
Nondeterminism is essential
in small two-way finite automata with few reversals

Christos A. Kapoutsis

Laboratoire d’Informatique Algorithmique: Fondements et Applications
Université Paris VII

Abstract

On every n-long input, every two-way finite automaton (fa) can reverse its
input head O(n) times before halting. A fawith few reversals is an automaton
where this number is only o(n). For every h, we exhibit a language that can be
recognized by an h-state nondeterministic fa with few reversals, but requires
Ω(2h) states on every deterministic fa with few reversals.

1. Introduction

A long-standing open question in the theory of computation, posed already
in the seventies [1, 2], is whether every two-way nondeterministic finite automa-
ton (nfa) has an equivalent deterministic one (dfa) with at most polynomially
more states.

The answer to this question is conjectured to be negative. Indeed, this
has been confirmed in several special cases: for automata that are single-pass
(i.e., they halt upon reaching an endmarker [1]) or sweeping (i.e., they reverse
their input head only on endmarkers [3, 4]) or almost oblivious (i.e., they exhibit
o(n) distinct input head trajectories over all n-long inputs [5]) or moles (i.e., they
explore the configuration graph implied by the input [6]). For unary automata,
however, a non-trivial upper bound has been established: every unary nfa ad-
mits a deterministic simulator with only quasi-polynomially more states [7]. It is
also known that the final answer to this question, both for general and for unary
alphabet, will have implications for the old question whether nondeterminism
is essential in space-bounded Turing machines [8, 9, 10].

Here we confirm the general conjecture in yet another special case: for au-
tomata that reverse their input head (anywhere on the tape, but) only o(n) times
on every n-long input before halting. These ‘fas with few reversals’ stand nat-
urally between sweeping fas, which perform only O(1) reversals and only on
the endmarkers, and general fas, which perform O(n) reversals (cf. Fact 3).

IResearch funded by a Marie Curie Intra-European Fellowship (pief-ga-2009-253368) within
the European Union Seventh Framework Programme (fp7/2007-2013).

Email address: christos.kapoutsis@liafa.jussieu.fr (Christos A. Kapoutsis)

Preprint submitted to Elsevier October 13, 2011

Theorem 1. For every h, there is a language that requires Ω(2h) states on every
dfa with few reversals but only h states on a nfa with few reversals.

The family of languages witnessing this theorem is one-wayliveness [2] (as
in several other theorems [3, 5, 6]) and the promised h-state nfas are actually
one-way (that is, their ‘few’ reversals are in fact ‘zero’). Hence, the theorem
can be seen as a generalization of the main theorem of [3], which states that
one-wayliveness requires exponentially many states on sweeping dfas.

Given Theorem 1, two natural questions arise. First, does the theorem really
generalize the one of [3], or can it perhaps follow from it by proving that the
gap from few-reversal dfas to sweeping dfas is only polynomial? Second,
does the full conjecture really generalize the theorem, or can it perhaps follow
from it by proving that the gap from general dfas to few-reversal dfas is only
polynomial? We provide affirmative answers to both of these questions.

Theorem 2. For every h, there is a language that requires 2Ω(h) states on every
sweeping dfa but only O(h) states on a dfawith 2 reversals.

Theorem 3. For every h, there is a language that requires Ω(2h)states on every
dfa with few reversals but only O(h2) states on a general dfa.

We note that Theorems 1, 2, and 3 together can been seen as full answers to
Research Problems 2 and 3 proposed by J. Hromkovič in 2002 [11].

We consider the second half of Theorem 1 (i.e., the upper bound) known,
and leave the proofs of Theorems 2 and 3 for the final sections (Sections 7 and 6,
respectively). We thus devote most of this article to proving the first part of
Theorem 1 (i.e., the lower bound). Our argument is structured similarly to the
one in [3]: after fixing terminology, notation, and strategy (Section 2), we intro-
duce generic strings (Section 3), study the blocks defined by them (Section 4),
use such blocks to build a family of hard instances (Section 5.1), and conclude
by applying the linear algebra bound on a family of vectors derived from these
instances (Section 5.2).

2. Preparation

2.1. Functions

Let A, B, C be sets, and f : A ⇀ B and g : B ⇀ C be partial functions. We
write A and P(A) for the complement and for the powerset of A. By idA : A→ A
we denote the identity function on A. The image of a set X ⊆ A under f is
f [X] := {f(a) | a ∈ X and f(a) is defined}. The pre-image of an element b ∈ B
under f is f−1(b) := {a ∈ A | f(a) = b}. The composition of f and g is the
partial function f ◦ g : A ⇀ C which is defined on an element a ∈ A iff both
f(a) and g(f(a)) are defined, and then (f ◦ g)(a) = g(f(a)). If A = B, then the
k-fold composition of f with itself is denoted by fk. By f ≤ g we mean that,
whenever f(a) is defined, g(a) is also defined and equals f(a). Easily, ≤ is a
partial order on the set {f | f : A ⇀ A} of all partial functions on A, and every
total function is a maximal element in this order.

2

(c)(a)

0

2

3

4

1

1 30 2

(b)

j0 j2jm−1

c

q0 q2

qm−1

Figure 1: (a) Three symbols inΣ5; e.g., the third symbol is {(0, 1), (0, 3), (1, 4), (3, 3)}. (b) The
string defined by the three symbols on the left, simplified and indexed; here n = 3 and
ξ = {(2, 4)}. (c) A left-hitting computation c with m = 15 and r(c) = 5; points 2, 8, and 12
are backward reversals, while points 6 and 11 are forward reversals.

Fact 1. For all f, f1, f2 : A ⇀ A we have f1 ≤ f2 =⇒ f ◦ f1 ≤ f ◦ f2.

Proof. Let f1 ≤ f2 and pick any a ∈ A for which (f◦f1)(a) is defined. Then f(a)
is defined and equals some b ∈ A, and f1(b) is defined and equals some c ∈ A,
and c = (f ◦ f1)(a). By f1 ≤ f2 and f1(b) = c, we know f2(b) is also defined,
and equals c. By f(a) = b and f2(b) = c, we know (f ◦ f2)(a) is also defined,
and equals c.

2.2. Problems

Let Σ be an alphabet. If z ∈ Σ∗ is a string, we write zR, |z|, and zj for
its reverse, length, and j-th symbol (if 1 ≤ j ≤ |z|). If Z ⊆ Σ∗, then the
corresponding set of reverses is ZR := {zR | z ∈ Z}.

A (promise) problem over Σ is any pair L = (L, L̃) of disjoint subsets of Σ∗.
Its positive instances are all w ∈ L, whereas all w ∈ L̃ are its negative instances.
The set L ∪ L̃ of all instances is the promise. A machine solves L if it accepts
every positive instance but no negative one. If L̃ = L, then L is a language.

Let h ≥ 1 and [h] := {0, . . . , h−1}. The alphabet Σh := P([h]× [h]) consists
of all two-column directed graphs with h nodes per column and only rightward
arrows (Fig. 1a). An n-long string z ∈ Σ∗h is naturally viewed as an (n+1)-
column graph, where every arrow connects successive columns (Fig. 1b); we
usually index the columns from 0 to n and, for simplicity, drop the directions
of the arrows. The connectivity of z is the set of pairs

ξ(z) := { (a, b) ∈ [h]× [h] | there exists a path (of length n)

from node a of column 0 to node b of column n } .

If ξ(z) 6= ∅ then z contains paths from the leftmost to the rightmost column,
and we say that it is live; otherwise we call it dead. The language

owlh = one-waylivenessh := { z ∈ Σ∗h | ξ(z) 6= ∅ }

represents the computational task of checking that a string is live [2].

3

2.3. Machines

A two-way deterministic finite automaton (dfa) is any tuple of the form
M = (Q,Σ, δ, qs, qa, qr), whereQ is a set of states, Σ is an alphabet, qs, qa, qr ∈ Q
are respectively the start, accept, and reject states, and

δ : Q× (Σ ∪ {`,a})→ Q× {l, r}

is the (total) transition function, for `,a /∈ Σ the left and right endmarkers, and
l, r the left and right directions. An input w ∈ Σ∗ is presented to M surrounded
by the endmarkers, as `wa. The computation starts at qs and on `. In each
step, the next state and head move are derived from δ and the current state
and symbol. Endmarkers are never violated, except for a when the next state
is qa or qr; that is, δ(· ,`) is always of the form (· , r), whereas δ(· ,a) is always
(qa, r) or (qr, r) or of the form (· , l). Hence, the computation either loops, or
falls offa into qr, or falls offa into qa. In the last case, we say that M accepts w.

In general, the computation of M from state p on the j-th symbol of string z,
denoted by compM,p,j(z), is the longest sequence

c = ((qt, jt))0≤t<m

such that 0 < m ≤ ∞, (q0, j0) = (p, j), and every next (qt, jt) is derived from the
previous one via δ and z in the natural way. We call (qt, jt) the t-th point of the
computation, and m the length. If m =∞ then c loops; otherwise, jm−1 = 0 or
|z|+1 and c hits left or hits right, respectively, into qm−1 (Fig. 1c). We say that
a computation c′ = ((q′t, j

′
t))0≤t<m′ parallels c if it is a ‘shifted copy’ of c, in the

sense that m′ = m and q′t = qt and j′t = jt + j∗ for some j∗ and all t.
The l-computation of M from p on z is the computation

lcompM,p(z) := compM,p,1(z)

and is called a lr-traversal, a l-turn, or a l-loop, depending on whether it hits
right, hits left, or loops. Similarly, the r-computation of M from p on z

rcompM,p(z) := compM,p,|z|(z)

is a rl-traversal, a r-turn, or a r-loop. Two l-/r-computations resemble each
other if they share the same first state, the same type (l/r-turn/loop, lr/rl-
traversal), and the same last state (when it exists). The (full) computation of
M on w ∈ Σ∗ is the computation

compM (w) := lcompM,qs(`wa) .

Hence, M accepts w iff compM (w) hits right into qa.
Given a string w = uzv, the decomposition of c := compM (w) relative to z is

the unique sequence c0, c1, . . . of computations, called segments, which is derived
by splitting c wherever it enters or exits z. More precisely, for each point (qt, jt)
of c produced by a step that crosses the u-z or the z-v boundary, we replace

4

(qt, jt) by two copies of itself and then split c between these two copies. Note
that every segment ci for even i is a computation on `u or on va, whereas
every ci for odd i is a computation on z. Moreover, c halts iff there exists a last
segment cm and m is even and cm falls off a.

We say that M is nondeterministic (a nfa) if δ maps Q × (Σ ∪ {`,a}) to
the powerset of Q× {l, r}. Then every compM,p,j(z) is a set of computations,
and M accepts w iff some c ∈ compM (w) hits right into qa.

A reversal in a computation c is any point (qt, jt) whose predecessor and
successor exist and lie on the same side with respect to the point (Fig. 1c).
More carefully, (qt, jt) is a reversal if t 6= 0,m−1 and either jt−1, jt+1 < jt
(backward reversal) or jt < jt−1, jt+1 (forward reversal). We write r(c) for the
total number of reversals in c. Note that 0 ≤ r(c) ≤ ∞ and the following holds.

Fact 2. For every computation c, we have r(c) =∞ iff c is looping.

For every length n ≥ 0, we write rM (n) for the maximum r(c) over all full
computations c of M on n-long inputs. When finite, this is at most linear.

Fact 3. For every s-state dfa M and every length n, either rM (n) = ∞ or
rM (n) is even and at most (s− 1)(n+ 2).

Proof. If M loops on any of its n-long inputs, then clearly rM (n) = ∞. Oth-
erwise, for any n-long input w, we know c := compM (w) is halting. Hence,
c starts on ` and eventually falls off a. Therefore, every backward reversal is
followed by a forward one. So, r(c) is even. Moreover, on each of the n+2 tape
cells, c performs at most s−1 reversals. Thus, r(c) ≤ (s − 1)(n + 2). Since w
was arbitrary, we conclude that rM (n) is also even and at most (s− 1)(n+ 2).

It remains, of course, to prove the italicised claim above.
We start by noting that on every cell, at least one point of c is not a reversal.

Indeed, if that is not the case, then there exists a cell on which all points are
reversals. The first of these reversals is a backward one, because it is the first
visit to the cell and thus came from the left. The second reversal is also a
backward one, because it is the second visit to the cell and, since the first visit
was a backward reversal, must have come from the left, too. And so on. Hence,
all points on the cell are backward reversals, which means c never moves past
this cell. So, c never falls off a —a contradiction.

Now suppose there is a cell on which c performs more than s−1 reversals.
Since every reversal is a point and at least one of the points on that cell is not a
reversal, c has more than s points there. Hence, two of them use the same state,
and are thus identical. So, c repeats a point. So, it loops —a contradiction.

If M performs all its reversals on the endmarkers, we call it sweeping (a
sdfa or snfa). If it performs no reversals, we call it one-way (a dfa or nfa).

2.4. Building hard instances

Hard instances for dfas are built in three stages. We start with generic
strings, which buy us some basic stability in the machine’s behavior. We then

5

q

y zu v

qs

r

q

c1 c2

q∗

c∗

pp

qs

u vy

(a) (b)

Figure 2: (a) Computing on uyv. The segment from p to q parallels lcompM,p(y), but differs
from it in that every point’s position is incremented by |`u|. (b) Computing on uyzv.

use generic strings to build blocks, on which we draw a set of requirements for
how the machine must compute. In order to prove that the machine must indeed
meet these requirements, we iterate the blocks into much longer strings and use
the fact that the machine decides correctly there. Finally, we argue that meeting
the requirements on the blocks is impossible for any machine with subexponen-
tially many states. This general strategy originates in [3]; its instantiation here
for dfas improves on the analysis of [6, §3].

For the rest of the article, we fix a dfaM=(Q,Σ, δ, qs, qa, qr) and drop ‘M ’
from all subscripts. For example, lcompM,p(w) and rM (n) will be denoted by
just lcompp(w) and r(n).

3. Generic strings

For each y ∈ Σ∗, consider all states that can be produced by lr-traversals
of y inside full computations of M (Fig. 2a), called the lr-outcomes of y:

Qlr(y) :=
{
q ∈ Q | there exist p and u, v such that

lcompp(y) appears in comp(uyv) & hits right into q
}
, (1)

where a computation on y ‘appears in comp(uyv)’ if it parallels one of the
odd-indexed segments in the decomposition of comp(uyv) relative to y.(1)

We now consider any extension yz of y and compare Qlr(yz) with Qlr(y)
and with Qlr(z). To facilitate the first of these two comparisons, we define a
partial function αy,z : Qlr(y) ⇀ Q as follows (Fig. 2b): for each q ∈ Qlr(y), we
examine compq,|y|+1(yz); if it hits right into some state r, we set αy,z(q) := r;
if it hits left or loops, we leave αy,z(q) undefined.

Fact 4a. We have αy,z[Qlr(y)] ⊇ Qlr(yz) and also Qlr(yz) ⊆ Qlr(z).(2)

Proof. Let r ∈ Qlr(yz). Then there exist p and u, v such that c := lcompp(yz)
appears in comp(uyzv) and hits right into r (Fig. 2b). We know c crosses the
y-z boundary at least once. Let q and q∗ be the states right after the first
crossing and after the last crossing, respectively. The prefix of c up to the first
crossing is c1 := lcompp(y) and hits right into q, while the remaining suffix

6

is c2 := compq,|y|+1(yz) and hits right into r. The suffix of c after the last
crossing is c∗ = lcompq∗(z) and hits right into r. Now, c1 is a lr-traversal of y
that appears in comp(uyzv) and produces q, so q ∈ Qlr(y). By this and c2, we
know αy,z(q) = r. Therefore, r ∈ αy,z[Qlr(y)]. Moreover, c∗ is a lr-traversal
of z that appears in comp(uyzv) and produces r. Therefore, r ∈ Qlr(z).

Symmetrically, we also consider the set Qrl(y) of rl-outcomes of y, consist-
ing of all states that can be produced by rl-traversals of y inside full computa-
tions of M , and introduce the partial function βz,y : Qrl(y) ⇀ Q so that βz,y(q)
is r if compq,|z|(zy) hits left into r, or undefined if the computation loops or
hits right. Then the following fact holds, which is symmetric to Fact 4a.

Fact 4b. We have Qrl(z) ⊇ Qrl(zy) and also Qrl(zy) ⊆ βz,y[Qrl(y)].

By the first inclusion of Fact 4a, we know every distinct element of Qlr(yz)
is hit via αy,z by at least one distinct element of Qlr(y), so |Qlr(y)| ≥ |Qlr(yz)|.
Similarly, Fact 4b implies |Qrl(zy)| ≤ |Qrl(y)|. Hence, extending a string in
either direction can never increase the respective number of outcomes. Thus,
sufficiently long extensions minimize this number. Such extensions are called
generic strings and are defined as follows.

Definition. Let L ⊆ Σ∗. A string y is lr-generic over L if

y ∈ L & for all yz ∈ L: |Qlr(y)| = |Qlr(yz)| .

Symmetrically, y is rl-generic over L if

y ∈ L & for all zy ∈ L: |Qrl(zy)| = |Qrl(y)| .

If y is both lr-generic and rl-generic, then it is called generic.

Lemma 1. Every ∅ 6= L ⊆ Σ∗ admits both lr- and rl-generic strings.(3) And
if yl is lr-generic and yr is rl-generic, then every ylxyr ∈ L is generic over L.

Proof. Suppose no lr-generic strings over L exist. Then every y ∈ L has a
yz ∈ L such that |Qlr(y)| 6= |Qlr(yz)|, and thus |Qlr(y)| > |Qlr(yz)|. Hence,
starting with any y ∈ L and applying this rule ad infinitum, we find a sequence
y, yz1, yz1z2, . . . ∈ L in which |Qlr(·)| keeps decreasing forever. This contradicts
the obvious fact that |Qlr(·)| ≥ 0. Hence, lr-generic strings over L exist. For
rl-generic strings we work symmetrically.

For the final claim, it is enough to note that every right-extension ylz ∈ L
of a lr-generic string yl is also lr-generic (easily, by the definition). Similarly,
every left-extension zyr ∈ L of a rl-generic string yr is also rl-generic.

Alternatively, genericity can be characterized via αy,z and βz,y, as follows.

Lemma 2. Let y ∈ L ⊆ Σ∗. Then y is lr-generic over L iff αy,z is total and
bijective from Qlr(y) to Qlr(yz) for all yz ∈ L.(4) Similarly, y is rl-generic
over L iff βz,y is total and bijective from Qrl(y) to Qrl(zy) for all zy ∈ L.

7

Proof. We focus on the first equivalence (the second one follows symmetrically)
and on the ‘only if’ direction —the ‘if’ direction is immediate, since the existence
of any total bijection from Qlr(y) to Qlr(yz) implies |Qlr(y)| = |Qlr(yz)|.

Let y be lr-generic over L and pick yz ∈ L. We know αy,z partially maps
Qlr(y) to Q (by definition) and covers Qlr(yz) (Fact 4a). Namely, each r ∈
Qlr(yz) has a distinct q ∈ Qlr(y) with αy,z(q) = r. So, if there were q ∈ Qlr(y)
with αy,z(q) undefined or outside Qlr(yz) or equal to αy,z(q

′) for another q′ ∈
Qlr(y), we would have |Qlr(y)| > |Qlr(yz)|, contrary to y being generic. Hence,
αy,z(q) is defined and in Qlr(yz) and distinct, for all q ∈ Qlr(y). Namely, αy,z is
a total injection from Qlr(y) to Qlr(yz). By Fact 4a, it is also a surjection.

4. Blocks

Let L be any non-empty property of strings, ∅ 6= L ⊆ Σ∗. Pick any generic
string ϑ over this property, and let A := Qlr(ϑ) and B := Qrl(ϑ) be the
corresponding pair of sets of outcomes.

Every string of the form ϑxϑ is called a block (on ϑ), and x is called the infix
of it.(5) We say that the pair (αx, βx) := (αϑ,xϑ, βϑx,ϑ) are the inner behavior
of M on the block. Note that αx : A ⇀ Q and βx : B ⇀ Q.

4.1. Pumping symbols

Blocks are useful because, in certain situations, they enable us to ‘pump’
symbols into the input without the machine noticing. Specifically, if we manage
to force αx and βx to be identity functions, then the prefix ϑx and the suffix xϑ
of the block become ‘invisible’ to M , in the sense that the machine cannot
distinguish between ϑ and the entire block ϑxϑ in any environment u, v. The
following lemma explains.

Lemma 3. Suppose (αx, βx) = (idA, idB). Pick any two strings u and v, and let
c0, c1, . . . and d0, d1, . . . be the decompositions of comp(uϑv) and comp(uϑxϑv)
relative to ϑ and to ϑxϑ, respectively. Then every ci parallels di if i is even, or
resembles di if i is odd. Thus, M behaves (accepts, rejects, or loops) identically
on uϑv and uϑxϑv.

Proof. Note that even-indexed ci and di compute on `u or va, whereas odd-
indexed ci compute on ϑ, and odd-indexed di compute on ϑxϑ. It suffices to
prove that every ci and di resemble each other and, if i is even, compute on the
same string. (For the even i, note that two resembling segments computing on
the same string are necessarily parallel.)

We work inductively. If i = 0, then c0 and d0 are both l-computations on `u
from qs; so they are identical, and thus resembling, on the same string. For the
inductive step, pick any i > 0 and assume the claim holds for ci−1 and di−1.

If i is even, then ci−1 computes on ϑ and di−1 computes on ϑxϑ. We take
cases on their common type. If they are loops, then no ci and di exist, and we
are done. If they are l-turns or rl-traversals (resp., r-turns or lr-traversals),
then they both hit left (resp., right) into the same state p, causing ci and di to

8

be r-computations (resp., l-computations) from p on `u (resp., va), and thus
identical (resp., parallel), hence resembling, computations on the same string.

If i is odd, then ci−1 and di−1 compute both on `u or both on va. We take
cases on their common type and input. If they are loops, then no ci and di
exist, and we are done. If they are lr-traversals on va, then again no ci and di
exist. If they are lr-traversals or r-turns on `u, then they both hit right into
the same state p, causing ci and di to be l-computations from p on ϑ and ϑxϑ,
respectively. Since ϑ is a prefix of ϑxϑ, we know ci is a prefix of di. Therefore,
if ci hits left or loops, then di remains identical to ci, and thus resembles it.
If instead ci hits right, into some state q, then di crosses the ϑ-xϑ boundary
into q and continues with the suffix compq,|ϑ|+1(ϑxϑ), which we know hits right
into q (because αx(q) = idA(q) = q); thus di again resembles ci. Each of the
remaining cases is either impossible or symmetric.

We now continue with the final claim. If M halts on uϑv, then there exists a
last cm, with m even, which falls off a. Hence, cm is a lr-traversal of va, ending
in qa or qr. Since cm resembles dm, we know dm is also a lr-traversal of va, with
the same last state. Hence, M halts on uϑxϑv too, and decides identically. If
M loops on uϑv, then there are either infinitely many ci, and thus also infinitely
many resembling di, or a looping last cm, with the resembling dm also looping
and last. Either way, M loops on uϑxϑv, too.

Now, how can we force the inner behavior of M on a block into the identities?
This we know how to do only when the generic string ϑ appears (not only at
the two ends of the block, but also) multiple times inside the infix. That is,
we can force identities on blocks of the form ϑ(x1ϑx2ϑ · · ·ϑxk)ϑ. The next few
facts study how M computes on such blocks.

We start with the simple case of only one copy of ϑ inside the infix, namely
blocks of the form ϑ(xϑy)ϑ. The inner behavior of M on such blocks depends
on its inner behavior on the sub-blocks ϑxϑ and ϑyϑ, in the following manner.

Fact 5. Let z = xϑy. Then αx ◦αy ≤ αz and βy ◦βx ≤ βz.(6) In addition, if αz
is total and injective, then so is αx; if βz is total and injective, then so is βy.

Proof. For αx◦αy ≤ αz, let p ∈ A and assume (αx◦αy)(p) is defined and equal to
some r ∈ Q. Then αx(p) is defined and equal to some q ∈ Q, and αy(q) is defined
and equal to r. By αx(p) = q, we know cx := compp,|ϑ|+1(ϑxϑ) hits right into q
(Fig. 3). By αy(q) = r, we also know cy := compq,|ϑ|+1(ϑyϑ) hits right into r.
Now, by concatenating cx and cy we get exactly cz := compp,|ϑ|+1(ϑxϑyϑ).
Hence cz hits right into r. Therefore αz(p) is defined and equal to (αx ◦αy)(p).

Now suppose αz is total and injective. If αx is not total, then αx(p) is unde-
fined for some p ∈ A, namely cx := compp,|ϑ|+1(ϑxϑ) hits left or loops. But cx
is a prefix of cz := compp,|ϑ|+1(ϑxϑyϑ), so cz also hits left or loops. Hence αz(p)
is undefined, and αz is not total—a contradiction. If αx is not injective, then
αx(p) = αx(p′) for two distinct p, p′ ∈ A, namely cx := compp,|ϑ|+1(ϑxϑ) and
c′x := compp′,|ϑ|+1(ϑxϑ) hit right into the same state. But cx and c′x are respec-
tively prefixes of cz := compp,|ϑ|+1(ϑxϑyϑ) and c′z := compp′,|ϑ|+1(ϑxϑyϑ), so

9

r

ϑϑ x yϑ

p

q

cx cy
cz

z

Figure 3: Computing on two overlapping blocks ϑxϑ and ϑyϑ.

cz and c′z continue identically after the ϑxϑ-yϑ boundary, hitting right into the
same state. Hence αz(p) = αz(p

′), and αz is not injective—a contradiction.
The statements for the β’s are proved by symmetric arguments.

We now proceed to blocks of the form ϑ(xϑxϑ · · ·xϑx)ϑ, where the infix is
multiple ϑ-separated copies of some x. We denote such infixes by

x(k) := x(ϑx)k−1

for k ≥ 1. So, we now discuss blocks of the form ϑx(k)ϑ = ϑ(xϑ)k = (ϑx)kϑ.
Note that the usual law of exponents (x(k))(l) = x(lk) is valid for all k and l:

(x(k))(l) = x(k)(ϑx(k))l−1 = x(ϑx)k−1(ϑx(ϑx)k−1)l−1 = x(ϑx)lk−1 = x(lk) .

Extending Fact 5, the next fact shows the relationship between the inner be-
havior on the full block ϑx(k)ϑ and the inner behavior on the basic block ϑxϑ.

Fact 6. Let k ≥ 1. Then (αx)k ≤ αx(k) and (βx)k ≤ βx(k) . In addition, if αx(k)

is total and injective, then so is αx; if βx(k) is total and injective, then so is βx.

Proof. Once again, we prove only the two claims for the α’s.
For (αx)k ≤ αx(k) , we use induction on k. Case k = 1 is trivial. For k ≥ 1,

assume (αx)k ≤ αx(k) . Then (αx)k+1 = αx ◦ (αx)k ≤ αx ◦ αx(k) (Fact 1) and
αx ◦αx(k) ≤ αx(k+1) (Fact 5 for z = xϑ(x(k)) = xϑx(ϑx)k−1 = x(ϑx)k = x(k+1)).
So, (αx)k+1 ≤ αx(k+1) (by transitivity of ≤), and we are done.

The second claim follows from Fact 5 when z = xϑ(x(k−1)) = x(k).

Finally, we are ready to state a sufficient condition for forcing the inner
behavior of M into the setting of Lemma 3: if any infix of the form x(k) forces
the inner behavior into just permutations, then infinitely many of the longer
infixes of the same form force the inner behavior into just identities. The next
fact says exactly this. The phrase (αx(k) , βx(k)) permute (A,B) is shortcut for
the condition that αx(k) is a permutation of A and βx(k) is a permutation of B.

Fact 7. If (αx(k) , βx(k)) permute (A,B), then (αx(tlk) , βx(tlk)) = (idA, idB) for
some l ≥ 1 and all t ≥ 1.

10

c

q

rq̃

d

ϑ x ϑ

(a) (b)

p

ϑ

q
qs

u v

Figure 4: (a) A computation d that witnesses αx(q) = r, with two forward reversals. (b) An
environment u, v and a computation c that witness q ∈ A.

Proof. Let z := x(k) and suppose that αz and βz are permutations of A and B.
Pick l ≥ 1 so that each of these permutations becomes the corresponding

identity after l iterations: (αz)
l = idA and (βz)

l = idB . Then (αz)
l ≤ αz(l) (by

Fact 6), where z(l) = (x(k))(l) = x(lk). In other words, idA ≤ αx(lk) . Therefore
αx(lk) = idA (since idA is total). Similarly, βx(lk) = idB .

Now, consider any t ≥ 1. By Fact 6, we know (αx(lk))t ≤ α(x(lk))(t) . But

(αx(lk))t = (idA)t = idA and (x(lk))(t) = x(tlk). Hence, we know idA ≤ αx(tlk) .
Therefore αx(tlk) = idA (since idA is total). Similarly, βx(tlk) = idB .

4.2. Pumping reversals

Whenever we ‘pump’ symbols into a block ‘under M ’s radar’, some of the
reversals that M performs on the block are unavoidably ‘pumped’ as well, into
the computation of M on the longer input generated by the pumping. This
effectively kills every hope of M maintaining a sublinear number of reversals.

The next lemma analyses this phenomenon. The phrase (A,B) use reversals
on x is shortcut for the condition that some compp,|ϑ|+1(ϑxϑ) for p ∈ A or some
compp,|ϑx|(ϑxϑ) for p ∈ B contains at least one reversal.

Lemma 4. If (A,B) use reversals on x and (αx, βx) permute (A,B), then it
cannot be r(n) = o(n).

Proof. Since (A,B) use reversals on x, we know that there exists a computation
d := compq,|ϑ|+1(ϑxϑ) with q ∈ A (or d := compq,|ϑx|(ϑxϑ) with q ∈ B, in
which case we work symmetrically) that contains one or more reversals (Fig. 4a).
In fact, d contains at least one forward reversal: since αx permutes A, we know
αx(q) is defined, therefore d hits right, hence at least one of its reversals must
be a forward one.

Since (αx, βx) permute (A,B), we also know (by Fact 7 for k = 1) that there
exists l ≥ 1 such that (αx(tl) , βx(tl)) = (idA, idB) for all t ≥ 1.

Let z := x(l). Then z(t) = x(tl) and thus (αz(t) , βz(t)) = (idA, idB), for all t.
Using this, we show that each dt := compq,|ϑ|+1(ϑz(t)ϑ) reverses a lot.

Claim. For every t ≥ 1, the computation dt contains ≥ t forward reversals.

Proof. By induction on t (Fig. 5). For t = 1, we have d1 = compq,|ϑ|+1(ϑz(1)ϑ).

Since z(1) = z = x(l) and l ≥ 1, we know the block ϑz(1)ϑ has ϑxϑ as prefix,
causing d1 to have d as prefix, and thus contain ≥ 1 forward reversals.

11

d1
dt

d

z(t−1)

dt−1

q

q

z(1)

z(1)

ϑ

d1

ϑ x x xϑ ϑ x x xϑ ϑ ϑ

q

q

Figure 5: Pumping the 1 forward reversal of d into the t forward reversals of dt, in the proof
of the first Claim of Lemma 4; here l = 2 and t = 3.

For t > 0, we have dt = compq,|ϑ|+1(ϑz(t)ϑ). Since ϑz(t)ϑ = ϑz(t−1)ϑzϑ,

the prefix of dt up to the boundary ϑz(t−1)ϑ-zϑ is dt−1, and so the state after
crossing this boundary is αz(t−1)(q) = idA(q) = q. Thus, the remaining suffix
compq,|ϑz(t−1)ϑ|+1(ϑz(t−1)ϑzϑ) parallels d1. Hence, dt contains the ≥ t−1 for-
ward reversals of dt−1 plus the ≥ 1 forward reversals of d1, for a total of ≥ t. �

Note that, since the dt are arbitrary computations, their existence does not
prove that M performs many reversals. To establish this, we need to find many
reversals inside full computations of M . This is our next step.

Since q ∈ A = Qlr(ϑ), there exist a state p and an environment u, v such
that c := lcompp(ϑ) appears in ĉ := comp(uϑv) and hits right into q (Fig. 4b).
Consider the family of inputs wt := uϑz(t)ϑv for t ≥ 1, and the respective
computations ĉt := comp(wt). We show that each ĉt reverses a lot.

Claim. For every t ≥ 1, the computation ĉt contains ≥ t forward reversals.

Proof. By Lemma 3 and (αz(t) , βz(t)) = (idA, idB), we know c resembles a seg-
ment ct in the decomposition of ĉt relative to ϑz(t)ϑ (Fig. 6). So, ct is a l-
computation on ϑz(t)ϑ from p. Since ϑ is a prefix of ϑz(t)ϑ, the prefix of ct
up to the boundary ϑ-z(t)ϑ is c, the state after crossing the boundary is q, and
the suffix compq,|ϑ|+1(ϑz(t)ϑ) from then on parallels dt. So, ĉt also contains
≥ t forward reversals. �

ct
c dt

qs

u ϑ x x ϑ

q

v

q
p

z(t)

Figure 6: Placing dt and its t forward reversals inside a segment ct of a full computation ĉt,
in the proof of the second Claim of Lemma 4.

12

We are almost done. We just observe that each ĉt works on input length

nt := |wt| = |uϑx(tl)ϑv| = |uϑ(xϑ)tlv| = l|xϑ| · t+ |uϑv| .

Hence, the maximum number of reversals performed by M on nt-long inputs is

r(nt) ≥ r(ĉt) ≥ t = (1/l|xϑ|) · nt − |uϑv|/l|xϑ| .

So, r(n) exceeds a linear function inifinitely often. Hence, r(n) 6= o(n).

4.3. Block criterion

In Fact 6 we saw that the inner behavior of M on the short block ϑxϑ af-
fects its inner behavior on all longer blocks ϑx(k)ϑ for k ≥ 1. Not surprisingly,
therefore, if we know how M decides on the long blocks, we can draw con-
clusions about its behavior on the short one. In a sense, this converts global
information about decisions on a family of long inputs into local information
about computations on a single short input.

Typically, the global information is implied by the assumption that M solves
a certain problem L = (L, L̃), and thus accepts every long block which is in L
but no long block which is in L̃. On the other hand, the local information takes
the form of a criterion on αx and βx. In this section we argue our way through
the conversion of the starting global assumption into the final local criterion.

So, let us call an infix x positive, negative, or neutral relative to a problem
L = (L, L̃) if respectively ϑxϑ is in L, in L̃, or in neither. In Section 5, we will
encounter cases which satisfy the promise that

(∃k ≥ 1)
(
x(k) is positive

)
∨ (∀k ≥ 1)

(
x(k) is negative

)
Whenever this holds, we will say that ϑ and x respect L; and that they select L
or L̃, depending on whether the promise is met on its first half (namely, some
x(k) is positive) or on its second half (namely, all x(k) are negative).

Now, if we also know that M solves L, then we can tell which of the two
halves of the above promise is met using the local criterion whether (αx, βx)
permute (A,B). The next fact assembles this criterion; the next lemma states
the same criterion in a form which is easier to use.

Fact 8. If positive x(k) exist, then (αx, βx) permute (A,B). In contrast, if all
x(k) are negative and M solves L, then (αx, βx) do not permute (A,B).

Proof. For the second implication, supposeM solves L and (going for the contra-
positive) assume that (αx, βx) = (αx(1) , βx(1)) permute (A,B) in order to find a
non-negative x(k). Indeed, pick any t ≥ 1 such that (αx(t·1) , βx(t·1)) = (idA, idB),
among the infinitely many guaranteed by Fact 7, and let k = t · 1. Then M be-
haves identically on ϑ and ϑx(k)ϑ (by Lemma 3 with empty u, v) and thus
accepts ϑx(k)ϑ (since it accepts ϑ ∈ L). Therefore, ϑx(k)ϑ /∈ L̃, which implies
that x(k) is not negative.

For the first implication, suppose z := x(k) is positive for some k ≥ 1. We
will prove that αx : A ⇀ Q is a permutation of A (omitting the symmetric proof
that βx is a permutation of B). To this end, we first need the following.

13

dc
ct

qs

u v

q

ϑ x x xϑ ϑ

q

rq̃

p

z(t)

Figure 7: Proving that αx keeps all its values in A, in the argument for Fact 8.

Claim. (αz, βz) permute (A,B).

Proof. Since z is positive, namely ϑzϑ = ϑ(xϑ)k ∈ L, we know αz = αϑ,(xϑ)k

is a total bijection from A = Qlr(ϑ) to A′ := Qlr(ϑzϑ) (by Lemma 2). But
A′ ⊆ A (by Fact 4a, since ϑzϑ ends in ϑ) and |A′| = |A| (since αz is bijective),
therefore A′ = A. Thus, αz = αx(k) is a permutation of A. By a symmetric
argument, βz = βx(k) is a permutation of B. �

Now, in order to show that αx permutes A, it is enough to prove two facts:
first, that αx is total and injective; and second, that αx[A] ⊆ A. The first fact
follows directly from Fact 6 and the previous Claim, which implies that αx(k) is
total and injective. For the second fact, we work as follows.

Let r ∈ αx[A]. Then there exists a state q ∈ A = Qlr(ϑ) with αx(q) = r.
In other words, there exist two states p, q and an environment u, v such that
the computation c := lcompp(ϑ) appears in ĉ := comp(uϑv) and hits right
into q (Fig. 4b), and d := compq,|ϑ|+1(ϑxϑ) hits right into r (Fig. 4a). Note
that c is an odd-indexed segment in the decomposition of ĉ relative to ϑ.
Now pick any t ≥ 1 with (αz(t) , βz(t)) = (αx(tk) , βx(tk)) = (idA, idB) (Fact 7).
Lemma 3 says c resembles an odd-indexed segment ct in the decomposition of
ĉt := comp(uϑz(t)ϑv) relative to ϑz(t)ϑ (Fig. 7). So, ct is also a l-computation
from p, on ϑz(t)ϑ. Since ϑxϑ is a prefix of ϑz(t)ϑ, the prefix of ct up to the
first crossing of the right boundary of ϑxϑ is c followed by a parallel of d. In
particular, if q̃ is the state in d after the last crossing of the ϑx-ϑ boundary, then
d̃ := lcompq̃(ϑ) hits right into r and appears in ĉt = comp((uϑx)ϑ(x(tk−1)ϑv)).
Hence, r ∈ Qlr(ϑ) = A.

Lemma 5. Suppose that M solves L = (L, L̃), and that ϑ and x respect L.
Then ϑ and x select L iff each outcome of ϑ is hit exactly once by the respective
half of the inner behavior:(

∀r ∈ A
)(
|α−1
x (r)| = 1

)
&

(
∀r ∈ B

)(
|β−1
x (r)| = 1

)
. (2)

Proof. If ϑ and x select L, then there exist positive x(k), hence αx permutes A
(by Fact 8) and thus hits every r ∈ A exactly once; similarly for βx and B.

14

p

r
p

r

ϑ x ϑ

rp

(b)

ϑ x ϑ
p

r
q

(a)

Figure 8: (a) Three right-hitting compp,|ϑ|+1(ϑxϑ): one simple (top), two non-simple. (b) Un-
derstanding Sp: each column is a copy of Q; circles and dashed edges represent the q for which
lcompq(ϑ) hits right into r; dotted edges represent the δlr(p, x, q) that are being summed.

Conversely, if αx : A ⇀ Q hits every r ∈ A, then it is total and injective and
keeps all its values inside A (or else its values would not be enough to cover A),
hence it bijects A into A, i.e., it permutes A; similarly for βx and B. Therefore,
not all x(k) are negative (by Fact 8). So ϑ and x do not select L̃, but L.

4.4. Block criterion under few reversals

In the special case where M uses sublinearly many reversals, criterion (2) in
Lemma 5 can be simplified by replacing α−1

x (r) and β−1
x (r) by two simpler sets,

α∗x(r) and β∗x(r), which we now introduce.
First, recall that α−1

x (r) consists of all states p ∈ A for which the computa-
tion compp,|ϑ|+1(ϑxϑ) hits right into r. Of course, every such computation is
free to reach r after arbitrary meanders inside ϑxϑ. Suppose, however, that we
restrict our attention only to computations which stay inside xϑ and cross the
x-ϑ boundary only once—we call these computations simple (Fig. 8a). Then,
α∗x(r) is the set of p which still manage to reach r:

α∗x(r) = α∗ϑ,xϑ(r) := {p ∈ A | (∃q ∈ Q)(lcompp(x) hits right into q

& lcompq(ϑ) hits right into r)} . (3)

Symmetrically, we let β∗x(r) = β∗ϑx,ϑ(r) be the set of all states p ∈ B for which
compp,|ϑx|(ϑxϑ) hits left into r having crossed the ϑx-ϑ and ϑ-xϑ boundaries
0 and 1 times respectively.

A simple but important property of the new sets (one that the old sets do not
share) is explained in the next fact, which uses the two boolean-valued functions
δlr(· , · , ·) and δrl(· , · , ·) given by

δlr(p, x, q) = 1 ⇐⇒ lcompp(x) hits right into q

δrl(q, x, p) = 1 ⇐⇒ rcompp(x) hits left into q .

The fact says that the sizes of α∗x(r) and β∗x(r) can be expressed as simple sums
of appropriate selections of the bits δlr(· , x, ·) and δrl(· , x, ·), respectively.

15

Fact 9. For all r ∈ Q: α∗x(r) ⊆ α−1
x (r) and β∗x(r) ⊆ β−1

x (r). Moreover :

|α∗x(r)| =
∑

p∈A & lcompq(ϑ)
hits right into r

δlr(p, x, q) |β∗x(r)| =
∑

p∈B & rcompq(ϑ)
hits left into r

δrl(q, x, p) . (4)

Proof. The inclusions are obvious. For the equality on the left, fix any p ∈ A
and consider the inner sum

Sp :=
∑

lcompq(ϑ)
hits right into r

δlr(p, x, q) .

This iterates over all q whose lcompq(ϑ) hits right into r, and counts how many
of them are hit-right into by lcompp(x) (Fig. 8b). By (3), every q counted this
way is a witness for verifying that p ∈ α∗x(r). Hence, Sp equals the number of
such witnesses. Since M is deterministic, this number is ≤ 1 and thus

Sp =

{
0 if p 6∈ α∗x(r) ,

1 if p ∈ α∗x(r) .

Consequently, the size of α∗x(r) can be calculated by summing the Sp’s,

|α∗x(r)| =
∑
p∈A

Sp =
∑

p∈A & lcompq(ϑ)
hits right into r

δlr(p, x, q) ,

and the equality is proven. The equality for β∗x(r) is proved symmetrically.

We are now ready to prove the simplification of (2) that we promised.

Lemma 6. Suppose that M solves L = (L, L̃) with r(n) = o(n) reversals, and
that ϑ and x respect L. Then ϑ and x select L iff each outcome of ϑ is hit by
exactly one simple computation:(

∀r ∈ A
)(
|α∗x(r)| = 1

)
&

(
∀r ∈ B

)(
|β∗x(r)| = 1

)
. (5)

Proof. Suppose ϑ and x select L. Then (αx, βx) permute (A,B) (by Fact 8),
therefore (A,B) do not use reversals (by Lemma 4, and since r(n) = o(n)).

Now pick any r ∈ A. We know |α∗x(r)| ≤ 1, because α∗x(r) ⊆ α−1
x (r) (by

Fact 9) and |α−1
x (r)| = 1 (by Lemma 5). We also know |α∗x(r)| ≥ 1, because the

r-hitting compp,|ϑ|+1(ϑxϑ) for the unique p ∈ α−1
x (r) uses no reversals (because

(A,B) do not use reversals) and thus p ∈ α∗x(r). Overall, |α∗x(r)| = 1. A similar
argument applies for β∗x and B.

Conversely, suppose criterion (5) holds. Then criterion (2) holds, too (since
α∗x(r) ⊆ α−1

x (r) and β∗x(r) ⊆ β−1
x (r)). So, ϑ and x select L (by Lemma 5).

16

5. The hardness of liveness

We now proceed to the proof of the lower bound of Theorem 1. We pick an
arbitrary h ≥ 1 and suppose that the dfa M that we kept fixed throughout
the previous sections is actually reading inputs over Σ = Σh and solves owlh
with r(n) = o(n) reversals. We will show that the number of states in M must
be exponential in the height h of the input alphabet, specifically |Q| = Ω(2h).

To this end, we will first restrict our attention from the infinity of all possible
instances of owlh down to a very specific family of inputs, which collectively
capture the ‘core’ of the computational hardness overcome by M (Section 5.1).
Next, we will use the fact that M decides correctly on all these ‘hard instances’
in order to argue our way through to the lower bound (Section 5.2).

5.1. The hard instances

We focus on the same family of instances that was used in [12, §3.2] for
proving that snfas need exponentially many states against the complement
of owlh. These instances are blocks of the form ϑx(k)ϑ, where k ≥ 1 and ϑ
and x are drawn from two families (ϑi)i∈I and (xi)i∈I of generic and single-
symbol strings, respectively. Hence, describing the hard instances reduces to
describing these two families of strings.

We start with the index set I, which is all pairs of non-empty subsets of [h],1

I := { (α, β) | ∅ 6= α, β ⊆ [h] } .

and is considered to be totally ordered by the rule

(α′, β′) < (α, β)
def⇐⇒ 〈α′〉〈β′〉 <b 〈α〉〈β〉 ,

where 〈·〉 is the natural h-bit encoding for subsets of [h], and <b stands for the
natural ordering of 2h-bit positive integers. E.g., for h = 5 and α = {0, 1, 4}
we have 〈α〉 = 10011; and if in addition β = {0, 2, 4} and α′ = {0, 2} and
β′ = {0, 2, 3}, then (α′, β′) < (α, β) because the number 〈α′〉〈β′〉 = 00101 01101

is smaller than the number 〈α〉〈β〉 = 10011 10101.
Now, for each (α, β) ∈ I consider the property of having connectivity α×β:

Lα,β := { z ∈ Σ∗ | ξ(z) = α× β } .

We can verify that generic strings over Lα,β exist, as follows. Pick any lr-generic
string ϑl and any rl-generic string ϑr (guaranteed to exist by Lemma 1) and
join them into ϑ := ϑlηϑr with the ‘reset’ symbol η := [h] × [h] of all possible
arrows. Then the connectivity of ϑ is (easily) also α×β. Hence ϑ ∈ Lα,β , which
implies that ϑ is generic over Lα,β (by Lemma 1).

1Here α and β (without subscripts) denote subsets of [h]. These names preserve notational
symmetry, and should cause no confusion with the names (with subscripts) of the two partial
functions in the inner behavior of M .

17

We are now ready to define the strings ϑi and xi, for each i = (α, β) ∈ I.
First, ϑi is any of the (infinitely many) generic strings over Li = Lα,β . Second,
xi := β × α is the (unique) 1-long string consisting of all arrows not in β × α.

Consider all short blocks of the form ϑixjϑi that can be constructed from
these strings. We naturally picture these blocks on a |I|× |I| matrix. Cell (i, j)
of this matrix hosts the block ϑixjϑi along with copies of all objects that are
associated with it in Lemma 6: the sets and functions

Ai := Qlr(ϑi) Bi := Qrl(ϑi) α∗i,j := α∗ϑi,xjϑi
β∗i,j := β∗ϑixj ,ϑi

.

Crucially, the assumptions of Lemma 6 are satisfied in every single cell, whereas
its conclusions follow a very simple pattern on and below the main diagonal
(i.e., when i ≥ j). The next fact proves this observation. Its statement uses

L∅ := {z ∈ Σ∗ | ξ(z) = ∅} = owlh

as an extra name for the dead strings, for symmetry with the Li.

Fact 10. For all i, j ∈ I, the assumptions of Lemma 6 are satisfied by ϑi, xj,
and Li = (Li, L∅). Moreover, if i > j then ϑi and xj select Li; in contrast, if
i = j then ϑi and xj select L∅.

Proof. Let i = (α, β) and j = (α′, β′). We start by checking the assumptions of
Lemma 6. Clearly, M solves Li (since all strings in Li are live and all strings
in L∅ are dead) with r(n) = o(n) (by assumption), and ϑi is generic over Li (by
selection). To show that ϑi and xj respect Li, we take cases.

If ϑixjϑi is dead, then so is every ϑi(xjϑi)
k for k ≥ 1 (since every extension

of a dead string is also dead). Hence, all (xj)
(k) are negative.

If ϑixjϑi is live, then some path a∗ b∗ connects the two outer columns,
for a∗, b∗ ∈ [h] (Fig. 9, left). If b′, a′ are the nodes visited by this path on the two
columns of xj , then the path is of the form a∗ b′→ a′ b∗ and ϑi contains
the two paths a∗ b′ and a′ b∗. Hence (a∗, b′), (a′, b∗) ∈ ξ(ϑi) = α×β, which
implies that b′∈ β and a′∈ α. Now pick any a, b ∈ [h] and consider node a of the
leftmost column and node b of the rightmost column of ϑixjϑi. If (a, b) 6∈ (α, β),
then a 6∈ α or b 6∈ β, hence at least one of the nodes cannot ‘see through’ ϑi,
and thus the nodes do not connect in ϑixjϑi. In contrast, if (a, b) ∈ (α, β),
then a ∈ α and b ∈ β, hence (a, b′), (a′, b) ∈ ξ(ϑi), and thus the nodes connect
via a path of the form a b′→ a′ b. Overall ξ(ϑixjϑi) = α × β, namely
ϑixjϑi ∈ Li. Hence, (xj)

(1) is positive.
Since the above two cases are exhaustive, we conclude that ϑi and xj re-

spect Li. Moreover, we showed that ϑi and xj select Li iff ϑixjϑi is live.
For the second half of the statement, we examine each case separately.
If i > j, then the binary number 〈α〉〈β〉 is strictly greater than the binary

number 〈α′〉〈β′〉. This implies that at least one of the 1’s in 〈α〉〈β〉 corresponds
to a 0 in 〈α′〉〈β′〉. Therefore, at least one of α * α′ or β * β′ is true. Suppose
β * β′ (if α * α′, apply a similar argument). Pick any a∗ ∈ α and b′ ∈ β \ β′
and a′ ∈ α and b∗ ∈ β (Fig. 9, left). Then (a∗, b′) ∈ ξ(ϑi) and (b′, a′) ∈ ξ(xj) and

18

α′ β′ α′β′ xj

α
β

ϑi ϑi

α

xj

b′

ϑi ϑi

a′

β
a∗

b∗

Figure 9: The connectivity of hard blocks below the diagonal (left) and on the diagonal (right).

(a′, b∗) ∈ ξ(ϑi), therefore ϑixjϑi contains the path a∗ b′→ a′ b∗. Hence, it
is live. By our previous conclusion, this implies that ϑi and xj select Li.

If i = j then ξ(ϑi) = α×β and ξ(xj) = β × α (Fig. 9, right). Then ϑixjϑi is
dead, because a path of the form a∗ b′→ a′ b∗ needs to have (a∗, b′) ∈ ξ(ϑi)
and (b′, a′) ∈ ξ(xj) and (a′, b∗) ∈ ξ(ϑi), where the membership in the middle says
(b′, a′) 6∈ β×α and the two others imply b′ ∈ β and a′ ∈ α, which is impossible.
Hence, by our previous conclusion, ϑi and xj select L∅.

5.2. The lower bound

Now consider the following two collections of experiments.
In the first collection, we perform one experiment for every generic string ϑi

and every state r ∈ Q. With ϑi and r fixed, we let xj range over all possibilities
and observe how the sizes of the sets α∗i,j(r) and β∗i,j(r) vary. The result of our
observation is a pair of 1× |I| vectors,

ai,r :=
(
|α∗i,j(r)|

)
j∈I and bi,r :=

(
|β∗i,j(r)|

)
j∈I .

Repeating for every possible ϑi and r, we arrive at the two sets of vectors

A := {ai,r | i ∈ I, r ∈ Q} and B := {bi,r | i ∈ I, r ∈ Q} .

In the second collection, we perform one experiment for every p, q ∈ Q. With
p and q fixed, we again let xj range over all possibilities. This time we observe
the bits δlr(p, xj , q) and δrl(q, xj , p). The result is a pair of 1× |I| vectors,

up,q :=
(
δlr(p, xj , q)

)
j∈I and vq,p :=

(
δrl(q, xj , p)

)
j∈I .

Repeating the same for every p and q, we arrive at the sets of vectors

U := {up,q | p, q ∈ Q} and V := {vq,p | p, q ∈ Q} .

The proof now concludes with two more facts. First, within A ∪ B we can
find ≥ |I| − 1 vectors which are linearly independent (Fact 11a). Second, every
vector in A∪B is a linear combination of the ≤ 2|Q|2 distinct vectors of U ∪ V
(Fact 11b). Hence, the dimension of the span of the vectors of U ∪ V should be
large enough to accomodate all linearly independent vectors of A∪B (see, e.g.,
[13, Prop. 14.1]). Namely,

2|Q|2 ≥ |I| − 1 .

Since |I| = (2h − 1)2, it follows that |Q| = Ω(2h) and the proof is complete.

19

Fact 11a. The set A ∪ B contains |I| − 1 linearly independent vectors.

Proof. Within A ∪ B we will find a family of vectors (ci)i∈I such that

i > j =⇒ ci(j) = 1 and i = j =⇒ ci(j) = 0 , (6)

for all i, j ∈ I. This will be enough. Because then the numbers ci(j) form a
|I| × |I| matrix with 0s on the diagonal and 1s below it, which has rank |I| − 1
(easily), and thus |I| − 1 of the ci must be linearly independent.

To select these vectors, we pick any i ∈ I and argue as follows. First of all,
we know that ϑi and xi select L∅ (Fact 10). Therefore, there exist outcomes r
which are not hit by exactly 1 simple computation (Lemma 6):

r ∈ Ai & |α∗i,i(r)| 6= 1 or r ∈ Bi & |β∗i,i(r)| 6= 1 .

At least one of these r must, in fact, be hit by 0 simple computations—otherwise,
every r ∈ Ai is hit by ≥ 1 value of αi,i, every r ∈ Bi is hit by ≥ 1 value of βi,i,
and at least one of all these r is hit by ≥ 2 values, for a total of ≥ |Ai|+ |Bi|+ 1
values of αi,i and βi,i together, a contradiction. Pick ri to be any of these unhit
outcomes. Then

ri ∈ Ai & |α∗i,i(ri)| = 0 or ri ∈ Bi & |β∗i,i(ri)| = 0 .

Depending on whether we select ri from Ai or Bi, we respectively set

ci := ai,ri or ci := bi,ri

and the selection of our family of vectors is complete.
We now prove that our selection satisfies (6). Let i, j ∈ I. Suppose ci = ai,ri

(if ci = bi,ri , we argue similarly). For the first conjunct, suppose i > j. Then
ϑi and xj select Li (Fact 10). Thus, each r ∈ Ai and r ∈ Bi is hit by exactly 1
simple computation (Lemma 6). In particular, this is true of ri. Hence,

ci(j) = ai,ri(j) = |α∗i,j(ri)| = 1 .

For the second conjunct, suppose i = j. Then, by the selection of ri directly,

ci(j) = ci(i) = ai,ri(i) = |α∗i,i(ri)| = 0 .

Therefore, both conjuncts of (6) are true and the proof is complete.

Fact 11b. Every vector in A∪B is a linear combination of vectors from U ∪V.

Proof. Let i ∈ I and r ∈ Q. For all j ∈ I, the left equality of (4) implies that

ai,r(j) = |α∗i,j(r)| = |α∗ϑi,xjϑi
(r)| =

∑
p∈Ai & lcompq(ϑi)

hits right into r

δlr(p, xj , q) =
∑

p∈Ai & lcompq(ϑi)
hits right into r

up,q(j)

whereas the right equality of (4) supports a similar chain of equations for bi,r(j).
Therefore, ai,r and bi,r are the following linear combinations

ai,r =
∑

p∈Ai & lcompq(ϑi)
hits right into r

up,q and bi,r =
∑

p∈Bi & rcompq(ϑi)
hits left into r

vq,p

of vectors from U and of vectors from V, respectively.

20

6. Weaker than general

Let h ≥ 1. In this section we describe a language that needs O(h2) states
on a general dfa but Ω(2h) states on every dfa with few reversals.

Our witness will be a restriction of owlh to instances of a special form.
The restriction will be strong enough so that the problem becomes easy for
general dfas, but also weak enough so that the problem remains hard for dfas
with few reversals. Once we describe it, it will be straightforward to design a
small general dfa solver, and equally straightforward to turn the argument of
Section 5 into one that is valid even for the restricted language.

This strategy is not new. It was applied in [14] in order to convert the sepa-
ration of small snfas from small sdfas (by [3]) into a separation of small general
dfas from small sdfas. It was also applied in [15, §3.6] in order to convert
the separation of small co-nondeterministic sfas from small snfas (by [12]; also
in [15, §3]) into a separation of small general dfas from small snfas. Our
restriction will be exactly the one used in this second application.

6.1. The witness

To describe the special form of the restricted instances, we need the ‘reset’
symbol η = [h]× [h], from Section 5.1. We also need the restriction Σ′h of Σh to
the 2h ‘parallel’ symbols of the form {(a, a) | a ∈ α} for α ⊆ [h]; for example,
the leftmost symbol in Fig. 1a is in Σ′5, for α = {1, 2, 3, 4}. Now, we restrict
owlh to strings of the form (Fig. 10):

segmentsh := Σ′h
(
ηΣ′hΣhΣ

′
h

)∗
ηΣ′h .

Namely, every string must start and end with a parallel symbol and, in between,
it must consist of one or more resets separated by 3-symbol segments, each of
which consists of an unrestricted symbol between two parallel ones. Clearly,
every such string is live iff the first and last symbols are non-empty and all
segments are live. Intuitively, the copies of η ‘segment’ the task into 3-symbol
pieces by resetting liveness every four symbols. We use the name

segmentedowlh := segmentsh ∩ owlh

for the problem of checking liveness on such strings.

Figure 10: A string in segments5, where four resets delimit three segments.

21

6.2. The argument

Given the last observation, a small dfa algorithm for segmentedowlh is
obvious: we just check that the input is of the correct form, that the first and
last symbols are non-empty, and that every segment is live. For the first two
checks, O(1) states are enough. For the last check, we may iterate a O(h2)-
state depth-first search. Overall, a general dfa can solve segmentedowlh
with O(h2) states. Not surprisingly, this algorithm performs Θ(n) reversals.

In contrast, dfas with o(n) reversals still need Ω(2h) states to solve the
problem. To prove this, we repeat the argument of Section 5, this time being
careful to select all hard instances from within segmentsh.

Specifically, for each i = (α, β) ∈ I, we replace property Li with the subset

L′i := segmentsh ∩ Li

of strings which have (not only the correct connectivity α × β, but also) the
correct form. Easily, these are the strings in segmentsh where all segments are
live and the parallel first and last symbols are induced respectively by α and β.

Much like Li, the restricted property L′i also admits generic strings. First,
Lemma 1 guarantees two strings ϑ′l and ϑ′r which are lr-generic and rl-generic
over L′i. From them, we get ϑ′ := ϑ′lηϑ

′
r. This is also in L′i, because it inherits

from ϑ′l and ϑ′r the correct first symbol, the correct last symbol, and a number of
segments which are all live, plus a brand-new segment ‘in the middle’ (formed by
the non-empty last symbol of ϑ′l, the joining η, and the non-empty first symbol
of ϑ′r) which is clearly live as well. Thus ϑ′ is generic over L′i (by Lemma 1).

Finally, Fact 10 remains valid if we replace every Li with L′i and every ϑi
with a ϑ′i generic over L′i. This follows from the observation that, because all
blocks ϑ′ixjϑ

′
i are in segmentsh, the validity of the argument depends only on

the connectivities of the strings appearing in it, and these have not changed.
The rest of the proof remains the same.

7. Stronger than sweeping

Let h ≥ 1. In this section we describe a language that needs O(h) states on
a dfa with 2 reversals but 2Ω(h) states on every sdfa.

For our lower bound, we use the “hardness propagation” framework of [16].
The main idea there was that, in some cases, if a problem L needs ‘many’ states
on automata of a certain type X, then by transforming it appropriately we
can construct a harder problem L′ which needs ‘many’ states on automata of a
more powerful type X ′. Thus, hardness ‘propagates’ upwards from L versus X
to L′ versus X ′. Several lemmata of this form were proven in [16]. Applying
them in succession, one could easily transform, e.g., a problem which is hard
for dfas into a problem which is hard for sdfas.

We do the same here. We start with a problem J which is easily seen
to require ≥ 2h states on dfas, and transform it into a problem J′ which
requires 2Ω(h) states on sdfas. Before this, we need to recall some of the problem
transformations introduced in [16], along with one of the hardness propagation

22

lemmata. We then define a new transformation and prove a new hardness
propagation lemma for it. Finally, we use the old and new transformations and
lemmata to define our witness and establish the separation.

7.1. Hardness propagation

Let L = (L, L̃) be a problem. The complement and the reverse of L are

¬L = (L̃, L) and LR = (LR, L̃R) .

For # any fresh symbol, the conjunctive star of L is the problem of checking
whether a #-delimited string of instances of L contains only positive instances,
whereas the disjunctive star asks whether a positive instance exists:∧

L :=
(
{#x1# · · · #xl# | (∀i)(xi ∈ L)}, {#x1# · · · #xl# | (∃i)(xi ∈ L̃)}

)∨
L :=

(
{#x1# · · · #xl# | (∃i)(xi ∈ L)}, {#x1# · · · #xl# | (∀i)(xi ∈ L̃)}

)
,

where the form #x1# · · · #xl# assumes l ≥ 0 and every xi ∈ L∪ L̃. The equalities

¬
(∧

L
)

=
∨
¬L

¬
(∨

L
)

=
∧
¬L

¬
(
LR
)

=
(
¬L
)R (∧

L
)R

=
∧
LR(∨

L
)R

=
∨
LR .

are easy to verify, directly from these definitions.
We will use the following hardness propagation lemma [16, Lemma 5]:

Lemma 7. If no m-state dfa solves L, then no ∩ldfa with m-state compo-
nents solves

∨
L.

Here, ‘∩ldfa’ stands for ‘left-sided parallel intersection automaton’. In general,
a parallel intersection automaton is a pair M = (A,B) of disjoint families of
dfas. To run M on an input z means to run each component dfa D ∈ A∪B
on z separately and record the result, but with a twist: every D ∈ A reads z
from left to right (as usual), whereas every D ∈ B reads z from right to left (i.e.,
it reads zR). Moreover, each D may hang within z. We say that M accepts z
if all components accept. If A = ∅ or B = ∅, then M is respectively right-
sided (a ∩rdfa) or left-sided (a ∩ldfa). If the definition is modified so that
M accepts if some component accepts, then M is a parallel union automaton,
which again can be right-sided (a ∪rdfa) or left-sided (a ∪ldfa). We will need
the following easy observations.

Fact 12. If a ∪rdfa with m-state components solves L, then a ∪ldfa with
m-state components solves LR. If a ∪ldfa with m-state components solves L,
then a ∩ldfa with (m+ 1)-state components solves ¬L.

Proof. For the first statement, just swap the two dfa families. For the sec-
ond statement, just add a rejecting sink state to each component (to rule out
rejections by hanging) and then complement the sets of accepting states.

23

Finally, we also recall the following ‘core’ problem, defined over the alphabet
[h] ∪ P([h]) of numbers and sets of numbers in [h]:

J = set numh :=
(
{αi | α ⊆ [h] & i ∈ α}, {αi | α ⊆ [h] & i ∈ α}

)
, (7)

where we are given a set α and a number i (in this order), and we must check
that i ∈ α. It is easy to prove that J requires ≥ 2h states on every dfa, whereas
its reversal JR (where the number is given before the set) requires ≤ h.

This concludes our summary of facts from [16]. We now add to these a new
problem transformation, along with a new hardness propagation lemma for it.

7.2. Ordered star

Let L1 = (L1, L̃1) and L2 = (L2, L̃2) be two problems of disjoint promises.
We define a new problem, where the input is promised to be a string #x1# · · · #xl#
of #-delimited instances of L1 and L2. Of course, each xi may be positive or
negative in the respective problem. We are also promised that, although nega-
tive instances may mingle freely, positive instances do not: one of the problems
places all its positive instances before all positive instances of the other problem.
Note that this extra promise is vacuously true whenever one of the problems
contributes no positive instances at all. Now, under these promises, our task
depends on whether both problems contribute positive instances: if so, we must
check that the one which places its positive instances first is L1; if not, we must
check that neither problem contributes any positive instance. In summary:

Given a string #x1# · · · #xl# of #-delimited instances of L1 and L2

where all positive instances of one of the problems appear before
all positive instances of the other, check that either both problems
contribute positive instances and the one that places them first is L1

or neither problem contributes any positive instance.

We call this problem the ordered star of L1 and L2 and denote it by L1 < L2.
The intuition behind this definition is that, under certain assumptions,

L1 < L2 is easy for a dfa with just 2 reversals but hard for a sdfa. Specifically,
suppose that checking L1 is hard during forward scans but easy during back-
ward ones, whereas checking L2 is easy during forward scans but hard during
backward ones. Then, a small dfa may just scan forwards until it recognizes
a positive instance of L2, then turn backwards until it recognizes a positive
instance of L1, then turn forwards again to accept off a. In contrast, a small
sdfa is in a tough place: although it can, too, recognize the positive instances
of each problem when scanning in the appropriate direction, it cannot compare
their positions, since it is forced to keep moving until the next endmarker and,
upon reaching it, has no accurate memory of these positions any more.

Following is a hardness propagation lemma for the ordered star. Intuitively,
it says that, if L1 requires ‘many’ states during forward scans and L2 requires
‘many’ states during backward scans, then L1 < L2 requires ‘many’ states during
multiple scans in both directions.

24

Lemma 8. If no ∪ldfa with
(
m
2

)
-state components solves L1 and no ∪rdfa

with
(
m
2

)
-state components solves L2, then no m-state sdfa solves L1 < L2.

Proof. For the contrapositive, suppose some m-state sdfa M solves L1 < L2.
Among all strings of #-delimited instances of L1 and L2, focus on those where
neither problem contributes positive instances and those where exactly one of
them does:

L := {#x1# · · · #xl# | (∀i)(xi ∈ L̃1 ∪ L̃2) }
L̃ := {#x1# · · · #xl# | (∃i)(xi ∈ L1 ∪ L2) & ¬(∃i)(∃j)(xi ∈ L1 & xj ∈ L2) }

where #x1# · · · #xl# means l ≥ 0 and every xi ∈ L1 ∪ L̃1 ∪ L2 ∪ L̃2. Since M
solves L1 < L2, we know that M solves L = (L, L̃).

Now, let ϑ be any generic string for M over L. As usual, let A := Qlr(ϑ)
and B := Qrl(ϑ) be the two sets of outcomes of ϑ and, for any instance x of L1

or L2, let (αx, βx) := (αϑ,xϑ, βϑx,ϑ) be the inner behavior of M on the block ϑxϑ.
Using Fact 8, we can get a criterion for checking whether x is positive.

Claim 1. An instance x of L1 or L2 is positive iff (αx, βx) do not permute (A,B).

Proof. If x is positive, then clearly ϑxϑ ∈ L̃. The same holds for every ϑx(k)ϑ =
ϑ(xϑ)k with k ≥ 1, since the only positive instances are the copies of x and they
all come from the same problem. Thus, every infix x(k) is negative relative to L
(cf. Section 4.3). Hence, (αx, βx) do not permute (A,B), by Fact 8.

If x is negative, then clearly ϑxϑ ∈ L. Thus, the infix x(1) = x is positive
relative to L. Hence, (αx, βx) permute (A,B), by Fact 8 again. �

For positive instances, the above criterion is somewhat weak. It says that at
least one of αx and βx is not permutative, without saying which. It turns out
that a stronger criterion is possible for at least one of L1 or L2, exactly because
M can tell the relative placement of their positive instances. Intuitively, a non-
permutative αx means that forward scans by M can ‘sense’ that x is positive,
whereas a non-permutative βx means the same for backward scans by M .

Claim 2. At least one of the following statements is true:
• for every positive instance x of L1: αx does not permute A,
• for every positive instance x of L2: βx does not permute B.

Proof. Suppose neither statement is true. Then there exist x ∈ L1 and y ∈ L2

such that αx permutes A and βy permutes B. Pick k ≥ 1 so that the two
permutations become identities after k iterations:

(αx)k = idA and (βy)k = idB .

Then αx(k) ≥ (αx)k = idA and βy(k) ≥ (βy)k = idB (Fact 6), and therefore

αx(k) = idA and βy(k) = idB ,

since idA and idB are total.

25

Intuitively, this means that forward scans cannot distinguish between ϑ and
ϑx(k)ϑ, whereas backward scans cannot distinguish betweeen ϑ and ϑy(k)ϑ.
Hence, M should be unable to distinguish between the two blocks

ϑx(k)ϑy(k)ϑ and ϑy(k)ϑx(k)ϑ , (8)

because they should both look like ϑy(k)ϑ during forward scans and like ϑx(k)ϑ
during backward scans. If this intuition is correct, then M decides identically
on a positive and a negative instance of L1 < L2—the desired contradiction.

Indeed, if we calculate the forward part of the inner behavior of M on each
of the two blocks in question, we find (using Fact 5 in the first step):

αx(k)ϑy(k) ≥ αx(k) ◦ αy(k) = idA ◦ αy(k) = αy(k)

αy(k)ϑx(k) ≥ αy(k) ◦ αx(k) = αy(k) ◦ idA = αy(k) .

Since M is sweeping, all its inner behaviors consist of total functions. Hence,
αy(k) is total, causing αx(k)ϑy(k) = αy(k) = αy(k)ϑx(k) . By this and a symmetric
argument for the backward parts, we eventually conclude that

(αx(k)ϑy(k) , βx(k)ϑy(k)) = (αy(k) , βx(k)) = (αy(k)ϑx(k) , βy(k)ϑx(k))

in accordance with our intuition above. It follows that M behaves identically
on the two blocks of (8), by a straightforward argument that compares the
decompositions of the computations on them relative to their infixes (as in the
proof of Lemma 3). �

Now, if the first statement of Claim 2 is true, we can combine it with Claim 1
to arrive at the following criterion for L1:

an instance x of L1 is positive iff αx does not permute A. (9)

This leads us to a small-component ∪ldfa for L1, as shown in the following.

Claim 3. Some ∪ldfa solves L1 with
(
m
2

)
-state components.

Proof. Let x ∈ L1 ∪ L̃1. Since M is sweeping, we know αx : A ⇀ Q is total.
Hence, it can fail to be a permutation in two ways:(7) by not keeping all its
values inside A or by not being injective. Therefore, a restatement of (9) is that

x ∈ L1 ⇐⇒ (∃p ∈ A)
(
αx(p) 6∈ A

)
∨ (∃p1, p2 ∈ A)

(
p1 6= p2 & αx(p1) = αx(p2)

)
. (10)

The condition αx(p) 6∈ A is equivalent to saying that lcompp(xϑ) hits right
into a state outside A. In turn, because this latter computation is simple (even
simpler than in Fig. 8a, since M is sweeping), this can be restated as

lcompp(x) hits right into a state q such that

lcompq(ϑ) hits right into a state outside A . (11)

26

Similarly, the condition αx(p1) = αx(p2) is equivalent to saying that

lcompp1(x) and lcompp2(x) hit right into states q1 and q2 such that

lcompq1(ϑ) and lcompq2(ϑ) hit right into the same state. (12)

Overall, (10)-(12) describe a way to test x ∈ L1 by simulating M only on x.
Specifically, for any p1, p2 ∈ A we build a dfa Mp1,p2 which checks (12)

for p1, p2 and also (11) for p1 and for p2. On input x, the machine performs a
synchronized simulation of both lcompp1(x) and lcompp2(x). If at any point
the two computations are about to enter the same state, the machine hangs.
If the right endmarker is ever reached, the machine knows the two states q1

and q2 produced, and thus also the states r1 and r2 produced by lcompq1(ϑ)
and lcompq2(ϑ). Hence, it accepts iff r1 6∈ A or r2 6∈ A or r1 = r2. Note that
this final test is symmetric in r1 and r2. Hence, throughout the simulation, the
current states of the two computations may be recorded as an unordered pair.
Therefore, Mp1,p2 does not need more than

(
m
2

)
states.

Now consider the ∪ldfa whose
(
m
2

)
components are the dfas Mp1,p2 , where

p1, p2 range over all unordered pairs of states of M . This ∪ldfa solves L1. �

Symmetrically, if the second statement of Claim 2 is true, then we get a
small-component ∪rdfa for L2, and the proof of Lemma 8 is complete.

7.3. The separation

We are now ready to define the problem separating small 2-reversal dfas
from small sdfas. It is constructed from the core problem J of (7) by applying
the problem transformations introduced in the last two sections:

J′ :=
(∧

J
)
<
(∧

JR
)

(13)

To decode this, note that every instance of
∧
J is of the form #α1i1# · · · #αlil#

where the α are sets, the i are numbers, and the question is whether every set
contains the adjacent number. The instances of

∧
JR ask the same question, but

have the form #i1α1# · · · #ilαl#, with numbers before sets. Consequently, the
instances of J′ have the form *x1* · · · *xl* (note the fresh delimiter *) where
every x is a list of either set-number pairs or number-set pairs. A list of either
kind is positive if every set in it contains its adjacent number. The promise is
that all positive lists of one kind appear before all positive lists of the other
kind. The question is whether no list is positive or positive lists of both kinds
exist and the number-set ones appear first.

To solve J′ on a small 2-reversal dfa, we work as follows. First, we let M0

be the h-state dfa which solves JR. Then we construct a O(h)-state dfa M1

which solves
∧
JR by performing successive simulations of M0 and checking if all

accept. Finally, we use M1 as a subroutine in the following algorithm.
1. We scan forwards, ignoring instances of

∧
J and simulating M1 on in-

stances of
∧
JR. If a positive instance is found, we raise a flag b = 1 and

go to 2; otherwise, we eventually reach a and go to 2 with b = 0.

27

2. We scan backwards, ignoring instances of
∧
JR and simulating M1 on (the

reverses of) instances of
∧
J. If a positive instance is found, we raise a flag

a = 1 and go to 3; otherwise, we eventually reach ` and go to 3 with a = 0.
3. We scan forwards until a, where we accept iff a = b.

Clearly, the algorithm performs exactly 2 reversals on every instance of J ′,
and its three stages require respectively O(h) + O(h) + O(1) = O(h) states.
Concerning correctness, we take cases with respect to the values of the flags.

If a=0 & b=0, then each of stages 1 and 2 scanned the entire input and found
no positive instance of

∧
JR and of

∧
J, respectively. Hence, neither problem

constributed positively. Therefore, the input is positive.
If a=1 & b=1, then stages 1 and 2 found two positive instances, one of

∧
JR

and one of
∧
J, with the former to the right of the latter. So (by the promise),

all positive instances of
∧
JR appear after those of

∧
J. So, the input is positive.

If a=1 & b=0, then stage 1 scanned the entire input and found no positive
instance of

∧
JR, whereas stage 2 found a positive instance of

∧
J. Hence, only∧

J contributed positively. So, the input is negative.
If a=0 & b=1, then stage 1 found a positive instance of

∧
JR and, to the left

of it, stage 2 found no positive instances of
∧
J. Thus, either

∧
J contributes no

positive instances, hence only
∧
JR does, or

∧
J contributes positive instances

only after the first positive instance of
∧
JR, hence (by the promise) all its positive

instances appear after those of
∧
JR. Either way, the input is negative.

Overall, the input instance is positive iff a = b, and the algorithm is correct.
To prove that J′ is hard for sdfas, we work as follows. First, we recall that

no dfa solves J with < 2h states. So, the same holds for ¬J, since dfas can
always be complemented without increasing the number of states. Therefore,
no ∩ldfa solves

∨
¬J with components of < 2h states (by Lemma 7). Therefore,

no ∪ldfa solves
∧
J with components of < 2h − 1 states (14)

by the second statement of Fact 12 applied on ¬
∧
J =

∨
¬J. Therefore,

no ∪rdfa solves
∧
JR with components of < 2h − 1 states (15)

by the first statement of Fact 12 applied on (
∧
J)R =

∧
JR. Therefore,

every sdfa solving J′ needs 2Ω(h) states,

by (14), (15), and Lemma 8 applied on (
∧
J) < (

∧
JR) = J′.

8. Conclusion

We confirmed the Sakoda-Sipser conjecture in the special case of two-way fi-
nite automata which perform sublinearly many reversals, by proving that dfas
of this kind must be exponentially large to solve one-wayliveness. We also
showed that our theorem does not resolve the full conjecture, because in some
cases raising the number of reversals of a dfa from sublinear to linear results
in exponential savings in size. Finally, we proved that exponential savings in

28

size are possible even when we raise the number of within-the-input reversals
from zero to the smallest possible non-zero number.

All our witnesses were defined over alphabets of exponential size. However,
up to polynomial differences, our conclusions remain valid even over the binary
alphabet. For example, the binary version of owlh where each symbol of Σh
is encoded into a h2-bit string in the natural way, still needs Ω(2h) states on
every dfa with few reversals (by the same proof, as all reasoning is on cell
boundaries) but only O(h2) states on a nfa with zero reversals. Therefore, the
title of this article remains valid even if we change the interpretation of ‘small
fa’ from ‘fa with few states’ to ‘fa with short description’.

Theorem 1 says that every dfa for owlh satisfies

rM (n) 6= o(n) ∨ |Q| = Ω(2h) .

It would be interesting to see a proof of the following stronger condition

rM (n) = Ω(n) ∨ |Q| ≥ 2h .

Another direction for further work is to continue with Research Problem 4
of [11], analyzing the trade-off between size and number of reversals of a dfa.

In the broader horizon, two complementary directions are suggested.
The first points, of course, towards the full Sakoda-Sipser conjecture. This is

perhaps even more inviting now, after the recent tightening of the connections to
L vNL [10]. Specifically, resolving the conjecture can now be seen as a first step,
hopefully more tractable than others, towards the conjectures NLL * LL/polylog
and NL * L/poly (in this order), where the classes NL and L/poly correspond (as
usual) to O(log n) space and poly(n) advice bits, whereas NLL and LL/polylog
are their counterparts for space O(log log n) and advice of length poly(log n).

The second direction points towards the full Sakoda-Sipser analogy. This
refers to the analogy drawn in [2] between the time complexity of Turing ma-
chines and the size complexity of fas. In the same way that the P vNP theory
was the first step towards the complexity theory that has been built on Turing
machines and time, the 2D v 2N theory of [2] can be seen as the first step towards
a complexity theory that can be built on fas and size [17]. Developing this
theory appears to be a valuable long-term goal.

References

[1] J. I. Seiferas, Untitled manuscript, communicated to M. Sipser (Oct. 1973).

[2] W. J. Sakoda, M. Sipser, Nondeterminism and the size of two-way finite
automata, in: Proceedings of the Symposium on the Theory of Computing,
1978, pp. 275–286.

[3] M. Sipser, Lower bounds on the size of sweeping automata, Journal of
Computer and System Sciences 21 (2) (1980) 195–202.

29

[4] H. Leung, Tight lower bounds on the size of sweeping automata, Journal
of Computer and System Sciences 63 (3) (2001) 384–393.

[5] J. Hromkovič, G. Schnitger, Nondeterminism versus determinism for two-
way finite automata: generalizations of Sipser’s separation, in: Proceedings
of the International Colloquium on Automata, Languages, and Program-
ming, 2003, pp. 439–451.

[6] C. Kapoutsis, Deterministic moles cannot solve liveness, Journal of Au-
tomata, Languages and Combinatorics 12 (1-2) (2007) 215–235.

[7] V. Geffert, C. Mereghetti, G. Pighizzini, Converting two-way nondetermin-
istic unary automata into simpler automata, Theoretical Computer Science
295 (2003) 189–203.

[8] P. Berman, A. Lingas, On complexity of regular languages in terms of finite
automata, Report 304, Institute of Computer Science, Polish Academy of
Sciences, Warsaw (1977).

[9] V. Geffert, G. Pighizzini, Two-way unary automata versus logarithmic
space, Information and Computation 209 (7) (2011) 1016–1025.

[10] C. Kapoutsis, Two-way automata versus logarithmic space, in: Proceedings
of the International Computer Science Symposium in Russia, 2011, pp.
197–208.

[11] J. Hromkovič, Descriptional complexity of finite automata: concepts and
open problems, Journal of Automata, Languages and Combinatorics 7 (4)
(2002) 519–531.

[12] C. Kapoutsis, Small sweeping 2NFAs are not closed under complement, in:
Proceedings of the International Colloquium on Automata, Languages, and
Programming, 2006, pp. 144–156.

[13] S. Jukna, Extremal Combinatorics, Springer-Verlag, 2001.

[14] S. Micali, Two-way deterministic finite automata are exponentially more
succinct than sweeping automata, Information Processing Letters 12 (2)
(1981) 103–105.

[15] C. Kapoutsis, Algorithms and lower bounds in finite automata size com-
plexity, PhD Thesis, Massachusetts Institute of Technology (Jun. 2006).

[16] C. Kapoutsis, R. Královič, T. Mömke, On the size complexity of rotating
and sweeping automata, in: Proceedings of the International Conference
on Developments in Language Theory, 2008, pp. 455–466.

[17] C. Kapoutsis, Size complexity of two-way finite automata, in: Proceed-
ings of the International Conference on Developments in Language Theory,
2009, pp. 47–66.

30

Notes

(1)Note the difference between (1) and the respective definition of [6, §3.2]:
There, Qlr(y) is the states produced by all possible lr-traversals. Here, Qlr(y)
is only those produced by lr-traversals that are segments of full computations.

(2)Note the difference between the inclusion Qlr(yz) ⊆ αy,z[Qlr(y)] and Fact 3
of [6]: There, we know (easily) that all values of αy,z are inside Qlr(yz) (and
cover it), so we call αy,z a ‘surjection onto Qlr(yz)’. Here, some values of αy,z
may fall outside Qlr(yz), so we cannot call αy,z a ‘surjection onto Qlr(yz)’ —
we cannot even call it a ‘function to Qlr(yz)’. We only know that its values
cover Qlr(yz) —they may also cover parts of Q \Qlr(yz).

(3)Note a difference from [6, Lemma 3]: There, we required that L is infinitely
extensible to the right/left. This is redundant. If L is not infinitely extensible to
the right, then lr-generic strings still exist: every y ∈ L with no right-extensions
in L is (vacuously) lr-generic. Similarly in the other direction.

(4)Here the conclusion is the same as [6, Lemma 5], but the reasoning differs. In
both cases, we show that the partial map αy,z : Qlr(y) ⇀ Q is really a bijection
to Qlr(yz); namely, that it is (i) total, (ii) injective, (iii) covers Qlr(yz), and
(iv) stays inside Qlr(yz). In [6], Fact 3 shows (iii) and (iv), and genericity
implies the rest. Here, Fact 4a shows only (iii), and genericity implies the rest.

(5)Our blocks are the same as those of [3]. Note that the traps of [6] are blocks,
too, but their infixes must always preserve the property L of the generic string.

The intentions of [6] and [3] differ. In [6], we want to force the machine into
permutative inner behavior, so as to then prove that it gets lost in the maze.
Instead, in [3] (and here) we want to study how the machine changes behav-
ior between infixes that preserve and infixes that purturb the generic string’s
property, so as to then prove that these changes require many states.

(6)Note the difference from [6, Fact 7]: There, we know that all infixes involved
(x, y, and z) preserve L, thus all functions (αx, αy, and αz) are total, and we
just need to make sure that their values match. Here, any of the infixes may not
preserve L. So, we can only guarantee that αz(p) is defined when both αx(p) and
αy(αx(p)) are —and that then its value is as expected. Note that the converse is
not necessarily true: if αz(p) is defined, namely cz := compp,|ϑ|+1(ϑxϑyϑ) hits
right into some state r, then cz certainly crosses the ϑxϑ-yϑ boundary, the first
time into some state q, and thus αx(p) is also defined and equals q; however,
the suffix of cz after this first crossing may very well revisit the prefix ϑx, in
which case αy(αx(p)) = αy(q) will be undefined.

(7)Note a difference between this construction and the one in the proof of [16,
Lemma 8]. There, αx (is denoted by lmap(ϑ, xϑ), and) is easily known to keep
all its values inside A. As a result, the dfa components in that construc-
tion need to test only one of the two conditions that the components in our
construction will test.

31

