
Reversal Hierarchies for Small 2DFAs

Christos A. Kapoutsis1,? and Giovanni Pighizzini2

1 LIAFA, Université Paris VII, France
2 DI, Università degli Studi di Milano, Italia

Abstract. A two-way deterministic finite automaton with r(n) reversals
performs ≤ r(n) input head reversals on every n-long input. Let 2D[r(n)]
be all families of problems solvable by such automata of size polynomial
in the index of the family. Then the reversal hierarchy 2D[0] ⊆ 2D[1] ⊆
2D[2] ⊆ · · · is strict, but 2D[O(1)] = 2D[o(n)]. Moreover, the inner-
reversal hierarchy 2D(0) ⊆ 2D(1) ⊆ 2D(2) ⊆ · · · , where now the bound
is only for reversals strictly between the input end-markers, is also strict.

1 Introduction

A long-standing open question of the Theory of Computation is whether every
two-way nondeterministic finite automaton (nfa) is equivalent to a determin-
istic one (dfa) with only polynomially more states; or, in other terms, whether
2D = 2N, where 2D and 2N are the classes of (families of) problems which are
solvable by ‘small’ (i.e., polynomial-size) dfas and nfas, respectively [8].

In 2002, J. Hromkovič suggested approaching this question by its variants for
dfas with restricted number of input-head reversals [3]. Specifically, let a ‘dfa
with r(n) reversals’ be one which performs≤ r(n) reversals on every n-long input.
Next, for any class R of natural functions, let 2D[R] be the restriction of 2D to
problems that are solvable by small dfas with r(n) reversals, for some r ∈ R.
Then, the following obvious inclusions hold, where 0, 1, . . . are singletons for the
individual constant functions, and const is all these functions together:

2D[0]⊆
(a)

2D[1] ⊆
(b)

2D[2]⊆ · · · ⊆ 2D[r]⊆ · · ·
⊆ 2D[const]⊆ 2D[O(1)]⊆ 2D[o(n)]

(c)

⊆ 2D[O(n)]
(d)

⊆ 2D .
(1)

Hromkovič suggested resolving all these inclusions, as well as every relationship
between a class and its counterpart for nfas [3, Research Problems 2–4].

Some answers are known: (a), (b), (c) are strict, by [7, Prop. 1], [1, Th. 2.2],
and [4, Th. 3]; (d) is equality, as small dfas have small halting equivalents [9,2],
which reverse O(n) times [4, Fact 3]; and every class up to 2D[o(n)] is strictly
inside its counterpart for nfas, as the witness to [4, Th. 1] admits small nfas
even with 0 reversals. Here, we resolve most of the remaining inclusions in (1).

We start in Sect. 3, with a crossing-sequence argument which proves that a
dfa cannot reverse o(n) times unless it already reverses O(1) times (and thus
the lower bound of [4, Th. 1] is really a bound for dfas with O(1) reversals).

? Supported by a Marie Curie Intra-European Fellowship (pief-ga-2009-253368) within
the European Union Seventh Framework Programme (fp7/2007-2013).



Theorem 1. Every dfa with o(n) reversals is a dfa with O(1) reversals.

We continue in Sect. 4, with a uniform argument for all r ≥ 1, which proves that
small dfas with r reversals are strictly more powerful than small dfas with
<r reversals. Crucially, our argument makes black-box use of [4, Th. 2].

Theorem 2. Let r ≥ 1. For each h ≥ 1, some problem requires 2Ω(h/r) states on
every dfa with <r reversals, but only O(r+h) states on a dfa with r reversals.

Hence, with Theorems 1 and 2 counted in, the chain of (1) is updated as follows:

2D[0]
∗
(
[7]

2D[1]
∗
(
[1]

2D[2]
∗
( · · ·

∗
( 2D[r]

∗
( · · ·

(
∗
2D[const] =

?
2D[O(1)] =

∗
2D[o(n)]

[4]

( 2D[O(n)]
[9,2]

= 2D ,
(2)

where ‘∗’ marks our contributions, and ‘?’ marks the only remaining unresolved
inclusion —we conjecture that the seemingly obvious equality is indeed true.

Finally, in Sect. 5 we show that Theorem 2 remains valid even when we bound
only the inner reversals, which occur strictly between the two input end-markers
(as opposed to outer reversals, which occur on the end-markers). Crucially, our
proof builds on a stronger variant of the argument behind [4, Th. 2].

Theorem 3. Let r ≥ 1. For each h ≥ 1, some problem requires Ω(2h/2) states on
every dfa with <r inner reversals, but only O(h) states on a dfa with r inner
reversals (and 0 outer reversals, if r is even; or 1 outer reversal, if r is odd).

Thus, an additional inner-reversal hierarchy 2D(0)( 2D(1)( · · · ( 2D(const) is
established, where now 2D(R) restricts 2D to problems solvable by small dfas
with r(n) inner reversals, for some r ∈ R. (Clearly, 2D[R] ⊆ 2D(R) for all R;
moreover, from const upwards this inclusion is easily seen to be an equality.)

2 Preparation

If h ≥ 0, then [h] := {0, . . . , h−1}. If S is a set, then |S|, S, P(S), S⊥ are its size,
complement, powerset, and augmentation S ∪ {⊥}. If f, g are partial functions,
then the composition (f ◦g)(a) is defined iff both f(a) and g(f(a)) are, and then
equals g(f(a)); the k-fold composition of f with itself is denoted by fk.

Let Σ be an alphabet. If z ∈ Σ∗ is a string, we write |z|, zj , zj , and zR for
its length, j-th symbol (1 ≤ j ≤ |z|), j-fold concatenation with itself (j ≥ 0),
and reverse; its j-th boundary (1 ≤ j ≤ |z|+1) is the left boundary of zj , or the
right one if j = |z|+1. If Z ⊆ Σ∗, then ZR := {zR | z ∈ Z}.

A (promise) problem over Σ is a pair L = (L, L̃) of disjoint subsets of Σ∗.
Every w in the promise L ∪ L̃ is an instance of L: positive if w ∈ L, or negative
if w ∈ L̃. To solve L is to accept every w ∈ L but no w ∈ L̃.

2.1 Two-Way Automata

A two-way deterministic finite automaton (dfa) is any M = (Q,Σ, δ, qs, qa, qr),
where Q is a set of states, Σ is an alphabet, qs, qa, qr ∈ Q are the start, accept,



and reject states, and δ : Q× (Σ ∪ {`,a})→ Q× {l,r} is the (total) transition
function, using two end-markers `,a /∈ Σ and the two directions l,r. An input
w ∈ Σ∗ is presented to M between the end-markers, as `wa. The computation
starts at qs and on `. At each step, the next state and head motion are derived
from δ and the current state and symbol. End-markers may be violated only if
the next state is qa or qr: δ(· ,`) is always (qa,l), (qr,l), or (· ,r); and δ(· ,a) is
always (qa,r), (qr,r), or (· ,l). So, the computation loops, or falls off `wa into qr,
or falls off `wa into qa. In this last case, we say M accepts w.

Formally, the computation of M from state p and the j-th symbol of string z,
denoted compM,p,j(z), is the longest sequence c = ((qt, jt))0≤t<m such that
0 < m ≤ ∞, (q0, j0) = (p, j), and every next (qt, jt) follows from the previous
one via δ and z in the usual way (Fig. 1a). We call (qt, jt) the t-th point of c. If
m = ∞ then c loops; otherwise it halts, and hits left (if jm−1 = 0) or hits right
(if jm−1 = |z|+1) into qm−1. The computation lcompM,p(z) := compM,p,1(z)
is the l-computation of M from p on z; depending on whether it loops, hits
left, or hits right, we call it a l-loop, l-turn, or lr-traversal. Symmetrically, the
r-computation of M from p on z, rcompM,p(z) := compM,p,|z|(z), is a r-loop,
r-turn, or rl-traversal. The (full) computation of M on w ∈ Σ∗ is compM (w) :=
lcompM,qs(`wa). So, M accepts w iff compM (w) falls off `wa into qa.

The j-th crossing sequence of a computation c on a string z is the sequence
q1, q2, . . . where qi is the state immediately after c crosses the j-th boundary of z
for the i-th time. Easily, if c halts, then every crossing sequence contains ≤ 2|Q|
states, and thus ≤ (|Q|+1)2|Q| of these sequences are distinct.

A reversal of c is a point ( . , jt) whose predecessor and successor exist and lie
on the same side relative to it: t 6= 0,m−1, and jt−1, jt+1<jt or jt<jt−1, jt+1

(Fig. 1a). If c is full, a reversal is either an outer reversal, if it lies on ` or a,
or an inner reversal, otherwise. We write r(c) for the total number of reversals
in c. Clearly 0 ≤ r(c) ≤ ∞, with r(c) = ∞ iff c loops. We write rM (n) for
the maximum r(c) over all full computations c of M on n-long inputs. Easily, if
finite, rM (n) is at most linear: rM (n) =∞ or rM (n) ≤ |Q|·(n+2), for all n.

We say M is a dfa with r(n) reversals if rM (n) ≤ r(n) for all n; or a dfa
with r(n) inner reversals if every full computation on an n-long input performs
≤ r(n) inner reversals. If M is a dfa with 0 inner reversals, we call it sweeping

pt

q1p1
q2p2

p3 q3

j0 j2jm−1

# #

x

...
qt

(a) (b)

q0 q2

qm−1

c

Fig. 1. (a) A left-hitting computation c with m = 15 and r(c) = 5 reversals, at points
2, 6, 8, 11, and 12. (b) A certificate for x (for the case of odd t).



(sdfa). If it is a dfa with 0 reversals and may also hang (i.e., δ is a partial
function), we call it one-way (dfa); then, the state qi for which δ(qs,`) = (qi,r)
is called initial, every state q with δ(q,a) = (qa,r) is called final, and M accepts w
iff lcompM,qi(w) hits right into a final state.

2.2 Parallel Automata

A (two-sided) parallel automaton (p2dfa) [10] is any triple M = (A,B, F ) where
A,B are disjoint families of dfas over an alphabet Σ, and F is a subset of the
cartesian product of all sets QD

⊥, for D ∈ A ∪ B and QD the state set of D. To
run M on input w ∈ Σ∗ means to run each D on w (without end-markers) from
its initial state and record the result (the state in which D falls off w, or ⊥ if it
hangs), but with a twist: each D ∈ A reads w from left to right (as usual), while
each D ∈ B reads w from right to left (i.e., it reads wR). We say M accepts w iff
the produced tuple of |A|+|B| results is in F .

If F consists of the tuples where every result is a final state in the respective
dfa, then M is a parallel intersection automaton (∩2dfa) [8]: it accepts iff all
its components do. If F consists of the tuples where at least one of the results is
a final state, then M is a parallel union automaton (∪2dfa) [8]: it accepts iff any
of its component does. In both cases, we write only M = (A,B). When B = ∅ or
A = ∅, we say M is left-sided (∩ldfa, ∪ldfa) or right-sided (∩rdfa, ∪rdfa).

We now recall notions and facts leading to generic strings and blocks [10,4].
For D ∈ A and y ∈ Σ∗, the set of states that can be produced on the right

boundary of y by l-computations of D is denoted by:

QD

lr(y) := {q | (∃p)[ lcompD,p(y) hits right into q ]} .

For every right extension yz of y, we let αD
y,z : QD

lr(y) ⇀ QD be the partial
function whose value on each q ∈ QD

lr(y) is either the state which lcompD,q(z)
hits right into, or undefined if lcompD,q(z) hangs. Similarly, for D ∈ B, we let
QD

rl(y) := {q | (∃p)[rcompD,p(y) hits left into q ]}, and βD
z,y : QD

rl(y) ⇀ QD be
such that βD

z,y(q) = r iff rcompD,q(z) hits left into r. The next straightforward
fact is a summary of [6, Facts 3.7–9] (as well as a special case of [5, Facts 3–4]).

Fact 1. If D ∈ A then αD
y,z partially surjects QD

lr(y) to QD
lr(yz), thus |QD

lr(y)| ≥
|QD

lr(yz)|; in addition, QD
lr(yz) ⊆ QD

lr(z). If D ∈ B then βD
z,y partially surjects

QD
rl(y) to QD

rl(zy), thus |QD
rl(zy)| ≤ |QD

rl(y)|; in addition, QD
rl(z) ⊇ QD

rl(zy).

For L ⊆ Σ∗, we say y is generic for M over L if y ∈ L and no right (resp.,
left) extension of y in L reduces the number of states produced on the right (left)
boundary by the l-computations (r-computations) of any D ∈ A (any D ∈ B):

(∀yz ∈ L)(∀D ∈ A)[ |QD

lr(yz)| = |QD

lr(y)| ]
y ∈ L and

(∀zy ∈ L)(∀D ∈ B )[ |QD

rl(zy)| = |QD

rl(y)| ] .

If ϑ is a fixed generic string for M over L, every string of the form ϑxϑ is
called a block, with infix x. For D ∈ A, we write αD

ϑ,xϑ simply as αD
x , and note



that it partially maps QD
lr(ϑ) to itself, since QD

lr(ϑxϑ) ⊆ QD
lr(ϑ) (by Fact 1).

Similarly, for D ∈ B we write βD

ϑx,ϑ : QD
rl(ϑ) ⇀ QD

rl(ϑ) simply as βD
x . The tuple(

(αD

x )D∈A, (βD

x )D∈B
)

is the inner behavior of M on ϑxϑ, and satisfies the next lemma, by standard
‘cut-and-paste’ arguments (e.g., see [4, Lemma 3], [5, Fact 6], [10]), and the fol-
lowing fact, by the definition of generic string (e.g., see [5, Fact 5], [10]).

Lemma 1. (a) If the inner behavior of M on ϑxϑ consists of identities, then
M decides identically on ϑ and ϑxϑ. (b) If the inner behaviors of M on ϑxϑ
and ϑyϑ are identical, then M decides identically on ϑxϑ and ϑyϑ.

Fact 2. On every ϑxϑ ∈ L, the inner behavior of M consists of permutations.

The next fact (variant of [5, Facts 7–8]) says that the inner behavior on a block of
the form ϑxϑyϑ, where ϑ appears in the infix, composes the two inner behaviors
for the overlapping blocks ϑxϑ and ϑyϑ; this then generalizes to blocks of the
form ϑx(k)ϑ, where the infix x(k) := x(ϑx)k−1 is k ϑ-separated copies of the same
string. Finally, Fact 4 (variant of [4, Fact 7]) follows as an easy corollary.

Fact 3. For all D ∈ A, it is αD

xϑy = αD
x ◦αD

y ; hence αD

x(k) = (αD
x )k for all k ≥ 1.

Similarly, for all D ∈ B, it is βD

xϑy = βD
y ◦βD

x ; hence βD

x(k) = (βD
x )k for all k ≥ 1.

Fact 4. If the inner behavior of M on ϑxϑ consists of permutations, then for
some k ≥ 1 the inner behavior of M on ϑx(k)ϑ consists of identities.

2.3 Hardness Propagation

In the “hardness propagation” style of [6], all our witnesses are built by applying
appropriate ‘hardness increasing’ operators to a single, well-understood, ‘core’
problem. Below, we first recall some of these operations along with some associ-
ated hardness propagation lemmata. We then also recall our one ‘core’ problem.

Let L = (L, L̃). The reverse and the complement of L are the problems
LR := (LR, L̃R) and ¬L := (L̃, L). Easily, ¬(LR) = (¬L)R, and [4, Fact 12] holds:

Lemma 2. (a) If no ∪ldfa with s-state components solves L, then no ∪rdfa
with s-state components solves LR. (b) If no ∩ldfa with (s+1)-state components
solves L, then no ∪ldfa with s-state components solves ¬L.

The conjunctive star of L is the problem of checking that a #-delimited list of
instances of L contains only positives; dually, the disjunctive star is the problem
where at least one instance in the list must be positive [6, §3.1]:∧

L :=
(
{#x1# · · · #xl# | (∀i)(xi ∈ L)}, {#x1# · · · #xl# | (∃i)(xi ∈ L̃)}

)∨
L :=

(
{#x1# · · · #xl# | (∃i)(xi ∈ L)}, {#x1# · · · #xl# | (∀i)(xi ∈ L̃)}

)
,

where #x1# · · · #xl# means l ≥ 0, each xi ∈ L∪ L̃, and # is a fresh symbol. Easily,

¬
(∧

L
)

=
∨
¬L ¬

(∨
L
)

=
∧
¬L

(∧
L
)R

=
∧
LR

(∨
L
)R

=
∨
LR ,

by the definitions. In addition, the following lemma holds [6, Lemma 3.3]:



Lemma 3. If no s-state dfa solves L, then no ∩ldfa with s-state components
solves

∨
L.

The ordered star Ll<Lr of two problems Ll = (Ll, L̃l) and Lr = (Lr, L̃r) of
disjoint promises is defined as follows [4, §7.2]: an instance is promised to be a
list x = #x1# · · · #xl# of #-delimited instances of Ll and Lr where all positives
of one of the problems appear before all positives of the other (note that this
includes lists where at most one problem contributes positives); the task is to
check that either both problems contribute positives and the one that places
them first is Ll or neither problem contributes any positives. So, in a positive x,
there are xi both from Ll and from Lr, and all those from Ll precede all those
from Lr; or all xi are in L̃l ∪ L̃r. In a negative x, there are xi both from Ll and
from Lr, and all those from Lr precede all those from Ll; or exactly one of Ll,Lr

contributes some xi. The next hardness propagation lemma is [4, Lemma 8]:

Lemma 4. If no ∪ldfa with 1+
(
s
2

)
-state components solves Ll and no ∪rdfa

with 1+
(
s
2

)
-state components solves Lr, then no s-state sdfa solves Ll<Lr.

The membership problem is defined over the alphabet [h] ∪ P([h]) as follows:
“Given an i ∈ [h] and an α ⊆ [h] (in this order), check that i ∈ α.” Formally:

M = membershiph :=
(
{iα | α ⊆ [h] & i ∈ α}, {iα | α ⊆ [h] & i ∈ α}

)
. (3)

Easily, M has an h-state dfa, but MR and ¬MR (where α precedes i) have no
dfa with < 2h−1 states [6,4]. (In [4, Eq. (7)], MR is called set numh.)

3 From Few Reversals to Bounded Reversals

We now prove Theorem 1. We pick a dfaM with rM (n) 6= O(1), and show that
rM (n) 6= o(n), too. Note that this is trivial if rM (n) =∞ for infinitely many n.
So, the interesting case is when rM (n) is finite for all sufficiently large n.

Since rM (n) 6= O(1), every bound r admits infinitely many n with rM (n) ≥ r.
Consider in particular r := s·(s+1)2s, for s the number of states in M . Then,
for infinitely many n, some full computation cn on some n-long input performs
≥ s·(s+1)2s reversals. Moreover, for all sufficiently large n, these cn are halting,
exactly because we are in the interesting case. Let c be one of these halting cn.

Let j1 < · · · < jm be the indices of the cells where c performs its ≥ s·(s+1)2s

reversals. Then m ≥ (s+1)2s, or else m < (s+1)2s cells would host ≥ s·(s+1)2s

reversals, so some cell would host >s reversals, so c would repeat a point on
that cell and thus loop, a contradiction.

Now let q0, q1, . . . , qm be the crossing sequences of c on any m+1 boundaries
that are separated by the m cells above. Since m+1 exceeds the number (s+1)2s

of distinct crossing sequences in halting computations (cf. Sect. 2.1), two of the qi
must be identical. Let y be the infix between the corresponding two boundaries.
Then the input is xyz, for some x,z.

We know y hosts ≥ 1 of the reversals of c, because it contains ≥ 1 of the cells
indexed by the ji. We also know, by a standard ‘cut-and-paste’ argument, that



every full computation ct := compM (xytz) repeats on every copy of y every
computation segment performed by c on y, including all reversals contained
therein. So, every ct performs ≥ 1 reversal on each copy of y, for a total of
≥ t reversals. Hence, for the infinitely many lengths nt := |xytz| some nt-long
input forces M to perform ≥ t = (nt−|xz|)/|y| reversals. Hence, rM (n) 6= o(n).

So, Theorem 1 holds, making the inclusion 2D[O(1)] ⊆ 2D[o(n)] an equality.

Concerning the inclusion 2D[const] ⊆ 2D[O(1)] one level down, it is tempting to
suggest that it is also an equality, caused by the seemingly obvious reduction
(analogous to that of Theorem 1) that every dfa with O(1) reversals is a dfa
with r reversals, for some r. But this suggestion is wrong (easily). The next
tempting suggestion is that, although a dfa with O(1) reversals is not already
one with r reversals, it can be made into one, with some increase in size. Indeed:

Lemma 5. Every s-state dfawith O(1) reversals is equivalent to a O(rs)-state
dfa with r reversals, for some r.

Still, in this lemma, r may be super-polynomial in s (as in the dfa built in the
proof of Theorem 1), resulting in a dfa too large to prove 2D[const] = 2D[O(1)].

4 Inside the Reversal Hierarchy

In this section we prove Theorem 2. We first introduce a new ‘hardness increas-
ing’ operator and prove an associated ‘hardness propagation’ lemma.

The r-th conjunctive power of L = (L, L̃) is the problem of checking that a
#-delimited list of exactly r instances of L contains only positives:∧

rL :=
(
{#x1# · · · #xr# | (∀i)(xi ∈ L)}, {#x1# · · · #xr# | (∃i)(xi ∈ L̃)}

)
,

where #x1# · · · #xr# means that every xi ∈ L ∪ L̃ and # is a fresh symbol.

Lemma 6. If no 4rs2r+1-state sdfa solves L, then no s-state dfa with <r re-
versals solves

∧
rL.

Proof. Let L= (L, L̃). Let M be an s-state dfa with <r reversals for
∧
rL. We

build a sdfa M ′ for L with 4rs2r+1 states. We first introduce certificates, then
show how they characterize the positives of L, then use them to design M ′.

Pick any positive x of L. Then w := #(x#)r is a positive of
∧
rL. Therefore,

c := compM (w) is accepting. Moreover, the reversals in c are fewer than the
copies of x in w. So, on one or more of these copies, c performs 0 reversals. Fix
any such copy (e.g., the leftmost one). On it, c consists of t ≤ r one-way traversals
(one-way, since there are 0 reversals; and ≤ r, because with <r reversals in total
c can traverse each infix ≤ r times). Let px := (p1, . . . , pt) and qx := (q1, . . . , qt)
be the crossing sequences of c on the outer boundaries of that copy of x (Fig. 1b).
Finally, consider the set of all pairs of crossing sequences created in this way,

C := {(px, qx) | x ∈ L} ,

as we iterate over all positives of L. We use this set in the next definition.



Definition. A pair (p, q) of t-long sequences of states of M is a certificate for an
instance x of L if it satisfies the following three clauses:
1. (p, q) ∈ C.
2. For every odd i = 1, . . . , t: lcompM,pi(x) is one-way and hits right into qi.
3. For every even i = 1, . . . , t: rcompM,qi(x) is one-way and hits left into pi.

Claim. An instance of L is positive iff it has a certificate.

Proof. [⇒] Let x ∈ L. Then clearly (px, qx) is a certificate for x. [⇐] Let x̃ ∈ L̃.
Suppose x̃ has a certificate (p, q). By Clause 1, there is x ∈ L such that the ac-
cepting computation c := compM (#(x#)r) exhibits p and q on the outer bound-
aries of a copy of x on which it contains 0 reversals. By Clauses 2 and 3,M notices
no difference if we replace that copy with a copy of x̃. So, the computation of M
on the modified string is also accepting. But this modified string is a negative
of
∧
rL. Therefore, M does not solve

∧
rL —a contradiction. �

By the Claim, one way to check an instance x of L is to check whether any
pair in C is a certificate for it; because C is ‘small’ and each pair is checkable by
‘few’ sweeps, this strategy can be implemented by a ‘small’ sdfa. Specifically,
M ′ iterates over all ((p1, . . . , pt), (q1, . . . , qt)) ∈ C. For each of them and each
odd (resp., even) i = 1, . . . , t, it simulates M on x from pi (from qi) on the
leftmost (rightmost) symbol, to see whether it hits right (left) into qi (into pi)
without ever reversing; on any attempt to reverse, M ′ stops simulating and just
completes the sweep. If these checks succeed for all i, then M ′ accepts; otherwise,
it continues to the next pair. If all pairs have been tried, then M ′ rejects.

If Q are the states of M , then M ′ uses states Q′ := C×{1, . . . , r}×Q⊥. State
(p, q, i, p) means we are at state p in simulating M in the i-th check for the
candidate certificate (p, q); if p=⊥, then the i-th check has already failed due
to an attempt to reverse, and we are just completing the sweep. Easily, |C| ≤∑r
t=0(st·st) ≤ 2s2r, therefore |Q′| = |C|·r·(|Q|+1) ≤ 2s2r·r·(s+1) ≤ 4rs2r+1. �

We are now ready to introduce our witness. For r ≥ 1 and M as in (3), it is

Rr :=
∧
r

[ (∧
MR
)
<
(∧

M
) ]
. (4)

So, an instance of Rr is a list of the form $y1$ · · · $yr$; each yj is a list of the form
*x1* · · · *xl*, for arbitrary l; and each xj is a list of the form #α1i1# · · · #αlil#
or #i1α1# · · · #ilαl#, again for arbitrary l. The task is to check that, in every yj :
either every xj has some ij not in the adjacent αj (i.e., all xj are negatives of∧
MR and

∧
M); or xj of both forms exist with all their ij in the adjacent αj , and

those of the set-number form precede those of the number-set form (i.e., both∧
MR and

∧
M contribute positives, and those of

∧
MR precede those of

∧
M).

For the lower bound, we know that every sdfa for
∧
MR<

∧
M has 2Ω(h) states

(by the lower-bound argument of [4, §7.3], which uses Lemma 4). Therefore, by
Lemma 6, every dfa with <r reversals for Rr has 2Ω(h/r) states.

For the upper bound, we start as in [4, §7.3]. We let M0 be the h-state dfa
for M. We then build a O(h)-state dfa M1 for

∧
M, which just repeatedly

simulates M0 on the successive instances of M and accepts iff all are accepted.



Next, we build a O(h)-state dfa M2 with 1 reversal for
∧
MR<

∧
M. On

input *x1* · · · *xl*, M2 scans forward simulating M1 on every instance of
∧
M

until it detects a positive or reaches a. In either case, it reverses and scans
backwards simulating M1 on (the reverse of) every instance of

∧
MR until it

detects a positive or reaches `. Then M2 knows what to do: (1) if neither scan
detected a positive, then all xj are negative, so M2 must accept; (2) if the forward
scan detected no positive but the backward scan did, then only

∧
MR contributes

positives, so M2 must reject; (3) if the forward scan detected a positive but the
backward scan did not, then M2 must reject either because only

∧
M contributes

positives or because both problems do but the order is wrong; (4) if both scans
detected a positive, then both problems contribute and the order is correct, so
M2 must accept. So, M2 finishes the backward scan (if needed) and decides on `.

Finally, we build a dfa Rr with r reversals for Rr. On input $y1$ · · · $yr$,
a successive pair $yj$yj+1$ is checked by a 2-reversal lr-traversal, as follows:
scan forward past yj ; simulate M2 on yj+1 by a 1-reversal l-turn which ends
on the middle $; from there, simulate M2 on (the reverse of) yj by a 1-reversal
r-turn which also ends on the middle $; from there, scan forward past yj+1.
Easily, this check needs O(h) states. Now, if r is even, then Rr simply repeats
this check on every pair of successive yj until it reaches a. If r is odd, then
Rr first scans forward past y1, . . . , yr−1, to simulate M2 on yr by a 1-reversal
l-turn that ends on the penultimate $; from there, it starts checking pairs of
successive yj by repeating the above check (backwards and in reverse) until `.
Easily, the number of states in Rr is O(r+h) —for even r, it is only O(h).

5 Inside the Inner-Reversal Hierarchy

We now prove Theorem 3. Most crucially, we improve the lower bound of Sect. 4
to make it (i) independent of r, and (ii) valid even when only inner reversals are
restricted. For this, we enhance our chain of hardness propagation, by proving
variants of Lemmata 4 and 6 where sdfas are replaced by p2dfas.

Lemma 4*. If no ∪ldfa with 1+
(
s
2

)
-state components solves Lland no ∪rdfa

with 1+
(
s
2

)
-state components solves Lr, then no p2dfa with s-state components

solves Ll<Lr.

Proof. The structure of the argument is exactly as in the proof of [4, Lemma 8];
we just adapt some of its steps for p2dfas. So, let Ll = (Ll, L̃l), Lr = (Lr, L̃r).
Suppose some p2dfa M = (A,B, F ) solves Ll<Lr with s-state components.

We first consider the strings of #-delimited instances of Ll and Lr where
neither problem contributes positives, and those where exactly one does:

L := {#x1# · · · #xl# | (∀i)(xi ∈ L̃l ∪ L̃r) } , and

L̃ := {#x1# · · · #xl# | (∃i)(xi ∈ Ll ∪ Lr) & ¬(∃i)(∃j)(xi ∈ Ll & xj ∈ Lr) } ,

where #x1# · · · #xl# means l ≥ 0 and every xi ∈ Ll ∪ L̃l ∪ Lr ∪ L̃r. Note that
all strings in L∪ L̃ are instances of Ll<Lr: positive if in L, negative if in L̃. So,



M solves (L, L̃). From now on, fix ϑ to be a generic string for M over L. (The
existence of such a string follows from standard observations [6, §3.3.2].)

Definition. A pair {p, q} of distinct states in M is a forward certificate for an
instance x of Ll or Lr if there exists D ∈ A such that

p, q ∈ QD

lr(ϑ) and
if both lcompD,p(xϑ) and lcompD,q(xϑ) hit right,
then they do so into the same state.

(5)

A backward certificate is defined symmetrically, with A, QD
lr, lcompD, . (xϑ),

and “hit right” replaced respectively by B, QD
rl, rcompD, . (ϑx), and “hit left”.

Claim 1. An instance of Ll or Lr is positive iff it has a certificate.

Proof. As in [4, Lemma 8]. [⇒] By Fact 4 and Lemma 1a. [⇐] By Fact 2. �

Note that, for positive instances, Claim 1 does not specify whether the ex-
isting certificates are of the forward or of the backward kind. It turns out that
a stronger criterion is possible for at least one of Ll or Lr.

Claim 2. At least one is true: (i) every positive instance of Ll has a forward
certificate, or (ii) every positive instance of Lr has a backward certificate.

Proof. Suppose not. Then there is x ∈ Ll with no forward certificate and y ∈ Lr

with no backward certificate. As in the proof of Claim 1, this means that every αD
x

for D ∈ A permutes QD
lr(ϑ) and every βD

y for D ∈ B permutes QD
rl(ϑ). Pick k ≥ 1

so that each of these |A|+|B| permutations becomes an identity after k iterations:

(∀D ∈ A)[ (αD

x )k= id ] and (∀D ∈ B)[ (βD

y )k= id ] ,

where ‘id’ is the identity function on the appropriate domain. Then, by Fact 3,

(∀D ∈ A)[ αD

x(k) = id ] and (∀D ∈ B)[ βD

y(k) = id ] . (6)

Intuitively, this means that no D ∈ A can distinguish ϑx(k)ϑ from ϑ, and no
D ∈ B can distinguish ϑy(k)ϑ from ϑ. Hence, M cannot distinguish between

ϑx(k)ϑy(k)ϑ and ϑy(k)ϑx(k)ϑ , (7)

because they both ‘look’ like ϑy(k)ϑ to every D ∈ A, and like ϑx(k)ϑ to every
D ∈ B. If this intuition is correct, then M treats identically a positive (on the
left) and a negative (on the right) instance of Ll<Lr—a contradiction.

Indeed, the inner behavior of every D ∈ A on the two instances of (7) is:

αD

x(k)ϑy(k) = αD

x(k) ◦ αD

y(k) = id ◦ αD

y(k) = αD

y(k)

αD

y(k)ϑx(k) = αD

y(k) ◦ αD

x(k) = αD

y(k) ◦ id = αD

y(k) ,

where in each line all functions are partial from QD
lr(ϑ) to itself, the first step

uses Fact 3, and the second step uses (6). Hence, αD

x(k)ϑy(k) = αD

y(k) = αD

y(k)ϑx(k) .

By this and a symmetric argument for every D ∈ B, we eventually conclude that(
(αD

x(k)ϑy(k))D∈A, (βD

x(k)ϑy(k))D∈B
)(

(αD

y(k)ϑx(k))D∈A, (βD

y(k)ϑx(k))D∈B
)} =

(
(αD

y(k))D∈A, (βD

x(k))D∈B
)
.

Hence, M treats the blocks of (7) the same (Lemma 1b), as expected. �



Now, if Claim 2i is true, then along with Claim 1 it implies a criterion for Ll:
an instance of Ll is positive iff it has a forward certificate. We thus get:

Claim 3. Some ∪ldfa with 1+
(
s
2

)
-state components solves Ll.

Proof. By the criterion, an instance x of Ll is positive iff there is D ∈ A and
distinct p, q ∈ QD

lr(ϑ) such that either one of lcompD,p(xϑ) or lcompD,q(xϑ)
hangs or both hit right into the same state. A ∪ldfa can check this using a
1+
(
s
2

)
-state component Dp,q for every such combination of D and p, q. �

If Claim 2ii holds, we work similarly with Lr and backward certificates. �

Lemma 6*. If no p2dfa with s-state components solves L, then no s-state dfa
with <r inner reversals solves

∧
rL.

Proof. Let L= (L, L̃). Let M be a dfa with <r inner reversals for
∧
rL, with

set of states Q = [s]. We build a p2dfa M ′ with s-state components for L.
We use certificates as in Lemma 6. For each x ∈ L, c := compM (#(x#)r) is

accepting and avoids reversals on one or more copies of x (since every reversal on
a copy of x is inner). So, the crossing sequences px,qx on the outer boundaries
of the leftmost such copy are again ‘linked’ by t one-way traversals (Fig. 1b).
This time, however, it is not guaranteed that t ≤ r, as some pairs of successive
traversals may be separated by outer reversals, whose number is not bounded
by r. We just know that t ≤ 2s (or else c would repeat a state on an outer cell
of x, and loop), so the set C := {(px, qx) | x ∈ L} of candidate certificates may
be exponentially large, forbidding an exhaustive search by a small sdfa.

However, a small-component p2dfa can delegate this exhaustive search to
its set of accepting tuples. So, we let M ′ := ({Ap | p ∈ Q}, {Bp | p ∈ Q}, F ). Each
dfa Ap simulates M from p for as long as it moves right; if M ever attempts to
reverse, Ap hangs. Similarly, each Bp simulates M from p for as long as it moves
left, and hangs at any attempt to reverse. Hence, on input x, M ′ simulates M
from every state and in every fixed direction, covering every possible one-way
traversal of x byM . In the end, it checks whether x has a certificate by comparing
the results of these 2s computations against each (p, q) ∈ C. Formally, for each
p = (p1, . . . , pt) and q = (q1, . . . , qt) we let F(p,q) be the set of all 2s-tuples that
we can build from two copies of all states in Q = {0, 1, . . . , s−1}

( 0, 1, . . . , s−1, 0, 1, . . . , s−1 ) ,

by replacing (i) every odd-indexed pi in the left copy with the respective qi (to
ask Api to hit right into qi); (ii) every even-indexed qi in the right copy with
the respective pi (to ask Bqi to hit left into pi) and (iii) all other states in either
copy with any result in Q⊥ (to let all other dfas free). This way, F(p,q) is all
tuples which prove that (p, q) is a certificate. So, letting F :=

⋃
(p,q)∈C F(p,q), we

ensure that M ′ accepts x iff x has a certificate, namely iff x ∈ L. �

We are now ready to proceed to the main argument that proves Theorem 3.



For the lower bound, we start as in [4, §7.3]. We know no (2h−2)-state dfa
solves ¬MR. So, Lemma 3 implies no ∩ldfa with (2h−2)-state components
solves

∨
¬MR. Hence, Lemma 2b for

∨
¬MR = ¬

∧
MR implies that

no ∪ldfa with (2h−3)-state components solves
∧
MR.

This, together with Lemma 2a for
∧
MR = (

∧
M)R, implies that

no ∪rdfa with (2h−3)-state components solves
∧
M.

So, by Lemma 4*, in every p2dfa for
∧
MR<

∧
M some component has Ω(2h/2)

states. By Lemma 6*, the same holds for all dfas with <r inner reversals for Rr.
For the upper bound, we note that our dfa Rr from Sect. 4 performs only

inner reversals. Moreover, its size can stay independent of r, if we allow ≤ 1 outer
reversal: for odd r, we modify Rr to work as if r were even; this causes 1 outer
reversal during the check of yr. So, the modified Rr solves Rr with O(h) states,
r inner reversals, and 0 or 1 outer reversals (depending on the parity of r).

6 Conclusion

We studied dfas with few, bounded, and fixed reversals (o(n), O(1), r, respec-
tively). We showed that the first two are actually the same, whereas small dfas
of the last kind strictly increase their power with every additional reversal, even
if we focus only on those performed strictly between the end-markers.

It would have been nice if we had also resolved 2D[const] ⊆ 2D[O(1)]. It would
also be interesting to repeat this analysis for nfas [3, Research Problem 4].

References

1. M. Balcerzak and D. Niwiński. Two-way deterministic automata with two reversals
are exponentially more succinct than with one reversal. Information Processing
Letters, 110:396–398, 2010.

2. V. Geffert, C. Mereghetti, and G. Pighizzini. Complementing two-way finite au-
tomata. Information and Computation, 205(8):1173–1187, 2007.

3. J. Hromkovič. Descriptional complexity of finite automata: concepts and open
problems. Journal of Automata, Languages and Combinatorics, 7(4):519–531, 2002.

4. C. Kapoutsis. Nondeterminism is essential in small two-way finite automata with
few reversals. Information and Computation. To appear.

5. C. Kapoutsis. Deterministic moles cannot solve liveness. Journal of Automata,
Languages and Combinatorics, 12(1-2):215–235, 2007.

6. C. Kapoutsis, R. Královič, and T. Mömke. Size complexity of rotating and sweeping
automata. Journal of Computer and System Sciences, 78(2):537–558, 2012.

7. A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars,
and formal systems. In Proceedings of FOCS, pages 188–191, 1971.

8. W. J. Sakoda and M. Sipser. Nondeterminism and the size of two-way finite
automata. In Proceedings of STOC, pages 275–286, 1978.

9. M. Sipser. Halting space-bounded computations. Theoretical Computer Science,
10:335–338, 1980.

10. M. Sipser. Lower bounds on the size of sweeping automata. Journal of Computer
and System Sciences, 21(2):195–202, 1980.


	Reversal Hierarchies for Small 2DFAs

