
Predicate Characterizations
in the Polynomial-Size Hierarchy

Christos A. Kapoutsis

Carnegie Mellon University in Qatar

Abstract. The polynomial-size hierarchy is the hierarchy of ‘minicom-
plexity’ classes which correspond to two-way alternating finite automata
with polynomially many states and finitely many alternations. It is de-
fined by analogy to the polynomial-time hierarchy of standard complexity
theory, and it has recently been shown to be strict above its first level.

It is well-known that, apart from their definition in terms of polynomial-
time alternating Turing machines, the classes of the polynomial-time hi-
erarchy can also be characterized in terms of polynomial-time predicates,
polynomial-time oracle Turing machines, and formulas of second-order
logic. It is natural to ask whether analogous alternative characterizations
are possible for the polynomial-size hierarchy, as well.

Here, we answer this question affirmatively for predicates. Starting with
the first level of the hierarchy, we experiment with several natural ways
of defining what a ‘polynomial-size predicate’ should be, so that exis-
tentially quantified predicates of this kind correspond to polynomial-size
two-way nondeterministic finite automata. After reaching an appropriate
definition, we generalize to every level of the hierarchy.

1 Introduction

The k-th level of the polynomial-size hierarchy consists of the classes 2Σk and 2Πk

of all (families of) regular languages which are decided by (families of) two-way
alternating finite automata (afas) with polynomially many states (i.e., of poly-
nomial ‘size’), where the start state is respectively existential or universal and
every computation path on any input alternates <k times between existential
and universal steps, if k > 0; or uses only deterministic steps, if k = 0. The
question whether this hierarchy is strict was raised in [6] and answered in the
affirmative by Geffert [3] for all levels above the lowest two: for all k ≥ 1,

2Σk (2Σk+1 and 2Σk * 2Πk & 2Σk + 2Πk and 2Πk (2Πk+1 .

For k = 0, the question is still open: the classes 2Σ0 and 2Σ1 are respectively the
classes 2D and 2N of all (families of) regular languages decided by (families of)
deterministic and nondeterministic two-way finite automata (dfas and nfas)
with polynomially many states; hence, proving that 2Σ0 (2Σ1 is equivalent to
confirming the long-standing Sakoda-Sipser conjecture that 2D (2N [11,6].

The hierarchy is defined by analogy to the polynomial-time hierarchy of stan-
dard complexity theory, whose k-th level consists of the classes ΣkP and ΠkP
of languages decided by polynomial-time alternating Turing machines (atms)
where the number of alternations is bounded as above [13,12]. The question
whether this hierarchy is strict is, of course, a well-studied open problem, also
hosting on its lowest two levels the famous question whether P = NP.

An important feature of the polynomial-time hierarchy, highlighting its ro-
bustness, is that its classes can be defined in several equivalent ways, which are
all quite natural but also quite different from each other conceptually. Indeed,
apart from their standard definition in terms of polynomial-time atms, these
classes can also be defined in terms of:
• Polynomial-time predicates. For example, a language is in class Σ1P = NP

iff it consists of every string which can, together with a suitable ‘certificate’,
satisfy a binary predicate which is decided by a deterministic Turing machine
(dtm) in time polynomial in the length of the string [12].

• Polynomial-time oracle Turing machines. For example, a language is in class
Σ2P = NPNP iff it is decided by a polynomial-time nondeterministic Turing
machine (ntm) which has access to an oracle for a language of NP [10,12].

• Logical formulas. For example, a language is in PH =
⋃

k≥0ΣkP iff it consists
of every string which satisfies a formula in second-order logic [2,4].

It is natural to ask whether the classes of the polynomial-size hierarchy also
admit analogous alternative definitions, next to their original one in terms of
polynomial-size afas. That is, what kind of (i) ‘polynomial-size predicates’,
(ii) ‘polynomial-size oracle two-way finite automata’, and (iii) logical formulas
match afas with polynomially many states and finitely many alternations?

In this article we study (i). We identify a proper definition for polynomial-size
predicates such that suitably quantified predicates of this kind characterize the
classes 2Σk and 2Πk, for all k. Starting with the case k = 1, we experiment with
several natural ways of defining predicates which characterize 2Σ1 = 2N, namely
the (families of) languages decided by polynomial-size nfas. After we reach the
correct definition for this class, we generalize for all classes of the hierarchy.

This settles part (i). Part (ii) remains open: We know of no model of ‘oracle
two-way finite automaton’ for characterizing the classes of the polynomial-size
hierarchy. As for (iii), a partial answer was given in [8], where a class of suitably
structured formulas of monadic second-order logic with successor were proven
equivalent to polynomial-size sweeping nfas (i.e., nfas which turn their head
only on the endmarkers) when the length is polynomial and certain structural
parameters are appropriately bounded; the full answer involves suitably struc-
tured formulas of first-order logic with successor & transitive closure [9].

1.1 Preparation

If n ≥ 0, then [n] := {0, 1, . . . , n−1}. If Σ is an alphabet and the symbols `,a /∈ Σ
are endmarkers, then Σe := Σ ∪ {`,a}. If z ∈ Σ∗ is a string over Σ, then |z| is
its length and zi is its i-th symbol, if 1 ≤ i ≤ |z|; or `, if i = 0; or a, if i = |z|+1.
A language L ⊆ Σ∗ is decided (or solved) by a machine M if M accepts exactly

the strings in L. A language family (Lh)h≥1 is decided (or solved) by a family
of machines (Mh)h≥1 if every Mh solves Lh. A family of automata (Mh)h≥1 is
polynomial-size if Mh has ≤ p(h) states, for some polynomial p and all h.

A two-way alternating finite automaton (afa) is a tupleM = (Q,U,Σ, δ, qs),
where Q is a set of states, Σ is an alphabet, and δ ⊆ Q×Σe ×Q× {l,r} is the
transition relation, for l,r two direction-indicating tags; one state qs is special
(start/accept) and each state is universal, if in U ⊆ Q, or existential, if in Q\U .

An input z ∈ Σ∗ is presented on the tape between the endmarkers, as `za.
The automaton starts at qs and on `. Whenever at a state p and on a symbol a, it
switches to state q and moves its head in direction d, for every q and d such that
(p, a, q, d) ∈ δ; in the process, it never violates an endmarker, except to move off a
into qs. The result is a tree of configurations, i.e., pairs from Q×{0, . . . , |z|+2},
with (qs, 0) as root; we call it the computation of M on z, compM (z).

The unique accepting configuration is (qs, |z|+2). A rejecting configuration is
any (p, i) where i ≤ |z|+1 and δ contains no tuple of the form (p, zi, . , .). The
accepting and rejecting configurations are called halting. A non-halting config-
uration (p, i) is existential or universal, according to what p is; it is also called
deterministic, if δ contains exactly 1 tuple of the form (p, zi, . , .).

A full computation path in compM (z) is any path π which starts at the root
and is infinite (looping) or ends at a leaf (halting); in the latter case, π is either
accepting or rejecting, according to what the leaf is. A full computation tree in
compM (z) is any subtree τ such that (1) τ contains the root, (2) each existential
configuration in τ has exactly 1 of its children in τ , and (3) each universal
configuration in τ has all of its children in τ . We call τ looping, if it is infinite;
accepting, if it is finite and all its leaves are accepting; and rejecting, otherwise.
If compM (z) contains an accepting full computation tree, then M accepts z.

Let k ≥ 1. If every full computation path in compM (z) for any z switches
<k times between existential and universal configurations, we say M is a σkfa,
if qs 6∈ U, or a πkfa, if qs ∈ U —a σ1fa is also called nondeterministic (a nfa).
If every non-halting configuration ever exhibited by M is actually deterministic,
we say M is a σ0fa or a π0fa or simply deterministic (a dfa). If δ never uses
the l tag, we say M is one-way (afa, nfa, dfa).

Let k ≥ 0. The class 2Σk (respectively, 2Πk) consists of every language family
which is solved by a polynomial-size family of σkfas (respectively, πkfas):

2Σk :=
{

(Lh)h≥1

∣∣∣ there exists a σkfas family (Mh)h≥1 and a polynomial p
such that every Mh solves Lh with ≤ p(h) states.

}
,

and similarly for 2Πk. Easily, 2Σk, 2Πk ⊆ 2Σk+1, 2Πk+1 for all k. We also write
2D for 2Σ0 = 2Π0; 2N for 2Σ1; and 2H for ∪k≥02Σk = ∪k≥02Πk.

2 The Case of 2N

The class 2N is the minicomplexity analogue of NP. The predicate characteriza-
tion of NP is given by the following well-known fact (which uses Def. 1):

Theorem 1. A language L is in NP iff there exists a polynomial-time binary
predicate R such that, for all x: x ∈ L⇐⇒ (∃y)R(x, y).

Definition 1. A binary predicate R is polynomial-time if there is a dtmM and
a polynomial p such that, for all x,y: R(x, y)⇐⇒M accepts 〈x,y〉 in time p(|x|).
For example, if L is sat (the satisfiability problem [12]), then R is the predicate
which is true whenever x is a Boolean formula (the instance) and y is a truth-
assignment which satisfies it (the certificate); M is the dtm which computes the
value of a formula x under an assignment y and accepts iff the result is “true”;
and p is the small polynomial which bounds the time spent by M as a function
of the length of the formula x.

Our goal is to replicate this setting for 2N. That is, we want a characterization
of 2N as captured by the following statement and definition:

Theorem 2. A language family (Lh)h≥1 is in 2N iff there exists a polynomial-
size binary predicate family (Rh)h≥1 such that, for all h and all x:

x ∈ Lh ⇐⇒ (∃y)Rh(x, y) .

Definition 2. A binary predicate family (Rh)h≥1 is polynomial-size if there ex-
ists a family of ‘deterministic finite-state acceptors’ (Mh)h≥1 and a polynomial p
such that, for all h and all x,y:

Mh has ≤ p(h) states & Rh(x, y) ⇐⇒ Mh accepts 〈x,y〉.

For example, if Lh is twlh (the two-way liveness problem on h-tall graphs [6,7]),
then Rh should be the predicate which is true whenever x is a string of h-tall
two-column graphs and y is a path from the leftmost to the rightmost column of
the respective multi-column graph; Mh should be some kind of a deterministic
finite-state machine which scans the arrows of y and accepts iff they are all
present in the graph of x, the first one departs from the leftmost column, and
the last one arrives at the rightmost column; and p should be a polynomial
bounding the number of states needed to perform these checks.

All we need to do, in order to complete this setting, is to clarify what type of
acceptors we should use in Def. 2 so that Th. 2 holds. We explore our options in
the next sections. We start with two naive attempts, and explain why they fail.
We then continue with a more educated guess which, although it fails, too, it
captures a different minicomplexity class. The correct choice is given in Sect. 2.3.

2.1 Two Naive Attempts
Mh

b 00 0 1a b b 01 1#a

yx

The straightforward attempt is to
simply have each Mh be a dfa
which receives the pair 〈x,y〉 on its
input tape as the #-delimited con-
catenation x#y. But this model is
too weak. Intuitively, to check Rh(x, y), Mh must compare corresponding sym-
bols of x and y (i.e., symbols around xi with symbols around yi), a task which
is impossible for a finite-state machine when x and y become arbitrarily long.(1)

Mh

00 0 101 1
y

ba b ba
x

To enable Mh to compare corresponding sym-
bols of x and y, we may place x and y on differ-
ent tapes, each with its own, independent, two-way
head. Formally, Mh = (Q,Σ,∆, δ, qs), where Σ and
∆ are the alphabets for instances and certificates,
respectively, and the transition function has the
form δ : Q×Σe×∆e −→ Q×{l,r}×{l,r}. But now
the model is too strong: Mh can use the distance be-
tween ` and the head on the second tape as counter
to solve problems that are even non-regular.(2)

2.2 A Better Attempt

00 0 101 1

Mh

ba b ba
x

y

To fix our problems, we must prevent Mh from us-
ing its second head as counter. One way to do this,
is to first ask that x and y are of (almost) the same
length, then remove the ability of the heads to move
independently. Formally, we ask that |y| = |x| + 2
and that δ : Q×Σe ×∆ −→ Q× {l,r}. Let us call
this type of machine a synchronous two-way deter-
ministic finite verifier (dfv∗). It looks promising.

For one, we can now prove the forward direction of Th. 2. It follows from the
next lemma, when we apply it to every member of a family (Lh)h≥1 ∈ 2N.

Lemma 1. If L is solved by an s-state nfa, then some binary predicate R is
solved by an s-state dfv∗ and is such that, for all x: x ∈ L⇐⇒ (∃y)R(x, y).

Proof. Let N = (Q,Σ, δ, qs) be the nfa which solves L.
To motivate R, consider any x ∈ L. Let n := |x|. Consider any accepting

computation of N on x. Remove all cycles from it, to get the corresponding
minimal accepting computation —call it c. Because c is minimal, its representa-
tion in the configuration graph of N on x (i.e., the graph with all configurations
in Q×{0, . . . , n+2} as vertices, and all computation steps allowed by δ as arrows)
is a path where no two arrows have a common endpoint. Split this (n+3)-column
representation into n+2 three-column graphs f0, f1, . . . , fn+1, one for each col-
umn but the last one, where each fi represents only the steps performed on xi.

f4f0 f1

· · ·

· · ·a b b

x2 x3 x4x0 x1

c

Since no two arrows have a common endpoint, each fi is really a partial injection
from Q to Q×{l,r}. Let ∆ := (Q→ Q×{l,r}) be the alphabet of all such partial
injections. Then, we can use y := f0f1 . . . fn+1 ∈ ∆∗ as a certificate for x.

Indeed, define R ⊆ Σ∗×∆∗ so that R(x, y) holds iff (1) |x|+2 = |y|; (2) the
(|x|+3)-column graph derived from y (by viewing each yi as a three-column
graph; then identifying the last two columns of each yi with the first two columns
of yi+1; then dropping the first column of the leftmost yi) contains a path from
the top of the leftmost column to the top of the rightmost one; and (3) every ar-
row (p, q, d) of every yi is a legal step of N on xi: (p, q, d) ∈ yi =⇒ (p, xi, q, d) ∈ δ.
Then the argument of the previous paragraph proves that x ∈ L =⇒ (∃y)R(x, y).
Conversely, if R(x, y), then (3) means that the path guaranteed by (2) is an ac-
cepting computation of N on x, and thus x ∈ L.

Finally, R is solved by the s-state dfv∗ M = (Q,Σ,∆, δ′, qs) which, on
input 〈x,y〉, interprets y as a (|x|+3)-column graph as above and follows the
unique path out of qs of the leftmost column, verifying that all arrows in the
graph are consistent with δ and that the path terminates at qs of the rightmost
column. Formally, every δ′(p, a, f) is either f(p), if f(p) is defined and all arrows
in f are consistent with δ; or undefined, otherwise. ut

To complete the proof of Th. 2, we would need the converse lemma: If a
binary predicate R is solved by an s-state dfv∗, then L := {x | (∃y)R(x, y)} is
solved by a poly(s)-state nfa. However, in trying to prove this claim, one would
find it hard to build the desired nfa N for L from the given dfv∗ for R: the
natural approach, where N simply guesses y symbol-by-symbol, fails because,
upon returning to an input symbol xi that has been visited before, N would
need to re-guess the corresponding yi identically as in all previous visits.

As a matter of fact, the backward direction of Th. 2 is false:

Lemma 2. There exists a polynomial-size binary predicate family (Rh)h≥1 such
that the language family (Lh)h≥1 where Lh := {x | (∃y)Rh(x, y)} is not in 2N.

Proof. For every h, let Rh ⊆ {0}∗×[2h]∗ be a binary predicate such that Rh(x, y)

holds only when x = 02
h−2 and y is the ordered string of all symbols of [2h]:

y := 0 1 2 3 . . . 2h−2 2h−1

A dfv∗ Mh can solve Rh by focusing on y and checking that (1) it starts with 0;
(2) each of the other symbols is derived from its previous one by adding 1; and
(3) the last symbol is 2h−1. To check (2), Mh goes through every pair of succes-
sive symbols, yi and yi+1, and checks that yi+1 = yi+1 by zig-zagging h times
between the two symbols, comparing their corresponding bits. It is easy to see
that this requires no more than O(h) states, and thus (Rh)h≥1 is polynomial-size.

Finally, the only x admitting a certificate underRh is 02
h−2, so Lh = {02h−2},

which needs ≥ 2h−2 states on a nfa [1, Fact 5.2]. Hence, (Lh)h≥1 /∈ 2N. ut

Overall, our current definitions led us to a strict superset of 2N (Lemmas 1, 2).
Before modifying them, let us see which class they really capture. The next two
lemmas show that it is the class 21N corresponding to exponential-size nfas [6].

Lemma 3. If L is solved by an s-state nfa, then some binary predicate R is
solved by a O(log s)-state dfv∗ and satisfies x ∈ L⇐⇒ (∃y)R(x, y), for all x.

Proof. Let N = (Q,Σ, δ, qs) be the nfa which solves L, with |Q| = s. Without
loss of generality, assume that Q = [s] and that qs = 0. Let t := dlog2 se.

To motivate R, consider any x ∈ L. Let n := |x|. Pick any accepting compu-
tation of N on x. This is a list p0, p1, . . . , pn+2 ∈ Q such that p0 = qs = pn+2

and (pi, xi, pi+1,r) ∈ δ for all i. Recast this (n+3)-item list into the list of n+2
successive pairs π0, π1, . . . , πn+1, where πi := (pi, pi+1).

qsq3

π0
q3q7

π1
q7q2

π2
q2q4

π3
q4qs

π4a b b

x2 x3 x4x0 x1

q3qs q7 q2 q4 qs

Now, letting ∆ := Q×Q be the alphabet of all pairs of states, we can use the
string of pairs y := π0π1 . . . πn+1 ∈ ∆∗ as a certificate for x.

Therefore, we define R ⊆ Σ∗×∆∗ so that R(x, y) holds iff (1) |x|+2 = |y|;
(2) y is really a sequence of states (i.e., every two successive symbols are of the
form (. , p) and (p, .) for some p) from qs to qs (the first and last symbols are
of the form (qs, .) and (. , qs), respectively); and (3) this sequence of states is a
computation of N on x (i.e., every symbol yi = (p, q) is a legal step of N on xi,
namely (p, xi, q,r) ∈ δ). Then the argument of the last paragraph shows that
x ∈ L =⇒ (∃y)R(x, y). Conversely, if R(x, y), then (3) means that the sequence
guaranteed by (2) is an accepting computation of N on x, and thus x ∈ L.

Finally, R is solved by a dfv∗ M which, on input 〈x,y〉, works as follows. It
scans y and, on every two successive symbols yi = (pi, qi) and yi+1 = (pi+1, qi+1),
checks that qi = pi+1 by zig-zagging t times between yi and yi+1 to test that
the corresponding bits of qi, pi+1 ∈ [s] are identical. At the start and end of the
scan, M also checks that the first and last symbols of y have respectively the
form (0, .) and (. , 0). This confirms condition (2). Condition (3) is checked in
the same scan: whenever M reads a new symbol yi = (pi, qi), it also verifies that
(pi, xi, qi,r) ∈ δ. Easily, M needs no more than O(t) = O(log s) states. ut

Lemma 4. If a binary predicate R is solved by an s-state dfv∗, then the lan-
guage L := {x | (∃y)R(x, y)} is solved by a 2O(s)-state nfa.

Proof. Let M = (Q,Σ,∆, δ, qs) be the dfv∗ which solves R, with |Q| = s.
Pick any x ∈ Σ∗. Let n := |x|. To check whether x ∈ L, a nfa N guesses a

(n+2)-long y ∈ ∆∗ and an accepting computation of M on x and the guessed y.
The certificate is guessed one symbol per step, as N scans x on its tape; likewise,
the accepting computation is guessed one frontier per step [5, p. 547].

Formally, N := (Q′, Σ, δ′, Fs) for Q′ := {(U, V) | U,V ⊆ Q & |U |+1 = |V |}
the set of all frontiers of M and Fs := (∅, {qs}). When at a state (U, V) reading an
input symbol a ∈ Σe, the automaton guesses a corresponding certificate symbol
b ∈ ∆, together with a frontier (U ′, V ′) such that (U, V) is (a, b)-compatible to it
(with respect to δ [5, Def. 2]), and moves to state (U ′, V ′):(
(U,V), a, (U ′, V ′),r

)
∈ δ′ ⇐⇒ (∃b ∈ ∆)

[
(U,V) is (a, b)-compatible to (U ′, V ′)

]
.

Therefore, N accepts x iff there exists a sequence of guesses bi, (Ui+1, Vi+1) for
i = 0, 1, . . . , n+1 such that the sequence of frontiers Fs = (U0, V0), (U1, V1), . . . ,

(Un+1, Vn+1), (Un+2, Vn+2) = Fs fits the string (`, b0)(x1, b1) · · · (xn, bn)(a, bn+1)
of symbols over Σe×∆ [5, Def. 3], and thus contains an accepting computation
of M on 〈x, b0b1 · · · bn+1〉 [5, Lemma 2 and converse]. Hence, N accepts x iff there
exists y ∈ ∆∗ and an accepting computation of M on 〈x, y〉; i.e., iff (∃y)R(x, y).

Finally, the number of states of N is
(

2s
s+1

)
= 2O(s) [5, p. 552]. ut

Theorem 3. A language family (Lh)h≥1 is in 21N iff there exists a binary pred-
icate family (Rh)h≥1 which is solved by a polynomial-size family of dfv∗s and
is such that, for all h and all x: x ∈ Lh ⇐⇒ (∃y)Rh(x, y).

By similar arguments, we can also characterize the class 1N corresponding
to polynomial-size nfas in terms of synchronous one-way deterministic finite
verifiers (dfv∗s), the restriction of dfv∗s where the heads move only forward.

Theorem 4. A language family (Lh)h≥1 is in 1N iff there exists a binary pred-
icate family (Rh)h≥1 which is solved by a polynomial-size family of dfv∗s and
is such that, for all h and all x: x ∈ Lh ⇐⇒ (∃y)Rh(x, y). (3)

2.3 The Right Choice

Mh

ba b ba
x

00 0 101 1 0
y

· · ·

To fix our problems, we must restore the capa-
bility of Mh to move its heads independently,
but still prevent it from using its second head as
counter. One way to do this, is to let the second
head be one-way. Formally, δ : Q × Σe × ∆ −→
Q × {l,r} again, but now l,r indicate only the
first head’s motion. Let us call this new machine
a two-way deterministic finite verifier (dfv).

Now we can finally prove Th. 2. It follows from the next two lemmas.

Lemma 5. If L is solved by an s-state nfa, then some binary predicate R is
solved by an s-state dfv and is such that, for all x: x ∈ L⇐⇒ (∃y)R(x, y).

Proof. Let N = (Q,Σ, δ, qs) be the nfa which solves L. To motivate R, pick
any x ∈ L. Pick any accepting computation c of N on x. Let m be its length. The
‘instructions’ followed by N along c are the pairs ι1, . . . , ιm ∈ Q× {l,r}, where
ιi := (q, d) iff in the i-th step N switched to q and moved its head towards d.

a b b

x2 x3 x4x0 x1

q3qs q7

qsq2q4q2 q1

r r l r r r r

ι1
q3

ι2
q7

ι3
q2

ι4
q4

ι5
q2

ι6
q1

ι7
qs

Hence, letting ∆ := Q×{l,r}, we can use y := ι1 · · · ιm ∈ ∆∗ as certificate for x.
So, we define R ⊆ Σ∗×∆∗ so that R(x, y) holds iff the list of state-position

pairs derived from (qs, 0) by following the instructions y1, · · · , ym ∈ ∆ is an
accepting computation of N on x. It should be clear that x ∈ L⇐⇒ (∃y)R(x, y).

Moreover, R is solved by the dfvM = (Q,Σ,∆, δ′, qs) which, on input 〈x,y〉,
simply follows the instructions in y and accepts iff they lead it off a into qs and
never violate δ: when at state p reading a ∈ Σe and (q, d) ∈ ∆, it checks that
(p, a, q, d) ∈ δ and, if so, switches to q and moves towards d. Easily, M ac-
cepts 〈x, y〉 iff y causes an accepting computation of N on x; i.e, iff R(x, y). ut

Lemma 6. If a binary predicate R is solved by an s-state dfv, then the lan-
guage L := {x | (∃y)R(x, y)} is solved by an s-state nfa.

Proof. Let M = (Q,Σ,∆, δ, qs) be the dfv which solves R. Pick any x ∈ Σ∗. To
check that x ∈ L, a nfa N := (Q,Σ, δ′, qs) simulates M on 〈x, y〉, for y ∈ ∆∗
a certificate which is guessed on the fly, symbol-by-symbol. When at state p
reading symbol a ∈ Σe, the automaton guesses the next symbol b ∈ ∆ on the
certificate tape, then switches to q and moves towards d, where (q, d) = δ(p, a, b).
Formally, (p, a, q, d) ∈ δ′ ⇐⇒ (∃b ∈ ∆)[(q, d) = δ(p, a, b)].

Easily, N accepts x iff there is a sequence of guesses b0, b1, . . . , bm such that
M accepts 〈x, b0b1 · · · bm〉; namely, iff there exists y ∈ ∆∗ such that R(x, y). ut

Note that all our certificates are finite strings, which makes sense for 2Σ1. But
we may also work with infinite certificates: easily, Lemmas 5 and 6 (and Th. 2)
hold even when R ⊆ Σ∗ × ∆ω, where ∆ω := {all infinite strings over ∆}, and
dfvs have infinite certificate tape. This variation of our definitions is optional
for 2Σ1; however, for 2Π1 and for general 2Σk, 2Πk it is essential.

3 The General Case

We now turn to the classes 2Σk and 2Πk for general k. For simplicity and con-
creteness, we treat only 2Σ3. (Generalizing to 2Σk is straightforward, but tedious;
then, 2Πk is handled by a dual argument.) So, our goal is to prove the following.

Theorem 5. A language family (Lh)h≥1 is in 2Σ3 iff there is a polynomial-size
quaternary predicate family (Rh)h≥1 such that, for all h and all x:

x ∈ Lh ⇐⇒ (∃z1)(∀z2)(∃z3)Rh(x, z1, z2, z3) .

Definition 3. A quaternary predicate family (Rh)h≥1 is polynomial-size if some
family of dfvs (Mh)h≥1 and polynomial p are such that, for all h and x,z1,z2,z3:

Mh has ≤ p(h) states & Rh(x, z1, z2, z3)⇐⇒Mh accepts 〈x, z1, z2, z3〉.

Now, each predicate relates a finite string x with three infinite strings z1, z2, z3.
Accordingly, a dfv M has three infinite certificate tapes, one per zj , with its
own head hj . Crucially, the heads are used in order : first, M reads from h1, keep-
ing h2, h3 stationary; later, it deactivates h1 and starts reading from h2, keep-
ing h3 stationary; eventually, it deactivates h2 too, and starts reading from h3.
Formally, M = (Q, J,Σ,∆, δ, qs), where again δ : Q×Σe×∆ −→ Q×{l,r} but
now the single certificate symbol always comes from the currently active head;

and J ⊆ Q consists of the states which cause a jump to the next certificate tape:
entering any q ∈ J causes M to deactivate the currently active head hj and
activate hj+1 —except if hj = h3, in which case nothing happens.

As usual, the proof consists of two lemmas, each for a single direction and h.

Lemma 7. If L is solved by an s-state σ3fa, then some quaternary predicate R
is solved by an O(s)-state dfv and is such that, for all x:

x ∈ L ⇐⇒ (∃z1)(∀z2)(∃z3)R(x, z1, z2, z3) . (1)

Proof. Let A = (Q, . ,Σ, δ, qs) be the σ3fa which solves L. To motivate R, pick
any x ∈ L. Pick any accepting full computation tree τ of A on x. Pick any full
computation path c in τ . Let m be its length. As in Lemma 5, the ‘instructions’
followed by A along c are ι1, . . . , ιm ∈ Q×{l,r}, where ιi := (q, d) iff in the i-th
step A switched to q and moved towards d. Since c contains < 3 alternations, the
string ι1 · · · ιm over ∆ := Q×{l,r} is the concaternation y1y2y3 of three strings
y1, y2, y3 ∈ ∆∗ such that every instruction in y1 or y3 (resp., y2) is followed along
an existential (resp., universal) step. Moreover, fixing τ and then ranging over
all different c in τ can be seen as fixing y1 and then ranging over all different y2
which can follow y1, before finally fixing y3 among those which can follow y1y2.

Conversely, any three strings z1, z2, z3 ∈ ∆ω can be seen as instruction lists
for resolving nondeterminism during a simulation of A on x: use the i-th symbol
of zj to make a choice in the i-th step of the j-th block of (existential or universal)
steps. Of course, not all triples of such strings can be used successfully in this way,
as some zj may contain an instruction which violates δ —call this phenomenon a
violation on zj . Clearly, every triple which causes no violation on any zj describes
a full computation path of A on x.

Define R ⊆ Σ∗×(∆ω)3 so that R(x, z1, z2, z3) iff the triple z1, z2, z3 (i) causes
no violation on z1 but some violation on z2 or (ii) causes no violation on any zj
and the resulting full computation path of A on x is accepting. Then (1) holds:

[⇒] Suppose x ∈ L. Let τ be an accepting full computation tree of A on x.
Let y1 ∈ ∆∗ be the string of instructions followed by A in τ up to the first
non-existential configuration α. Fix any extension z1 ∈ ∆ω of y1. If α is accept-
ing, then for all z2, z3 ∈ ∆ω the triple z1, z2, z3 satisfies (ii). If α is universal,
then consider any z2 ∈ ∆ω. Suppose we continue traversing τ from α using the
instructions in z2 to resolve nondeterminism up to the first non-universal con-
figuration. If we ever reach an instruction which violates δ, then for all z3 ∈ ∆ω

the triple z1, z2, z3 satisfies (i). Otherwise, we stop at some non-universal config-
uration β. If β is accepting, then for all z3 ∈ ∆ω the triple z1, z2, z3 satisfies (ii).
If β is existential, then from then on, τ continues as a single path and ends at
some accepting configuration γ. Let y3 ∈ ∆∗ be the string of instructions fol-
lowed by A along that path. Fix any extension z3 ∈ ∆ω of y3. Then the triple
z1, z2, z3 satisfies (ii). Overall, we see that, for the fixed z1 and for any z2, we
can always fix a z3 such that (i) or (ii), and thus R(x, z1, z2, z3) —as desired. �

[⇐] Conversely, suppose some z1 is such that every z2 has a z3 such that
R(x, z1, z2, z3). Construct a tree τ of configurations of A on x as follows. Start
from (qs, 0) and follow the instructions in z1 up to a violation or a non-existential

configuration, if any. Since violations are impossible on z1 (by (i) or (ii)) and
looping is also impossible (or else we would have no violations and no acceptance,
contradicting (ii)), the result is some non-existential configuration α. By (ii), α is
not rejecting. If α is accepting, then clearly x ∈ L. If α is universal, continue by
branching in all δ-legal ways, until each branch c reaches a non-universal config-
uration β. (As before, (ii) implies no looping is possible and β is not rejecting.)
If β is accepting, then c is accepting. If β is existential, then let y2 ∈ ∆∗ be the
instructions followed from α to β along c. Let z2 ∈ ∆ω be any extension of y2.
By assumption, some z3 ∈ ∆ω is such that R(x, z1, z2, z3), namely (i) or (ii).
But (i) is false, as y2 was derived by applying δ all the way to an existential con-
figuration. Hence, (ii) holds, namely the full computation path which extends c
beyond β according to z3 is accepting. Overall, every full computation path in τ
is accepting, so τ is an accepting full computation tree, so x ∈ L again. �

Finally, R is solved by the dfvM which, on input 〈x, z1, z2, z3〉, simulates A
on x along the path described by z1, z2, z3 to check (i) and (ii). If a violation
is reached, M accepts iff it was on z2. Otherwise, a full computation path c is
simulated, and M accepts iff c is accepting. Easily, this needs O(|Q|) states. ut

Lemma 8. If a quaternary predicate R is solved by an s-state dfv, then the
language L := {x | (∃z1)(∀z2)(∃z3)R(x, z1, z2, z3)} is solved by a 3s-state σ3fa.

Proof. Let M = (Q, J,Σ,∆, δ, qs) be the dfv for R. We solve L with a σ3fa
A := (Q1 ∪Q2 ∪Q3, Q2, Σ, δ

′, q1s), where each Qj := {pj | p ∈ Q} is a copy of Q.
Pick any x ∈ Σ∗. To check whether x ∈ L, A simulates M on 〈x, z1, z2, z3〉,

where z1, z2, z3 ∈ ∆ω are guessed, universally selected, and guessed, respectively,
each of them up to some prefix and on the fly. This works in three stages.

In stage 1, A guesses a prefix of z1 using states of Q1. Whenever in a state p1

reading a symbol a ∈ Σe, it guesses the next symbol b of z1, identifies (q, d) =
δ(p, a, b), moves towards d, and either stays in stage 1 by switching to q1, if q 6∈ J ;
or enters stage 2 by switching to q2, if q ∈ J .1 On finishing the stage, it has
guessed a y1 ∈ ∆∗ and is at state p2 corresponding to the state p where M would
be if it computed on input 〈x, y1 · · · , . , . 〉 up to accessing the second certificate.

In stage 2, A universally selects a prefix of z2 using states from Q2. Whenever
in a state p2 reading a symbol a ∈ Σe, it universally selects the next symbol b
of z2, identifies (q, d) = δ(p, a, b), moves towards d, and either stays in stage 2
by switching to q2, if q 6∈ J ; or enters stage 3 by switching to q3, if q ∈ J .2

On completing the stage, it has guessed a y1 ∈ ∆∗ and universally selected
a y2 ∈ ∆∗, and is at state p3 corresponding to the state p where M would be if
it computed on input 〈x, y1 · · · , y2 · · · , . 〉 up to accessing the third certificate.

Finally, in stage 3, A guesses a prefix of z3 using states from Q3. Whenever in
a state p3 reading a symbol a ∈ Σe, it guesses the next symbol b of z3, identifies
(q, d) = δ(p, a, b), moves towards d, and switches to q3; except if a = a and

1 Formally, δ′ contains every tuple (p1, a, q1, d) for which (∃b)[(q, d) = δ(p, a, b)] and
q 6∈ J ; and every tuple (p1, a, q2, d) for which (∃b)[(q, d) = δ(p, a, b)] and q ∈ J .

2 Formally, δ′ contains every tuple (p2, a, q2, d) for which (∃b)[(q, d) = δ(p, a, b)] and
q 6∈ J ; and every tuple (p2, a, q3, d) for which (∃b)[(q, d) = δ(p, a, b)] and q ∈ J .

d = r, in which case q = qs and A switches to q1s .3 In the end, A has guessed
a y1 ∈ ∆∗, universally selected a y2 ∈ ∆∗, guessed a y3 ∈ ∆∗, and moved off a
into q1s iff M would accept 〈x, y1 · · · , y2 · · · , y3 · · · 〉.

Suppose x ∈ L. Then some z1 is such that every z2 has a z3 to force M to
accept 〈x, z1, z2, z3〉 —clearly after reading only some finite prefixes y1, y2, y3 of
z1, z2, z3. Hence, the full computation tree of A defined by this y1, all such y2,
and their corresponding y3’s is finite and accepting, so A accepts x. Conversely,
suppose A accepts x. Pick any accepting full computation tree τ . Let y1 ∈ ∆∗
be the string of symbols used up to the first non-existential configuration α
in τ . Fix any extension z1 ∈ ∆ω of y1. Consider any z2 ∈ ∆ω. This extends
one of the strings y2 ∈ ∆∗ of symbols used from α up to the first non-universal
configuration β. Let y3 ∈ ∆∗ be the symbols used from then on up to an accepting
configuration. Fix any extension z3 ∈ ∆ω of y3. Then on input 〈x, z1, z2, z3〉,
M reads only the prefixes y1, y2, y3 and accepts. Overall, we found a z1 such
that every z2 has a z3 causing R(x, z1, z2, z3). Hence, x ∈ L. ut

References

1. J.-C. Birget. Two-way automata and length-preserving homomorphisms. Mathe-
matical Systems Theory, 29:191–226, 1996.

2. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
In R. M. Karp, editor, Complexity of Computation, volume VII of AMS-SIAM
Symposia in Applied Mathematics, pages 43–73, 1974.

3. V. Geffert. An alternating hierarchy for finite automata. Theoretical Computer
Science, 445:1–24, 2012.

4. N. Immerman. Descriptive complexity. Springer-Verlag, 1998.
5. C. Kapoutsis. Removing bidirectionality from nondeterministic finite automata.

In Proceedings of MFCS, pages 544–555, 2005.
6. C. Kapoutsis. Size complexity of two-way finite automata. In Proceedings of DLT,

pages 47–66, 2009.
7. C. Kapoutsis. Minicomplexity. In Proceedings of DCFS, pages 20–42, 2012.
8. C. Kapoutsis and N. Lefebvre. Analogs of Fagin’s Theorem for small nondeter-

ministic finite automata. In Proceedings of DLT, pages 202–213, 2012.
9. C. Kapoutsis and L. Mulaffer. A descriptive characterization of the power of small

2NFAs. In preparation, 2014.
10. A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions

with squaring requires exponential space. In Proceedings of the Symposium on
Switching and Automata Theory, pages 125–129, 1972.

11. W. J. Sakoda and M. Sipser. Nondeterminism and the size of two-way finite
automata. In Proceedings of STOC, pages 275–286, 1978.

12. M. Sipser. Introduction to the theory of computation. Cengage Learning, 3rd
edition, 2012.

13. L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1976.

3 Formally, δ′ contains every tuple (p3, a, q3, d) for which (∃b)[(q, d) = δ(p, a, b)] but
(a, d) 6= (a,r); and every tuple (p3,a, q1s ,r) for which (∃b)[(qs,r) = δ(p,a, b)].

Notes (Will not appear in final version.)

(1)For a concrete example, suppose Lh is owlh (the one-way liveness problem
on h-tall graphs [6,7]). Then Rh can reasonably be selected as the predicate
which is true whenever x is a string of h-tall undirected two-column graphs and
y ∈ [h]∗ is a sequence of |x|+1 numbers in [h] representing the vertices of a path
from column 0 to column |x| of the corresponding multi-column graph. In that
case, Mh would need to solve a problem which is intuitively harder than the
problem of checking that |y| = |x|+1, which we know is not even regular.

More formally, one can describe a mapping reduction from the known non-
regular language A := {anbn | n ≥ 0} to the language B := {x#y | Rh(x, y)}
that Mh needs to solve, which can be implemented by a one-way deterministic
finite transducer [7]. Given that the class of regular languages is closed under
such reductions (easily), the existence of Mh would imply that B is regular and
thus so is A —a contradiction.

(2)For a concrete example, suppose Σ = {a,b}, ∆ = {0}, andMh is the machine
which checks whether x is of the form a∗b∗ and the numbers of a’s and b’s are
both equal to the number of 0’s in y. (Easily, Mh scans x and y simultaneously,
matching a’s in x with 0’s in y; if they are not exhausted at the same time, it
rejects; otherwise, it returns the second head to ` and repeats for the b’s.) Then,
the set Rh of pairs accepted by Mh is exactly {〈anbn, 0n〉 | n ≥ 0}, causing Lh

to be the non-regular language {anbn | n ≥ 0} —a clear mismatch with our
intentions in Th. 2, where obviously every Lh should be regular.

(3)Proof of Theorem 4.
[⇒] It is enough to prove that if a language L is solved by an s-state nfa,

then there exists a binary predicate R which is solved by an s-state dfv∗ and
satisfies x ∈ L⇐⇒ (∃y)R(x, y), for all x.

As in Lemma 3, given a nfa N = (Q,Σ, δ, qs) for L, we let ∆ := Q and
choose R ⊆ Σ∗×∆∗ so that R(x, y) holds iff |x|+2 = |y| and y is the sequence
of states of an accepting computation of N on x, excluding the first one.

q3 q7 q2 q4 qs

y0 y1 y2 y3 y4a b b

x2 x3 x4x0 x1

q3qs q7 q2 q4 qs

Then clearly x ∈ L⇐⇒ (∃y)R(x, y). Moreover a dfv∗ M = (Q,Σ,∆, δ′, qs) can
solve R by scanning its input 〈x,y〉 and, whenever at state p reading a ∈ Σe and
q ∈ ∆, checks that (p, a, q,r) ∈ δ and transitions to q. Easily, M accepts 〈x, y〉
iff qs, y0, . . . , y|x|+1 is an accepting computation of N on x, namely iff R(x, y).

[⇐] It is enough to prove that if a binary predicate R is solved by an s-state
dfv∗, then the language L := {x | (∃y)R(x, y)} is solved by an s-state nfa.

As in Lemma 4, given a dfv∗ M = (Q,Σ,∆, δ, qs) for R, we build a nfa
N := (Q,Σ, δ′, qs) which, on input x ∈ Σ∗ of length n, guesses an (n+2)-long
y ∈ ∆∗ one symbol per step, and simulates M on x and the guessed y: when at

state p reading symbol a, it guesses a corresponding certificate symbol b ∈ ∆ and
moves to the unique state q for which (q,r) = δ(p, a, b). Formally, (p, a, q,r) ∈
δ′ ⇐⇒ (∃b ∈ ∆)[(q,r) = δ(p, a, b)]. Hence, N accepts iff there exists a sequence
of guesses bi for i = 0, 1, . . . , n+1 such that qs and the corresponding sequence
of states q1, . . . , qn+2 form an accepting computation of M on 〈x, b0b1 · · · bn+1〉;
namely, iff there is y ∈ ∆∗ such that M accepts 〈x, y〉; namely iff (∃y)R(x, y);
i.e., iff x ∈ L. ut

