtained
by the reduction rmh ≤h rzm1+h3 . Only levels 0, (0, 1), (2, 0) and (2, 2) are represented. The
other levels are not connected to level 0. (f) The overlay of symbols of (e). Notice that the
cycle in the overlay of (A,l) and (B,r) (see (b)) induces several cycles in the overlay of (Ã,l)

and (B̃,r), only two of which pass through the top-left vertex; e.g., 0 −→Ã (2, 0, 0) −→B̃

(2, 0, 0) −→Ã (2, 0, 1) −→B̃ (2, 0, 2) −→Ã 0 −→B̃ 0 .

where ‘· · ·’ stands for the copies of the remaining arrows of the cycle on
level (i, j). (For an example, see Fig. 3e-f.) Conversely, if the overlay of (Ã,l)
and (B̃,r) contains a cycle through vertex 0 of the left column, then this is
necessarily of the form (4) for some arrow i→j ∈ A, and for ‘· · ·’ a path within
level (i, j) which copies a path from right-column vertex j to left-column ver-
tex i in the overlay of (A,l) and (B,r). Overall, A,B match iff Ã, B̃ match
through 0.

For part 2, we prove that fzmh ≤h fm2h2 and fmh ≤h fzmh3 . The first
reduction follows simply by the observation that the first homomorphism of
part 1 maps functions to functions: if A and B are functions, then Ã and B̃
are functions as well. The second reduction follows from Lemma 4 and the ar-
gument in the proof of Lemma 9 below: the homomorphism can be extracted
directly from the h3-state dfa solving fmh. (Note that the second reduction
of part 2 is not really needed in our arguments; it is included only for com-
pleteness.) ut

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

Using Lemma 7, we now prove that compact twl and rel match reduce
to each other in such a way that small dfas can solve either both or nei-
ther (Lemma 8), and that rel match is solvable by small dfas iff it ≤h-
reduces to fun match (Lemma 9).

Lemma 8 The following reductions hold:
compact twl ≤lac

2D rel match and rel match ≤h compact twl.

Proof We first show compact twlh ≤m rzm1+h by a dft which simply
sweeps its input `aba once, and replaces a with (A,l) ∈ ∆1+h and b with
(B,r) ∈ ∆1+h, such that ab is live iff A,B match through 0. Then, we combine
this dft with the homomorphism from the first half of Lemma 7.1, to get a
new dft which instead prints (Ã,l), (B̃,r) ∈ ∆2(1+h)2 such that A,B match

through 0 iff Ã, B̃ match. So, compact twlh ≤m rm2(1+h)2 by a 2-state dft
with 2 printing steps per input, and we are done.

We derive A and B from a and b respectively, in two steps (see Fig. 4 for
an example):
• First, we convert a, b into a′, b′ ∈ Γ1+h such that ab is live iff a′b′ contains

a cycle which visits vertex 0 of the middle column and alternates between
a′ and b′.

• Then, we convert a′ and b′ to A and B.
To get a′, we start with a and:
(i) drop all arrows that end on the left column, as they do not affect liveness;

(ii) introduce a fresh vertex 0 in both columns, to get a symbol of Γ1+h;
(iii) transfer to this vertex of the right column the origins of all arrows that

begin on the left column, so that now all arrow end-points lie on the right
column, and a′ is essentially a binary relation on [1 + h];

(iv) add all arrows that are necessary to make this relation transitive.
Symmetrically, to get b′, we start with b and:
(i) drop all arrows that begin on the right column;

(ii) introduce a fresh vertex 0 in both columns;
(iii) transfer to this vertex of the left column the destinations of all arrows that

end on the right column, so that now all arrow end-points lie on the left
column, and b′ is essentially a binary relation on [1 + h];

(iv) add all arrows that are necessary to make this relation transitive.
Now, it is straightforward to see that every live path in ab induces a cycle in a′b′

through vertex 0 of the middle column, and vice-versa; moreover, because of
transitivity, this cycle can always be chosen to alternate between a′ and b′.
Now, the relations A and B are exactly the binary relations on [1 + h] that
describe the arrows of a′ and b′: (i, j) ∈ A iff arrow i→j is present on the
right column of a′, and similarly for B and the left column of b′. Easily, A,B
match through 0 iff a′, b′ contain and alternating cycle through vertex 0 of the
middle column, and thus iff ab is live.

We now show rzmh ≤h compact twl2h. Combined with the second half
of Lemma 7.1, this implies rmh ≤h compact twl2(1+h3), and we are done.
The homomorphism maps ` and a to ε. For the other symbols, we divide [2h]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

(a) (d)(c)(b)

Fig. 4 compact twl ≤lac
2D rel match (Lemma 8). (a) Two symbols a, b ∈ Γ5. (b) The

symbols a′, b′ ∈ Γ6 obtained from a and b. (c) The symbols (A,l), (B,r) ∈ ∆6 obtained from
a′ and b′. (d) The overlay of the symbols of (c).

(b)(a)

Fig. 5 rel match ≤h compact twl (Lemma 8). (a) The symbols a, b ∈ Γ6 obtained from
the symbols (A,l), (B,r) ∈ ∆3 of Fig. 3a. (b) The string ab as a multi-column graph.

into two levels of h items each, calling each item by level index l ∈ [2] and
index-within-level i ∈ [h]; i.e., we view [2h] as [2]×[h]. Then, each (A,l) ∈ ∆h

maps to an a ∈ Γ2h whose right column encodes A, using level 0 for origins and
level 1 for destinations: each arrow i→j ∈ A induces on that column the arrow
(0, i)→(1, j); also, a contains the arrow from (0, 0) on the left column to (0, 0)
on the right. Symmetrically, each (B,r) ∈ ∆h maps to a b ∈ Γ2h whose left
column encodes B, now using level 1 for origins and level 0 for destinations:
each arrow j←i ∈ B induces on that column the arrow (1, i)→(0, j); also,
b contains an arrow from (1, i) on the left column to (1, i) on the right, for
each i such that 0←i ∈ B. (See Fig. 5 for an example.)

Easily, each k-long cycle witnessing that A,B match through 0 induces
in ab a k-long cycle which starts at vertex (0, 0) of the middle column, alter-
nates both between the two symbols and between the two levels, and returns
to (0, 0) via an arrow of b of the form (1, i)→(0, 0); hence B contains the ar-
row 0←i, and thus b contains the arrow from (1, i) on the left to (1, i) on the
right; overall, ab contains the live path which starts on (0, 0) on the leftmost
column, moves to (0, 0) on the middle column, and continues as in the cycle,
diverging from it only in the last step from (1, i), to jump right. Conversely,
if ab is live, then each live path is of this form, and thus cannot exist without
a respective cycle through (0, 0) on the middle column; this cycle induces a
cycle in the overlay of (A,l) and (B,r), through 0 of the left column. So, A,B
match through 0 iff ab is live. ut

Lemma 9 2D 3 rel match iff rel match ≤h fun match.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

Proof The backward direction follows from Lemma 4 and Corollary 3. For
the forward direction, suppose rmh is solved by an s-state dfa M , where
s = poly(h). We give a homomorphism f : ∆h ∪ {`,a}→(∆′s)

∗ which maps
` and a to ε, and every (A,l) or (B,r) to a symbol (α,l) or (β,r) respectively,
such that the relations A,B match iff the functions α, β match through 0.
This proves rmh ≤h fzms, which implies rmh ≤h fm2s2 (by the first half of
Lemma 7.2). Since 2s2 = poly(h), it follows that rel match ≤h fun match.

To build f , we assume that M = ([s], ∆h, δ, 0, s−1) and that the only
transition into state 0 is the self-loop δ(0,`) = (0,r). (This does not harm
generality: to bring M into the form ([s], ∆h, δ, 0, s−1), we simply rename its
states appropriately; to guarantee the assumption for the start state, we simply
introduce a fresh start state 0′ and let δ(0′,`):=(0′,r) and δ(0′, a):=δ(0, a)
for all a ∈ ∆h ∪ {a}, also incorporating the slight increase in size into the
assumption that s is polynomial in h.)

Then, for every relation A, we set f(A,l):=(α,l) where α : [s]⇀[s] satisfies
α(p) = q iff the computation of M from state p on the right symbol of `(A,l)
falls off the rightmost boundary into state q. Symmetrically, for every B, we set
f(B,r):=(β,r) where β : [s]⇀[s] satisifies β(p) = q iff either the computation
of M from p on the left symbol of (B,r)a falls off the leftmost boundary into q
(hence q 6= 0, by our assumption for 0) or q = 0 and the computation falls
off a into s−1. We claim that A,B match iff α, β match through 0.

For the forward direction, suppose A,B match. Then the computa-
tion c =

(
(qt, jt)

)
0≤t≤m of M on `(A,l)(B,r)a is accepting. By our as-

sumptions for M , we know M starts in state 0 on `, moves right into
state 0 again, and eventually falls off a into s−1. So, c has the form
(0, 0), (0, 1), . . . , (s−1, 4). Let us drop the first configuration, and ‘split’ the re-
maining sequence (0, 1), . . . , (s−1, 4) every time it crosses the middle boundary
of the input (between cells 1 and 2):

• at forward crossings, the sequence looks like . . . , (p, 1), (q, 2), . . . and the
‘split’ produces a part ending in (p, 1), (q, 2) and a part starting with (q, 2);

• at backward crossings, the sequence looks like . . . , (p, 2), (q, 1), . . . and the
‘split’ produces a part ending in (p, 2), (q, 1) and a part starting with (q, 1).

The result is a list of subsequences c1, c2, . . . , ck, where k is even, every
odd-indexed ci computes on `(A,l), and every even-indexed ci computes
on (B,r)a. Moreover, if we let qi be the state of the first configuration of ci,
then:

• q1 = 0;
• every odd-indexed ci has the form (qi, 1), . . . , (qi+1, 2), and thus proves
α(qi) = qi+1;

• every even-indexed ci before ck is of the form (qi, 2), . . . , (qi+1, 1), and thus
proves β(qi) = qi+1; and ck is of the form (qk, 2), . . . , (s−1, 4), and thus
proves β(qk) = 0.

Overall, the path

0 = q1
α−→ q2

β−→ q3
α−→ q4

β−→ · · · α−→ qk
β−→ 0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

is a cycle through 0 on the left column of the overlay. Hence α, β match
through 0.

Conversely, suppose α, β match through 0. If q1, q2, . . . , qk ∈ [s] is a cycle
that proves this, then:
• k is even;
• q1 = 0;
• every odd-indexed qi satisfies α(qi) = qi+1, proving that M from qi on the

right symbol of `(A,l) falls off the right boundary into qi+1;
• every even-indexed qi before qk satisfies β(qi) = qi+1, proving that
M from qi on the left symbol of (B,r)a falls off the left boundary into qi+1;

• qk satisfies β(qk) = 0, proving that M from qk on the left symbol of (B,r)a
falls off a into s−1 (here we use the assumption that no transition enters
state 0 on a symbol of ∆h, hence β(qk) = 0 cannot be due to a computation
that falls off the left boundary).

Clearly then, the ‘concatenation’ of these computation segments proves that
M from state 0 on cell 1 of `(A,l)(B,r)a falls off a into s−1. Given that, in
addition, M performs the rightward step from state 0 on ` onto cell 1 and
state 0 again, we see that M indeed accepts this input. Hence, A,B match. ut
Combining Lemma 8 and Lemma 9, we see that Conjectures A and B are
indeed equivalent.

6 Conclusion

We proved several characterizations of L/poly versus NL in terms of unary,
binary, or general fas. Our main theorem complements two recent improve-
ments [5,8] of an old theorem [1], and our approach introduced some of the
concepts and tools that had been asked for in [7] for enriching the framework
of [10].

It would be interesting to see similar characterizations in terms of unary
fas for the uniform variant of the question (L versus NL), or for variants
for other bounds for space and advice length (e.g., LL/polylog versus NLL [8]).
Another interesting direction is to elaborate further on the comparison between
fa computations on short and on unary inputs; for example, using the ideas
of this article, one can show that for every L ∈ 2N/poly there is L′ ∈ 2N/unary
such that L �lac

2D L′. Finally, further work is needed to fully understand the
capabilities and limitations of the reductions introduced in this article.

Acknowledgements The first author has been supported by a Marie Curie Intra-European
Fellowship (pief-ga-2009-253368) within the European Union Seventh Framework Pro-
gramme (fp7/2007-2013).

References

1. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite automata.
Report 304, Institute of Computer Science, Polish Academy of Sciences, Warsaw (1977)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

2. Geffert, V., Guillon, B., Pighizzini, G.: Two-way automata making choices only at the
endmarkers. In: Proceedings of LATA, pp. 264–276 (2012)

3. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary
automata into simpler automata. Theoretical Computer Science 295, 189–203 (2003)

4. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata.
Information and Computation 205(8), 1173–1187 (2007)

5. Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space. Infor-
mation and Computation 209(7), 1016–1025 (2011)

6. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford Science
Publications (1979)

7. Kapoutsis, C.: Size complexity of two-way finite automata. In: Proceedings of DLT, pp.
47–66 (2009)

8. Kapoutsis, C.: Two-way automata versus logarithmic space. In: Proceedings of CSR,
pp. 197–208 (2011)

9. Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite automata
using transformation semigroups. In: Proceedings of DLT, pp. 324–336 (2011)

10. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In:
Proceedings of STOC, pp. 275–286 (1978)

11. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complex-
ities. Journal of Computer and System Sciences 4, 177–192 (1970)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

