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Abstract

We examine the succinctness of one-way, rotating, sweeping, and two-way deterministic
finite automata (1dfas, rdfas, sdfas, 2dfas) and their nondeterministic and randomized
counterparts. Here, a sdfa is a 2dfa whose head can change direction only on the end-
markers and a rdfa is a sdfa whose head is reset to the left end of the input every
time the right end-marker is read. We study the size complexity classes defined by
these automata, i. e., the classes of problems solvable by small automata of certain type.
For any pair of classes of one-way, rotating, and sweeping deterministic (1d, rd, sd),
self-verifying (1∆, r∆, s∆) and nondeterministic (1n, rn, sn) automata, as well as for
their complements and reversals, we show that they are equal, incomparable, or one is
strictly included in the other. The provided map of the complexity classes has interesting
implications on the power of randomization for finite automata. Among other results, it
implies that LasVegas sweeping automata can be exponentially more succinct than sdfas.
We introduce a list of language operators and study the corresponding closure properties
of the size complexity classes defined by these automata as well. Our conclusions reveal
also the logical structure of certain proofs of known separations among the complexity
classes and allow us to systematically construct alternative witnesses of these separations.

1. Introduction

One of the major goals of the theory of computation is the comparative study of
randomized computations, on one hand, and deterministic and nondeterministic compu-
tations, on the other. An important special case of this comparison concerns randomized
computations of zero error (also known as “LasVegas computations”): how does zpp
compare to p and np? Or, in informal terms: Can every fast LasVegas algorithm be
simulated by a fast deterministic one? Can every fast nondeterministic algorithm be
simulated by a fast LasVegas one? Similar questions can be asked also for other random-
ized models, such as one-sided error (Monte-Carlo) computations and bounded two-sided
error computations.

Naturally, the computational model and resource for which we pose these questions
are the Turing machine and time, respectively, as these give rise to the best available
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theoretical model for the practical problems that we care about. The questions, however,
have also been asked for other computational models and resources. Of particular interest
to us is the case of restricted models, where the questions appear to be much more
tractable. Conceivably, answering them there might also improve our understanding of
the harder, more general settings.

In this direction, the case of finite automata has been usually studied using the size
of the automata (number of states) as the efficiency measure. The comparison between
determinism and nondeterminism in the two-way case was brought into attention in
[20]: does every two-way nondeterministic finite automaton (2nfa) with n states have a
deterministic equivalent (2dfa) with a number of states polynomial in n? Equivalently, if
2n is the class of families of languages that can be recognized by families of polynomially
large 2nfas and 2d is its deterministic counterpart, is 2d = 2n?

The relationship of 2d vs. 2n is one of the most prominent open problems in the area
of finite automata. The answer is conjectured to be negative, even if all 2nfas considered
are actually one-way (1nfas). That is, even 2d + 1n is conjectured to be true, where 1n
is the one-way counterpart of 2n.

Later, the case of randomized automata has been considered, too. Hromkovič and
Schnitger [8] studied the case of one-way finite automata. They showed that, in this con-
text, LasVegas computations are not more powerful than deterministic ones—intuitively,
every small one-way LasVegas finite automaton (1p0fa) can be simulated by a small de-
terministic one (1dfa). Equivalently, if 1p0 is the class of language families that can
be recognized by families of polynomially large 1p0fas and 1d is its deterministic coun-
terpart, it holds that 1p0 = 1d. This immediately implies that, in contrast, nondeter-
ministic computations are more powerful than LasVegas ones: there exist small one-way
nondeterministic finite automata (1nfas) that cannot be simulated by any small 1p0fa.
Equivalently, 1p0 ( 1n.

For the case of two-way finite automata (2dfas, 2p0fas, and 2nfas), though, the
analogous questions remain open [9]: Can every small 2p0fa be simulated by a small
2dfa? Can every small 2nfa be simulated by a small 2p0fa? Note that a negative
answer to either question would solve the 2n vs. 2d problem. Since solving the 2n vs. 2d
problem turned out to be hard, certain restricted special cases of the problem have been
considered, too. Two of them, introduced in [20, 22], are the rotating and the sweeping
2dfas (rdfas and sdfas, respectively).1

A sdfa is a 2dfa that changes the direction of its head only on the input end-markers.
Thus, a computation is simply an alternating sequence of rightward and leftward one-
way scans. A rdfa is a sdfa that performs no leftward scans: upon reading the right
end-marker, its head jumps directly to the left end. The subsets of 2d that correspond
to these restricted 2dfas are called sd and rd.

Several facts about the size complexity of sdfas have been known for quite a while
(e. g., 1d + sd [22], sd + 2d [22, 1, 18], sd + 1n [22]) and, often, at the core of their proofs
one can find proofs of the corresponding facts for rdfas (e. g., 1d + rd, rd + 2d, etc.).
Overall, though, the study of these automata has been fragmentary, exactly because they
have always been examined only on the way to investigate the 2d vs. 2n question.

In this article we explore the complexity classes of sweeping and rotating automata.
To be able to do so, we introduce a technique of hardness propagation, a general frame-

1In [20], rotating automata was defined in a slightly different way, and called series finite automata.
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work for proving lower bounds on the size complexity. This technique allows us to use
certain language operators to build hard language families for more powerful automata
classes out of a simple, minimally hard, ‘core’ family. In this way, we show an exponen-
tial gap in size complexity between rdfas and sdfas. Moreover, we can use hardness
propagation to find witnesses for previously known complexity class separations in a
systematic way. We believe that this operator-based reconstruction of witnesses deepens
our understanding of the relative power of the considered automata, since it uncovers the
logical structure of the witness languages and explains how hardness propagates upwards
in our map of complexity classes when appropriate operators are applied.

We address also the relationship between the complexity classes induced by ran-
domized finite automata. We apply results of [9, 17] to relate randomized automata to
their non-randomized counterparts, thus extending our results to randomized classes.
The most interesting result here is that sp0fas can be exponentially more succinct than
sdfas.

The structure of the paper is as follows. In the next section, we introduce the ba-
sic notation, types of automata used, and the concept of the size complexity classes.
The definition of randomized automata and their classes is, however, postponed until
Section 5. In Section 3, we develop the technique of hardness propagation. Here, we in-
troduce several language operators and prove the core lemmas that allow us to construct
hard languages for complex classes out of simpler languages that are hard for simpler
complexity classes. In Section 4, we prove closure properties and the relationships be-
tween the classes, heavily using the hardness propagation lemmas. Section 5 is devoted
to the randomized automata. Section 6 lists our final conclusions.

2. Preliminaries

Let Σ be an alphabet, i. e., any finite set of symbols. By Σ∗ we denote the set of all
finite strings over Σ. If z ∈ Σ∗, then |z|, zt, zt, and zR are its length, t-th symbol (if
1 ≤ t ≤ |z|), t-fold concatenation with itself (if t ≥ 0), and reverse. A language over Σ is
any L ⊆ Σ∗, the complement of L is L := Σ∗ \L, the reverse of L is LR := {wR | w ∈ L}.
If w ∈ L, we say w is a positive instance of L, otherwise w is a negative instance of L. An
automaton recognizes (or solves or accepts) a language if it accepts exactly the strings
of that language.

2.1. Computational Models

We assume that the reader is familiar with the one-way and two-way automata. This
subsection fixes some notation and introduces the rotating and sweeping models.

A sweeping deterministic finite automaton (sdfa) [22] over an alphabet Σ and a set of
states Q is any triple M = (qs, δ, qa) of a start state qs ∈ Q, an accept state qa ∈ Q, and
a transition function δ that partially maps Q× (Σ ∪ {`,a}) to Q, for some end-markers
`,a /∈ Σ. An input z ∈ Σ∗ is presented to M surrounded by the end-markers, as `za.
The computation starts at qs and on `. The next state is always derived from δ and the
current state and symbol. The next position is always the adjacent one in the direction
of motion; except when the current symbol is ` or when the current symbol is a and
the next state is not qa, in which cases the next position is the adjacent one towards
the other end-marker. Note that the computation can either loop, or hang, or fall off a
into qa. In the last case we call it accepting and say that M accepts z.
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(a)

p2q2
p3 q3

p4q4
p5 q5 → qa

qs → p1 q1

(b)

qs → p1 q1
q2
q3 → qa

p2
p3

Figure 1: Computation of a (a) sweeping and (b) rotating automaton.

More generally, for any input string z ∈ Σ∗ and state p, the left computation of M
from p on z is the unique sequence

lcompM,p(z) := (qt)1≤t≤m,

where q1 := p; every next state is qt+1 := δ(qt, zt), provided that t ≤ |z| and the value of
δ is defined; and m is the first t for which this provision fails. If m = |z|+ 1, we say that
the computation results in qm; otherwise, 1 ≤ m ≤ |z| and the computation hangs at qm
and results in ⊥. The right computation of M from p on z is denoted by rcompM,p(z)
and defined symmetrically, i. e., rcompM,p(z) = lcompM,p(z

R).
The traversals of M on z are the members of the unique sequence (ct)1≤t<m where

c1 := lcompM,p1(z) for p1 := δ(qs,`); every next traversal ct+1 is either rcompM,pt+1(z),
if t is odd and ct results in a state qt such that δ(qt,a) = pt+1 6= qa, or lcompM,pt+1(z),
if t is even and ct results in a state qt such that δ(qt,`) = pt+1; and m is either the first
t for which ct is not defined or ∞ if ct exists for all t. Then, the computation of M on
z, denoted by compM (z), is the concatenation of (qs), c1, c2, . . . and possibly also (qa),
if m is finite and even and cm−1 results in a state qm−1 such that δ(qm−1,a) = qa. An
example of a computation of sdfa is depicted in Figure 1a.

If M is allowed more than one next move at each step, we say it is nondeterministic
(a snfa). Formally, this means that δ partially maps Q × (Σ ∪ {`,a}) to the set of all
non-empty subsets of Q. Hence, on any z ∈ Σ∗, compM (z) is a set of computations. If
at least one of them is accepting, we say that M accepts z.

We say that M is a rotating deterministic finite automaton (rdfa) if its next position
is decided differently: it is always the adjacent one to the right, except when the current
symbol is a and the next state is not qa, in which case it is the one to the right of `.

The formal definition of the computation of a rdfa M on a string z is similar to the
definition for a sdfa. The traversals of M on z are always defined in terms of lcomp,
i. e., as the members of the unique sequence (ct)1≤t<m where c1 := lcompM,p1(z) for
p1 := δ(qs,`); every next traversal ct+1 is defined as lcompM,pt+1(z), if ct results in a
state qt such that δ(qt,a) = pt+1 6= qa; and m is either the first t for which ct cannot be
defined or ∞ if ct exists for all t. The computation of M on z, denoted by compM (z), is
the concatenation of (qs), c1, c2, . . . and possibly also (qa) if m is finite and cm−1 results
in a state qm−1 such that δ(qm−1,a) = qa. An example of a computation of a rdfa is
depicted in Figure 1b. Similar to the definition of a snfa, we define also the rotating
nondeterministic finite automaton, which we denote as rnfa.

We say that M is a 1dfa if it halts immediately after reading a: the value of δ on any
state q and on a is always either qa or undefined. If it is qa, we say q is a final state; if
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qf qaqs qi

qnqs qi

Figure 2: Computation of a one-way automaton. The computation starts in the start state qs on ` and
the first symbol of the input word is read in the initial state qi. After reading the last symbol of the
input word, automaton either reaches a final state qf and enters the accept state qa afterwards, or it
reaches a non-final state qn and hangs.

it is undefined, we say q is nonfinal. The state δ(qs,`), if defined, is called initial. If M
is allowed more than one next move at each step, we say it is nondeterministic (a 1nfa).
An example of a one-way computation is shown in Figure 2.

2.2. Complexity Classes

Since 1dfas and 2nfas have equivalent computational power [16], all types of consid-
ered finite automata accept exactly the class of regular languages. Nevertheless, different
types of automata may require different number of states to accept the same language.
Hence, we focus on the size complexity of finite automata, which we measure by the num-
ber of states. We follow the approach of [20, 14, 15] and consider families of languages
instead of individual languages.

Let M1,M2, . . . be finite automata and let L1, L2, . . . be languages over alphabets
Σ1, Σ2, . . .. A family of automata M = (Mn)n≥1 solves a family of languages L =
(Ln)n≥1 if, for all n, Mn solves Ln, i. e., L(Mn) = Ln. The automata of M are “small”
if, for some polynomial p and all n, Mn has at most p(n) states.

The size complexity class 1d consists of every family of languages that can be solved
by a family of small 1dfas. The classes rd, sd, 2d, 1n, rn, sn, 2n are defined similarly,
by replacing 1dfas with rdfas, sdfas, 2dfas, 1nfas, rnfas, snfas, 2nfas. The naming
convention is from [20]; in general, class C consists of every family of languages that can
be solved by a family of small Cfas.

Any language operator can be generalized to work on language families in a straight-
forward way: the operator is just separately applied to all languages in the family. In
particular, we say that the complement of a family of languages L = (Ln)n≥1 is defined
as L := (Ln)n≥1, and the reverse of L is defined as LR := (LR

n)n≥1.
If C is a class, then co-C consists of all families of languages whose complement is

in C, and re-C consists of all families of languages whose reverse is in C.
Due to the close connection with randomized automata (as discussed in Section 5), we

also consider the “self-verifying” classes 1∆ := 1n ∩ co-1n, r∆ := rn ∩ co-rn, s∆ := sn ∩
co-sn, and 2∆ := 2n∩co-2n. In general, the naming convention is that X∆ := Xn∩co-Xn,
for any X.

The notion of the self-verifying nondeterminism was introduced in [7, 2], where it was
considered as a separate mode of computation: the self-verifying automaton is able to
make nondeterministic choices, and is able to give three types of answers: “yes”, “no”,
and “I do not know”. Whenever the answer is “yes” or “no”, it has to be correct, i. e.,
any possible computation is required to provide either correct answer or the “I do not
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Figure 3: Complexity classes of finite automata. A solid arrow C → C′ means that C ( C′, a dashed
arrow C→ C′ means that C 6⊇ C′.

know” answer. Furthermore, for each input there must exist at least one computation
that gives the correct answer. This alternative definition is, however, equivalent to the
definition given above.

Note that all basic classes introduced above can be described by two independent
properties: the head motion (one-way, rotating, sweeping, two-way), and the mode of
computation (deterministic, self-verifying, nondeterministic). Hence, we can arrange the
corresponding classes on a map, as in Figure 3. Any class in this map is a superset of
both its left and its lower neighbor: The fact that Xd ⊆ X∆ follows from Xd ⊆ Xn and
the fact that Xd is closed under complement for all presented classes Xd (discussed in
Section 4.1).

In this paper, we completely describe the relationships between the classes of one-
way, rotating, and sweeping deterministic, self-verifying, and nondeterministic automata,
and their co- and re- classes: For any pair of such classes, we show that they are either
equal, included in each other, or incomparable. Previously known results are presented
in Figure 3: 1d ( 1∆ ( 1n [20], 1d ( sd [22], sd ( 2d [22, 1, 18], sd 6⊇ 1n [22], 1n 6⊇ sd
[20], sn 6⊇ 2d [11]. Several of these facts are also direct consequences of stronger results
presented in this paper. The relationship between 2n and 2d is a long-standing open
problem, raised by [20].

3. Hardness Propagation

Now we introduce a technique of hardness propagation for proving separations be-
tween the complexity classes. The high-level idea is the following. To separate classes
C1 and C2, it is sufficient to provide a witness, i. e., a family of languages L ∈ C2 \ C1.
While proving that L is in C2 can often be done by a straightforward construction of the
corresponding family of small automata, proving that L /∈ C1 is usually more difficult.
It may be, however, feasible to prove that L is not in some (very restricted) class C0. If
we are able to find a language family operator O such that (1) for any language family
it holds that L /∈ C0 implies O(L) /∈ C1, and (2) C2 is closed under O, we directly obtain
a witness O(L) ∈ C2 \ C1 of the desired separation. In this way, we can build a harder
language O(L) out of an easier one L; operator O propagates hardness from L vs. C0 to
O(L) vs. C1.

Obviously, the hardness propagation can be done in multiple steps. We can start with
a simple language family that is hard for some very restricted class, and, using several
appropriate language operators, we propagate the hardness to more powerful classes.
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We structure this section as follows. First, we introduce language operators that are
later used in the propagation of hardness. Next, we introduce several types of finite
automata used as intermediate steps in the propagation of hardness. Finally, we prove
several hardness propagation lemmas, which are used in the next section to fill the map
of class relationships.

3.1. Language Operators

Besides the complement and reverse, we define more language operators that are
helpful in the hardness propagation.

Let L,L1, L2 be arbitrary languages over alphabet Σ. Fix a delimiter # that is not in
Σ. The languages L1 ∧ L2, L1 ∨ L2, L1 ⊕ L2,

∧
L,
∨
L, and

⊕
L over alphabet Σ ∪ {#}

are defined as follows.

L1 ∧ L2 := {#x#y# | x, y ∈ Σ∗, x ∈ L1 ∧ y ∈ L2}
L1 ∨ L2 := {#x#y# | x, y ∈ Σ∗, x ∈ L1 ∨ y ∈ L2}
L1 ⊕ L2 := {#x#y# | x, y ∈ Σ∗, x ∈ L1 ⇔ y /∈ L2}∧

L := {#x1# . . . #xl# | l ≥ 0, xi ∈ Σ∗, (∀i)(xi ∈ L)}∨
L := {#x1# . . . #xl# | l ≥ 0, xi ∈ Σ∗, (∃i)(xi ∈ L)}⊕
L := {#x1# . . . #xl# | l ≥ 0, xi ∈ Σ∗, the number of i’s such that

xi ∈ L is odd }

(1)

We call these operators conjunctive concatenation, disjunctive concatenation, par-
ity concatenation, conjunctive iteration, disjunctive iteration, and parity iteration, re-
spectively. Informally, a language resulting from any of these operations consists of #-
delimited blocks and a word is in the language if the blocks satisfy the boolean operation
used to define the operator.

As noted in Section 2.2, all language operators can be generalized for language families
in a straightforward way, by applying the language operator on every member of the
language family separately. More formally, let L1 = (L1,n)n≥1, L2 = (L2,n)n≥1 be
language families, then L1 ∧ L2 := (L1,n ∧ L2,n)n≥1, and

∧
L1 := (

∧
L1,n)n≥1. The

definitions for ∨,
∨

, ⊕ and
⊕

are analogous.
All concatenation and iteration operators can be applied several times and every

application uses a new delimiter symbol. For example, language
∧∨

L consists of #′

delimited blocks that belong to
∨
L.

3.2. Parallel Automata

Now we introduce several additional models that are useful as intermediate steps of
hardness propagation.

A (two-sided) parallel automaton (p2dfa), introduced in [22], is any triple M =
(L,R, F ) where L = {C1, . . . , Ck} and R = {D1, . . . , Dl} are disjoint families of 1dfas,
and F ⊆ C1

Q × · · · ×CkQ ×D1
Q × · · · ×Dl

Q, where AQ is the state set of automaton A
augmented by symbol ⊥, i. e., the set of all possible results of runs of A. To run M on z
means to run each A ∈ L ∪R on z from its initial state and record the result, but with
a twist: each A ∈ L reads from left to right (i. e., reads z), while each A ∈ R reads from
right to left (i. e., reads zR). We say that M accepts z if the tuple of the results of these
computations is in F . More formally, let Ci(z) ∈ CiQ be the result of lcompCi,ri(z),
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and let Di(z) ∈ Di
Q be the result of lcompDi,si(z

R), where ri is the initial state of Ci
and si is the initial state of Di. The parallel automaton M accepts z if

(C1(z), . . . , Ck(z), D1(z), . . . , Dl(z)) ∈ F.

When R = ∅ or L = ∅, we say M is left-sided (a pldfa) or right-sided (a prdfa),
respectively.

A parallel intersection automaton (∩2dfa, ∩ldfa, or ∩rdfa) [20] is a parallel automa-
ton whose F consists of all tuples where all results are final states. If F consists of all
tuples where some result is a final state, the automaton is a parallel union automaton
(∪2dfa, ∪ldfa, or ∪rdfa) [20]. Thus, a ∩2dfa accepts its input if all components accept
it; a ∪2dfa accepts if at least one component does. Since, for parallel intersection and
union automata, F is completely determined by the final states in their components, we
simplify the notation for them, from M = (L,R, F ) to M = (L,R).

The number of states of a parallel automaton M is the total number of states over
all components of L ∪R. Analogously to the previous definitions, we say that a family
of parallel automataM = (Mn)n≥1 are ‘small’ if there exists some polynomial p(n) such
that, for all n, Mn has at most p(n) states. Hence, automata of M have polynomially
many components each with polynomially many states.

To use parallel intersection and union automata as intermediate steps in the propa-
gation of hardness, we need to consider their complexity classes. Following our naming
convention, class ∩2d (respectively, ∩ld, ∩rd, ∪2d, ∪ld, ∪rd, pld, p2d) contains all lan-
guage families recognizable by families of small ∩2dfas (respectively, ∩ldfas, ∩rdfas,
∪2dfas, ∪ldfas, ∪rdfas, pldfas, p2dfas).

The following lemma explains basic relationships between parallel and rotating (sweep-
ing) automata:

Lemma 3.1. The following facts hold:

1. 1d ⊆ ∩ld ∩ ∪ld, ∩ld ∪ ∩rd ⊆ ∩2d,

2. ∩ld = re-∩rd, ∪ld = re-∪rd, ∩2d = re-∩2d, ∪2d = re-∪2d

3. ∩ld = co-∪ld, ∩rd = co-∪rd, ∩2d = co-∪2d

4. ∩ld ∪ ∪ld ⊆ rd, ∩2d ∪ ∪2d ⊆ sd.

5. Every rdfa (sdfa) with k states can be simulated by a k-component pldfa (2k-
component p2dfa, respectively) whose components all have k states. Consequently,
rd ⊆ pld and sd ⊆ p2d.

Proof. 1. Since one-way automata are special cases of both parallel union and par-
allel intersection automata, and left-sided and right-sided parallel automata are
special cases of two-sided parallel automata, the claim follows.

2. If L can be solved by ∩ldfa or ∩2dfa M = (L,R) with m states, then LR can be
solved by ∩rdfa or ∩2dfa M ′ = (R,L) with m states, and vice versa. The same
holds for parallel union automata.

3. If L can be solved by a k-component ∩ldfa M with m states, then L can be solved
by a k-component ∪ldfa M ′ with m+ k states: to construct M ′, we first make all
components of M non-hanging by adding one new state to every component, then
make all nonfinal states final and vice versa. Every word w /∈ L is rejected by some
component of M , hence it is accepted by the corresponding component of M ′. On

8



the other hand, every word w ∈ L is accepted by all components of M , hence it
is rejected by all components of M ′. The arguments for ∩rdfas and ∩2dfas are
similar.

4. A rdfa can simulate any ∩ldfa or ∪ldfa in a straightforward way, simulating
one component per traversal. We assume that every component of the parallel
automaton is non-hanging, what can be achieved by adding one new state to every
component of the automaton. Then, the set of states of the rdfa consists of all
states of the parallel automaton plus one new accept state, so a small family of
parallel automata are simulated by a small family of rotating automata. Similar
arguments hold for simulation of ∩2dfa or ∪2dfa by a sdfa.

5. Proven in [22] for sdfas. Each component of the p2dfa M ′ = (L,R, F ) simulates
one traversal of the sdfaM = (qs, δ, qa). In this way, the i-th left (right) component
of the p2dfa ends in the same state as a left (right) traversal of the sdfa started
in the i-th state. F contains all tuples such that there exists some states q1, . . . , qk
such that the left component corresponding to qa equals to q1, the right component
corresponding to q1 equals to q2, the left component corresponding to q2 equals
to q3, etc., and the right component corresponding to qn equals to qa. Since both
L and R consists of k components, M ′ consists of 2k components. The proof for
rdfas is analogous. �

3.3. The Core of the Hardness Propagation

We use two basic tools for the construction of inputs that are hard for parallel au-
tomata: the confusing and the generic strings. In this section, we present these tools
and use them to prove the hardness propagation lemmas.

3.3.1. Confusing Strings

Let M = (L,R) be a ∩2dfa and let L a language over alphabet Σ. We say a string
y ∈ Σ∗ confuses M on L if y ∈ L but some component hangs on it or if y /∈ L but every
component treats it identically to some word from L:

y ∈ L and (∃A ∈ L ∪R)
(
A(y) = ⊥

)
or

y 6∈ L and (∀A ∈ L ∪R)(∃ỹ ∈ L)
(
A(y) = A(ỹ)

) (2)

If some y confuses M on L, then M does not solve L. Note, though, that (2) is indepen-
dent of the selection of final states in the components of M . Thus, if F(M) is the class of
∩2dfas that may differ from M only in the selection of final states, then a y that confuses
M on L confuses every M ′ ∈ F(M), too, and thus no M ′ ∈ F(M) solves L, either. The
converse is also true.

Lemma 3.2. Let M = (L,R) be a ∩2dfa and L a language. Then, there exists a con-
fusing string for M on L iff no member of F(M) solves L.

Proof. [⇒] Suppose some y confuses M on L. Fix any M ′ = (L′,R′) ∈ F(M). Since
(2) is independent of the choice of final states, y confuses M ′ on L, too. If y ∈ L: By (2),
some A ∈ L′ ∪R′ hangs on y. So, M ′ rejects y, and thus fails. If y 6∈ L: If M ′ accepts
y, it fails. If it rejects y, then some A ∈ L′ ∪ R′ does not accept y. Consider the ỹ

9



guaranteed for this A by (2). Since A(ỹ) = A(y), we know ỹ is also not accepted by A.
Hence, M ′ rejects ỹ ∈ L, and fails again.

[⇐] Suppose no string confuses M on L. Then, no component hangs on a positive
instance; and every negative instance is ‘noticed’ by some component, in the sense that
the component treats it differently than all positive instances:

(∀y ∈ L)(∀A ∈ L ∪R)
(
A(y) 6= ⊥

)
and

(∀y 6∈ L)(∃A ∈ L ∪R)(∀ỹ ∈ L)
(
A(y) 6= A(ỹ)

)
.

(3)

This allows us to find an M ′ ∈ F(M) that solves L, as follows. We start with all states
of all components of M unmarked. Then we iterate over all y 6∈ L. For each of them, we
pick an A as guaranteed by (3) and, if the result A(y) is a state, we mark it. When this
(possibly infinite) iteration is over, we make all marked states nonfinal and all unmarked
states final. The resulting ∩2dfa is our M ′.

To see why M ′ solves L, consider any string y. If y 6∈ L: Then our method examined
y, picked an A, and ensured A(y) is either ⊥ or a nonfinal state. So, this A does not
accept y. Therefore, M ′ rejects y. If y ∈ L: Towards a contradiction, suppose M ′ rejects
y. Then some component A∗ does not accept y. By (3), A∗(y) 6= ⊥. Hence, A∗(y) is a
state, call it q∗, and is nonfinal. Thus, at some point, our method marked q∗. Let ŷ 6∈ L
be the string examined at that point. Then, the selected A was A∗ and A(ŷ) was q∗,
and thus no ỹ ∈ L had A∗(ỹ) = q∗ by (3). But this contradicts the fact that y ∈ L and
A∗(y) = q∗. �

Note that Lemma 3.2 is valid also for the empty ∩2dfa M = (∅, ∅). In this case,
M solves Σ∗, since every word is accepted by all components of M . The class F(M)
contains only M . If L 6= Σ∗, any word y /∈ L confuses M on L, since every component
of M (vacuously, since there is no such component) treats it identically to some word in
L. Conversely, if some y confuses M on L, y /∈ L so L 6= Σ∗.

Confusing strings can be used to prove that a certain language is hard for ∩2dfas. At
first we use this technique to propagate hardness from 1d to ∩ld.

Lemma 3.3. If no 1dfa with at most m states can solve L, then no ∩ldfa with at most
m states per component can solve

∨
L. Similarly, no such ∩ldfa can solve

⊕
L.

Proof. Suppose no m-state 1dfa can solve L. By induction on k, we prove the stronger
claim that every ∩ldfa with k components, each having at most m states, is confused
on
∨
L by some well-formed string y, i. e., by some y ∈ #(Σ∗#)∗. The proof for

⊕
L is

identical.
If k = 0: fix any such ∩ldfaM = (L, ∅) = (∅, ∅). By definition, # 6∈

∨
L. Furthermore,

# confuses M on
∨
L, because all components of M (vacuously, since L = ∅) treat it

identically to some word in
∨
L. Since # is well-formed, the claim holds.

If k ≥ 1: fix any such ∩ldfa M = (L, ∅). Pick any D ∈ L and remove it from M
to get M1 = (L1, ∅) := (L − {D}, ∅). By the inductive hypothesis, some well-formed y
confuses M1 on

∨
L.

Case 1: y ∈
∨
L. Then some A ∈ L1 hangs on y. Since A ∈ L, too, y confuses M as

well, so the inductive step is complete.
Case 2: y 6∈

∨
L. Then every A ∈ L1 treats y identically to a positive instance:

(∀A ∈ L− {D})(∃ỹ ∈
∨
L)
(
A(y) = A(ỹ)

)
. (4)

10



Now we define a single-component ∩ldfa M2 = ({D′}, ∅). If D hangs on y (i. e.,
D(y) = ⊥), we define D′ to be a single-state automaton that hangs immediately. Oth-
erwise, D′ is derived from D by changing its initial state to D(y). In any case, it holds
that D′(z) = D(yz) for any non-empty word z.

Since D′ has at most m states, it does not solve L due to the assumption of the
lemma and no member of F(M2) solves L neither. So, by Lemma 3.2, some x confuses
M2 on L. We claim that yx# confuses M on

∨
L. Since yx# is well-formed, the induction

is again complete. To prove the confusion, we examine two cases:
Case 2a: x ∈ L. Then yx# ∈

∨
L, since y is well-formed and x ∈ L. And D′ hangs on

x (since x is confusing for M2 and D′ is the only component), thus D(yx#) = D′(x#) = ⊥.
So, component D of M hangs on yx# ∈

∨
L. So, yx# confuses M on

∨
L.

Case 2b: x 6∈ L. Then yx# 6∈
∨
L, because y is well-formed and not in

∨
L, and x

does not contain #. And, since x is confusing for M2, D′ treats it identically to some
x̃ ∈ L: D′(x) = D′(x̃). Then, each component of M treats yx# identically to a positive
instance of

∨
L:

• D treats yx# as yx̃# : D(yx̃#) = D′(x̃#) = D′(x#) = D(yx#). We know that
yx̃# ∈

∨
L, because y is well-formed and x̃ ∈ L.

• each A 6= D treats yx# as ỹDx#, where ỹD is the string guaranteed for A by (4):
A(ỹDx#) = A(yx#). And we know ỹDx# ∈

∨
L, since ỹD ∈

∨
L and x does not

contain #.
Overall, yx# is again a well-formed confusing string for M on

∨
L, as required. �

Corollary 3.4. If L /∈ 1d, then
∨
L /∈ ∩ld and

⊕
L /∈ ∩ld.

In fact, Lemma 3.3 is stronger than Corollary 3.4, since it states that even an arbi-
trarily high number of components cannot help solve L if the components are small.

Next, we prove a hardness propagation from ∩ld to ∩2d.

Lemma 3.5. Let m, k ≥ 1. If L1 has no ∩ldfa with at most k components, each having
at most m states, and L2 has no ∩rdfa with at most k components, each having at most
m states, then L1 ∨L2 has no ∩2dfa with at most k components, each having at most m
states. Similarly, there is no such ∩2dfa for L1 ⊕ L2, neither.

Proof. Let M = (L,R) be a ∩2dfa with at most k components, each having at most
m states; we show that M does not accept L1 ∨ L2. By contradiction, assume that M
accepts L1∨L2. Let M1 := (L′, ∅) and M2 := (∅,R′) be the ∩2dfas derived from the two
‘sides’ of M after changing the initial state of each A ∈ L∪R to A(#). Note that we can
assume that A(#) 6= ⊥: otherwise, A hangs on every well-formed word, hence M accepts
the empty language. This implies that both L1 and L2 are empty, hence they can be
accepted by a ∩ldfa (a ∩rdfa) with 1 component containing 1 state; a contradiction.

By the lemma’s assumption, no member of F(M1) solves L1 and no member of F(M2)
solves L2. So, by Lemma 3.2, some y1 confuses M1 on L1 and some y2 confuses M2 on
L2. We claim that #y1#y2# confuses M on L1 ∨ L2 and thus M fails.

Case 1: y1 ∈ L1 or y2 ∈ L2. Assume y1 ∈ L1 (if y2 ∈ L2, we work similarly).
Then #y1#y2# ∈ L1 ∨ L2 and some A′ ∈ L′ hangs on y1. The corresponding A ∈ L has
A(#y1#y2#) = A′(y1#y2#) = ⊥. So, #y1#y2# confuses M on L1 ∨ L2.

Case 2: y1 6∈ L1 and y2 6∈ L2. Then #y1#y2# 6∈ L1 ∨ L2, each component of M1

treats y1 identically to a positive instance of L1, and each component of M2 treats y2
11
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Figure 4: lv and lm.

identically to a positive instance of L2:

(∀A′ ∈ L′)(∃ỹ1 ∈ L1)
(
A′(y1) = A′(ỹ1)

)
, (5)

(∀A′ ∈ R′)(∃ỹ2 ∈ L2)
(
A′(y2) = A′(ỹ2)

)
. (6)

Every A ∈ L treats #y1#y2# as #ỹ1#y2# ∈ L1 ∨ L2 (ỹ1 as guaranteed by (5)), and every
A ∈ R treats #y1#y2# as #y1#ỹ2# ∈ L1∨L2 (ỹ2 as guaranteed by (6)). Therefore, #y1#y2#
confuses M on L1 ∨ L2, again.

The proof for ⊕ is analogous. It is necessary, however, to split Case 1 into two
sub-cases:

Case 1a: either y1 ∈ L1 but y2 /∈ L2, or y2 ∈ L2 but y1 /∈ L1. This case is completely
analogous to Case 1 of the proof for ∨.

Case 1b: both y1 ∈ L1 and y2 ∈ L2. Since L2 cannot be accepted by a ∩rdfa with
m ≥ 1 states, it is nontrivial, i. e., there exists some ỹ2 /∈ L2 that does not contain #.
Hence #y1#ỹ2# ∈ L1⊕L2 and, by similar arguments as in Case 1 for ∨, #y1#ỹ2# confuses
M . �

Corollary 3.6. If L /∈ ∩ld, then L ∨ LR /∈ ∩2d and L ⊕ LR /∈ ∩2d.

3.3.2. Generic Strings

Generic strings, introduced in [22], are a powerful tool for proving lower bounds for
the size complexity of rotating and sweeping automata. After describing the idea of
generic strings, we use it to propagate hardness from ∩ld to rd and from ∩2d to sd.

Let A be a 1dfa over alphabet Σ and states Q, and y, z ∈ Σ∗. The left views of A
on y is the set of states reached on the right boundary of y by left computations of A:

lvA(y) := {q ∈ Q | (∃p ∈ Q)[lcompA,p(y) results in q]}.

The (left) mapping of A on y and z is the partial function

lmA(y, z) : lvA(y)→ Q

which, for every q ∈ lvA(y), is defined only if lcompA,q(z) does not hang and, if so,
returns the state that this computation results in. (See Figure 4.)

Fact 3.7. Function lmA(y, z) is a partial surjection from the set lvA(y) to lvA(yz).
12



Fact 3.8. For all A, y, z as above: |lvA(y)| ≥ |lvA(yz)|.

Fact 3.9. For all A, y, z as above: lvA(yz) ⊆ lvA(z).

In the following, we are going to prove that if there is no small ∩ldfa solving L, then
there is no small pldfa solving

∧
L. Using this result, we can easily obtain the hardness

propagation from ∩ldfas to rdfas, since, by Lemma 3.1, pldfas are at least as strong
as rdfas.

Consider any pldfa M = (L, ∅, F ) and any language L. A string y is called l-generic
(for M) over L if it is in L and, for any component A ∈ L, the size of lvA(y) cannot be
decreased by replacing y by any right-extension yz ∈ L of y:

y ∈ L and (∀yz ∈ L)(∀A ∈ L)
(
|lvA(y)| = |lvA(yz)|

)
(7)

Note that we can use equality in (7) by Fact 3.8.
It is easy to see that l-generic strings always exist: consider any y ∈ L such that∑

A∈L

|lvA(y)|

is as small as possible. For any yz ∈ L, Fact 3.8 ensures that no term of the sum is
increased. The definition of the string y implies that the sum cannot be decreased, thus
y is l-generic.

The next lemma shows an important property of l-generic strings. Intuitively, it
shows that the behavior of the parallel automaton is very limited after reading a generic
string. Later we exploit this limitation to build a small ∩ldfa for L from a small pldfa
accepting

∧
L.

Lemma 3.10. Suppose a pldfa M = (L, ∅, F ) solves
∧
L and y is l-generic for M

over
∧
L. Then, x ∈ L iff lmA(y, xy) is total (i. e., defined for every q ∈ lvA(y)) and

injective for all A ∈ L.

Proof. [⇒] Let x ∈ L. Then yxy ∈
∧
L, because y ∈

∧
L and x ∈ L. So, yxy is a

right-extension of y inside
∧
L. Since y is l-generic, |lvA(y)| = |lvA(yxy)|, for all A ∈ L.

Hence, each partial surjection lmA(y, xy) has domain and codomain of the same size.
This is possible only if the function is a bijection, i. e., it is both total and injective.

[⇐] Suppose that, for each A ∈ L, the partial surjection lmA(y, xy) is total and
injective. Then it bijects the set lvA(y) into the set lvA(yxy), which is actually a subset
of lvA(y) (Fact 3.9). This is possible only if this subset is the set itself. Hence, lmA(y, xy)
is a permutation πA of lvA(y).

Now pick k ≥ 1 such that πkA is an identity for each A. It is always possible to
find such k; for example, it is sufficient to choose k = m!, where m is the maximal
number of states over all components of L. Let z := y(xy)k. Since lmA

(
y, (xy)k

)
equals

lmA(y, xy)k = πkA, it is the identity on lvA(y). This means that, reading through z, the
left computations of A do not notice the suffix (xy)k to the right of the prefix y. So, no
A can distinguish between y and z: it either hangs on both or results in the same state.

Overall, M does not distinguish between y and z, neither: it either accepts both
or rejects both. But M accepts y (because y ∈

∧
L), so it accepts z. Hence, every

#-delimited block of z is in L. In particular, x ∈ L. �
13



If M = (L,R, F ) is a p2dfa, we can also work symmetrically with right computations
and left-extensions: we can define rvA(y) and rmA(z, y) for A ∈ R, derive Facts 3.8, 3.9
for rvA(y) and rvA(zy), and define r-generic strings. In particular, rvA(y) is the set of
states of A reached on the left boundary of y after reading it backwards and rmA(z, y) is
the function that maps states of rvA(y) into the states reached after reading z backwards.
We can then construct strings that are simultaneously l- and r-generic; we call such
strings generic. Indeed, if yL# is l-generic over

∧
L and #yR is r-generic over

∧
L, then

yL#yR is a generic string over
∧
L.

Generic strings can be used to extend Lemma 3.10 for p2dfas. The following lemma
can be proved by a straightforward extension of the proof of Lemma 3.10:

Lemma 3.11. Suppose a p2dfa M = (L,R, F ) solves
∧
L and y is generic for M

over
∧
L. Then, x ∈ L iff lmA(y, xy) is total (i. e., defined for every q ∈ lvA(y))

and injective for all A ∈ L and rmA(yx, y) is total (i. e., defined for every q ∈ rvA(y))
and injective for all A ∈ R.

Now we can use the properties of generic strings to prove hardness propagation from
∩ld to rd. The following lemma proves a stronger result of hardness propagation from
∩ldfas to pldfas. The actual hardness propagation to rd is stated as the following
corollary; we can do this due to Lemma 3.1(5).

Lemma 3.12. If L has no ∩ldfa with at most k ·
(
m
2

)
components of at most

(
m
2

)
states

each, then
∧
L has no pldfa with at most k components of at most m states each.

Proof. Let M = (L, ∅, F ) be a pldfa solving
∧
L with at most k components of at most

m states each. Let y be l-generic for M over
∧
L. We build a ∩ldfa M ′ solving L.

By Lemma 3.10, an arbitrary x is in L iff lmA(y, xy) is total and injective for all
A ∈ L; i. e., iff for all A ∈ L and every two distinct p, q ∈ lvA(y),

lcompA,p(xy) and lcompA,q(xy) do not hang and result in different states. (8)

So, checking x ∈ L reduces to checking (8) for each A and two-set of states of lvA(y).
The components of M ′ perform exactly these checks. To describe them, let us first define
the following relation on the states of an A ∈ L:

r �A s ⇐⇒ lcompA,r(y) and lcompA,s(y) do not hang

and result in different states,

and restate our checks as follows: for all A ∈ L and all distinct p, q ∈ lvA(y),

lcompA,p(x) and lcompA,q(x) do not hang
and result in states that relate under �A.

(8′)

Now, building 1dfas to perform these checks is easy. For each A ∈ L and p, q ∈ lvA(y),
we use a separate component, i. e., a 1dfa having exactly one state for each two-set
of states of A. The initial state is {p, q}. At each step, the automaton applies A’s
transition function on the current symbol and each state in the current two-set. If either
application returns no value or both return the same value, it hangs; otherwise, it moves
to the resulting two-set. A state {r, s} is final iff r �A s.

Since for every A ∈ L we constructed at most
(
m
2

)
components of M ′, each with at

most
(
m
2

)
states, the proof is complete. �
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Figure 6: Closure properties: ‘+’ means closure; ‘−’ means non-closure; ‘?’ means we do not know.

Corollary 3.13. If L /∈ ∩ld, then
∧
L /∈ rd.

The statements of the propagation of hardness from ∩2d to sd are similar to Lemma 3.12
and Corollary 3.13. The proof is very similar to the case of rotating automata; rcomp
and rv are used similarly as lcomp and lv.

Lemma 3.14. If L has no ∩2dfa with at most k ·
(
m
2

)
components of at most

(
m
2

)
states

each, then
∧
L has no p2dfa with at most k components of at most m states each.

Corollary 3.15. If L /∈ ∩2d, then
∧
L /∈ sd.

To conclude this section, we provide an overview of the presented hardness propaga-
tion lemmas in Figure 5.

4. Filling the Map

We now explore the relationships between complexity classes introduced so far, aiming
to present a complete map of relationships between all introduced classes except those
of two-way automata. To fill that map, it is essential to know the behavior of our
classes with respect to several operators. So, we first prove the closures mentioned in
Figure 6. They also imply that some classes are identical, simplifying the map of the
classes significantly. Afterwards, we prove the separations between the classes and, in
Section 4.4, we conclude with the non-closures of Figure 6.

The analysis of the relationship between various complexity classes can be simplified
by the following observations:
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Observation 4.1. Let C1, C2 be any classes of language families. It holds that:

1. re-(re-C1) = C1

2. co-(co-C1) = C1

3. If C1 ⊆ C2, then re-C1 ⊆ re-C2.

4. If C1 ⊆ C2, then co-C1 ⊆ co-C2.

5. If C1 6⊇ C2, then re-C1 6⊇ re-C2.

6. If C1 6⊇ C2, then co-C1 6⊇ co-C2.

7. If C1 ⊆ C2 6⊇ C3 ⊆ C4, then C1 6⊇ C4.

Observation 4.2. The following equations hold both for languages and for language
families L1, L2, L:

(L1 ∧ L2)R = LR
2 ∧ LR

1 (
∧
L)R =

∧
(LR)

(L1 ∨ L2)R = LR
2 ∨ LR

1 (
∨
L)R =

∨
(LR)

(L1 ⊕ L2)R = LR
2 ⊕ LR

1 (
⊕
L)R =

⊕
(LR)

(L)R = (LR)

The situation for complementation is similar but a little more complicated. For
example, the language (L1 ∧ L2) contains all words from the language L1 ∨ L2, plus
all words that do not consists of #-delimited blocks, i. e., not from the language R :=
#Σ∗#Σ∗#. We call such words not well-formed. Hence, it holds that (L1 ∧ L2) = (L1 ∨
L2) ∪ R. Similarly, L1 ∨ L2 = (L1 ∧ L2) ∩ R. Nevertheless, both R and R are very
simple regular languages, and union (intersection) with them usually does not have any
significant impact on the size complexity:

Lemma 4.3. Let L,L1, and L2 be language families and let C be a class of language
families closed under union and intersection with any family from 1d. It holds that:

(L1 ∧ L2) ∈ C⇔ L1 ∨ L2 ∈ C (
∧
L) ∈ C⇔

∨
L ∈ C

(L1 ∨ L2) ∈ C⇔ L1 ∧ L2 ∈ C (
∨
L) ∈ C⇔

∧
L ∈ C

(L1 ⊕ L2) ∈ C⇔ L1 ⊕ L2 ∈ C

Proof. To prove the first claim, let

L1 = (L1,n)n≥1, L2 = (L2,n)n≥1,

such that L1,n, L2,n are languages over Σn. As explained above, it holds that

(L1 ∧ L2) = (L1 ∨ L2) ∪R; L1 ∨ L2 = (L1 ∧ L2) ∩R

where R := (#Σ∗n#Σ
∗
n#)n≥1. Easily, R,R ∈ 1d, hence the first claim follows. The proofs

of the remaining claims are analogous, with the exception of using the well-formed lan-
guage family R defined as R := (#(Σ∗n#)∗)n≥1 for the conjunctive iteration and disjunc-
tive iteration.
�
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All state complexity classes introduced so far are closed under the intersection with 1d.
Indeed, given a 1dfa M1 accepting language L1 and any Xfa M2 accepting language L2

such that both M1 and M2 have at most k states, we can use the well-known Cartesian-
product construction to construct a Xfa accepting L1 ∩ L2 with O(k2) states.

Now we present lemmas and observations that we use in filling Figure 6. The following
observation is a straightforward corollary of Observation 4.2:

Observation 4.4. Let O be any operator used in Figure 6, and C any class of language
families. Then re-C is closed under O iff C is closed under O.

Lemma 4.5. Let C be any class used in Figure 6. If C is closed under ⊕ or
⊕

, then C
is closed under complement.

Proof. Fix a class C of language families solvable by small families of Xfas, where X
represents any automata type corresponding to the classes in Figure 6, and assume that
C is closed under

⊕
. Let L = (Ln)n≥1 ∈ C. The language family

⊕
L is solvable by a

family M = (Mn)n≥1 of small Xfas. We need to prove that L ∈ C, i. e., to find a small
family M′ = (M ′n)n≥1 of Xfas solving (Ln)n≥1.

Now we discuss how to construct an automaton M ′n solving Ln from an automaton
Mn solving

⊕
Ln. The case of Ln = ∅ is trivial, so assume that Ln is not empty and

fix some w ∈ Ln. For any word u it holds that u /∈ Ln iff #w#u# ∈
⊕
Ln. Hence, it is

sufficient that M ′n, given an input u, simulates Mn on input #w#u#. I. e., M ′n simulates
Mn on every symbol of the input word except for the end-markers. On `, M ′n simulates
the behavior of M on `#w# and on a, M ′n simulates M on #a. Such a simulation is
possible for all considered types of automata by adding only a constant number of new
states (in case of parallel automata, a constant number of new states in each component).
Hence, this construction transforms k-state automata into O(k) state automata, and thus
the resulting automata family M′ is small.

The proof for ⊕ is analogous; it is sufficient to consider the family L ⊕ L instead of⊕
L. �

Lemma 4.6. Let C be any class used in Figure 6. Class co-C is closed under · (respec-
tively, ·R, ∧, ∨, ⊕,

∧
,
∨

,
⊕

) iff C is closed under · (respectively, ·R, ∨, ∧, ⊕,
∨

,
∧

,⊕
).

Proof. The claim for the complement is trivial. The claim for ·R follows directly from
Observation 4.2. The claim for ∧, ∨,

∧
, and

∨
follows from Lemma 4.3, and the fact

that all classes in Figure 6 are closed under union and intersection with any language
family from 1d, which can be verified by straightforward constructions.

If C is closed under ⊕ (respectively,
⊕

), Lemma 4.5 implies that C = co-C. Hence
co-C is also closed under ⊕ (respectively,

⊕
). The same argument can be used to show

that if co-C is closed under ⊕ (
⊕

), so is C. �

We omit some of the introduced complexity classes from Figure 6, namely r∆, rn,
∪rd, ∩ld, ∩rd, and ∩2d. The closure properties of all these classes follow from the closure
properties presented in Figure 6: as we show later, r∆ = s∆ and rn = sn. Furthermore,
the closure properties of any class co-C and re-C are related to the closure properties
of C, as described by Observation 4.4 and Lemma 4.6 By Lemma 3.1(2,3), the closure
properties of the omitted classes for parallel automata follow.
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4.1. Closures

All of the closures in Figure 6 either can be proven by straightforward constructions
or were proven before. Since none of these constructions is hard, we describe only their
main ideas.

Complement. Any self-verifying class is trivially closed under complement. The closure
of 2d under complement was proven in [21] and (an improved construction) in [5]. To
prove the closure of 1d under complement, it is sufficient to make all non-final states
final and vice versa.

Any rotating or sweeping automaton can be modified so as to avoid infinite runs: any
computation of a rdfa (sdfa) with k states consists of at most k (left-to-right) traversals.
Hence, the modified automaton can count the number of left-to-right traversals and reject
if the upper limit is exceeded. Since a k-state automaton is transformed into an O(k2)-
state one, a small family of automata is transformed into a small family. The closure of
rd and sd under complement follows by straightforward negation of the answer of the
corresponding automata that avoid infinite runs.

Reverse. Any k-state two-way or sweeping automaton accepting language L can be trans-
formed into a (k+1)-state automaton of the same kind accepting the language LR: at first
the new automaton moves its head to the right end-marker, and then simulates the orig-
inal automaton with swapped directions of moves. For a two-sided parallel automaton
M = (L,R, F ), it is enough to swap L with R.

The closure of 1n under reverse follows from the well-known argument of [19, Theorem
12] for the closure of the class of regular languages under reverse. Here, the core idea
is that a 1nfa “guesses” the computation of the simulated automaton backwards and,
in every step, verifies if the guess is correct. For the variant of 1nfas without end-
markers, it has been proven in [6, 10] that any 1nfa with k states accepting L can be
converted into a 1nfa with k+ 1 states accepting LR and that this bound is tight. In our
definition of one-way automata (i. e., the variant with end-markers, which is equivalent
to the definition used in [19]), any 1nfa can be reversed with no increase in the number
of states.

The closure of 1∆ under reverse follows from the closure of 1n and Observation 4.2.

Parallel Automata. Parallel union automata are closed under both ∨ and
∨

: if M1 and
M2 are parallel union automata for languages L1, L2, we can modify all components
of M1 to consider only the left #-delimited block and all components of M2 to consider
only the right #-delimited block. Such transformation can be done by adding only a
constant number of states to each component of M1 and M2. Afterwards, the union
of all components of M1 and M2 forms the automaton for L1 ∨ L2. The size of the
newly-formed automaton is linear in the sizes of M1 and M2. For

∨
L1, it is sufficient

to modify every component of M1 to work on all #-delimited blocks separately and exit
into the final state iff the original component exited into the final state on at least one
block. Such a transformation adds only a constant number of states to each component
of M1, hence the size of the automaton for

∨
L1 is linear in the size of M1.

Proving that ∪ld is closed under ∧ is only slightly more involved. Let M1 = (L1, ∅)
and M2 = (L2, ∅) be ∪ldfas with at most k states accepting languages L1, L2. We
construct a ∪ldfa M ′ accepting language L1 ∧ L2 with at most k2 components, each
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with O(k) states: for every pair A1 ∈ L1, A2 ∈ L2, there is one component B of M ′

that simulates A1 on the first #-delimited block of input word and A2 on the second
one. Component B exits into a final state iff both A1 and A2 do. It is easy to see that
B can be constructed with O(k) states. Furthermore, for every x ∈ L1 and y ∈ L2,
some component of M ′ accepts #x#y#: the component simulating A1 ∈ L1 that accepts
x and A2 ∈ L2 that accepts y does. Conversely, assume that some component B of M ′

accepts #x#y#. By definition of M ′, component B simulates some A1 ∈ L1 on x and
some A2 ∈ L2 on y. Since B accepts only when both simulated components accept, we
have that x ∈ L1 and y ∈ L2, thus, the construction is correct.

Remaining Closure Properties. It remains to show the closures of rows 3–8, columns
A–C,E,G–L of Figure 6, i. e., the closure properties of one-way, rotating, sweeping and
two-way automata under ∧, ∨, ⊕,

∧
,
∨

,
⊕

. All these properties can be proved using
straightforward constructions based on the same idea: the newly constructed automaton
simulates the original automaton/automata on each #-delimited block of the input word
separately and decides according to the results of this simulation. To do so, the new
automaton needs enough head freedom.

Both one-way and two-way automata can simulate automata of the same type on each
#-delimited block of the input word, regardless of the number of such blocks. Rotating
and sweeping automata, however, are not able to do so for inputs consisting of arbitrarily
many blocks, since they cannot “remember” the position of the processed block and
return to it in another traversal. Nevertheless, if the input consists of two blocks only,
they are able to simulate another automaton on the left (or right) block only. Hence,
rotating and sweeping automata have sufficient head freedom for proving closures under
∧, ∨, and ⊕ only, while one-way and two-way automata have sufficient freedom also for∧

,
∨

, and
⊕

.
The ability to simulate an automaton of the same kind on each #-delimited block

is enough to prove the closures in rows 3,6 and columns A–C,E,G–L in Figure 6, i. e.,
the closure properties related to ∧ and

∧
. The same technique can be applied in a

straightforward way for properties related to ∨ and
∨

if the simulated automaton never
reaches an infinite loop. Infinite loops can be always avoided with polynomial blowup in
size complexity for one-way automata (trivially), rotating and sweeping automata (as we
have discussed in the paragraph about the complement, moreover, the argument can be
extended for the case of nondeterministic automata as well, because a shortest accepting
computation, if there exist some, consists of at most k left-to-right traversals), and for
two-way deterministic automata [21]. In this way, it is possible to obtain a proof for the
closures in rows 4,7 and columns A–C,E,G–J in Figure 6. Hence, only the case of 2n
and 2∆ remains to be considered: a 2nfa accepting

∨
L can nondeterministically choose

one block of the input word and simulate the corresponding 2nfa accepting L. Here, a
possible infinite loop of the simulated machine does not pose a problem. A two-way self-
verifying automaton accepting

∨
L can either verify that the input word is in the accepted

language in the same way as 2nfa, or verify that the word is not in the language in the
same way as a 2nfa for

∧
L. An analogous construction works also for L1 ∨ L2.

To use our technique for closure properties under ⊕ and
⊕

, the new automaton
needs the ability to negate the answer of the simulated automaton. This is trivial for
deterministic classes and can be done easily for all classes closed under complement: the
new automaton simulates both the original automaton and the complemented original
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automaton on every block. Furthermore, the possibility of infinite loops does not pose
a problem for two-way self-verifying automata, since the new automaton can, for ev-
ery block of the input, nondeterministically guess if this block is in the corresponding
language and verify this guess by running the simulated machine. Hence, the closure
properties in rows 5,8 and columns A–C,E,G–L are correct, too.

4.2. Equalities

Now we are ready to augment the map in Figure 3 with classes co-X and re-X for each
class X and draw a new map that takes into account equalities between these classes.
To do so, we use the closures in Figure 6: 1d = co-1d, 1∆ = co-1∆ = re-1∆, 1n = re-1n,
rd = co-rd, sd = co-sd = re-sd, s∆ = co-s∆ = re-s∆, sn = re-sn, 2d = co-2d = re-2d,
2∆ = co-2∆ = re-2∆, and 2n = re-2n. Furthermore, we use the following lemma to show
that rn = sn and hence also r∆ = s∆.

Lemma 4.7. Every k-state snfa has an equivalent O(k3)-state rnfa.

Proof. Let M = (qa, δ, qs) be a snfa over a set of k states Q solving the language L
over the alphabet Σ. We construct an O(k3)-state rnfa M ′ solving L in the following
way: every left-to-right traversal of M is simulated by M ′ in a straightforward way. To
simulate a right-to-left traversal of M , the automaton M ′ guesses the computation of
M backwards, in a similar way as in the proof that 1n is closed under reverse [19]. In
doing so, M ′ needs to remember the starting state of the right-to-left traversal (which
is checked at the end of the traversal simulation), and the guessed last state of the
right-to-left traversal (from which the next left-to-right traversal is started).

More formally, M ′ = (qs, δ
′, qa) is an automaton over set of states

Q′ = Q ∪ (Q×Q×Q)

such that δ′ is defined as follows:2

δ′(q, a) = δ(q, a) ∀q ∈ Q,∀a ∈ {`} ∪Σ
δ′(q,a) 3 qa ∀q ∈ Q, δ(q,a) 3 qa
δ′(q,a) 3 (q, q′, q′) ∀q, q′ ∈ Q

δ′((q, p, q′), a) 3 (q, p′, q′) ∀q, p, q′, p′ ∈ Q,∀a ∈ Σ, δ(p′, a) 3 p
δ′((q, p, q′),a) = δ(q′,`) ∀q, p, q′ ∈ Q, δ(q,a) 3 p
δ′((q, p, q′),a) = ∅ otherwise

States from Q are used for simulation of left-to-right traversals. At the end of the traver-
sal, the current state is saved as the first component of the state (q, q′, q′), and the
state at the end of the right-to-left traversal q′ is guessed nondeterministically. Af-
terwards, the computation of M is guessed nondeterministically backwards. Hence,
lcompM ′,(q,q′,q′)(z) can exit into (q, p, q′) iff rcompM,p(z) can exit into q′. So, M ′

can avoid hanging at a iff M could traverse the input word from right to left starting at
state q, continuing with p, and exiting into q′. In that case, M ′ simulates the movement
of M on ` and continues with the simulation of a left-to-right traversal. �

2More precisely, we define δ′(q, a) as the set containing only those elements required by the definition.
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r∆=co-r∆=re-r∆=s∆=co-s∆=re-s∆

1n=re-1n

co-1n

rn=re-rn=sn=re-sn 2n=re-2n

co-rn=co-sn co-2n

re-1d re-rd

sd=co-sd=re-sd1d=co-1d rd=co-rd 2d=co-2d=re-2d

1∆=co-1∆=re-1∆ 2∆=co-2∆=re-2∆

Figure 7: Size complexity classes. An arrow C→ C′ means that C ⊆ C′.

rd

∪2d

∩2d

re-rd

∩ld

∪rd

∩rd

∪ld
1d

re-1d

1∆ s∆

sn

co-sn

sd

1n

co-1n

Figure 8: Zoom to the parallel automata classes. An arrow C→ C′ means that C ⊆ C′. Note that all the
co- and re- classes corresponding to parallel automata are already included in the map by Lemma 3.1.

The combination of the results presented in Figures 6 and 3, together with Lemma 4.7,
yields the map of the complexity classes depicted in Figure 7. After adding the classes
of union and intersection parallel automata to the figure, we obtain Figure 8; there we
have omitted the classes of two-way automata.

The correctness of the inclusions between one-way deterministic, parallel, and rotating
automata in Figure 8 follows from Lemma 3.1 and from Observation 4.1. The inclusions
rd ∪ re-rd ⊆ sd ⊆ 2d are very easy to verify. Since 1d is closed under complement and
every 1dfa is a special case of a 1nfa, we have that 1d ⊆ 1∆. Furthermore, ∪2d ⊆ 1n: any
∪2dfa can be simulated by a 1nfa that nondeterministically selects one of the components
of the parallel automaton and simulates it. This gives also ∩2d ⊆ co-1n, where we verify
if one of the components rejects. Because every 1dfa is also a 1nfa and every 1nfa can
be reversed without any increase of the size complexity, this construction transforms a
small family of ∪2dfas into a small family of 1nfas. The remaining relationships follows
from Observation 4.1, because 1∆ is closed under complement.
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re-1d ∪ld ∪rd ∩ld ∩rd ∪2d rd re-rd ∩2d 1∆ 1n co-1n sd s∆ sn co-sn

1d I ( I ( I ( ( I ( ( ( ( ( ( ( (
re-1d I ( I ( ( I ( ( ( ( ( ( ( ( (
∪ld I I I ( ( I I I ( I ( ( ( (
∪rd I I ( I ( I I ( I ( ( ( (
∩ld I I ( I ( I I ( ( ( ( (
∩rd I I ( ( I I ( ( ( ( (
∪2d I I I I ( I ( ( ( (
rd I I I I I ( ( ( (
re-rd I I I I ( ( ( (
∩2d I I ( ( ( ( (
1∆ ( ( I ( ( (
1n I I I ( I

co-1n I I I (
sd ( ( (
s∆ ( (
sn I

Figure 9: Relationship between classes: ‘(’ means that the class represented by the row is strictly
included in the class represented by the column and ‘I’ means that the classes are incomparable.

4.3. Separations

In this section, we separate some of our complexity classes and obtain a complete
map of relationship between introduced classes, as shown in Figure 9. All of the facts
in Figure 9 follow trivially from Figure 10. Hence, our focus is to show that all facts in
Figure 10 are correct.

At first, we observe that all inclusions (marked by ‘+’) in Figure 10 follow by taking
a transitive closure of Figure 8:

Observation 4.8. All symbols ‘+’ in Figure 10 are correct.

Next, we prove all non-inclusions in Figure 10 that are marked by thick black frame
by using the technique of hardness propagation. These non-inclusions are depicted also
in Figure 11.

We apply the hardness propagation on the core language family J = (Jn)n≥1 where

Jn := {αi | α ⊆ [n] and i ∈ α}, (9)

where [n] := {1, . . . , n}. Note that every language Jn consists of words of length two;
the first symbol of every word is a subset of [n] and the second symbol is an element of
[n]. The basic membership properties of J are stated in the following lemma:

Lemma 4.9. J := (Jn)n≥1 is not in 1d but is in re-1d, 1n, co-1n, ∩ld, ∪ld.

Proof. Any 1dfa solving Jn needs at least 2n states: let M be any 1dfa solving Jn.
For each α ⊆ [n], consider the state qα that is reached by Jn after reading `α. For any
α 6= α′, it holds that qα 6= qα′ : if this is not the case, then qα = qα′ for some α 6= α′.

22



1d re-1d ∪ld ∪rd ∩ld ∩rd ∪2d rd re-rd∩2d 1∆ 1n co-1n sd s∆ sn co-sn

1d + − + − + − + + − + + + + + + + +

re-1d − + − + − + + − + + + + + + + + +

∪ld − − + − − − + + − − − + − + + + +

∪rd − − − + − − + − + − − + − + + + +

∩ld − − − − + − − + − + − − + + + + +

∩rd − − − − − + − − + + − − + + + + +

∪2d − − − − − − + − − − − + − + + + +

rd − − − − − − − + − − − − − + + + +

re-rd − − − − − − − − + − − − − + + + +

∩2d − − − − − − − − − + − − + + + + +

1∆ − − − − − − − − − − + + + − + + +

1n − − − − − − − − − − − + − − − + −
co-1n − − − − − − − − − − − − + − − − +

sd − − − − − − − − − − − − − + + + +

s∆ − − − − − − − − − − − − − − + + +

sn − − − − − − − − − − − − − − − + −
co-sn − − − − − − − − − − − − − − − − +

Figure 10: Inclusions between classes: ‘+’ means that the class represented by the row is (maybe non-
strictly) included in the class represented by the column and ‘−’ means that it is not. Symbols ‘−’ with
a thick black frame are the core separations proven by hardness propagation, those with a thick white
frame follow from Observation 4.1(5,6).
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Figure 11: Separations of the complexity classes. An arrow C→ C′ means that C 6⊇ C′.

23



Without loss of generality we can assume that i ∈ α but i /∈ α′ for some i ∈ [n], thus
exactly one of the words αi, α′i is in Jn. But M can not distinguish between these words;
it either accepts both or rejects both, a contradiction to the correctness of M .

On the other hand, Jn can be solved by a 1nfa with n + 2 states (by guessing i at
first and verifying), by a ∪ldfa with n components of 4 states each, and by a ∩ldfa with
n components of 4 states each (both the ∪ldfa and the ∩ldfa use one component for
every possible guess of i). Also, (Jn)R can be solved by a 1dfa with n+ 2 states and Jn
can be solved by a 1nfa with n+ 2 states. �

Now we are ready to prove all results in Figure 11:

Lemma 4.10. All non-inclusions in Figure 10 marked by thick black frame (i. e., those
in Figure 11) are correct.

Proof. • rd 6⊇ re-1d: L :=
∧∨
J is the witness. By Lemma 4.9, J /∈ 1d, so

Corollary 3.4 yields that
∨
J /∈ ∩ld and Corollary 3.13 ensures that L =

∧∨
J /∈

rd. Since J R ∈ 1d (Lemma 4.9),
∨
J R ∈ 1d (A7 of Figure 6), hence A6 of Figure 6

yields that
∧∨
J R ∈ 1d and, by Observation 4.2, L =

∧∨
J ∈ re-1d.

• ∩2d 6⊇ ∪ld: L := (
∨
J ) ∨ (

∨
J )R is the witness. Since J /∈ 1d, we have, by

Corollary 3.4, that
∨
J /∈ ∩ld, and hence, by Corollary 3.6, that L /∈ ∩2d. Since

L = (
∨
J ) ∨ (

∨
J R) (Observation 4.2), J R ∈ 1d ⊆ ∪ld (Lemma 4.9, Figure 8), and

J ∈ ∪ld (Lemma 4.9), D7 and D4 of Figure 6 yields that L ∈ ∪ld.
• sd 6⊇ 1∆: L :=

∧(
(
∨
J ) ∨ (

∨
J )R

)
is the witness. Since (

∨
J ) ∨ (

∨
J )R /∈ ∩2d,

applying Corollary 3.15 yields that L /∈ sd. Since (
∨
J ) ∨ (

∨
J )R ∈ ∪ld ⊆ 1n,

C6 of Figure 6 yields that L ∈ 1n. It remains to show that L ∈ co-1n. Since
1n is closed under union and intersection with any family from 1d, we can use
Lemma 4.9, Lemma 4.3, Observation 4.2, and C2, C3, C6, C7 of Figure 6 to derive

the following: J ∈ 1n,
∧
J ∈ 1n,

∨
J ∈ 1n,

∨
J

R

∈ 1n,
∨
J R ∈ 1n,

∨
J ∧

∨
J R ∈ 1n,

(
∨
J ) ∨ (

∨
J R) ∈ 1n,

∨
(
∨
J ) ∨ (

∨
J R) ∈ 1n, L =

∧
((
∨
J ) ∨ (

∨
J R)) ∈ 1n.

• 1n 6⊇ ∩ld: language family D = (Dn)n≥1, representing the disjointness problem,
defined as

Dn := {αβ | α, β ⊆ [n], α ∩ β = ∅}, (10)

witnesses this separation. (Again, note that Dn consists of words of length 2 only.)
To prove that any 1nfa M solving Dn needs at least 2n states, consider accepting
computations of M on words from the set {αα}, where α ⊆ [n] and α := [n] \ α.
If M has less than 2n states, there exist α1 6= α2 such that M is in the same state
when reading the second symbol of the word α1α1 and of the word α2α2. Without
loss of generality, we may assume that α1 and α2 differ in element x, more precisely
that x ∈ α1 and x /∈ α2. Then M accepts the word α1α2, which is not in Dn, since
x ∈ α1∩α2. Furthermore, it is not difficult to construct a ∩ldfa with n components
of 4 states each that solves Dn: for each i ∈ [n], there is one component that verifies
if i /∈ α or i /∈ β for the input word αβ.

• co-sn 6⊇ 1n: proven in [12].
• s∆ 6⊇ sn: since s∆ is closed under complement and sn is not [12], s∆ 6= sn. Since
s∆ ⊆ sn, the claim follows. �

Applying Observation 4.1(5,6) on the results of Lemma 4.10 yields more non-inclusions:
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Figure 12: Separations of the complexity classes, including the relationships derived by Observation 4.1.
An arrow C → C′ means that C 6⊇ C′. Full arrows are those presented in Figure 11, dashed arrows are
derived by Observation 4.1 and Lemma 3.1.

Observation 4.11. All non-inclusions in Figure 10 marked by thick white frame (i. e.,
those in Figure 12 marked by gray) are correct.

We can now prove the correctness of the whole Figure 10.

Theorem 4.12. All facts in Figure 10 are correct.

Proof. The correctness of all ‘+’ follows from Observation 4.8. We have proven the
correctness of all ‘−’ in thick black frame in Lemma 4.10, and the correctness of all ‘−’
in thick white frame follows from Observation 4.11.

The correctness of all remaining ‘−’ follow from these facts and Observation 4.1(7).
In the context of Figure 10, it is possible to verify that C1 6⊆ C2 (i. e., that the ‘−’ in
row C1 and column C2 is correct) as follows: Consider row C2, follow the row to find
some column C′2 with ‘+’, follow the column to find some row C′1 with ‘−’ in a thick
frame (black or white), and check if the column C1 contains ‘+’. If such C′2, C′1 exist,
Observation 4.1(7) ensures that C1 6⊆ C2. It is straightforward to verify that such C′1, C′2
exist for all ‘−’ without thick frame. �

So far, we have proven a complete characterization of the relationship of all introduced
complexity classes, except of those corresponding to the two-way automata (Figure 9).
It is a long-standing open problem if 2d 6= 2n, but we can at least separate two-way
and sweeping automata: It was proven in [11] that sn 6⊇ 2d. Combining this result with
sd ⊆ s∆ ⊆ sn, 2d ⊆ 2∆ ⊆ 2n, and Observation 4.1(7) implies:

Observation 4.13. sd ( 2d, s∆ ( 2∆, and sn ( 2n.

4.4. Non-closures

Now we prove the correctness of all non-closures of Figure 6.

Reverse and Complement. All non-closures under reverse and complement follow directly
from Theorem 4.12.
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Parity Operators. All non-closures under ⊕ and
⊕

(i. e., in rows 5,8 of Figure 6) follow
from the non-closures under complement. Indeed, Lemma 4.5 implies that any considered
class of finite automata that is not closed under complement is not closed neither under
⊕ nor under

⊕
.

Remaining Non-closures. The remaining properties follows from the previous results:

• F6: by Theorem 4.12, there exists L ∈ ∪2d \ ∩2d. Corollary 3.15 yields that
∧
L /∈ sd,

hence
∧
L /∈ ∪2d.

• D6: by Lemma 4.6 and Lemma 3.1, this is equivalent to proving that ∩ld is not closed
under

∨
. By Theorem 4.12, there exists L ∈ ∩ld \ 1d. Corollary 3.4 yields that∨

L /∈ ∩ld.

• F3: as in D6, it is sufficient to prove that ∩2d is not closed under ∨. By Theorem 4.12,
there exists L ∈ ∩2d \ ∩ld. Since ∩2d is closed under reverse, LR ∈ ∩2d. By
Corollary 3.6, L ∨ LR /∈ ∩2d.

• E6, G6: by Theorem 4.12, there exists L ∈ rd \ ∩ld (respectively, L ∈ sd \ ∩2d). By
Corollary 3.13 (respectively, 3.15), it holds that

∧
L /∈ rd (respectively,

∧
L /∈ sd).

• E7, G7: since rd and sd are closed under complement, the claim follows from E6, G6

and Lemma 4.6.

5. Randomized Models

So far, we have focused on deterministic and nondeterministic finite automata. It is
possible to define also their randomized variants, in a similar way as for Turing machines.
In this section, we relate the complexity classes of randomized finite automata to the non-
randomized classes and provide some related results.

Essentially, a randomized automaton (sometimes called also probabilistic automaton)
is just a nondeterministic automaton that, in each step, instead of applying nondeter-
minism, picks one of the possible choices according to some probability distribution:
Consider a nondeterministic automaton over a set of states Q and alphabet Σ. The
transition function δ of this automaton partially maps Q × (Σ ∪ {`,a}) to the set of
all possible subsets of feasible actions A. The action of a one-way, rotating, or sweep-
ing automaton is completely described by the new state, hence A = Q in this case.
For two-way automata, the action consists of the new state and the movement, hence
A = Q × {−1, 0, 1} for two-way automata. The transition function δ of a randomized
machine totally maps Q × (Σ ∪ {`,a}) to the set of all probability distributions over
A∪{⊥}, i. e., all total functions from A∪{⊥} to the real numbers that obey the axioms
of probability. Hence, on any input word z ∈ Σ∗, the computation of M on z is a proba-
bility distribution over all possible computations. The expected length of a computation
drawn from this distribution is called the expected running time of M on z. This way
of defining a randomized automaton applies to one-way, rotating, sweeping, as well as
two-way automata.

It remains to define which words are accepted by a randomized automaton. There
are several ways of doing that, yielding several different types of randomized automata.
We discuss these types and their respective complexity classes in the following.
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5.1. LasVegas Automata

The most restrictive setting, called LasVegas randomization, is to require zero proba-
bility of error. A LasVegas automaton M has a special reject state qr ∈ Q in addition to
the accept state qa. If M reaches qr after reading a, the computation of M halts, and we
say that M rejects the input word. Besides accepting, M can also hang or run forever;
in these cases, the M neither accepts nor rejects the input. An input word z ∈ Σ∗ is
in the language L(M) if M accepts z with probability at least 1/2 and rejects z with
probability 0. Furthermore, we require that every z ∈ Σ∗ not in L(M) is accepted by M
with probability 0 and rejected with probability at least 1/2.

The definition of LasVegas automata applies to one-way (1p0fa), rotating (rp0fa),
sweeping (sp0fa), as well as two-way automata (2p0fa). We denote the complexity classes
induced by small families of these automata as 1p0, rp0x, sp0x, and 2p0x, respectively.
We use the symbol x to emphasize that there is no restriction on the expected running
time of the automata except that we require it to be finite for all inputs. The expected
running time can be even exponential in the length of the input word, but it can not be
superexponential (see Lemma 5.1). To capture the concept of efficient computability, it
is more natural to restrict the running time to polynomial. We reserve the notation rp0,
sp0, and 2p0 to such classes.

Lemma 5.1. Let M be any two-way randomized automaton such that the expected run-
ning time of M is finite for all inputs. There exists some α such that expected running
time of M on any input word of length n is O(αn). The same claim holds for sweeping
and rotating automata as well.

Proof. Assume that M have k states and is given an input of length n. There are
(n + 2)k different configurations of M . We say that a configuration C is terminal if M
ends its computation when reaching C (i. e., it either accepts or rejects the input).

Consider any configuration C that is reachable with non-zero probability from the
initial configuration of M . There must exist some terminal configuration of M that is
reachable from C with non-zero probability: otherwise, all computation paths beginning
in C would run in an infinite loop, what contradicts to the fact that the expected running
time of M is finite. Furthermore, there must be some terminal configuration reachable
from C within at most (n + 2)k steps of computation: if we consider the terminal con-
figuration Ct reachable with the smallest number of steps, each configuration of M can
occur at most once before reaching Ct. The probability of doing every particular step
of the shortest computation from C to Ct is at least p, where p is the minimal non-zero
probability in the transition function of M . Hence, the probability that M reaches Ct
from C in at most (n+ 2)k steps is at least p(n+2)k.

Thus, at any step of the computation of M it holds that M reaches some terminal
configuration with probability at least p(n+2)k within the next (n+2)k steps. Hence, the
expected running time of M is at most

∞∑
i=1

i(n+ 2)k · p(n+2)k ·
(

1− p(n+2)k
)i−1

= (n+ 2)k

(
1

p

)(n+2)k

= O (αn)

for any α > (1/p)k. The claim for the sweeping and the rotating automata follows
directly from the claim for two-way automata. �
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In the rest of this section, we locate the LasVegas classes in the map of Figure 7.

Theorem 5.2.

1p0 = 1d, 2p0x = 2∆, sp0x = s∆, rp0x = r∆

Proof. It was proven in [8] that for any k-state 1p0fa there exists an equivalent O(k2)-
state 1dfa. Hence, 1p0 = 1d.

Theorem 1 in [9] implies that 2p0x = 2∆. The main idea behind this equivalence is
as follows: any language L accepted by a k-state 2p0fa can be accepted by a k-state
2nfa, since any LasVegas automaton can be converted into a nondeterministic one by
simply replacing all transitions with non-zero probability by nondeterministic ones. Any
k-state 2p0fa accepting L can be transformed into a k-state 2p0fa accepting L by simply
swapping the accept and the reject state. Hence, L can be accepted by a k-state 2nfa,
too, and 2p0x ⊆ 2∆. The other direction uses the same idea as [17]: consider a language
L such that both L and L can be accepted by a small 2nfa. Denote these 2nfas as
M1 and M2. Then it is possible to construct a small 2p0fa M accepting L as follows:
M simulates M1, but after every computation step, it tosses a coin. If the result is
heads, then it continues the computation; if it is tails, it restarts the simulation. After
a restart, it proceeds to the simulation of M2. Analogously, during the simulation of
M2, another simulation of M1 is started with probability 1/2 after each simulated step,
etc. If M finds an accepting computation of M1 (M2), it accepts (rejects). Obviously
M never errs. Since every input word z is accepted by either M1 or M2, automaton
M eventually finds the accepting computation in M1 or M2. After every restart of a
simulation of the correct parity (i. e., a simulation of M1 if the input is in L and a
simulation of M2 otherwise), there is a non-zero (albeit exponentially small) probability
that the input word is accepted. Hence, the expected running time of the constructed
LasVegas automaton is finite (although exponential).

The above-described idea works also for sweeping and rotating automata. Hence, we
have that sp0x = s∆ and rp0x = r∆. �

Hence, our previous results imply an exponential gap in the number of states between
determinism and LasVegas randomization for sweeping and rotating automata: by Fig-
ures 7 and 10, combined with the theorem above, we have rd ( s∆ = r∆ = rp0x and
sd ( s∆ = sp0x.

5.2. Monte-Carlo Automata

It is possible to obtain more powerful automata by relaxing the condition of the zero
probability of error. A Monte-Carlo automaton M with one-sided error is required to
obey the following constraint: any z ∈ Σ∗ is either accepted by M with probability at
least 1/2 or accepted with probability 0. The automaton M does not need any special
rejecting state. The language recognized byM consists of all words accepted with nonzero
probability.

We denote the one-way, rotating, sweeping, and two-way Monte-Carlo automata as
1p1fa, rp1fa, sp1fa, and 2p1fa, respectively. Furthermore, we denote the corresponding
complexity classes as 1p1, rp1x, sp1x, and 2p1x. As in the case of LasVegas automata, the
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symbol x denotes that there is no restriction on the expected running time of the au-
tomata except that it is always finite. Due to Lemma 5.1, this is equivalent to restricting
the expected running time to be at most exponential.

Any Monte-Carlo automaton can be trivially simulated by a nondeterministic one.
Hence, it holds that 1p1 ⊆ 1n, rp1x ⊆ rn, sp1x ⊆ sn, and 2p1x ⊆ 2n. The result of [17]
directly proves that, for any k-state 2nfa, there exists an equivalent O(k)-state 2p1fa.
Furthermore, the same idea can be used for sweeping and rotating automata, which
implies the following observation (sn = rn was proven in Lemma 4.7):

Observation 5.3.
2p1x = 2n, sp1x = sn = rn = rp1x

5.3. Bounded-Error Automata

As a next step, it is possible to relax the constraint of one-sided error and define
bounded-error finite automata, analogously to the bounded-error randomized Turing ma-
chines. For any z ∈ Σ∗, a bounded-error automaton M is required to accept z either
with probability at least 2/3 or with probability at most 1/3. The language recognized
by M consists of all words accepted with probability at least 2/3. Although bounded-
error automata are not a trivial superclass of Monte-Carlo automata, any Monte-Carlo
automaton can be transformed into an equivalent bounded-error one with no increase in
the number of states.

We denote the one-way, rotating, sweeping, and two-way bounded-error automata
as 1p2fa, rp2fa, sp2fa, and 2p2fa, respectively. These automata are very powerful. As
implied by [4], even rp2fa can accept non-regular languages. To obtain a more fair
comparison of the power of bounded-error randomization with other modes, we define the
corresponding complexity classes 1p2, rp2x, sp2x, and 2p2x to contain regular languages
only [13]. Again, the symbol x indicates that there is no restriction on the expected
running time of the automata except that it is always finite, i. e., that the expected time
is at most exponential.

Restricting the bounded-error complexity classes to regular languages only allows
us to analyze the complexity aspects of the bounded-error randomization. Without
this restriction, we could easily separate these classes from the Monte-Carlo complexity
classes by the result of [4], i. e., by an argument based on the computational power of
bounded-error randomization. By doing so, however, we would have missed all complex-
ity phenomena involved in this comparison, because they were screened from us by the
computability phenomenon.

The result of [3, Theorem 6.2] implies that 2p2x ) 2n = 2p1x. This result relies on a
possibility of two-way head motion. Nevertheless, analogous results for the rotating and
the sweeping automata can be proven by exploiting closure properties of sn and sp2x:
while sn is not closed under complement, it is easy to observe that sp2x is. Hence, sn 6=
sp2x, and because sn = sp1x ⊆ sp2x holds, we have sp2x ) sn. The same argumentation
can be used to prove rp2x ) rn as well:

Observation 5.4.

2p2x ) 2n = 2p1x, sp2x ) sn = sp1x, rp2x ) rn = rp1x
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The following theorem proves that rp2x ⊇ sp2x. Since rp2x ⊆ sp2x, we have rp2x =
sp2x. The basic idea of the proof is the same as in Lemma 4.7. The rp2fa M ′ simulates
the left-to-right traversals of the sp2fa M in a straightforward way. To simulate a right-
to-left traversal, M ′ produces a right computation rcomp of M uniformly at random.
AutomatonM ′ continues with the simulation of the next traversal ofM with a probability
equal to the probability that M performs rcomp. Otherwise, the simulation of the right-
to-left traversal is repeated with another randomly produced right computation.

Lemma 5.5. Each sp2fa with k states can be simulated by an rp2fa with at most O(k3)
states.

Proof. Given a k-state sp2fa M = (qs, δ, qa) over an alphabet Σ and a set of states Q,
we construct an equivalent rp2fa M ′ = (q′s, δ

′, q′a) over the same alphabet with state set
Q′ such that |Q′| = O(k3).

The rp2fa M ′ simulates each left computation of M in a straightforward manner.
Thus each state qi in M has a corresponding state q′i in M ′ and the probability to reach
a state qj from qi in M while reading the input string from left to right is exactly the
same as the probability to reach q′j from q′i in M ′.

Now we consider the simulation of a right computation. Let w = w1w2 . . . wl be
the input. Assume that M starts the right computation at wl in state q1, i. e., M
reached q1 after finishing the previous left computation and reading a. We know that
the computation rcompM,q1(w) is a sequence of l+1 states. Consider any such sequence
s = (s1, s2, . . . , sl, sl+1). The probability that M performs s is

πs := [s1 = q1] ·
l∏
i=1

δ(si, wl−i+1)(si+1),

where [s1 = q1] is defined to be 1 if s1 = q1 and 0 otherwise. Now we consider all
kl+1 sequences s and to each sequence we assign the probability of the corresponding
computation. Obviously, a sequence that does not describe a valid right computation of
M has probability zero and the sum of the assigned probabilities over all sequences is 1.

The basic idea is that M ′ chooses some sequence s = (s1, . . . , sl+1) uniformly at
random. With probability πs, the automaton M ′ proceeds to the simulation of the next
left computation of M starting in state sl+1, where πs is the probability assigned to the
chosen sequence. In this case, we say that M ′ agreed with the chosen sequence. With
probability 1−πs, the automaton M ′ chooses another sequence and repeats the process.

The probability of a repetition, i. e., of not agreeing with one randomly chosen se-
quence is

1−
∑

(s1=q1,s2,...,sl+1)∈Ql+1

1

kl+1
·
l∏
i=1

δ(si, wl−i+1)(si+1) = 1− 1

kl+1
.

The probability that M ′ makes exactly i repetitions, chooses the sequence s after-
wards, and agrees with it, is

1

kl+1
· πs ·

(
1− 1

kl+1

)i
30



Hence, the probability that M ′ eventually agrees with s is

1

kl+1
· πs ·

∑
i≥0

(
1− 1

kl+1

)i
=

1

kl+1
· πs ·

1

1−
(
1− 1

kl+1

) = πs.

We have just proven that the probability that M ′ agrees with sequence s is the same
as the probability that M performs s. Hence, the probability distribution of M ′ over its
set of states is isomorphic to the probability distribution of M every time the simulation
of left computation starts. Thus, M ′ correctly simulates M .

Now we discuss how to implement this idea. Instead of picking a sequence directly,
M ′ can also pick a sequence uniformly at random state by state from left to right and
agree with that sequence with the assigned probability. At first, M ′ selects state sl+1

uniformly at random and keeps q1 and sl+1 stored in its states. Let sl+1, sl, . . . , si+1

be the first l − i + 1 states of the sequence chosen by M ′. Thus after l − i + 1 steps,
M ′ knows q1, sl+1, si+1 and, since it reads the input from left to right, symbol wl−i+1.
Now M ′ picks a state si uniformly at random. With probability δ(si, wl−i+1)(si+1), the
automaton M ′ proceeds to the next symbol. With probability 1−δ(si, wl−i+1)(si+1), the
automaton M ′ moves the head to the first input symbol and starts a new simulation of
the right computation. If a is reached, M ′ starts a new simulation if s1 6= q1. Otherwise,
the simulation of the right computation is finished, and the next left computation of
M can be simulated. To do so, M ′ simulates the move of M from state sl+1 on ` and
proceeds to the first input symbol.

Now let us count the number of states of M ′. The left computation can be simulated
with k states. In the simulation of the right computation, picking a sequence and choosing
whether to restart without storing the first and the last state of the computation only
requires one extra copy of Q. Since we also store the first and the last state q1 and sl+1,
we need k2 extra copies of Q in total to simulate right computations of M . Thus M ′ has
O(k3) states. �

Corollary 5.6.
rp2x = sp2x

The proof of the previous theorem can also be applied to Monte-Carlo and to LasVegas
automata. Nevertheless, the results rp1x = sp1x (respectively, rp0x = sp0x) follows
directly from rp1x = rn = sn = sp1x (respectively, rp0x = r∆ = s∆ = sp0x).

6. Conclusions

We explored the relationship between deterministic, nondeterministic, and random-
ized computations of finite automata with different capabilities of head motion. We
focused on the size complexity classes of the considered automata, in a way proposed in
[20] and used in [14, 15]. We presented an extensive map of these classes and showed that
LasVegas sweeping automata can be exponentially more succinct than their deterministic
counterparts. We, however, stress that the presented conclusions about the complexity
classes induced by randomized finite automata concern automata with (finite) expected
running time that is exponential in the length of the input, as our focus is on the size
complexity only. Hence, our results could be interpreted as a first step towards the more
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natural (and more faithful to the analogy with zpp, p, and np) case where size and time
must be held small simultaneously.

Besides the number of states, there are several different ways how to measure the size
of automata, such as the number of bits needed to describe the automaton (descriptional
complexity) or the number of transitions in the transition function of the automaton. Al-
though these measures are not equivalent, they are polynomially related if the size of the
alphabet is polynomial. As any language family with polynomial descriptional complex-
ity or transition complexity has a polynomial alphabet and problems with polynomially
related complexity always fall into the same class, the definition of the complexity classes
does not depend on the chosen measure if we consider only language families with alpha-
bets of polynomial size. Even though we deal also with exponentially large alphabets in
this paper, all presented results can be easily adapted for automata over binary alphabet
as well. Hence, all relationships between different complexity classes presented in this
paper hold also for the other measures of automata size.

To prove separations between different complexity classes, we have introduced the
framework of hardness propagation. The core of this propagation was presented by
Corollaries 3.4, 3.6, 3.13, and 3.15. This framework provides a systematic way of con-
structing language families witnessing the separations. In this way, we gain also more
insight into the hardness structure of the witnesses than provided by the ad-hoc wit-
nesses used in the previous proofs (e. g., the witness of separation between sd and s∆

used in [14]). In fact, using the introduced language operators, it is possible to obtain
witnesses with similar structure as the ad-hoc ones (see concluding remarks of [15] for
more information on this topic).

We have used parallel automata as an intermediate computational model in the hard-
ness propagation. We have defined a family of parallel automata to be small if the
automata contain only a polynomial number of components, each with a polynomial
number of states. There is an alternative definition to this, used in [15], which places
the constraint on the number of components only. In this way, small parallel automata
are required only to have polynomially small components, the number of components
being irrelevant. All hardness propagation results presented in this paper hold for this
alternative definition as well. Nevertheless, we opted not to consider classes based on this
alternative definition, as they are rather unnatural, since they correspond to automata
with possibly large descriptional complexity. On the other hand, separating complexity
classes of both variants of parallel automata is an interesting open problem. Since this
apparently cannot be done by using the technique of generic words, a completely new
technique for proving lower bounds on parallel automata seems to be necessary to achieve
such a separation.

In this paper, we have not considered the complexity classes of general parallel au-
tomata, for similar reasons as explained above. The set of accepting tuples of a general
parallel automaton can be exponentially large even if the automaton is polynomially
small. Hence, such automata can have huge descriptional complexity as well.

Several problems mentioned in this paper are left open. For example, a few closure
properties in Figure 6 are not known. For bounded-error automata, only the basic
facts described in Section 5.3 are known. For other randomized classes except for one-
way Monte-Carlo automata, we have provided a complete characterization. We have,
however, not considered the time complexity of the randomized automata. In fact, the
constructions used to prove the presented results [17, 9] yield randomized automata with
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exponential expected running time. It is a natural open problem to ask if this is necessary,
i. e., to analyze the size complexity classes of automata with polynomial expected running
time. At last but not least, the relationship between determinism and nondeterminism
in two-way automata (e. g., 2d vs. 2n) remains the most challenging open problem.
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[2] P. Ďurǐs, J. Hromkovič, J. D. P. Rolim, and G. Schnitger. Las Vegas versus determinism for one-way

communication complexity, finite automata, and polynomial-time computations. In Proceedings of
the STACS, pages 117–128, 1997.

[3] C. Dwork and L. Stockmeyer. A time complexity gap for two-way probabilistic finite-state automata.
SIAM Journal on Computing, 19(6):1011–1123, 1990.

[4] R. Freivalds. Probabilistic two-way machines. In Proceedings of the International Symposium on
MFCS, pages 33–45, 1981.

[5] V. Geffert, C. Mereghetti, and G. Pighizzini. Complementing two-way finite automata. Information
and Computation, 205(8):1173–1187, 2007.

[6] M. Holzer and M. Kutrib. State complexity of basic operations on nondeterministic finite automata.
In Implementation and Application of Automata. Proc. of the 7th International Conference, CIAA
2002, volume 2608 of Lecture Notes in Computer Science, pages 61–79, Berlin, 2003. Springer-
Verlag.

[7] J. Hromkovič and G. Schnitger. Nondeterministic communication with a limited number of ad-
vice bits. In STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 551–560, New York, NY, USA, 1996. ACM.
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