
Minicomplexity

Christos A. Kapoutsis?

LIAFA, Université Paris VII, France

Abstract. This is a talk on minicomplexity, namely on the complexity
of two-way finite automata. We start with a smooth introduction to its
basic concepts, which also brings together several seemingly detached,
old theorems. We then record recent advances, both in the theory itself
and in its relation to Turing machine complexity. Finally, we illustrate a
proof technique, which we call hardness propagation by certificates. The
entire talk follows, extends, and advocates the Sakoda-Sipser framework.

1 Introduction

In Theory of Computation, the distinction between computability and complexity
is clear. In computability, we ask whether a problem can be solved by a Turing
machine (tm), namely whether the problem is decidable. In complexity, we focus
exclusively on problems that indeed can be solved, and we ask how much of the
tm’s resources they require, the main resource of interest being time or space.

This distinction is also valid in finite automata (fas). In fa-computability,
we ask whether a problem can be solved by a fa; often, but not always, this is
the same as asking whether the problem is regular. In fa-complexity, we focus
exclusively on problems that indeed can be solved, and we ask how much of the
fa’s resources they require; often, but not always, the resource of interest is size
(as expressed, e.g., by the number of states). Hence, much like the theory of tms,
the theory of fas also consists of a computability and a complexity component.

This distinction is not widely realized. Specifically, the complexity component
is often overlooked. Standard textbooks essentially identify the entire theory
of fas with fa-computability (see, e.g., [30, Chap. 1]), barely addressing any fa-
complexity issues (as, e.g., in [30, Probs. 1.60-1, 1.65]). Perhaps one might try
to justify this systematic neglect by claiming that these issues are not really a
theory; they are just a list of detached observations on the relative succinctness
of fas. We disagree. Before explaining, let us discuss another systematic neglect.

This is the systematic neglect of two-way fas (fas, whose input head can
move in either direction) in favor of one-way fas (fas, whose input head can
move only forward). Standard textbooks essentially identify fas with fas (see,
e.g., [20, Chaps. 3–16]), only briefly addressing fas, if at all, as a natural gen-
eralization (as, e.g., in [20, Chaps. 17–18]). As before, one might perhaps try to

? Supported by a Marie Curie Intra-European Fellowship (pief-ga-2009-253368) within
the European Union Seventh Framework Programme (fp7/2007-2013).

justify this systematic neglect by pointing out that fas are no more powerful
than fas [27], and are thus worthy of no special attention. We again disagree.

Once we realize that the theory of fas is neither only about computability nor
only about one-way automata, we are rewarded with the meaningful, elegant, and
rich complexity theory of two-way finite automata: a mathematical theory with
all standard features of a complexity theory, including computational problems,
complexity classes, reductions, and completeness; with challenging, decades-old
open questions; and with strong links to tm-complexity and logic. Unfortunately,
this theory has eluded the systematic attention of researchers for a long time
now. Our goal in this talk is to help repair this . . . public-relations disaster.

In the title, we already make a solid first step. We suggest for this theory a
(hopefully catchy) new name. We call it minicomplexity, because we view it as
a ‘miniature version’ of the standard complexity theory for tms.

In Sect. 2, we present the fragment of minicomplexity which concerns fas.
We focus on determinism, nondeterminism, and alternation. By a series of exam-
ples of computational problems of increasing difficulty, we introduce complexity
classes, reductions, and completeness, also discussing the differences from the
respective concepts of tm-complexity. All problems and proofs are elementary.
The goal is to show how a list of old, seemingly detached facts about the relative
succinctness of fas are really part of one coherent complexity theory.

In Sect. 3, we continue to fas. We focus on the Sakoda-Sipser conjecture and
two stronger variants of it, recording their history and some recent advances. We
then discuss alternation and the relationship to tm-complexity.

In Sect. 4, we present a technique for separating micomplexity classes, using
closure properties (for upper bounds) together with hardness propagation by
certificates (for lower bounds). To illustrate it, we outline a modular proof which
implies an improvement on the main theorem of [9].

For h ≥ 0, we let [h] and [[h]] be {0, . . . , h−1} and its powerset. Our fas are
tuples (S,Σ, δ, qs, qa) of a state set, an alphabet, a transition function, a start,
and an accept state. Our parallel automata (p2dfas, ∪ldfas, ∪rdfas, ∩ldfas)
are as in [16]. Our finite transducers (dfts, dfts) are as in [19].

A (promise) problem over Σ is a pair L = (L, L̃) of disjoint subsets of Σ∗.
Every w ∈ L∪ L̃ is an instance of L: positive, if w ∈ L; or negative, if w ∈ L̃. To
solve L is to accept all w ∈ L but no w ∈ L̃. The reverse, complement, conjunctive
star, and disjunctive star of L are the problems LR := (LR, L̃R), ¬L := (L̃, L),∧

L :=
(
{#x1# · · · #xl# | (∀i)(xi ∈ L)}, {#x1# · · · #xl# | (∃i)(xi ∈ L̃)}

)
, and∨

L :=
(
{#x1# · · · #xl# | (∃i)(xi ∈ L)}, {#x1# · · · #xl# | (∀i)(xi ∈ L̃)}

)
,

where #x1# · · · #xl# means l ≥ 0, each xi ∈ L∪ L̃, and # is a fresh symbol. Easily,

¬(LR) = (¬L)R ¬
(∧

L
)

=
∨
¬L ¬

(∨
L
)

=
∧
¬L

(∧
L
)R

=
∧
LR

(∨
L
)R

=
∨
LR

by the definitions. The conjunctive concatenation L∧L′ and ordered star L<L′

of two problems L,L′ are defined in [16] and [9]. Families of promise problems
admit analogous operations. For more careful definitions, see [16,9].

2 One-Way Automata

2.1 Size Complexity Basics

Let h ≥ 1, and consider the following elementary computational problem:

αi Given a number i ∈ [h] and a set α ⊆ [h], check that i ∈ α.

The input tape is shown on the left. Every instance fits in just two tape cells,
because we use the large alphabet Σ := [h]∪ [[h]]. The instance is surrounded by
the end-markers ` and a, a feature unimportant for fas but essential for fas.
Moreover, every instance is promised to be of this form, i.e., a number followed
by a set; all other strings over Σ are irrelevant to this computational problem.

Solving this problem is trivial. We easily design a dfa M = ([h], Σ, . , 0, 0)
whose transition function implements the following obvious algorithm:

3 3
4
0

4
0
1

0 0 3 0 0 3 0 0

3
From state 0 on `, move to 0 on the 1st cell. Reading i,
move to state i on the 2nd cell. Reading α in state i,
check whether i ∈ α. If not, then hang. Otherwise,
move to state 0 on a. Then fall off a, again in state 0.

Two computations, on a negative and a positive instance (for h = 5), are shown
on the left. Note how M is designed only for instances of the promised form.

Now consider the reverse of this problem, where the set precedes the number:

iα Given a set α ⊆ [h] and a number i ∈ [h], check that i ∈ α.

This problem is again trivial. We easily design a dfa M R = ([[h]], Σ, . , ∅, ∅):

∅ ∅ ∅∅ ∅ ∅14
0 34

0

4
0
1 3

4
0 33

From state ∅ on ,̀ move to ∅ on the 1st cell. Reading α,
move to state α on the 2nd cell. Reading i in state α,
check whether i ∈ α. If not, then hang. Otherwise,
move to state ∅ on a. Then fall off a, again in state ∅.

However, M R uses 2h states, whereas M uses only h. Moreover, this is not due
to poor design; we easily see that M R could not have done significantly better:

Proof. Assume a dfa solver X with < 2h−1 states. For each ∅ 6= α ⊆ [h], the
prefix `α forces X to cross its right boundary (or else X hangs earlier, and fails to
accept `αia for i ∈ α); let qα be the state after this crossing. Since the states of X
are fewer than the non-empty subsets of [h], there exist distinct ∅ 6= α, β ⊆ [h] with
qα = qβ . If i ∈ (α\β)∪ (β \α), then X treats αi and β i the same, a contradiction.

Therefore, the reverse problem is indeed substantially different from the original.
To capture this difference formally, we first introduce a meaningful name for

the original problem: we call it membership. We then note that this “problem”
is in fact a family of problems, with a different member for every h ≥ 1:

membership := (membershiph)h≥1 .

In turn, each member is a promise problem over the alphabet Σh := [h] ∪ [[h]]:

membershiph := ({iα | α ⊆ [h] & i ∈ α}, {iα | α ⊆ [h] & i ∈ α}) . (1)

At the same time, our “algorithm” for membership has been a family of dfas:

M := (Mh)h≥1 with Mh := ([h], Σh, . , 0, 0) .

Likewise, the reverse “problem” is a family membershipR := (membershipR

h)h≥1
with its h-th member as in (1) but with the order of i and α reversed; and the
“algorithm” for it is a family MR := (M R

h)h≥1 with M R

h := ([[h]], Σh, . , ∅, ∅).
(Hence, all this time we used the terms “problem”/“algorithm” and a single

description in terms of h to informally refer to and describe an entire family
of promise problems/fas. This is standard practice, which we will repeat. Also,
instead of the traditional n, which is reserved for denoting input length, the
name for the important parameter is h, for “height” and because h looks like n.)

In our new formal terms, the substantial difference between membership and
membershipR is that the former can be solved by a family of dfas which grow
linearly with h (each Mh has h states), whereas the latter can be solved by some
family of exponential growth (each M R

h has 2h states) and by no family of sub-
exponential growth. To state this more succinctly, we introduce the complexity
classes 1D and 21D of all problems which admit dfa algorithms with at most
polynomially or at most exponentially many states, respectively. More carefully,

1D :=
{

(Lh)h≥1

∣∣∣ for some polynomial p and dfa family (Mh)h≥1,
every Mh solves Lh with ≤ p(h) states

}
, (2)

1D

membershipR

21D

membership

and similarly for 21D, with 2p(h) instead of p(h). Then our
observations so far are summarized by the two statements

membership ∈ 1D and membershipR ∈ 21D \ 1D ,

and by the map on the side, including the obvious fact 1D ⊆ 21D.
From now on, we will informally say that an algorithm or automaton that is

described in terms of h is “small” if in the implicit family of finite automata the
h-th member has ≤ p(h) states, for some polynomial p and all h.

2.2 More Problems

The profile of membership is shared by several other elementary problems that
have appeared sporadically in the literature.(1) We list some of them below.
When appropriate, the endnotes explain who introduced them and why.

We start with a variant of membership, where the set is replaced by a list.
We call it ∃equality. The alphabet consists of [h] and {ı̌ | i ∈ [h]}, a tagged
copy of [h] which is used for distinguishing the query number:

i1 i2 · · ·ı̌
Given a tagged i ∈ [h] and a list i1, i2, . . . , il ∈ [h],
check that i = ij for some j.

Easily, ∃equality ∈ 1D but ∃equalityR ∈ 21D \ 1D. The same holds for a
variant problem, which we call sorted ∃equality, where the numbers in the
list are promised to be strictly increasing: i1 < i2 < · · · < il.

(2)

The next two problems are called projection and composition.(3) (4) The
first one uses the alphabet [h] ∪ [h]h of all numbers in [h] and h-tuples over [h]:

j ui Given a number i ∈ [h], an index j ∈ [h], and a tuple u ∈ [h]h,
check that i = u(j).

The second problem uses the alphabet ([h] ⇀ [h]) of all partial functions on [h]:

gf Given two functions f, g : [h] ⇀ [h], check that f(g(0)) = 0.

Easily, projection,compositionR ∈ 1D but their reverses are in 21D \ 1D.
Finally, a classic. We call it retrocount, for the obvious reason: (5)

· · · · · ·1 Given a binary string, check that its h-th rightmost bit is 1.

Easily, retrocountR ∈ 1D but retrocount ∈ 21D \ 1D. The same holds for
two variant problems: ∃retrocount, where we must check that a 1 exists at
some distance from the end which is a multiple of h; and shortretrocount,
where the input is promised to be of length < 2h.(6)

projectionR

composition

shortretrocount

sorted ∃equalityR

21D

∃equalityR

∃retrocount

membershipR

1D

retrocount

The map on the right summarizes our observa-
tions so far. All problems shown in it are in 21D\1D,
whereas their reverses are in 1D. Perhaps this looks
like an unstructured list of detached observations on
how reversal affects the size of dfas. We will soon
see that this map does contain some structure. Even
at this early level, we can still classify problems in
terms of hardness, and use the resulting lattice to
deduce algorithms and lower bounds.

2.3 Reductions

Roughly speaking, a problem reduces to another ‘in one-way polynomial size’
if a small dft can convert its positive/negative instances to positive/negative
instances of the other problem, respectively, with only a small increase in height.

For example, consider the following simple algorithm for converting instances
of membershipR

h to instances of projectionR

h:

Reading α ⊆ [h], print the characteristic vector of α,
namely u ∈ [2]h such that u(x) = 1 iff x ∈ α, for all x.
Reading i ∈ [h], print the two-symbol string i1.

α iu 1i

Clearly, every instance αi of membershipR

h is mapped into a string ui1 which
is indeed an instance of projectionR

h; and αi is positive iff i ∈ α, namely iff
u(i) = 1, namely iff ui1 is also positive. Moreover, this conversion can be easily
implemented by a 1-state dft and does not increase h across the two problems.

For another example, consider converting projectionR

h to compositionh2

by the following algorithm, which can be implemented by an (h+1)-state dft:

Reading u ∈ [h]h, print a characteristic function of u,
f : [h2] → [2] such that f(y·h+x) = 0 iff u(y) = x,
for all x, y. Reading j ∈ [h], store j. Reading i, print
any function g : [h2] ⇀ [h2] such that g(0) = j·h+i.

gfu j i

Easily, every instance uj i maps to an instance fg which satisfies f(g(0)) = 0 iff
u(j) = i. Also, the increase in height, from h to h2, is small.

Formally, for two families of promise problems L= (Lh)h≥1 and L′= (L′h)h≥1,
we write L ≤1D L′ and say L reduces to L′ in one-way polynomial size, if there is
a family of dfts (Th)h≥1 and two polynomial functions s, e such that every Th
has s(h) states and maps instances of Lh to instances of L′e(h) so that, for all x:

x ∈ Lh =⇒ Th(x) ∈ L′e(h) and x ∈ L̃h =⇒ Th(x) ∈ L̃′e(h) .

In the special case where s(h) = 1 for all h, every Th is nothing more that just a
mapping from symbols to strings. We then say L homomorphically reduces to L′
and write L ≤h L′. Hence, by our two algorithms above, we have already shown:

membershipR ≤h projectionR ≤1D composition ,

with s(h) = 1, e(h) =h and with s(h) =h+1, e(h) =h2, respectively.
A final, more interesting example, which involves problems of arbitrarily long

instances, is the reduction of ∃retrocounth to ∃equalityR

h:

Scan the input bits b1b2 · · · bn; whenever bj = 0, print
nothing; whenever bj = 1, print j mod h untagged. On
reaching a, print (n+1) mod h tagged.

b1 b2 b3 · · · bn

ı̌i1i2il · · ·
To see why this works, note that the input instance is positive iff it has a 1 among
all bj which satisfy j = n−λh+1 for some λ ≥ 1, namely j = (n+1) mod h.
Equivalently, the instance is positive iff the critical value (n+1) mod h appears in
the list of the modulo-h values of all positions of 1s. So, the algorithm outputs this
list, followed by the critical value. Easily, this can be implemented by an h-state
dft which simply keeps track of the index of the current position modulo h.
Therefore ∃retrocount ≤1D ∃equality

R, with s(h) = e(h) = h.
One-way polynomial-size reductions do have the two nice properties we would

expect from them. The first one is, of course, transitivity:

L ≤1D L′ & L′ ≤1D L′′ =⇒ L ≤1D L′′ . (3)

This holds because we can combine an s1-state dft T1 with an s2-state dft T2
in standard cartesian-product style to build an s1·s2-state dft which outputs
T2(T1(x)) for all x. Note that, if s1, e1 and s2, e2 are the polynomial functions
associated with the assumption of (3), then the corresponding functions for the
conclusion are s1(h)·s2(e1(h)) and e2(e1(h)); hence, homomorphic reductions are
also transitive. The second nice property of one-way polynomial-size reductions
is that our complexity classes are closed under them. For example,

L ≤1D L′ & L′ ∈ 1D =⇒ L ∈ 1D , (4)

and similarly for 21D. This time, from an s1-state dft T and an s2-state dfaM
we get an s1·s2-state dfa which accepts x iff M accepts T (x), for all x. If the
polynomial functions associated with the assumption of (4) are s1, e1 and s2,
then the respective function for the conlusion is s1(h)·s2(e1(h)).

shortretrocount

1D

retrocount
∃equalityR

∃retrocount

membershipR

projectionR

composition

sorted ∃equalityR

21D
By transitivity and a few more reductions, we

arrive at the lattice on the right, where arrows and
lines denote ≤1D in one and both directions, respec-
tively. So, by the closures and this lattice, all obser-
vations of Sect. 2.2 now follow from the three facts
membershipR /∈ 1D and (∃)retrocount ∈ 21D.

An analogy is now clear, between 1D, 21D, and
≤1D on one hand, and settings of tm-complexity on
the other: P, EXP, and polynomial-time reductions;
or L, PSPACE, and logarithmic-space reductions. So,
a natural next question is whether this map also contains an analog of NP and NL.

2.4 Nondeterminism

1D

retrocount
∃equalityR

composition

21D

1N

The class 1N is defined as in (2), but for nfas. To
place it on our map, we note that 1D ⊆ 1N ⊆ 21D

(by the definitions and the subset construction [23]),
that retrocount, ∃equalityR ∈ 1N (easily [21]),
and that 1N is closed under ≤1D (by adapting the
argument for (4)). The result is shown on the side.

Naturally, the next step is to look for problems
in 21D \ 1N. We consider the following problem, de-
fined over [[h]], which we call inclusion:

α β Given two sets α, β ⊆ [h], check that α ⊆ β.

We also consider two related problems: set equality, which asks whether α=β;
and disjointness, which asks whether α ∩ β = ∅.(7) Clearly, all three problems
are in 21D. However, none is in 1N. The argument for inclusion is a classic:

Proof. Assume a nfa solver X with < 2h states. Let α0, . . . , α2h−1 list all subsets
of [h] so that the characteristic vector of each αi is the binary representation of i.
Consider the 2h×2h matrix with (i, j)-th entry the instance αiαj . Clearly, every
αiαi on the diagonal is positive, soX accepts it; pick an accepting branch, and let qi
be its state right after crossing into the second set. Since the states q0, . . . , q2h−1

outnumber those of X, we have qi = qj for some i > j. By a standard cut-and-paste
argument, this implies that X accepts αiαj . By i > j, some 1 in the representation
of i is a 0 for j, so αi * αj . So, X accepts a negative instance, a contradiction.

The argument for set equality is identical. As for disjointness, the simple
dft which replaces β with β proves inclusion ≤1D disjointness (easily); so,
by the closure of 1N under ≤1D, this problem is also not in 1N.

Two more problems in this category are rollcall and equalends: (8) (9)

0, 1, . . . , h−1
Given a list of numbers from [h],
check that every number appears at least once.

· · · Given a binary string,
check that its h-long prefix and suffix are equal.

We also consider their restrictions shortrollcall and shortequalends,
where every instance is promised to be of length ≤ 2h.(10) Easily, all four prob-
lems are in 21D. But none of them is in 1N, as disjointness ≤h shortrollcall
and set equality ≤h shortequalends, by straightforward reductions.

Before we update our map with the new problems, we note one more feature
that they have in common: although they do not admit small nfas, their com-
plements do. E.g., ¬inclusionh is solved by an (h+1)-state nfa which ‘guesses’
an i ∈ α \ β. This leads us to the class co1N, which is defined as in (2) but with
“Mh solves ¬Lh”. So, all seven of our new problems are actually in co1N \ 1N.

1N

1D

rollcall
shortrollcall

disjointness
inclusion

equalends
shortequalends

setequality

co1N
21D

The new map is on the right. We have used a
few additional easy reductions, together with the
chain 1D ⊆ co1N ⊆ 21D (since 1D ⊆ 1N ⊆ 21D and
because 1D and 21D are closed under complement).
Of course, all problems shown here have their com-
plements in 1N \ co1N. Also, all problems from
Sect. 2.2 are in 1N∩ co1N: this follows, e.g., because
(∃)retrocount and its complement homomorphi-
cally reduce to each other (by flipping the bits) and
co1N is closed under ≤1D (since 1N is).

At this point, two natural questions are whether 1N also contains complete
problems, by analogy to NP and NL; and whether we can also find problems in
21D \ (1N ∪ co1N). We postpone the answers for Sect. 2.6 and Sect. 2.7. In the
meantime, the next section examines 1N ∩ co1N a bit more carefully.

2.5 Complement and Reversal

In Sect. 2.1 we showed that 1D is not closed under reversal, and in Sect. 2.4 we
showed that 1N is not closed under complement. In contrast, 1D is closed under
complement (as every dfa can be ‘complemented’ just by swapping accepting
and rejecting states, after adding a new one as sink [23]) and 1N is closed under
reversal (as every nfa can be ‘reversed’ just by reversing all transitions, before
adding a fresh start state [23]). We thus have

co1D = 1D 6= re1D and co1N 6= 1N = re1N ,

where co1D is defined as co1N but for dfas, and the classes re1D and re1N are
defined as in (2) but with “Mh solves LR

h”.

1D

re1D

membership

retrocount
membershipR

membershipR∧membership
equalitylength

∃equality
retrocountR

1N

∃equalityR

co1N
To place the new class re1D on our map, we

note that it is in 1N∩co1N (by 1D ⊆ 1N and the
two closures we just mentioned), and that both
the difference (1N∩ co1N) \ (1D∪ re1D) and the
intersection 1D∩re1D are non-empty. For the dif-
ference, consider the conjunctive concatenation
(cf. Sect. 1) of any two problems that witness
the two sides of the symmetric difference of 1D
and re1D, e.g., membershipR and membership:

this defies small dfas in either direction (as each of the original problems ≤h-
reduces to it), but small nfas can solve both it and its complement (easily). As
for 1D ∩ re1D, consider any elementary problem which is the reverse of itself:

i j Given two numbers i, j ∈ [h], check that i = j.

0 0 0· · ·0 Given a string w ∈ {0}∗, check that |w| = h.

We call these two problems equality and length, respectively.(11)

2.6 Completeness

1D

1N

zsp
sep ¬sep

¬zsp

¬inclusion
compactowl

owl ¬owl

co1N
21DA problem is 1N-complete if it is in 1N and every

problem in 1N reduces to it. This notion was intro-
duced by Sakoda and Sipser [24] together with the
first proof of 1N-completeness, for a problem which
we call one-wayliveness (or just owl).(12) A few
years earlier, Seiferas [26] had introduced two prob-
lems which would also turn out to be 1N-complete,
and which we call separability (or just sep) and
zero-safe programs (or just zsp).(13) (14)

For separability, the alphabet is [[h]]. To define it, we use the notion of a
‘block’: a string of sets α0α1 · · ·αl in which the first one contains the number of
those that follow, i.e., α0 3 l. E.g., {0,2,4}∅{1,4} and {0,2} are blocks, but ∅ and
{0,2,4}{1,4} are not. A list of sets is ‘separable’ if it can be split into blocks.

· · ·α1 α2 αn
Given a list of sets α1, α2, . . . , αn ⊆ [h],
check that it is separable.

For zero-safe programs, the alphabet is [h] ∪ [h]2. A symbol ι is seen as an
instruction, applied to a variable α ⊆ [h]: an i ∈ [h] means “remove i from α”;
a (j, i) ∈ [h]2 means “if j ∈ α, then add i to α”. A string ι1ι2 · · · ιn is seen as a
program. We call it ‘0-safe’ if it satisfies: 0 ∈ α at start =⇒ 0 ∈ α in the end.

· · ·ι1 ιnι2
Given a program ι1, ι2, . . . , ιn ∈ [h] ∪ [h]2,
check that it is 0-safe.

For one-wayliveness, the alphabet is P([h]2). A symbol γ is seen as
a 2-column graph of height h, with its pairs (i, j) ∈ γ as rightward
arrows. A string γ1γ2 · · · γn is seen as an h-tall, (n+1)-column graph.
We call this graph ‘live’ if column n+1 is reachable from column 1.

· · · Given a h-tall, one-way, multi-column graph,
check that it is live.

We also call compactowl the restriction where all instances have length n = 2.
The completeness of owl (under ≤h) was proved in [24]. The completeness of

sep was announced there, too (see [14], for an outline of owl ≤h sep). Here, we
show the completeness of zsp, which seems not to have been announced before.

Proof. We copy the intuition of [26, p. 3] to homomorphically reduce seph to zsp2h.

Before we start, we need to consider how a 2h-state dfa solves seph. The strategy
is to keep track of the ‘overhang set’ of the input so far. This is the set α̃ of all i ∈ [h]
such that the input will be separable if it has exactly i more symbols. At start,
α̃ = {0}, because the empty string is separable. Then, on reading an α ⊆ [h], we
update α̃ as follows: (1) every 0 6= i ∈ α̃ is replaced by i−1, because we just read
1 symbol, and (2) if 0 ∈ α̃, then 0 is replaced by all i ∈ α, because in the ‘thread’
encoded by 0 this α starts a new block. In the end, the input is accepted if 0 ∈ α̃.

Our 1-state dft maps an instance α1α2 · · ·αn of seph to an instance p1p2 · · · pn
of zsp2h which uses the set variable to keep track of the overhang set α̃. Each pk is
a sub-program f(αk) which applies to α̃ the updates (1)-(2) caused by αk. For (1),
we use instruction pairs (i, i−1)i, which replace i by i−1 if i ∈ α̃, listing them by
increasing i so that newly-added values do not interfere with pre-existing ones:

(1, 0)1 (2, 1)2 · · · (h−1, h−2)h−1 . (∗)

For (2), we can use one instruction (0, i) for each i ∈ αk, and a final instruction 0
to remove 0. But there is a problem. These instructions must precede (∗), because
all tests for 0 ∈ α̃ must precede (1, 0), which may add 0 to α̃; but then, placing
the instructions before (∗), causes interference between the values added by them
and the values tested for by (∗).
This is why we reduce to zsp2h, and not just zsph: to use a set variable with both a
‘lower half’ in [h] and an ‘upper half’ in [2h]\[h]. This way, we can implement (2) in
two stages, one before (∗) and one after. The first stage uses one instruction (0, h+i)
for every i ∈ αk to copy αk into the upper half of α̃, ‘above’ all pre-existing values,
followed by the instruction 0 to remove 0. Then, after (∗) has correctly updated the
lower half, the second stage uses one instruction pair (h+i, i)h+i for every i ∈ αk
to transpose the copy of αk into the lower half, leaving the upper half empty again.

Overall, our dft replaces every α ⊆ [h] in its input x with the sub-program

f(α) :=
(
(0, h+i)

)
i∈α0 (1, 0)1 (2, 1)2 · · · (h−1, h−2)h−1

(
(h+i, i)h+i

)
i∈α

to produce a program f(x). By our discussion above, x is separable iff its overhang
set contains 0 in the end, which holds iff f(x) transforms {0} into a superset of {0}.
In turn, this holds iff f(x) is 0-safe (for the ‘only if’ direction, note that starting
with a superset of {0} cannot shrink any of the intermediate sets).

Finally, it is interesting (and easy) to note that compactowl is ≤1D-equivalent
to the complement of disjointness, and thus also of inclusion.

2.7 Harder Problems 21D

1N co1N

twl

1D

compacttwl

functional path
functionalmatch

relationalmatch
relational path

inclusion∧¬inclusion

For a problem in 21D \(1N∪co1N), we may consider
the conjunctive concatenation of any two problems
from the two sides of the symmetric difference of
1N and co1N, e.g., inclusion∧¬inclusion: this is
≤h-harder than both inclusion and ¬inclusion,
but still in 21D. Two more interesting examples are
relationalmatch and relational path.(15) (16)

For relationalmatch, the alphabet is two copies of P([h]2), one of them
tagged. Every symbol A ⊆ [h]2 is seen as an h-tall, 2-column graph with right-
ward arrows (as in owl), if it is untagged, or with leftward arrows, if it is tagged.
A pair AB̌ is seen as the overlay (union) of the corresponding two graphs. If this
overlay contains a cycle, we say that the binary relations A and B ‘match’.

A B̌ Given a relation A ⊆ [h]2 and a tagged B ⊆ [h]2,
check that A and B match.

For relational path, the alphabet includes in ad-
dition two copies of [h], one tagged. A string iAB̌̌
is seen again as the overlay for AB̌, but now with
the i-th left-column node and the j-th right-column
node marked respectively as ‘entry’ and ‘exit’.

i B̌ ̌A
Given i∈ [h] and A⊆ [h]2, and tagged B⊆ [h]2 and j ∈ [h],
check that the resulting overlay has a entry-to-exit path.

By functionalmatch and functional path we mean the restrictions where
both relations are promised to be partial functions, i.e., in ([h] ⇀ [h]).(17) (18)

To place these problems on the map, note that functionalmatch /∈ co1N
(because ¬disjointness ≤1D-reduces to it, by a dft which maps αβ to AB̌ for
A := {(i, i) | i ∈ α}, B := {(i, i) | i ∈ β}) and that functional path /∈ 1N [10].
Hence, both problems are outside 1N∪ co1N, provided that they reduce to each
other. Indeed they do, but to prove so we need two new, variant concepts.

First, the variant problem functional zero-match. This asks only that A
and B ‘0-match’, i.e., that their overlay contains a cycle through the 0-th left-
column node.(19) This is known to be ≤h-equivalent to functionalmatch [19].

Second, a variant ‘nondeterministic one-way polynomial-size reduction’, ≤1N.
This differs from ≤1D in that the underlying transducer T is nondeterministic
(a nft), and such that every input x causes all accepting branches to produce
the same output T (x). Easily, ≤1N is also transitive and 1N is closed under it.

We now prove functionalmatch and functional path ≤1N-equivalent.
First, we replace the first problem by its equivalent functional zero-match.
Then, functional zero-matchh reduces to functional pathh+1 by a 1-state
dft which adds a fresh node h which is both entry and exit, directs the entry h
into the path out of 0, and redirects 0 to the exit h:

Reading A, print hA′, where A′(t) := A(t) for t 6= 0, h, whereas
A′(h) := A(0) and A′(0) := h. Reading B̌, print B̌′ȟ, where
B′(t) := B(t) for t 6= h, whereas B′(h) is undefined. ȟ

B̌A

B̌′h A′

Conversely, functional pathh reduces to functional zero-matchh+1 by the
simple h-state nft which first transposes A, B̌ from [h] to [h+1] \ {0}, then
connects the 0-th left-column node to the transposed entry (via the 0-th right-
column node), and the transposed exit back to the 0-th left-column node:

Reading i, store i. Reading A, print A′, where A′(0) := 0
and A′(t) := A(t−1)+1 for t 6= 0. Reading B̌ and recalling i,
guess j′ ∈ [h]; print B̌′, where B′(0) := i+1, B′(j′+1) := 0,
and B′(t) := B(t−1)+1 for t 6= 0, j′+1; and store j′ in place
of i. Reading j and recalling j′, accept iff j = j′.

̌B̌i A

A′ B̌′

Note how nondeterminism allows the machine to use the exit j before reading it.
Appropriately adjusted, both of the above reductions work even when A

and B are relations. Hence, relationalmatch and relational path are also
≤1N-equivalent, through the variant relational zero-match of the first prob-
lem, which is again known to be ≤h-equivalent to it [19].(20)

Finally, we also introduce two-wayliveness (or just twl).(21)

This generalizes owl to the alphabet P([2h]2) of all h-tall, 2-column
graphs with arbitrary arrows. The restriction to instances of length 2
is called compacttwl, and is ≤1D-equivalent to relationalmatch
(by a modification of [19, Lemma 8.1]).(22) Hence, compacttwl and
twl are also outside 1N ∪ co1N —as well as (easily) inside 21D.

2.8 Alternation

= 1D =

1Π2

co1Σ1

1Π1=co1N
co1Π1

1N=1Σ1

1Σ2
co1Π2

...
...

1Σ0 1Π0

1H

co1Σ2

The classes 1N and co1N are on the first level of a
one-way polynomial-size hierarchy which is defined
by analogy to the polynomial-time hierarchy and
the space alternating hierarchies of tm-complexity.

For each k ≥ 1, we define the class 1Σk (resp.,
1Πk) as in (2) but for σkfas (πkfas), namely for
alternating fas which perfrom <k alternations
between existential and universal states, starting
with an existential (universal) one. We also let
1Σ0, 1Π0 := 1D and 1H :=

⋃
k≥0(1Σk∪1Πk). Then

1D ⊆ 1Σk, 1Πk ⊆ 1Σk+1, 1Πk+1 ⊆ 1H

(by the definitions) and co1Σk = 1Πk and 1Σk =
co1Πk (easily), for all k ≥ 0, causing co1H = 1H.

The natural question is whether this hierarchy of classes is strict. For the
first level, we already know (Sect. 2.4) that, e.g., ¬inclusion ∈ 1Σ1 \ 1Π1 and
inclusion ∈ 1Π1 \ 1Σ1. For the higher levels, we use the (much more powerful)
theorems of [4]. We start with a ‘core’ problem, which we call ∃inclusion: (23)

α̌ α2 · · ·α1
Given a tagged α ⊆ [h] and a list α1, α2, . . . , αl ⊆ [h],
check that α ⊆ αj for some j.

Then, by alternate applications of conjunctive and disjunctive star (cf. Sect. 1),
we build the following table of witnesses for all levels, where ‘incl’ abbreviates
‘inclusion’ (for k = 1, reversal is redundant; we use it only for symmetry):

1Σ1\1Π1 1Σ2\1Π2 1Σ3\1Π3 1Σ4\1Π4 1Σ5\1Π5 · · ·
¬inclR ∃inclR

∨
¬∃inclR

∨∧
∃inclR

∨∧∨
¬∃inclR · · ·

inclR ¬∃inclR
∧
∃inclR

∧∨
¬∃inclR

∧∨∧
∃inclR · · ·

1Π1\1Σ1 1Π2\1Σ2 1Π3\1Σ3 1Π4\1Σ4 1Π5\1Σ5 · · ·

(5)

In fact, [4] shows that all lower bounds in this table for k ≥ 2 are valid even
for fas (see also the discussion in Sect. 3.4).

3 Two-Way Automata

3.1 The Sakoda-Sipser Conjecture

co2N

twl
longlength

membershipR∧membership

21D

¬twl

re1D

1D

2D

2N

For fas, the main complexity classes, analogous
to 1D and 1N, are 2D and 2N. To place them on
the map, we note that 1D ⊆ 2D ⊆ 2N ⊆ 21D (by the
definitions and [27]), that 2D = re2D and 2N = re2N
(easily), and that 2D = co2D (by [28]). So, the chain

1D, re1D (2D ⊆ 2N, co2N (21D

mentions all interesting classes. The first inclusion is
strict, because of, e.g., membershipR∧membership
(cf. Sect. 2.5). The last inclusion is also strict, because of the variant of length
(cf. Sect. 2.5) for length 2h, which we call longlength (by [3, Fact 5.2], and
then by [7, Cor. 4.3]). The Sakoda-Sipser conjecture [24] says that the middle
inclusion is also strict: 2D 6= 2N. In fact, it is believed that even 2N 6= co2N [7].

A two-way head is very powerful. All problems mentioned in Sect. 2.1–2.7
are in 2N. In fact, all of them are known to be already in 2D, except for:
• one-wayliveness, separability, and zero-safe programs;
• compacttwl, relationalmatch, and relational path; and
• two-wayliveness.

The first three problems are ≤h-equivalent (Sect. 2.6). So, 2D contains either all
three or none of them (because it is closed under ≤h [24,15]). The next three
problems reduce to each other under ≤1D or ≤1N (Sect. 2.7). However, all six of
the reductions among them can be easily replaced by ≤lac

2D -reductions, namely
‘(two-way) polynomial-size/print reductions’ [19]. These differ from ≤1D in that
the underlying transducer is two-way (a dft), and restricted to print only
poly(h) times on its output tape. So, 2D again contains either all three or none
of the problems in the second group (because 2D is also closed under ≤lac

2D [19]).
Overall, we are essentially left with only three problems that could potentially

witness the Sakoda-Sipser conjecture: twl and its severe restrictions to one-way
graphs and to two-symbol graphs, respectively owl and compacttwl.

The full problem is actually 2N-complete under ≤h [24]. Hence, by the closure
of 2D and 2N under ≤h [24], we get the following equivalences:

2D = 2N⇐⇒ twl ∈ 2D and 2N = co2N⇐⇒ ¬twl ∈ 2N .

So, the Sakoda-Sipser conjecture is concretely reformulated as twl /∈ 2D, i.e.:

no poly(h)-state dfa can check that an h-tall, two-way, multi-column
graph contains a path from its leftmost to its rightmost column.

(6)

Similarly, the conjecture that 2N 6= co2N has the concrete reformulation that
¬twl /∈ 2N, namely that:

no poly(h)-state nfa can check that an h-tall, two-way, multi-column
graph contains no path from its leftmost to its rightmost column.

(7)

In the next two sections we discuss stronger versions of these two conjectures.

3.2 A Stronger Conjecture I

2D

1N co1N

21D

longlength

inclusion

inclusion∧¬inclusion

¬inclusion

owl ¬owl

re1D

1D

The restriction of twl to owl leads to a stronger
conjecture, also from [24], that even owl /∈ 2D, i.e.,
that (6) holds even if the graph is one-way. Since
owl is 1N-complete, this is equivalent to 1N * 2D,
which was conjectured already in [26]. This stronger
claim has been the focus of most attacks against the
Sakoda-Sipser conjecture over the past four decades.
The typical strategy has been to confirm it for some
subclass of dfas of restricted bidirectionality or re-
stricted information. A chronological list follows.
• In [26], a fairly simple argument confirmed the claim for single-pass dfas,

that is, dfas which halt upon reaching an end-marker (cf. Note 13). How-
ever, this provably avoided the full claim, because, as noted also in [26],
unrestricted small dfas are strictly more powerful (cf. Note 9).
• In [29], a breakthrough argument confirmed the claim for sweeping dfas,

that is, dfas which reverse their head only on end-markers. The structure
and tools of that proof have since been copied and reused several times (see,
e.g., [13,16,9]). Again, the result provably avoided the full claim, because
unrestricted small dfas are strictly more powerful [29, by J. Seiferas].
• In [8], a reduction argument confirmed the claim for almost oblivious dfas,

that is, dfas whose number of distinct trajectories over n-long inputs is
only o(n) (instead of the 2O(n logn) maximum). The proof first showed that
small dfas of this kind are as powerful as sweeping ones, then made black-
box use of [29]. As a result, the full claim was once again provably avoided.
• In [13], a computability argument confirmed the claim for dfa moles, that

is, dfas which explore the multi-column graph of an instance of owl as a
‘system of tunnels’. In fact, the proof showed that owl5 is already unsolvable
by dfa moles of any size. Hence, it also completely avoided the full claim.
• In [9], a recent argument confirmed the claim for dfas with few reversals,

that is, dfas whose number of head reversals is only o(n) (instead of the
O(n) maximum). This again avoided the full claim, because, as shown also
in [9], unrestricted small dfas are strictly more powerful. In fact, more
recent arguments show that few-reversal dfas necessarily perform only
O(1) reversals [18, Thm. 1], and that an infinite hierarchy of computational
power exists below them [18, Thm. 2]. In Sect. 4 we use these arguments to
give a simpler, modular argument for improving the main theorem of [9].

In conclusion, if the full claim owl /∈ 2D is false, then this can only be by a
multi-pass dfa algorithm which uses the full information of every symbol and,
infinitely often, performs Θ(n) reversals and exhibits Ω(n) trajectories.

A similar strengthening is also possible for the second conjecture of Sect. 3.1:
we believe that even ¬owl /∈ 2N, i.e., that (7) holds even if the graph is one-way.
One advance in this direction concerns nfas of restricted bidirectionality:
• In [12], it was confirmed that ¬owl admits no small sweeping nfas.

A tractable next goal could be to confirm the same for nfas with few reversals.

3.3 A Stronger Conjecture II

compacttwl

2N/unary2N/poly

2N/const

2N

2D

2O
co2NThe restriction of twl to compacttwl leads to

the stronger conjecture, suggested in [19], that even
compacttwl /∈ 2D, i.e., that (6) holds even for
three-column graphs. This is part of an approach
in which we focus on subclasses of 2N for restricted
instance length, and ask whether 2D contains any
of them. Specifically, we introduce the subclasses

2N/const (2N/poly (2N/exp (2N

of problems whose instances have length constant,
polynomial, or exponential in h, respectively. E.g., compacttwl ∈ 2N/const
and sorted ∃equality ∈ 2N/poly, since both problems are in 2N and their
instances are of length ≤ 2 and ≤h+1, respectively; but length /∈ 2N/exp, since
this problem has (negative) instances of arbitrary length. Our conjecture says
that, not only are all three of these subclasses not in 2D, but even compacttwl,
a problem with the shortest interesting instance length, is not in 2D. To better
understand the meaning of this conjecture, two remarks are due.

First, compacttwl does admit sub-exponential dfas. This can be shown
directly, by applying Savitch’s algorithm [25]. However, it also follows from a
more general phenomenon, involving outer-nondeterministic fas (ofas, i.e.,
nfas which perform nondeterminstic choices only on the end-markers), and the
respective class 2O. We know that 2N/poly ⊆ 2O (a simple argument [19]) and
2O ⊆ 2DSIZE(2poly(log h)) (a theorem of [5], which uses [25]). So, compacttwl
admits quasi-polynomially large dfas because all problems in 2O do.

We note that, like 2N/poly, the class 2N/unary of all unary problems of 2N is
also in 2O (by [6]), and 2D contains either subclass iff it contains the entire 2O:

2N/poly ⊆ 2D ⇐⇒ 2O ⊆ 2D ⇐⇒ 2N/unary ⊆ 2D (8)

(because each subclass shares with 2O a common complete problem, for appro-
priate reductions under which 2D is closed [19]). Moreover, 2O = co2O (another
theorem of [5]), so that this entire discussion takes place inside 2N ∩ co2N.

The second remark about our stronger conjecture is the equivalence [19]:

compacttwl /∈ 2D ⇐⇒ relationalmatch 6≤h functionalmatch . (9)

This connects our conjecture on the left-hand side, which is clearly an algorithmic
statement, to the purely combinatorial statement on the right-hand side:

no pair of systematic ways of replacing h-tall relations
by poly(h)-tall functions respects the existence of cycles.

(10)

So, in regard to the well-known dichotomy of intuition betweeen algorithms and
combinatorics for upper and lower bounds respectively, we see that both sides
are supported: to disprove the conjecture, one may focus on the left-hand side
of (9) and search for a small algorithm for liveness on h-tall, two-way, two-symbol
graphs; to prove the conjecture, one may focus on the right-hand side and search
for a proof of (10). We continue this discussion in Sect. 3.5.

3.4 Alternation Again

2H

...

2Σ0 = 2D = 2Π0

2Π12N=2Σ1

2Σ2 2Π2

...

The two-way polynomial-size hierarchy is defined as
in Sect. 2.8 but for fas. With the same witnesses
as for fas, we know this hierarchy does not collapse
either [4]. However, there are two important differ-
ences. First, the witnesses of (5) work only for k ≥ 2;
for k = 1, we still do not know:
• whether the inclusion 2Σ0 ⊆ 2Σ1 is strict,
• whether the inclusion 2Π0 ⊆ 2Π1 is strict, and
• whether 2Σ1 and 2Π1 are incomparable.

Second, although the first of these questions is in-
deed the Sakoda-Sipser conjecture, the last two are
not about 2D vs. co2N and 2N vs. co2N: for k ≥ 1, it
is open whether co2Σk = 2Πk (and thus also whether 2Σk = co2Πk). In fact,
Geffert [4, §7] conjectures that co2Π1 is not even in 2H, and thus co2H 6= 2H.

3.5 Relation to Turing Machine Complexity

Minicomplexity is related to log-space tm-complexity as shown below. The main
link is that log-space deterministic tms with short advice can simulate log-space
nondeterministic tms (L/poly ⊇ NL) iff small dfas can simulate small nfas on
short inputs (2D ⊇ 2N/poly). This remains true if we reduce space to log log n
and advice to poly(log n) (LL/polylog ⊇ NLL) and lengthen the inputs to 2poly(h)

(2D ⊇ 2N/exp). The problems shorttwl and longtwl are the restrictions of
twl to inputs of promised length ≤h and ≤ 2h, respectively.(24)

2D⊇ 2N/const =⇒ 2D3compacttwl

[2,15]
⇑

[15,19]
⇑

L⊇NL =⇒ L/poly⊇NL ⇐⇒⇐⇒⇐⇒ 2D⊇ 2N/poly ⇐⇒ 2D3 shorttwl
⇑[31]

[15]
⇑

[15]
⇑

LL⊇NLL =⇒ LL/polylog⊇NLL⇐⇒⇐⇒⇐⇒ 2D⊇ 2N/exp ⇐⇒ 2D3 longtwl
⇑

[24]
⇑

2D⊇ 2N ⇐⇒ 2D3twl

Note that, by (8), 2D ⊇ 2N/unary is yet another reformulation of L/poly ⊇ NL.
Also, all inclusions and memberships in this diagram are conjectured to be false.

The diagram can be interpreted in two ways. On one hand, people interested
in space-bounded tms can see that 2D vs. 2N offers a unifying setting for studying
L vs.NL. Confirming 2D + 2N could be a first step in a gradual attack towards
2D + 2N/exp and 2D + 2N/poly, hence LL 6= NLL and L 6= NL. Or, confirming
2D 63compacttwl (or its combinatorial version (10)) could be a single step to
L 6= NL. On the other hand, people stydying 2D vs. 2N can use this diagram to
appreciate the difficulty of proving a separation on bounded-length inputs.

Analogous diagrams can be drawn for other modes. E.g., replacing 2N by its
counterpart 2A for alternating fas, we get L/poly ⊇ P⇐⇒ 2D ⊇ 2A/poly [15],
since alternating log-space coincides with deterministic polynomial time.

4 Hardness Propagation by Certificates

We now present a modular method of separating minicomplexity classes [16,18].
This has two parts, one for upper bounds and one for lower bounds.

The first part consists in proving ‘closure lemmas’ of the form: if an s-state fa
of type X solves problem L, then a poly(s)-state fa of type X solves problem L′,
where L′ is derived from L by via some problem operator (cf. Sect. 1). E.g., if
ufas are the unambiguous nfas, then a straightforward closure lemma is:

Lemma 1. If an s-state ufa solves L, then a O(s)-state ufa solves
∧
L.

Intuitively, such a lemma says that type X can absorb the ‘increase in hardness’
caused by the operator which derives L′ from L.

In the second part, our approach proves ‘hardness-propagation lemmas’, of
the form: if no poly(s)-state fa of type X solves problem L, then no s-state fa
of type X ′ solves problem L′, where type X ′ is more powerful than X. E.g., a
straightforward lemma involving parallel automata (cf. Sect. 1) is [9, Fact 12]:

Lemma 2. (a) If no ∪ldfa with s-state components solves L, then no ∪rdfa
with s-state components solves LR. (b) If no ∩ldfa with (s+1)-state components
solves L, then no ∪ldfa with s-state components solves ¬L.

Intuitively, every such lemma describes a ‘propagation of hardness’ from X vs.L
to X ′ vs.L′. Typically, we prove the contrapositive. Assuming an s-state fa M ′

of type X ′ for L′, we find in M ′ a class of objects (e.g., tuples of states, crossing
sequences) which can serve as ‘certificates’ for the positive instances of L, in the
sense that an instance of L is positive iff it has such a certificate; then, we build
a poly(s)-state fa of type X which solves L by simply searching for certificates.

As an example, we prove that 2D[O(1)] + 1U, where 1U is the restriction
of 1N to problems solvable by small ufas, and 2D[O(1)] is the restriction of 2D
to problems solvable by small dfas with O(1) reversals [18]. (By [18, Thm. 1],
this strengthens the recent [9, Thm. 1].) As witness, we use the problem:

R = (Rh)h≥1 :=
∧[(∧

membershipR
)
<
(∧

membership
)]
.

More concretely, an instance of Rh is a list of the form $y1$ · · · yl; each yj is
a list of the form *x1* · · · *xl*; and each xj is a list of the form #α1i1# · · · #αlil#
or #i1α1# · · · #ilαl#. The task is to check that, in every yj : either every xj has
some ij not in the adjacent αj ; or xj of both forms exist with all their ij in the
adjacent αj , and those in set-number form precede those in number-set form.

The upper bound of this theorem, R ∈ 1U, follows by the easy facts that
membership,membershipR ∈ 1U∩co1U, and by Lemma 1 and the next lemma:

Lemma 3. (a) If s-state ufas solve L,¬L, then a O(s)-state ufa solves
∨
L.

(b) If s-state ufas solve Ll,¬Ll,Lr,¬Lr, then a O(s)-state ufa solves Ll<Lr.

The lower bound, R /∈ 2D[O(1)], uses Lemma 2 and the additional hardness-
propagation Lemmas 4–6 below, which are [16, Lemma 5], [18, Lemma 4∗], and
(an extension of) [18, Lemma 6∗]. For each of them, we outline a proof, describing
only the certificates and their usage. For the full arguments, definitions, and
notation, see [16,18]. The lower bound itself is proved in the end.

Lemma 4. If no s-state dfa solves L, then no ∩ldfa with s-state components
solves

∨
L.

Proof. Suppose some ∩ldfa M = (A, ∅) solves
∨
L with k s-state components,

where k is minimum possible. Pick any D∗ ∈ A. Let M ′= (A′, ∅) := (A\{D∗}, ∅).
Since k is minimum, M ′ does not solve

∨
L, neither does any ∩ldfa that differs

from M ′ only in the selection of final states. By [16, Lemma 2], some string
y = #x1# · · · #xl# is confusing for M ′ on

∨
L = (K, K̃), namely:

y ∈ K & (∃D ∈ A′)
(
D(y) = ⊥

)
or

y ∈ K̃ & (∀D ∈ A′)(∃ỹ ∈ K)
(
D(y) = D(ỹ)

)
.

We know y ∈ K̃. [Otherwise, y ∈ K and some D ∈ A′ hangs on it, so M does not
accept y, so it does not solve (K, K̃), contradiction.] We also know D∗(y) 6= ⊥.
[Otherwise, D∗(yx#) = ⊥ for any positive x, as well, hence M does not accept
yx# ∈ K, so it does not solve (K, K̃), contradiction.] Let p∗ := D∗(y).

Definition. A state q of D∗ is a certificate for an instance x of L if it satisfies:
(i) lcompD∗,p∗(x) hits right into q and (ii) D∗ from q on # moves to a final state.

Claim. An instance of L is positive iff it has a certificate.

Hence, to solve L, an s-state dfa simulates D∗ from p∗ and checks that a is
reached in a state q from which D∗ would move to a final state if it read #. �

Lemma 5. If no ∪ldfa with 1+
(
s
2

)
-state components solves Ll and no ∪rdfa

with 1+
(
s
2

)
-state components solves Lr, then no p2dfa with s-state components

solves Ll<Lr.

Proof. Let Ll = (Ll, L̃l), Lr = (Lr, L̃r). Suppose some p2dfa M = (A,B, F)
solves Ll<Lr with s-state components. Let ϑ be a generic string for M over the
strings L := {#x1# · · · #xl# | l ≥ 0 & (∀i)(xi ∈ L̃l ∪ L̃r)} of negatives of Ll,Lr.

Definition. A pair {p, q} of distinct states in M is a forward certificate for an
instance x of Ll or Lr if there exists D ∈ A such that

p, q ∈ QD

lr(ϑ) and
if both lcompD,p(xϑ) and lcompD,q(xϑ) hit right,
then they do so into the same state.

A backward certificate is defined symmetrically, with A, QD
lr, lcompD, . (xϑ),

and “hit right” replaced respectively by B, QD
rl, rcompD, . (ϑx), and “hit left”.

Claim. At least one is true: (i) an instance of Ll is positive iff it has a forward
certificate, or (ii) an instance of Lr is positive iff it has a backward certificate.

If (i) is true, then an instance x of Ll is positive iff there is D ∈ A and distinct
p, q ∈ QD

lr(ϑ) such that either one of ĉp := lcompD,p(xϑ) or ĉq := lcompD,q(xϑ)
hangs or both hit right into the same state. Hence, to solve Ll, a ∪ldfa checks
this condition using one 1+

(
s
2

)
-state component Dp,q for every such combination

of D and p, q. On input x, Dp,q runs a synchronized simulation of the prefixes
cp := lcompD,p(x) and cq := lcompD,q(x) of ĉp and ĉq. If at any point cp,cq are
about to enter the same state or one of them is about to hang, then Dp,q enters
a special state > which consumes the rest of x and accepts. Otherwise, cp,cq
hit right into distinct states p′,q′; then Dp,q accepts iff one of lcompD,p′(ϑ) or
lcompD,q′(ϑ) hangs or they both hit right into the same state.

If (ii) is true, we work symmetrically with Lr and backward certificates. �

Lemma 6. If no p2dfa with s-state components solves L, then no s-state dfa
with O(1) reversals solves

∧
L.

Proof. Let L = (L, L̃). Let M be an s-state dfa with O(1) reversals for
∧
L.

Then M performs <r∗ reversals on every input of length >n∗, for some r∗, n∗.
Let Q = {0, . . . , s−1} be the state set of M , and let m∗ := max(r∗, n∗).

Pick any x ∈ L. Then w := #(x#)m∗ is a positive of
∧
L. So, c := compM (w)

is accepting. Since |w| ≥ m∗+1 > n∗, the reversals in c are <r∗ ≤ m∗, hence
fewer than the copies of x in w. So, on some of these copies, c performs 0 reversals.

x

qt

#

q2
q1

q3

pt

#

p2
p1

p3 ...

Fix any of the copies with 0 reversals. On it, c con-
sists of t ≤ 2s one-way traversals (one-way, since there
are 0 reversals; and ≤ 2s, or else c would repeat a state
on the first cell of x, and loop). Let px := (p1, . . . , pt)
and qx := (q1, . . . , qt) be the crossing sequences of c on
the outer boundaries of the particular copy of x.

Let C := {(px, qx) | x ∈ L} be all crossing-sequence pairs created like this.

Definition. A pair (p, q) of t-long sequences of states of M is a certificate for an
instance x of L if (i) it is in C, and
(ii) For every odd i = 1, . . . , t: lcompM,pi(x) is one-way and hits right into qi.
(iii) For every even i = 1, . . . , t: rcompM,qi(x) is one-way and hits left into pi.

Claim. An instance of L is positive iff it has a certificate.

Hence, to solve L, a p2dfa P := ({Ap | p ∈ Q}, {Bp | p ∈ Q}, F) searches for
a certificate. Each component Ap (resp., Bp) simulates M from p for as long
as it moves right (left); if M ever attempts to reverse, the component hangs.
Thus, on input x, P simulates M from every state and in either fixed direction,
covering all possible one-way traversals of x. In the end, P checks whether x has
a certificate by comparing the results of these 2s computations against every
(p, q) ∈ C. Formally, for each p = (p1, . . . , pt) and q = (q1, . . . , qt) we let F(p,q)

be the set of all 2s-tuples that we can build from two copies of Q

(0, 1, . . . , s−1, 0, 1, . . . , s−1) ,

by replacing (i) every odd-indexed pi in the left copy with the respective qi (so
that Api hits right into qi); (ii) every even-indexed qi in the right copy with the
respective pi (so that Bqi hits left into pi) and (iii) all other states in either copy
with any result in Q∪{⊥} (to let all other dfas free). Thus, F(p,q) is all tuples
which prove that (p, q) is a certificate. Finally, we let F :=

⋃
(p,q)∈C F(p,q). �

We now prove that R /∈ 2D[O(1)]. This follows by applying Lemmas 2, 4–6 to
the fact that ¬membershipR /∈ 1D. For brevity, we let Mh := membershiph.
1. No (2h−2)-state dfa solves ¬MR

h, by a proof similar to that of Sect. 2.1.
2. No ∩ldfa with (2h−2)-state components solves

∨
¬MR

h, by 1 and Lemma 4.
3. No ∪ldfa with (2h−3)-state components solves

∧
MR

h, by 2 and Lemma 2b.
4. No ∪rdfa with (2h−3)-state components solves

∧
Mh, by 3 and Lemma 2a.

5. Every p2dfa for
∧
MR

h<
∧
Mh has at least one Ω(2h/2)-state component,

by 3, 4, and Lemma 5.
6. Every O(1)-reversal dfa for Rh has Ω(2h/2) states, by 5 and Lemma 6.

This proves the lower bound for R, completing the proof that 2D[O(1)] + 1U.

5 Conclusion

This was an introduction to the complexity of two-way finite automata, or mini-
complexity. We presented it within the Sakoda-Sipser framework, to emphasize
the tight analogy with standard tm-complexity. We believe that this view helps
reveal important structure, which otherwise passes unnoticed. This is, of course,
a coarse view, which is unable to distinguish beyond polynomial differences. For
finer views, at the level of asymptotic or exact values, one should resort to the
more standard vocabulary in terms of ‘trade-offs’.

We focused on one-way and two-way heads and on deterministic, nondeter-
ministic, and alternating modes. However, minicomplexity also includes other
heads (rotating, sweeping) and other standard modes from tm-complexity (prob-
abilistic, quantum, interactive); see [14] for a broader view. It can also mimic
tm-complexity in other ways. E.g., see [17] for a first step towards descriptive
minicomplexity, where minicomplexity classes receive logical characterizations.

The selection of the presented material reflects this author’s immediate in-
terests and space restrictions. The effort to systematically record, organize, and
present material of this kind continues online, at www.minicomplexity.org.

Acknowledgment Many thanks to Viliam Geffert for his kind help with some
of his theorems from [4] concerning alternating fas.

References

1. B. H. Barnes. A two-way automaton with fewer states than any equivalent one-way
automaton. IEEE Transactions on Computers, C-20(4):474–475, 1971.

2. P. Berman and A. Lingas. On complexity of regular languages in terms of finite
automata. Report 304, Institute of Computer Science, Polish Academy of Sciences,
Warsaw, 1977.

3. J.-C. Birget. Two-way automata and length-preserving homomorphisms. Mathe-
matical Systems Theory, 29:191–226, 1996.

4. V. Geffert. An alternating hierarchy for finite automata. Theoretical Computer
Science. To appear.

5. V. Geffert, B. Guillon, and G. Pighizzini. Two-way automata making choices only
at the endmarkers. In Proceedings of LATA, pages 264–276, 2012.

6. V. Geffert, C. Mereghetti, and G. Pighizzini. Converting two-way nondeterministic
unary automata into simpler automata. Theoretical Computer Science, 295:189–
203, 2003.

7. V. Geffert, C. Mereghetti, and G. Pighizzini. Complementing two-way finite au-
tomata. Information and Computation, 205(8):1173–1187, 2007.

8. J. Hromkovič and G. Schnitger. Nondeterminism versus determinism for two-way
finite automata: generalizations of Sipser’s separation. In Proceedings of ICALP,
pages 439–451, 2003.

9. C. Kapoutsis. Nondeterminism is essential in small two-way finite automata with
few reversals. Information and Computation. To appear.

10. C. Kapoutsis. Removing bidirectionality from nondeterministic finite automata.
In Proceedings of MFCS, pages 544–555, 2005.

11. C. Kapoutsis. Algorithms and lower bounds in finite automata size complexity.
Phd thesis, Massachusetts Institute of Technology, June 2006.

12. C. Kapoutsis. Small sweeping 2NFAs are not closed under complement. In Pro-
ceedings of ICALP, pages 144–156, 2006.

13. C. Kapoutsis. Deterministic moles cannot solve liveness. Journal of Automata,
Languages and Combinatorics, 12(1-2):215–235, 2007.

14. C. Kapoutsis. Size complexity of two-way finite automata. In Proceedings of DLT,
pages 47–66, 2009.

15. C. Kapoutsis. Two-way automata versus logarithmic space. In Proceedings of CSR,
pages 197–208, 2011.

16. C. Kapoutsis, R. Královič, and T. Mömke. On the size complexity of rotating and
sweeping automata. In Proceedings of DLT, pages 455–466, 2008.

17. C. Kapoutsis and N. Lefebvre. Analogs of Fagin’s Theorem for small nondeter-
ministic finite automata. In Proceedings of DLT, 2012. To appear.

18. C. Kapoutsis and G. Pighizzini. Reversal hierarchies for small 2DFAs. Submitted.
19. C. Kapoutsis and G. Pighizzini. Two-way automata characterizations of L/poly

versus NL. In Proceedings of CSR, pages 222–233, 2012.
20. D. C. Kozen. Automata and computability. Springer, 1997.
21. A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars,

and formal systems. In Proceedings of FOCS, pages 188–191, 1971.
22. F. R. Moore. On the bounds for state-set size in the proofs of equivalence between

deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers, 20(10):1211–1214, 1971.

23. M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3:114–125, 1959.

24. W. J. Sakoda and M. Sipser. Nondeterminism and the size of two-way finite
automata. In Proceedings of STOC, pages 275–286, 1978.

25. W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4:177–192, 1970.

26. J. I. Seiferas. Untitled. Manuscript, Oct. 1973.
27. J. C. Shepherdson. The reduction of two-way automata to one-way automata.

IBM Journal of Research and Development, 3:198–200, 1959.
28. M. Sipser. Halting space-bounded computations. Theoretical Computer Science,

10:335–338, 1980.
29. M. Sipser. Lower bounds on the size of sweeping automata. Journal of Computer

and System Sciences, 21(2):195–202, 1980.

30. M. Sipser. Introduction to the theory of computation. Thomson Course Technology,
2nd edition, 2006.

31. A. Szepietowski. If deterministic and nondeterministic space complexities are equal
for log logn then they are also equal for logn. In Proceedings of STACS, pages
251–255, 1989.

Notes

(1)membership: Introduced in [16, p. 459], as a problem whose reverse can be used as
‘core’ for building witnesses of separations of complexity classes. See also [9, Eq. (7)].

(2)sorted ∃equality: Introduced in [21, Prop. 3] (essentially), as a problem whose
reverse has logarithmically-small 1-pebble dfas, but admits no small dfas.

(3)projection: Introduced in [21, Prop. 2] (essentially), as a problem whose reverse
witnesses the asymptotic value of the trade-off in converting dfas to dfas.

(4)composition: Introduced in [22, p. 1213] (essentially), as a problem which wit-
nesses the asymptotic value of the trade-off in converting dfas to dfas.

(5)retrocount: Introduced in [21] (attributed to M. Paterson), as a simple problem
which witnesses the asymptotic value of the trade-off in converting nfas to dfas.

(6)shortretrocount: Introduced in [21] (essentially), for restricting retrocount
to finitely many instances which still admit no small dfas.

(7)disjointness: A classic, from Communication Complexity.
(8)roll call: Introduced in [1] (essentially), as a witnesss of 2D \ 1D.
(9)equal ends: Introduced in [26, Prop. 2], as a problem which has small general

dfas but no small single-pass dfas.
(10)shortequal ends: Introduced in [26, Prop. 1] (essentially), as a problem which

has small single-pass dfas but no small nfas.
(11)length: Introduced in [21, Prop. 4], as a problem against which nfas are forced

to stay essentially as large as dfas.
(12)one-way liveness: Introduced in [24, §2.1], as the first 1N-complete problem.
(13)separability: Introduced in [26, p. 1], as a problem that has small nfas but no

small single-pass dfas, and is also conjectured to have no small general dfas.
(14)zero-safe programs: Introduced in [26, p. 2] (essentially), as a problem which

appears to be “easier” than separability but still hard enough to have no small dfas.
(15)relationalmatch: Introduced in [19], for describing a conjecture which is equiv-

alent to compacttwl /∈ 2D.
(16)relational path: Introduced in [11] (essentially), as a problem which witnesses

the exact value of the trade-off in converting nfas to dfas.
(17)functionalmatch: Introduced in [19], as a restriction of relationalmatch,

useful for describing a conjecture equivalent to compacttwl /∈ 2D.
(18)functional path: Introduced in [10,11], as a problem which witnesses the exact

value of the trade-off in converting nfas or dfas to nfas, and dfas to dfas.
(19)functional zero-match: Introduced in [19], for facilitating reductions.
(20)relational zero-match: Introduced in [19], for facilitating reductions.
(21)two-wayliveness: Introduced in [24, §2.1], as the first 2N-complete problem.
(22)compacttwl: Introduced in [19], for stating a conjecture that implies L/poly+NL.
(23)∃inclusion: Introduced in [4] (essentially), as a problem whose reverse can be used

as ‘core’ for building witnesses for all 1Sk \ 2Pk and 1Pk \ 2Sk, where k ≥ 2.
(24)shorttwl: Introduced in [19], as a problem complete for 2N/poly under ≤h.

