
Analogs of Fagin’s Theorem
for Small Nondeterministic Finite Automata

Christos A. Kapoutsis? and Nans Lefebvre

LIAFA, Université Paris VII, France

Abstract. Let 1N and SN be the classes of families of problems solvable
by families of polynomial-size one-way and sweeping nondeterministic
finite automata, respectively. We characterize 1N in terms of families of
polynomial-length formulas of monadic second-order logic with successor.
These formulas existentially quantify two local conditions in disjunctive
normal form: one on cells polynomially away from the two ends of the
input, and one more on the cells of a fixed-width window sliding along it.
We then repeat the same for SN and for slightly more complex formulas.

1 Introduction

The ‘Sakoda-Sipser analogy’ suggests that, parallel to the standard complexity
theory that measures time onTuring machines, one can build a robust complexity
theory measuring size in two-way finite automata [10]. An updated suggested
outline of such a theory was given in [6], and the name ‘minicomplexity theory ’
was proposed soon later. One premise behind such research is that many phe-
nomena of standard complexity theory emerge already in much weaker devices,
and that their study at such early level may deepen our understanding.

Here we test this premise relative to descriptive complexity theory, the logical
parallel of complexity theory where, instead of the Turing machines that solve a
problem, we study the logical formulas that specify it [5]. Does minicomplexity
theory have such a parallel? For example, consider Fagin’s Theorem, the logical
characterization of NP which inaugurated descriptive complexity [4]: Is there
an analogous theorem for the minicomplexity counterpart of NP, the class 2N of
problems solvable by polynomial-size two-way nondeterministic finite automata?

We answer this question for the one-way and sweeping restrictions of 2N, the
subclasses 1N and SN corresponding to automata whose heads move only forward
(nfas) or reverse only on end-markers (snfas). We start at Büchi’s Theorem,
which translates between nfas and formulas of monadic second-order logic with
successor (mso[S]) [3]. There, the tempting guess that polynomial-size nfas
correspond to polynomial-length mso[S] formulas is valid only from automata
to formulas; in contrast, polynomial-size formulas may translate to nfas of
non-elementary size [9]. We thus refine Büchi’s proof, to find suitably restricted
formulas where polynomial length indeed corresponds to polynomial nfa size.

? Supported by a Marie Curie Intra-European Fellowship (pief-ga-2009-253368) within
the European Union Seventh Framework Programme (fp7/2007-2013).

We arrive at ‘existential anchor-slide dnfs’ (eas/dnfs), formulas which quantify
existentially two ‘local’ conditions in disjunctive normal form: an ‘anchor ’, which
describes cells that are ‘anchored’ relative to the two ends of the input; and a
‘slide’, which describes the cells of a window that ‘slides’ along the input. Our
Theorem 1 is that the desired correspondence indeed holds when the anchored
cells lie polynomially near the two ends and the width of the sliding window is
constant. Then, our Theorem 2 generalizes this correspondence to snfas and to
eas/dnfs of a ‘multi-core’ variant of many anchors/slides with limited variable
access; our argument naturally involves rotating automata (snfas with only
forward passes) and the corresponding class RN, actually reproving RN = SN [7].

2 Preparation

2.1 Nondeterministic Finite Automata

A sweeping nondeterministic finite automaton (snfa) is a tuple N = (S,Σ, δ, q0)
of a set of states S, an alphabet Σ, a special state q0 ∈ S, and a set of transitions
δ ⊆ S× (Σ ∪{`,a})×S, where `,a /∈ Σ are two end-markers. A word w∈Σ∗ is
presented to N between the end-markers (Fig. 1a). The computation starts at q0
on `. At every step, the next state may be any of those derived from δ and the
current state and symbol. The next tape cell is always the adjacent one in the
direction of motion; except if the current symbol is a and the next state is not q0
or if the current symbol is `, in which two cases the next cell is the adjacent
one towards the other end-marker. So, each branch of the resulting computation
performs a number of alternating forward and backward passes over `wa, and
eventually loops, hangs, or falls off a into q0. In the last case, we say N accepts w.

We say N is layered if S can be split into ρ layers S1, . . . , Sρ such that all
accepting computations perform exactly ρ passes and every r-th pass (1 ≤ r ≤ ρ)
uses only transitions departing from states in Sr. Pictorially, the state diagram
consists of ρ sub-diagrams, each visited exactly once and only through transitions
on ` or a (Fig. 1c). With a small increase in size, every snfa can be made layered.

Lemma 1. Every s-state snfa has a O(s2)-state equivalent with < 2s layers.

A rotating nondeterministic finite automaton (rnfa) is a snfa that performs
only forward passes (Fig. 1b). Formally, we just change how we pick the next cell:

wnw1 w2wnw1 w2

`
`

`q0

a

a

a

a
a `

S2S1

`

`

a

`

`

Sρ

(c)(b)

· · ·

(a)

· · ·

· · ·

Fig. 1. Schematic of (a) a snfa, (b) a rnfa, (c) the state diagram of a layered snfa.

0 6=q0

1

0

a

1

⊥
x1

x2

X1

X2

X3

(a)

1

1

0

0

0

1

a

2

a

0

0

0

1

0

3

b

1

0

1

0

1

4

a

0

0

0

1

0

b

0

0

1

0

1

5

⊥
x1

x2

X1

X2

X3

0

1

a

0

1

0

0

1

a

0

0

0

1

0

1

2

b

1

0

1

0

0

1

3

a

0

0

0

1

0

0

4

b

0

0

1

0

1

0

5

⊥
x1

x2

X1

X2

X3

x5

(c)

0

0

1

0

0

1

a

2

2

0

0

0

1

1

1

b

3

3

0

0

1

0

0

1

a

1

4

0

0

0

1

0

1

b

1

5

(b)

a

1 5 6 7

p

32

a

4

0

0

0

1

1

1

a

3

1

20 0

(d)

(e)

X0:
X1:
X2:
X3:

X1:
X2:

pp q

8

a

0

X1:
X2:

0

1

X3: 0

0

0

0

0

0

1

0

1

0 1

1

0

0

1

0

1

1

1

1

1

1

(f)

(g)

pqq

0

Fig. 2. (a) A column of Σ|V1|V2, if Σ = {a,b}, V1 = {x1,x2}, V2 = {X1,X2,X3}. (b) A
well-formed ŵ over Σ|V1|V2; here ŵ(⊥) = aabab, ŵ(x2) = 3, ŵ(X2) = {1,3,5}. (c) The
word ŵ[x5/2]. (d,e) Encoding a computation of a 4-state nfa, with 1 variable per
state (d), or per bit in the codes of states (e). (f) Defining α`pq, αpq, αap , and αapq.
(g) Checking that a word has length 8, by implementing a 3-bit counter.

it is always the adjacent one to the right; except if the current symbol is a and
the next state is not q0, in which case the next cell is that of `. Layered rnfas are
defined similarly, and satisfy Lemma 1 with ‘rnfa’ and ‘≤ s’ instead of ‘snfa’
and ‘< 2s’. A one-way nondeterministic finite automaton (nfa) is a rnfa that
performs only 1 pass. Formally, we just insist that every (. ,a, .) ∈ δ is of the
form (. ,a, q0). Deterministic nfas (dfas) obey the usual restriction.

A (promise) problem over Σ is a pair L = (L, L̃) of disjoint subsets of Σ∗.
A machine solves L if it accepts all w ∈ L but no w ∈ L̃. A family of machines
M = (Mh)h≥1 solves a family of problems (Lh)h≥1 if every Mh solves Lh. The
machines of M are small if every Mh has ≤ p(h) states, for some polynomial p.

2.2 Monadic Second-Order Logic with Successor

In monadic second-order logic with successor over Σ (msoΣ[S]), formulas are
built from a list of first-order variables x1, x2, . . . , a list of monadic second-order
variables X1, X2, . . . , one predicate a(.) for each a ∈ Σ, the successor predicate
S(. , .), the connectives ∧,∨,¬, and the quantifiers ∃,∀.1 Each formula ϕ is either
an atom, of the form a(x), X(x), or S(x, y); or compound, of the form ¬φ, φ∧ψ,
φ ∨ ψ, ∃xφ, ∀xφ, ∃Xφ, or ∀Xφ, where x,y two f.o. variables, X a s.o. variable,
a ∈ Σ, and φ,ψ two simpler formulas. The length |ϕ| of ϕ is the number of
occurences of symbols in it, ignoring punctuation and counting each xi, Xi, and a
as 1 symbol. An atom or negation of an atom is called literal ; a conjunction (resp.,
disjunction) of literals is called ∧-clause (∨-clause); a disjunction (conjunction)
of ≤m such clauses is called an m-dnf (m-cnf).2

Formulas of msoΣ[S] are interpreted on words over alphabets that extend Σ,
as follows. For V1,V2 two sets of f.o. and s.o. variables respectively, let Σ|V1|V2 be
the alphabet of all functions u : {⊥}∪V1∪V2 → Σ∪{0,1} that map ⊥ into Σ and
variables into {0,1}: u(⊥) ∈ Σ and u[V1∪V2] ⊆ {0,1}. Intuitively, every such u is
a column of 1+|V1|+|V2| cells, labelled by the elements of {⊥}∪V1∪V2 and filled

1 The equality predicate .= . may also be used, but we will not need it.
2 Note that in standard complexity the meaning of “2-cnf”, “3-cnf”, etc. is different.

by the respective u-values (Fig. 2a). Likewise, every ŵ = ŵ1 · · · ŵn ∈ (Σ|V1|V2)∗

is a table of n columns, and 1+|V1|+|V2| rows: one labelled ⊥, hosting an n-long
word over Σ; the rest labelled by variables, hosting n-long bitstrings (Fig. 2b).
We say ŵ is well-formed if n 6= 0 and each f.o. variable row hosts exactly one 1.
Then ŵ(⊥) is the ⊥-row word ŵ1(⊥) · · · ŵn(⊥) ∈ Σ∗; ŵ(x) is the index i of the
unique ŵi hosting 1 in the row of x ∈ V1; and ŵ(X) is the set {i | ŵi(X)=1}
of indices of columns hosting 1 in the row of X ∈ V2 (Fig. 2b). If y /∈ V1 and
1 ≤ i ≤ n, then ŵ[y/i] is the well-formed ŵ′ over Σ|V1∪{y}|V2 derived from ŵ
by adding a row with label y and bits such that ŵ′(y) = i (Fig. 2c); similarly for
ŵ[Y/I], when Y /∈ V2 and I ⊆ {1, . . . , n}.

Given a well-formed n-long ŵ over Σ|V1|V2 and a formula ϕ(x,X) with its
free variables x and X in V1 ∪ V2, we say ŵ satisfies ϕ, in symbols ŵ |= ϕ, if:

for ϕ ≡ a(x) : ŵŵ(x)(⊥) = a (1)

for ϕ ≡ X(x) : ŵ(x) ∈ ŵ(X) (2)

for ϕ ≡ S(x, y) : ŵ(x) + 1 = ŵ(y) (3)

for ϕ ≡ ∃xφ : there exists i ∈ {1, . . . , n} such that ŵ[x/i] |= φ

for ϕ ≡ ∃Xφ : there exists I ⊆ {1, . . . , n} such that ŵ[X/I] |= φ ,

and similarly or in obvious ways for ϕ ≡ ¬φ, φ ∧ ψ, φ ∨ ψ, ∀xφ, or ∀Xφ.
We introduce an extension of msoΣ[S], called mso+

Σ [S,Z∗]. The ‘+’ means that,
instead of predicates a(.) for a ∈ Σ, we use predicates α(.) for α ⊆ Σ. The ‘Z∗’
means that we now use constants from Z∗ := {±1, ± 2, . . . } to refer to specific
columns. So, now a term is any f.o. variable x or constant c ∈ Z∗, and an atom
has the form α(t), X(t), or S(t, t′), where α ⊆ Σ and t,t′ are terms. The length
of a formula ϕ is extended so that each α and c count as 1 symbol, too. The
margin of ϕ is max{|c| | c ∈ Z∗ occurs in ϕ}; or 0, if ϕ uses no constants.

On a well-formed n-long ŵ over Σ|V1|V2, the meaning ŵ(c) of a constant c
is just c, if 1 ≤ c ≤ n; or n+c+1, if −n ≤ c ≤ −1; or undefined, otherwise. So,
positive (resp., negative) constants refer to a column by its offset from the left
(right) end of ŵ. Then, the definition of ŵ |= ϕ is modified in cases (1)-(3):

for ϕ ≡ α(t) : ŵŵ(t)(⊥) ∈ α (1′)

for ϕ ≡ X(t) : ŵ(t) ∈ ŵ(X) (2′)

for ϕ ≡ S(t, t′) : ŵ(t) + 1 = ŵ(t′) ; (3′)

in addition, we declare ŵ |= ϕ automatically false if ϕ uses any constant >n.
The next lemma says that mso+

Σ [S,Z∗] is as expressive as msoΣ[S], but more
concise. Still, the savings in formula length are negligible, if we ignore polynomial
differences and if alphabet size, margin, and length are polynomially related.

Lemma 2. Every msoΣ[S] formula of length l has an equivalent in mso+
Σ [S,Z∗]

of margin 0 and length ≤ l. Conversely, every mso+
Σ [S,Z∗] formula of margin τ

and length l has an equivalent in msoΣ[S] of length O(τ+σl), where σ := |Σ|.

A formula ϕ(x,X) solves a problem L = (L, L̃) over Σ|x|X if ŵ |= ϕ for all
well-formed ŵ ∈ L but no well-formed ŵ ∈ L̃. A family of formulas F = (ϕh)h≥1

solves a family of problems (Lh)h≥1 if every ϕh solves Lh. The formulas of F
are small if every ϕh has length ≤ p(h), for some polynomial p.

3 Existential Anchor-Slide Sentences

A formula is local if it is free of S(. , .) and quantifiers; so, it is built just by
applying ∧,∨,¬ to atoms of the form α(t) and X(t). E.g., if ã := {a} then

ψ∗(X) := ã(+1) ∧X(+1)

and φ∗(x, y,X) := [ã(x) ∧X(x) ∧ ¬X(y)] ∨ [¬X(x) ∧X(y)]
(4)

are two local formulas. A local formula is anchored if all its terms are constants
(e.g., as in ψ∗); it is floating if all its terms are f.o. variables (e.g., as in φ∗).

Now let φ(x1, . . . , xk, X) be a floating local, for some k ≥ 1. Then the formula

∀x1 · · · ∀xk[S(x1, x2) ∧ · · · ∧ S(xk−1, xk) → φ(x1, . . . , xk, X)]

claims that φ is true on every k successive cells; or, more intuitively, that φ holds
at every stop of a window of width k which slides along the word. We call this
a sliding formula, we represent it more succinctly with the shorthand notation

∀ûx1· · ·xk φ(x1, . . . , xk, X) ,

and refer to k and φ as its width and float. (For k = 1, this is just ∀x1φ(x1, X).)
We are interested in sentences that are existentially quantified conjunctions

of an anchored local and a sliding formula; that is, sentences of the form

∃X1 . . . ∃Xd[ψ(X) ∧ ∀ûx1· · ·xk φ(x,X)] , (5)

where ψ is anchored local of some margin τ ; φ is floating local; and X,x are short
for X1, . . . , Xd, x1, . . . , xk. We call (5) an existential anchor-slide sentence (eas)
of depth d, margin τ , and width k, having anchor ψ, float φ, slide ∀óxφ, and core
ψ ∧ ∀óxφ. We say it is in m-dnf (resp., m-cnf), an eas/dnf (eas/cnf), if both
ψ and φ are m-dnfs (m-cnfs). E.g., for the ψ∗,φ∗ of (4), here is an eas in 2-dnf

∃X[ψ∗(X) ∧ ∀õxy φ∗(x, y,X)]

of depth 1, margin 1, and width 2 (satisfied iff all odd-indexed cells host an a).
Our first theorem says that polynomial-size nfas are equivalent to eas/dnfs

of polynomial length, polynomial margin, and constant width; and that this holds
already when the depth is logarithmic, the margin is 1, and the width is 2.

Theorem 1. The following are equivalent, for every family of problems L:
1. L has small nfas.
2. L has small eas/dnfs of logarithmic depth, margin 1, and width 2.
3. L has small eas/dnfs of small margin and fixed width.

Proof. [(1)⇒(2)] By Lemma 3. [(2)⇒(3)] Trivial. [(3)⇒(1)] By Lemma 10. �

Our next theorem generalizes Theorem 1 to snfas and sentences of the form

∃X1 . . . ∃Xρ
Vρ
r=1[ψr(Xr, Xr+1) ∧ ∀ûx1· · ·xk φr(x,Xr)] , (6)

where each ψr is anchored local of some margin τ ; each φr is floating local; each
Xr is short for Xr,1, . . . , Xr,d for some d; and x is short for x1, . . . , xk.3 Note how
the Xr,j are split into ρ groups so that the r-th core uses only groups r and r+1
in its anchor and only group r in its float. We call (6) an existential multicore
anchor-slide sentence (emas) of multiplicity ρ, depth d, margin τ , and width k.
We say it is in m-dnf, an emas/dnf, if all anchors and floats are m-dnfs.

Theorem 2. The following are equivalent, for every family of problems L:
1. L has small rnfas.
2. L has small snfas.
3. L has small emas/dnfs of logarithmic depth, margin 1, and width 2.
4. L has small emas/dnfs of small margin and fixed width.

Proof. [(1)⇒(2),(3)⇒(4)] Trivial. [(2)⇒(3),(4)⇒(1)] By Lemmas 4 and 13. �

4 From Automata to Formulas

The standard construction of an mso[S] sentence for an s-state nfa uses, for
each state p, a variable Xp for the set of cells where p is used along an accepting
computation (Fig. 2d) [3]. The result can be cast into an eas/dnf of depth s
and length O(s3). A trick of [11] reduces the depth to 1 but increases the length
to quasi-polynomial. The next lemma finds a eas/dnf of logarithmic depth and
polynomial length. Then Lemma 4 generalizes this to snfas and emas/dnfs.

Lemma 3. Every s-state nfa has an eas in s2-dnf, of depth dlog se, margin 1,
width 2, and length O(s2 log s).

Proof. Pick any s-state nfa N . Without loss of generality, say N = ([s], Σ, δ, 0),
where [s] := {0, . . . , s−1}. Let d := dlog se. For j = 1, . . . , d, let variable Xj be
the set of cells where an accepting computation uses a state p whose binary code
has 1 as its j-th most significant bit. Pictorially, a cell’s ‘bits of membership’ to
X1, . . . , Xd encode the state used on it (Fig. 2e). Under this representation, the
claim “the state used on cell z is p” is expressed by the floating local ∧-clause:

ξp(z,X) :=
Vd
j=1

p,jd Xj(z) , (7)

where “
p,jd ” means either “¬” or nothing, depending on whether the j-th most

significant bit of the code of p is respectively 0 or 1. We also introduce, for each
p, q ∈ [s], the set of symbols of Σ that allow a transition from p to q, and the
set of symbols that allow together with a a transition from p to 0 (Fig. 2f):

αpq := {a ∈ Σ | (p, a, q) ∈ δ} ,
αap := {a ∈ Σ | (∃p′)[(p, a, p′), (p′,a, 0) ∈ δ]} .

(8)

3 When 1 ≤ r ≤ ρ, we assume “r+1” for r = ρ means 1; and “r−1” for r = 1 means ρ.

Then, our slide says that “on every two successive cells, two states p, q are used
such that the symbol of the first cell allows a transition from p to q”:

∀õxy φ(x, y,X) := ∀õxyWp,q∈[s][ξp(x,X) ∧ αpq(x) ∧ ξq(y,X)] . (9)

Our anchor says that “on the two outer cells, two states p, q are used such that
(i) 0 can reach p on ` and (ii) the last symbol and a allow q to reach 0”:

ψ(X) :=
W

(0,`,p)∈δ, q∈[s][ξp(+1,X) ∧ ξq(−1,X) ∧ αaq (−1)] . (10)

Easily, the resulting mso+
Σ [S,Z∗] sentence ϕ := ∃X[ψ(X) ∧ ∀õxy φ(x,y,X)] is an

eas in s2-dnf, of depth d, margin 1, width 2, and length O(s2d). Moreover, one
easily verifies that N accepts w iff w |= ϕ, for all non-empty w ∈ Σ∗. �

Lemma 4. Every s-state snfa has an emas in O(s4)-dnf, of multiplicity < 2s,
depth O(log s), margin 1, width 2, and length O(s5 log s).

Proof. Pick any s-state snfa N . Without loss of generality, say N = ([s], Σ, δ, 0).
By Lemma 1, there is an equivalent ρ-layer snfa Ñ = ([s̃], Σ, δ̃, 0), for ρ < 2s and
s̃ = O(s2). Generalizing Lemma 3, we build a sentence for Ñ . Let d := dlog s̃e.

For each r = 1, . . . , ρ, we use the variables Xr := Xr,1, . . . , Xr,d to describe
(the binary codes of) the states along the r-th pass of an accepting computation
of Ñ . (So, Xr,j is the set of cells where the r-th pass uses a state whose binary
code has 1 as its j-th bit.) The claim “the state used by the r-th pass on cell z
is p” is now expressed by ξp(z,Xr), the floating local ∧-clause of (7) with each Xj

replaced by Xr,j . Generalizing (8), we also define for each p, q ∈ [s̃] the sets of
symbols that allow (alone, with `, or with a) a transition from p to q (Fig. 2f):

αpq := {a ∈ Σ | (p, a, q) ∈ δ̃} ,
α`pq := {a ∈ Σ | (∃p′)[(p, a, p′), (p′,`, q) ∈ δ̃]} ,

αapq := {a ∈ Σ | (∃p′)[(p, a, p′), (p′,a, q) ∈ δ̃]} .

(8s)

Then, the r-th float generalizes that of (9) to describe a step of the r-th pass:

φr(x, y,Xr) :=

¨W
p,q∈[s̃][ξp(x,Xr) ∧ αpq(x) ∧ ξq(y,Xr)] if r odd,W
p,q∈[s̃][ξq(x,Xr) ∧ αpq(y) ∧ ξp(y,Xr)] if r even.

(9s)

The r-th anchor describes either the last two steps of the r-th pass, if r < ρ:

ψr(Xr, Xr+1) :=

8<
:
W
p,q∈[s̃]
q 6=0

[ξp(−1,Xr) ∧ αapq(−1) ∧ ξq(−1,Xr+1)] if r odd,W
p,q∈[s̃][ξp(+1,Xr) ∧ α`pq(+1) ∧ ξq(+1,Xr+1)] if r even;

or the first and the last step of the entire computation, if r = ρ:

ψρ(Xρ, X1) :=
W

(0,`,p)∈δ̃, q∈[s̃][ξp(+1,X1) ∧ ξq(−1,Xρ) ∧ αaq0(−1)] . (10s)

The final sentence ∃X1 · · · ∃Xρ
V
r[ψr(Xr,Xr+1)∧∀õxy φr(x,y,Xr)] is an emas in

s̃2-dnf, of multiplicity ρ, depth d, margin 1, width 2, and length O(ρs̃2d). �

The next lemma says that small eas/cnfs can be more powerful than small
eas/dnfs: indeed, even small snfas can be simulated by them (with just 1 core).

Lemma 5. (i)Every s-state nfa has an eas in O(s2)-cnf, of depth dlog se,
margin 1, width 2, and length O(s2 log s). (ii)Every s-state snfa has an eas in
O(s5)-cnf, of depth O(s log s), margin 1, width 2, and length O(s5 log s).

5 From Formulas to Automata

Fix an alphabet Σ and two sets of f.o. and s.o. variables V1 and V2. We assume
all formulas in this section are over Σ and draw their variables from V1 ∪ V2.

Lemma 6. Every floating local ∧-clause has a 1-state dfa.

Proof. Pick any floating local ∧-clause κ(x,X) =
V
j λj . Note that each λj is of

the form α(x), X(x), ¬α(x), or ¬X(x), for some x ∈ V1, α ⊆ Σ, X ∈ V2. Say a
column u ∈ Σ|V1|V2 passes (the test of) λj if either u(x)=0 or u(x)=1∧u |= λj ,
for x the one f.o. variable of λj . Say u passes κ(x,X) if it passes all λj .

Claim. For every well-formed ŵ ∈ (Σ|V1|V2)∗: ŵ |= κ iff every ŵi passes κ.

Proof. [⇒] Suppose ŵ |= κ. Pick any column ŵi. Pick any λj , and let x be its
one f.o. variable. If ŵi(x) = 0 then ŵi passes λj , by definition. If ŵi(x) = 1 then
ŵi passes λj , since ŵ |= λj and so ŵi |= λj . So, ŵi passes all λj , and thus also κ.

[⇐] Suppose every ŵi passes κ. Pick any λj , and let x be its one f.o. variable.
Let i∗ := ŵ(x) be the unique i with ŵi(x) = 1. Since ŵi∗ passes κ (as all ŵi do),
it passes λj . Since ŵi∗(x) = 1, this means ŵi∗ |= λj ; that is, ŵŵ(x) |= λj . Hence
ŵ |= λj . Since λj was arbitrary, we conclude ŵ |= κ. �

Therefore, a dfaM = ([1], Σ|V1|V2, . , 0) simply scans its input ŵ checking that
every column ŵi passes κ. If any of them does not, then M just hangs. �

Lemma 7. Every local ∧-clause of margin τ has a (τ+1)2-state nfa.

Proof. Pick any local ∧-clause κ(x,X) of margin τ . Note that each literal of κ is
of the form α(t), X(t), ¬α(t), or ¬X(t), for some t ∈ V1 ∪{±1, . . . ,±τ}, α ⊆ Σ,
X ∈ V2. Hence, κ is the conjunction of three smaller ∧-clauses,

κ(x,X) = κl(X) ∧ κf(x,X) ∧ κr(X) ,

whose terms are all in {+1, . . . ,+τ}, in V1, and in {−1, . . . ,−τ}, respectively.
We know (Lemma 6) that κf has a 1-state dfa Mf, and we show (below) that
κl has a (τ+1)-state dfa Ml and κr has a (τ+1)-state nfa Nr. Hence, the
standard cartesian product of Ml, Mf, Nr is a (τ+1)2-state nfa for κ.

To build Ml, we first assume that κl contains at least one occurence of every
c ∈ {+1, . . . ,+τ} (if some c is missing, just replace κl with κl ∧ Σ(c)). Then
κl is a conjunction of exactly τ smaller ∧-clauses,

κl(X) = κ1(X) ∧ κ2(X) ∧ · · · ∧ κτ (X) ,

where the only term in κc is c. Easily then, Ml := ([τ+1], Σ|V1|V2, . , 0) simply
checks that the first τ input columns “satisfy” respectively κ1, . . . , κτ .

To build Nr, we similarly write κr as a conjunction of τ smaller ∧-clauses,

κr(X) = κ−τ (X) ∧ · · · ∧ κ−2(X) ∧ κ−1(X) ,

where again the only term in κc is c. Easily then, Nr := ([τ+1], Σ|V1|V2, . , τ)
starts by consuming input columns until it nondeterministically guesses when
it has reached the τ -th rightmost one. Then it checks that the next τ columns
“satisfy” respectively κ−τ , . . . , κ−1, and are indeed followed by a. �

Lemma 8. Every local m-dnf of margin τ has an m(τ+1)2-state nfa.

Proof. On `, a nfa N = ([m]×[τ+1]×[1]×[τ+1], Σ|V1|V2, . , (0, 0, 0, 0)) guesses
which of the m ∧-clauses will be satisfied, and goes on to verify it by simulating
the corresponding (τ+1)2-state cartesian nfa given by Lemma 7. �

Lemma 9. Every sliding m-dnf of width k has an (m+1)k−1-state nfa.

Proof. Pick any floating local m-dnf φ(x,X) =
Wm
j=1 κj , where x = x1, . . . , xk

and each κj is a floating local ∧-clause. We may assume each κj contains at least
one occurence of every xr (if some xr is missing, just replace κj with κj∧Σ(xr))
and is thus the conjunction of exactly k smaller ∧-clauses,

κj(x,X) = κj,1(x1, X) ∧ κj,2(x2, X) ∧ · · · ∧ κj,k(xk, X) ,

where xr is the only term in κj,r. Hence, an n-long well-formed word ŵ satisfies

∀üx1 · · ·xk φ(x,X) = ∀üx1 · · ·xkWmj=1

Vk
r=1 κj,r(xr, X)

if at every stop i = 1, . . . , n−k+1 of a sliding k-wide window there is a clause κj
such that each individual column ŵi+r−1 in the window “satisfies” the respective
sub-clause κj,r (in the formal sense that ŵi+r−1[xr/1] |= κj,r(xr, X)). In other
words, we ask for a sequence j1, j2, . . . , jn−k+1 of choices of clauses such that each

ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7 ŵ8

5

4

3

2

1 j1, 1 j1, 2 j1, 3 j1, 4

j2, 1 j2, 2 j2, 3

j3, 2

j4, 1

j3, 1

j2, 4

j3, 3

j4, 2

j5, 1

j3, 4

j4, 3

j5, 2

j4, 4

j5, 3 j5, 4

j1 j2 j3 j4 j5

�
e.g., when
n=8, k=4

�

column ŵi (now i = 1, . . . , n) “satisfies” every relevant sub-clause κjt,r that we
get by ranging r = 1, . . . , k and keeping t+(r−1) = i (as well as 1 ≤ t ≤ n−k+1,
if ŵi is among the first k−1 or last k−1 columns).

To check this condition, a nfaN = ([m+1]k−1, Σ|V1|V2, . , (0, . . . ,0)) guesses
the choices ji one by one, remebering only the last k−1 of them at every step.
Specifically, N reads ŵi in state (ji−k+1, . . . , ji−2, ji−1); it then guesses ji and
checks that wi[xr/1] |= κjt,r for every r = 1, . . . , k and t = i−r+1; if any check

fails, N hangs; otherwise, it moves to ŵi+1 in state (ji−k+2, . . . , ji−1, ji). Special
care is needed on the first k−1 columns: there, N uses states with 0s in ≥ 1 of
the leftmost components to denote that there is no corresponding sub-clause to
check. Likewise, during the last k−1 columns, N uses states with 0s in ≥ 1 of the
rightmost components. Of course, N cannot know when the k−1-st rightmost
column has been reached; so, at every step it spawns an extra branch, which
guesses that the time is right and expects to read a after exactly k−1 steps. �

Lemma 10. Every eas m-dnf of margin τ and width k has an equivalent nfa
with O(mkτ2) states.

Proof. Take the cartesian product N of the two nfas for the anchor (Lemma 8)
and the slide (Lemma 9). Then, for the existential quantification, just drop all
s.o. variable information from the transitions of N (see also Lemma 11). �

For emas, we need a restriction of rnfas which interact well with existential
quantifiers. We first define this restriction and prove the associated interaction.

Let N = (S,Σ|X, δ, .) be a rnfa. A transition (p, u, q) ∈ δ ignores Xj if “it
does not read it”: either u ∈ {`,a}; or u ∈ Σ|X and also (p, ũ, q) ∈ δ, where ũ
the column derived from u by complementing u(Xj). We say N is stratified if
“each Xj is read in at most one pass”: (i) N is layered, and (ii) for ρ the number
of layers, there is a partition X1, . . . , Xρ of X such that every transition between
states of layer r ignores all Xt with t 6= r, for all r = 1, . . . , ρ.

Lemma 11. If ϕ(X) has a stratified s-state rnfa, then ∃Xϕ(X) has a layered
s-state rnfa.

We now continune our build-up towards multicore existential anchor-slides.

Lemma 12. If every ψr(Xr, Xr+1) is an anchored local m-dnf of margin τ ,
then
Vρ
r=1 ψr(Xr,Xr+1) has a ρm3(τ+1)2-state rnfa stratified by X1, . . . , Xρ.

Proof. Let ϕ(X) :=
Vρ
r=1 ψr(Xr, Xr+1). To check ŵ |= ϕ, a ρ-layer rnfa may

use its r-th pass to check ŵ |= ψr by simulating the m(τ+1)2-state nfa given
for ψr by Lemma 8. But this easy rnfa is not stratified, so we must work more.

We know ψr =
Wm
j=1 κr,j(Xr, Xr+1), where each κr,j is an anchored local

∧-clause of margin τ . Since every literal uses ≤ 1 s.o. variable, we can split κr,j

κr,j(Xr, Xr+1) = µr,j(Xr) ∧ νr,j(Xr+1)

into two sub-clauses which use only one group of variables each. Therefore,

ϕ(X) =
Vρ
r=1

Wm
j=1[µr,j(Xr) ∧ νr,j(Xr+1)] .

So, ŵ |= ϕ iff for each r there is a choice j such that ŵ |= µr,j ∧ νr,j . Viewed
differently, ŵ |= ϕ iff there exists a sequence of choices j1, . . . , jρ such that the
following conjunction on the left becomes true:

ŵ |= µ1,j1(X1) ∧ ν1,j1(X2) ŵ |= µ1,j1(X1) ∧ νρ,jρ(X1)
& &
ŵ |= µ2,j2(X2) ∧ ν2,j2(X3) ŵ |= µ2,j2(X2) ∧ ν1,j1(X2)

& ⇐⇒ &...
...

...
...

...
...

& &
ŵ |= µρ,jρ(Xρ) ∧ νρ,jρ(X1) ŵ |= µρ,jρ(Xρ) ∧ νρ−1,jρ−1(Xρ)

Now, this conjunction is equivalent to the one on the right, which just “cyclically
shifts down” the column of the νr,jr to align the groups of s.o. variables. Hence,
ŵ |= ϕ iff there exist j1, . . . , jρ such that ŵ |= (νr−1,jr−1∧ µr,jr)(Xr) for all r.

Our stratified rnfa N uses this last condition. Also, for each r = 1, . . . , ρ
and j, j′ = 1, . . . ,m, it uses the (τ+1)2-state nfa N [r, j, j′] over Σ|Xr given
by Lemma 7 for the margin-τ anchored local ∧-clause (νr−1,j ∧ µr,j′)(Xr). The
machine starts by guessing and storing jρ. It then performs ρ passes. The r-th
pass starts by recalling jr−1 from the previous pass (or jρ from the starting guess,
if r = 1) and guessing jr (or recalling jρ from the starting guess, if r = ρ). Then,
N simulates N [r, jr−1, jr] to check ŵ |= (νr−1,jr−1 ∧ µr,jr)(Xr). If at the end of
the last pass all simulations have accepted, then N accepts. This algorithm can
be implemented with states of the form (j∗; r, j, j′; p) where 1 ≤ j∗, j, j′ ≤ m,
1 ≤ r ≤ ρ, and p ∈ [τ+1]2, meaning that: the starting guess for jρ was j∗; the
guesses for jr−1,jr were j,j′; and the current r-th pass is at state p in simulating
N [r, jr−1, jr]. This is indeed a stratified rnfa, with ρ·m3·(τ+1)2 states. �

Lemma 13. Every emas m-dnf of multiplicity ρ, margin τ and width k has a
ρ-layer rnfa with O(ρ·mk+2τ2) states.

Proof. Let ∃X1 · · · ∃Xρ
Vρ
r=1[ψr(Xr, Xr+1)∧∀üx1 · · ·xkφr(Xr)] be the given eas.

Easily, this is equivalent to ∃Xϕ(X), where ϕ := [
Vρ
r=1ψr]∧

Vρ
r=1[∀óxφr]. Let Na

be the stratified rnfa with ρm3(τ+1)2 states given by Lemma 12 for
Vρ
r=1ψr.

For each r = 1, . . . , ρ, let Nr be the nfa of (m+1)k−1 states given by Lemma 9
for ∀óxφr. Now, a rnfa N for ϕ can just simulate all of Na, N1, . . . , Nρ and accept
if they all do. The simulation is possible because Na is stratified by X1, . . . , Xρ
and each Nr is defined over Σ|Xr; so, each Nr can be simulated during the r-th
pass of the simulation of Na. Essentially, we build N by replacing each layer
of Na by its cartesian product with the corresponding Nr: each state is of the
form (j∗; r, j, j′; p; q), meaning that the current r-th pass is at state (j∗; r, j, j′; p)
in simulating Na (cf. proof of Lemma 12) and at state q in simulating Nr. Easily,
N is also stratified by X1, . . . , Xρ and uses ρm3(τ+1)2·(m+1)k−1 states. �

6 Conclusion

Refining Büchi’s Theorem, we established analogs of Fagin’s Theorem for small
one-way, rotating, and sweeping nondeterministic finite automata. We thus took
a first step towards what one could call a ‘descriptive minicomplexity theory ’.

We are still missing a descriptive chracterization of 2N. Similarly, one can
ask for such characterizations for all other major minicomplexity classes (cf. [6]).

More broadly, one can ask for other tests of the premise of minicomplexity,
that many phenomena of standard complexity theory emerge already at this
level. E.g., complexity theory has parallels studying function problems [8, §10.3]
and real computation [2]: are there such parallels for minicomplexity as well?

Finally, we suggest some notation that may facilitate discussions like ours. For
three classes of functions D,T ,K, let the class EAS/DNF[D, T ,K] consist of every
family of problems solvable by a family (ϕh)h≥1 of small eas/dnfs of depth d(h),

margin τ(h), and width k(h), for some d ∈ D, τ ∈ T , k ∈ K. Define similarly
the classes EAS/CNF, EMAS/DNF, EMAS/CNF. Then Theorems 1 and 2 are:

1N = EAS/DNF[log, 1, 2] = EAS/DNF[*, poly, const]

RN = SN = EMAS/DNF[log, 1, 2] = EMAS/DNF[*, poly, const] ,

for the obvious meaning of 1, 2, const, log, poly, and for ‘*’ denoting ‘maximum
possible’ (here: poly). Moreover, for 21N the class for exponential-size nfas [6]
and for the obvious meaning of exp, we can prove the relationships

1N

8<
:

$ EAS/CNF[log, 1, 2] ⊆
(a)
(b) (c)

$ RN = SN $

9=
;EAS/CNF[*, 1, 2] ⊆ EAS/CNF[*, exp, *]

(d)

⊆ 21N

where (d) uses easy variants of Lemmas 6–10; (b) is known [7]; and (a), (c) use
Lemma 5. The strictness of (a) uses the problem “Given two sets α, β ⊆ [h],
check that α ⊆ β”, which is in EAS/CNF[0, 1, 0] (easy) but not in 1N (a ‘fooling
set’ argument). The strictness of (c) uses the problem “Given w ∈ {a}∗, check
that |w| = 2h”, which is in EAS/CNF[*, 1, 2] (just use s.o. variables as in Fig. 2g,
to increment an h-bit counter from 0 to 2h−1) but not in 2N [1, Fact 5.2].

Acknowledgment Many thanks to Thomas Colcombet and Achim Blumensath
for several very helpful discussions during the preparation of this work.

References

1. J.-C. Birget. Two-way automata and length-preserving homomorphisms. Mathe-
matical Systems Theory, 29:191–226, 1996.

2. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation.
Springer, 1997.

3. R. J. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 6(1-6):66–92, 1960.

4. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
In R. M. Karp, editor, Complexity of Computation, volume VII of AMS-SIAM
Symposia in Applied Mathematics, pages 43–73, 1974.

5. N. Immerman. Descriptive complexity. Springer-Verlag, 1998.
6. C. Kapoutsis. Size complexity of two-way finite automata. In Proceedings of DLT,

pages 47–66, 2009.
7. C. Kapoutsis, R. Královič, and T. Mömke. Size complexity of rotating and sweeping

automata. Journal of Computer and System Sciences, 78(2):537–558, 2012.
8. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
9. K. Reinhardt. The complexity of translating logic to finite automata. In E. Grädel,

W. Thomas, and T. Wilke, editors, Automata, logics, and infinite games, volume
2500 of Lecture Notes in Computer Science, pages 231–238. Springer-Verlag, 2002.

10. W. J. Sakoda and M. Sipser. Nondeterminism and the size of two-way finite
automata. In Proceedings of STOC, pages 275–286, 1978.

11. W. Thomas. Classifying regular events in symbolic logic. Journal of Computer
and System Sciences, 25(3):360–376, 1982.

