
Two-way automata characterizations
of L/poly versus NL

Christos A. Kapoutsis1,? and Giovanni Pighizzini2

1 LIAFA, Université Paris VII, France
2 DICo, Università degli Studi di Milano, Italia

Abstract. Let L/poly and NL be the standard complexity classes, of
languages recognizable in logarithmic space by Turing machines which
are deterministic with polynomially-long advice and nondeterministic
without advice, respectively. We recast the question whether L/poly ⊇ NL
in terms of deterministic and nondeterministic two-way finite automata
(dfas and nfas). We prove it equivalent to the question whether every
s-state unary nfa has an equivalent poly(s)-state dfa, or whether a
poly(h)-state dfa can check accessibility in h-vertex graphs (even under
unary encoding) or check two-way liveness in h-tall, h-column graphs.
This complements two recent improvements of an old theorem of Berman
and Lingas. On the way, we introduce new types of reductions between
regular languages (even unary ones), use them to prove the completeness
of specific languages for two-way nondeterministic polynomial size, and
propose a purely combinatorial conjecture that implies L/poly + NL.

1 Introduction

A prominent open question in complexity theory asks whether nondeterminism
is essential in logarithmic-space Turing machines. Formally, this is the question
whether L = NL, for L and NL the standard classes of languages recognizable by
logarithmic-space deterministic and nondeterministic Turing machines.

In the late 70’s, Berman and Lingas [1] connected this question to the
comparison between deterministic and nondeterministic two-way finite automata
(dfas and nfas), proving that if L = NL, then for every s-state σ-symbol nfa
there is a poly(sσ)-state dfa which agrees with it on all inputs of length ≤ s.
(They also proved that this implication becomes an equivalence if we require
that the dfa be constructible from the nfa in logarithmic space.)

Recently, two improvements of this theorem have been announced. On the
one hand, Geffert and Pighizzini [5] proved that if L = NL then for every
s-state unary nfa there is an equivalent poly(s)-state dfa. That is, in the
special case where σ = 1, the Berman-Lingas theorem becomes true without
any restriction on input lengths. On the other hand, Kapoutsis [7] proved that
L/poly ⊇ NL iff for every s-state σ-symbol nfa there is a poly(s)-state dfa

? Supported by a Marie Curie Intra-European Fellowship (pief-ga-2009-253368) within
the European Union Seventh Framework Programme (fp7/2007-2013).

which agrees with it on all inputs of length ≤ s, where L/poly is the standard class
of languages recognizable by deterministic logarithmic-space Turing machines
with polynomially-long advice. Hence, the Berman-Lingas theorem is true even
under the weaker assumption L/poly ⊇ NL, even for the stronger conclusion
where the dfa size is independent of σ, and then even in the converse direction.

A natural question arising from these developments is whether the theorem
of [5] can be strengthened to resemble that of [7]: Does the implication remain
true under the weaker assumption that L/poly ⊇ NL? If so, does it then become
an equivalence? Indeed, we prove that L/poly ⊇ NL iff for every s-state unary
nfa there is an equivalent poly(s)-state dfa. Intuitively, this means that
L/poly ⊇ NL is true not only iff ‘small’ nfas can be simulated by ‘small’ dfas
on ‘short’ inputs (as in [7]), but also iff the same is true for unary inputs.

In this light, a second natural question is whether this common behavior of
‘short’ and unary inputs is accidental or follows from deeper common properties.
Indeed, our analysis reveals two such properties. They are related to outer-
nondeterministic fas (ofas, which perform nondeterministic choices only on
the end-markers [2]) and to the graph accessibility problem (gap, the problem of
checking the existence of paths in directed graphs), and use the fact that checking
whether a ‘small’ ofa M accepts an input x reduces to solving gap in a ‘small’
graph GM (x). The first common property is that, both on ‘short’ and on unary
inputs, ‘small’ nfas can be simulated by ‘small’ ofas (Lemma 1). The second
common property is that, both on ‘short’ and on unary inputs, it is possible
to encode instances of gap so that a ‘small’ dfa can extract GM (x) from x
(Lemma 5) and simultaneously simulate on it another ‘small’ dfa (Lemma 6).
For ‘short’ inputs, both properties follow from standard ideas; for unary inputs,
they follow from the analyses of [3, 8] and a special unary encoding for graphs.

We work in the complexity-theoretic framework of [9]. We focus on the class
2D of (families of promise) problems solvable by polynomial-size dfas, and
on the corresponding classes 2N/poly and 2N/unary for nfas and for problems
with polynomially-long and with unary instances, respectively. In these terms,
2D ⊇ 2N/poly means ‘small’ dfas can simulate ‘small’ nfas on ‘short’ inputs;
2D ⊇ 2N/unary means the same for unary inputs; the theorem of [7] is that
L/poly ⊇ NL⇔ 2D ⊇ 2N/poly; the theorem of [5] is the forward implication that
L ⊇ NL⇒ 2D ⊇ 2N/unary; and our main contribution is the stronger statement

L/poly ⊇ NL ⇐⇒ 2D ⊇ 2N/unary . (1)

This we derive from [7] and the equivalence 2D ⊇ 2N/poly ⇔ 2D ⊇ 2N/unary,
obtained by our analysis of the common properties or ‘short’ and unary inputs.

Our approach returns several by-products of independent interest, already
anticipated in [6] for enriching the framework of [9]: new types of reductions,
based on ‘small’ two-way deterministic finite transducers; the completeness of
binary and unary versions of gap (bgap and ugap) for 2N/poly and 2N/unary,
respectively, under such reductions (Cor. 2); the closure of 2D under such
reductions (Cor. 3); and the realization of the central role of ofas in this
framework (as also recognized in [2]). In the end, our main theorem (Th. 1)

is the equivalence of L/poly ⊇ NL to all these statements (and one more):

2D ⊇ 2N/poly 2D ⊇ 2N/unary 2D ⊇ 2O 2D 3 bgap 2D 3 ugap

where 2O is the analogue of 2D for ofas. Hence, the conjecture L/poly + NL is
now the conjecture that all these statements are false. In this context, we also
propose a stronger conjecture, both in algorithmic and in combinatorial terms.

Concluding this introduction, we note that, of course, (1) can also be derived
by a direct proof of each direction. In such a derivation, the forward implication is
a straightforward strengthening of the proof of [5], but the backward implication
needs the encoding of ugap and the ideas behind Lemma 6.2.

2 Preparation

If h ≥ 1, we let [h]:={0, 1, . . . , h−1}, use Kh for the complete directed graph with
vertex set [h], and ph for the h-th smallest prime number. If x is a string, then
|x|, xi, and xi are its length, its i-th symbol (1 ≤ i ≤ |x|), and the concatenation
of i copies of it (i ≥ 0). The empty string is denoted by ε.

The binary encoding of a subgraph G of Kh, denoted as 〈G〉2, is the standard
h2-bit encoding of the adjacency matrix of G: arrow (i, j) is present in G iff
the (i·h+j+1)-th most significant bit of the encoding is 1. The unary encoding
of G, denoted as 〈G〉1, uses the natural correspondence between the bits of 〈G〉2
and the h2 smallest prime numbers, where the k-th most significant bit maps
to pk, and thus arrow (i, j) maps to the prime number p(i,j):=pi·h+j+1. We let
〈G〉1:=0nG , where the length nG is the product of the primes which correspond
to the 1s of 〈G〉2, and thus to the arrows of Kh which are present in G:

nG :=
∏

bit k of 〈G〉2 is 1

pk =
∏

(i,j) is in G

p(i,j) =
∏

(i,j) is in G

pi·h+j+1 . (2)

Note that, conversely, every length n ≥ 1 determines the unique subgraph
Kh(n) of Kh where each arrow (i, j) is present iff the corresponding prime p(i,j)
divides n. Easily, G = Kh(nG).

A prime encoding of a length n ≥ 1 is any string #z1#z2# · · · #zm ∈ (#Σ∗)∗,
where # 6∈ Σ and each zi encodes one of the m prime powers in the prime
factorization of n. Here, the alphabet Σ and the encoding scheme for the zi are
arbitrary, but fixed; the order of the zi is arbitrary.

A (promise) problem over Σ is a pair L = (L, L̃) of disjoint subsets of Σ∗. An
instance of L is any x ∈ L∪L̃. If L̃ = Σ∗−L then L is a language. If L = (Lh)h≥1
is a family of problems, its members are short if every instance of every Lh has
length ≤ p(h), for some polynomial p. If M = (Mh)h≥1 is a family of machines,
its members are small if every Mh has ≤ p(h) states, for some polynomial p.

2.1 Automata

A two-way nondeterministic finite automaton (nfa) consists of a finite control
and an end-marked, read-only tape, accessed via a two-way head. Formally, it is a

tuple M = (S,Σ, δ, q0, qf) of a set of states S, an alphabet Σ, a start state q0 ∈ S,
a final state qf ∈ S, and a set of transitions δ ⊆ S× (Σ ∪{`,a})×S×{l,r}, for
`,a /∈ Σ two end-markers and l:=−1 and r:=+1 the two directions. An input
x ∈ Σ∗ is presented on the tape as `xa. The computation starts at q0 on `.
At each step, M uses δ on the current state and symbol to decide the possible
next state-move pairs. We assume δ never violates an end-marker, except if on a
and the next state is qf. A configuration is a state-position pair in S×[|x|+2] or
the pair (qf, |x|+2). The computation produces a tree of configurations, and x is
accepted if some branch ‘falls off a into qf’, i.e., ends in (qf, |x|+2). A problem
(L, L̃) is solved by M if M accepts all x ∈ L but no x ∈ L̃.

We say M is outer-nondeterministic (ofa [2]) if all nondeterministic choices
are made on the end-markers: formally, for each (q, a) ∈ S×Σ there is at most
one transition of the form (q, a, . , .); if this holds also for each (q, a) ∈ S×{`,a},
then M is deterministic (dfa). We say M is sweeping (snfa, sofa, sdfa) if
the head reverses only on the end-markers: formally, the set of transitions is now
just δ ⊆ S × (Σ ∪ {`,a})× S and the next position is defined to be always the
adjacent one in the direction of motion; except if the head is on ` or if the head
is on a and the next state is not qf, in which two cases the head reverses. We
say M is rotating (rnfa, rofa, rdfa) if it is sweeping, but modified so that
its head jumps directly back to ` every time it reads a and the next state is
not qf: formally, the next position is now always the adjacent one to the right;
except when the head is on a and the next state is not qf, in which case the next
position is on `. Restricting the general definition of outer-nondeterminism, we
require that a rofa makes all nondeterministic choices exclusively on `.

Lemma 1. For every s-state nfa M and length bound l, there is a O(s2l2)-
state rofa M ′ that agrees with M on all inputs of length ≤ l. If M is unary,
then M ′ has O(s2) states and agrees with M on all inputs (of any length).

Proof. Pick any nfa M = (S,Σ, δ, q0, qf) and length bound l. To simulate M
on inputs x of length n ≤ l, a rofa M ′ =

(
S′, Σ, . , (q0, 0), q′f

)
uses the states

S′ :=
(
S × [l+2]

)
∪
(
S × [l+2]× S × {l,r} × [l+1]

)
∪ { q′f } .

The event of M being in state q and on tape cell i (where 0 ≤ i ≤ n+1, cell 0
contains x0:=` and cell n+1 contains xn+1:=a) is simulated by M ′ being in
state (q, i) and on `. From there, M ′ nondeterministically ‘guesses’ among all
(p, d) ∈ S×{l,r} a ‘correct’ next transition of M out of q and xi (i.e., a transition
leading to acceptance) and goes on to verify that this transition is indeed valid,
by deterministically sweeping the input up to cell i (using states of the form
(q, i, p, d, j) with j < i) and checking that indeed (q, xi, p, d) ∈ δ. If the check
fails, then M ′ just hangs (in this branch of the computation). Otherwise, it
continues the sweep in state (p, i + d) until it reaches a and jumps back to `;
except if xi = a & p = qf & d = r, in which case it just falls off a into q′f.

If M is unary, then it can be simulated by a sofa M̃ with s̃ = O(s2) states [3].
This can then be converted into a rofa M ′ with 2s̃ + 1 states, which simply
replaces backward sweeps with forward ones—a straightforward simulation, since
reversing a unary input does not change it. Hence, M ′ is also of size O(s2). ut

(e)(a) (b) (c) (d)

Fig. 1. (a) Three symbols of Γ5. (b) Their string as a multi-column graph. (c) A symbol
(A,l) ∈ ∆5. (d) A symbol (B,r) ∈ ∆′

5. (e) The overlay of the symbols of (c) and (d).

A family of nfasM = (Mh)h≥1 solves a family of problems L = (Lh)h≥1 if
every Mh solves Lh. The class of families of problems that admit small nfas is

2N := {L | L is a family of problems solvable by a family of small nfas} .

Its restrictions to families of short and of unary problems are respectively
2N/poly and 2N/unary. Analogous classes for restricted nfas are named
similarly: e.g., the class for problems with small dfas is 2D, the class for short
problems with small rofas is RO/poly, etc.

Corollary 1. 2N/poly = RO/poly and 2N/unary = RO/unary.

2.2 Problems

The graph accessibility problem on h vertices is: “Given a subgraph G of Kh,
check that G contains a path from 0 to h−1.” Depending on whether G is given
in binary or unary, we get the following two formal variants of the problem:

bgaph :=
(
{〈G〉2 | G is subgraph of Kh and has a path 0 h−1},
{〈G〉2 | G is subgraph of Kh and has no path 0 h−1}

)
ugaph :=

(
{0n | Kh(n) has a path 0 h−1},
{0n | Kh(n) has no path 0 h−1}

)
and the corresponding families bgap:=(bgaph)h≥1 and ugap:=(ugaph)h≥1.

Lemma 2. bgaph and ugaph are solved by rofas with O(h3) and O(h4 log h)
states, respectively. Hence bgap ∈ RO/poly and ugap ∈ RO/unary.

The two-way liveness problem on height h, defined over the alphabet Γh :=
P(([h]×{l,r})2) of all h-tall directed two-column graphs (Fig. 1a), is: “Given a
string x of such graphs, check that x is live.” Here, x ∈ Γ ∗h is live if the multi-
column graph derived from x by identifying adjacent columns (Fig. 1b) contains
‘live’ paths, i.e., paths from the leftmost to the rightmost column; if not, then
x is dead. Formally, this is the language twlh:={x ∈ Γ ∗h | x is live}. We focus

on two restrictions of this problem, in which x is promised to consist of ≤h or
of exactly 2 graphs. Formally, these are the promise problems and families

short twlh :=
(
{x ∈ Γ≤hh | x is live}, {x ∈ Γ≤hh | x is dead}

)
compact twlh :=

(
{ab ∈ Γ 2

h | ab is live}, {ab ∈ Γ 2
h | ab is dead}

)
and short twl:=(short twlh)h≥1, compact twl:=(compact twlh)h≥1.

Lemma 3. twlh is solved by a nfa with 2h states. Hence short twl and
compact twl are both in RO/poly.

The relational match problem on [h] is defined over the alphabet ∆h:=P([h]×
[h])×{l,r} of all pairs of binary relations on [h] and side tags. A symbol (A,l)
denotes an h-tall two-column graph with rightward arrows chosen by A (Fig. 1c);
a symbol (B,r) denotes a similar graph with leftward arrows chosen by B
(Fig. 1d). If the overlay of these two graphs (Fig. 1e) contains a cycle, we say
that the symbols match, or just that A,B match. We consider the problem

rmh :=
(
{ (A,l)(B,r) | A,B ⊆ [h]×[h] & A,B match},
{ (A,l)(B,r) | A,B ⊆ [h]×[h] & A,B do not match}

)
of checking that two given relations match, and set rel match:=(rmh)h≥1. We
also let fmh be the restriction of rmh to the alphabet ∆′h:=([h]⇀[h])×{l,r},
where all relations are partial functions, and set fun match:=(fmh)h≥1.

Lemma 4. fmh is solved by a dfa with h3 states. Hence fun match ∈ 2D.

Finally, rel zero-match = (rzmh)h≥1 and fun zero-match = (fzmh)h≥1
are the variants where we only check whether the given relations or functions
‘match through 0’, i.e., create a cycle through vertex 0 of the left column.

3 Transducers, reductions, and completeness

A two-way deterministic finite transducer (dft) consists of a finite control, an
end-marked, read-only input tape accessed via a two-way head, and an infinite,
write-only output tape accessed via a one-way head. Formally, it is a tuple T =
(S,Σ, Γ, δ, q0, qf) of a set of states S, an input alphabet Σ, an output alphabet Γ ,
a start state q0 ∈ S, a final state qf ∈ S, and a transition function δ : S × (Σ ∪
{`,a})→ S × {l,r} × Γ ∗, where `,a 6∈ Σ. An input x ∈ Σ∗ is presented on the
input tape as `xa. The computation starts at q0 with the input head on ` and
the output tape empty. At every step, T applies δ on the current state and input
symbol to decide the next state, the next input head move, and the next string
to append to the contents of the output tape; if this string is non-empty, the
step is called printing. We assume δ never violates an end-marker, except if the
input head is on a and the next state is qf. For y ∈ Γ ∗, we say T outputs y and
write T (x) = y, if T eventually falls off a and then the output tape contains y.

For f : Σ∗⇀Γ ∗ a partial function, we say T computes f if T (x) = f(x) for all
x ∈ Σ∗. If Γ = {0}, then T can also ‘compute’ each unary string f(x) by printing
(not the string itself, but) an encoding of its length; if this is a prime encoding
#z1#z2# · · · #zm (cf. p. 3) and every infix #zi is printed by a single printing step
(possibly together with other infixes), then T prime-computes f .

Now let L = (L, L̃) and L′ = (L′, L̃′) be two problems over alphabets Σ
and Σ′. A function f : Σ∗→(Σ′)∗ is a (mapping) reduction of L to L′ if it is
computable by a dft and every x ∈ Σ∗ satisfies x ∈ L ⇒ f(x) ∈ L′ and
x ∈ L̃ ⇒ f(x) ∈ L̃′. If Σ′ = {0} and f is prime-computable by a dft, then
f is a prime reduction. If f(x) is always just g(`)g(x1) · · · g(x|x|)g(a) for some
homomorphism g : Σ ∪ {`,a}→(Σ′)∗, then f is a homomorphic reduction. If
such f exists, we say L (mapping-)/prime-/homomorphically reduces to L′, and
write L ≤m L′ / L �m L′ / L ≤h L′. Easily, L ≤h L′ implies L ≤m L′.

Lemma 5. If L is solved by an s-state ofa, then L ≤m bgap2s+1 and L �m

ugap2s+1 and L ≤h twl2s. The first two reductions are computable and prime-
computable, respectively, by dfts with O(s4) states and O(s2) printing steps
per input; the last reduction maps strings of length n to strings of length n+2.

Proof. Suppose L = (L, L̃) is solved by the s-state ofa M = (S,Σ, . , q0, qf)
and let x ∈ Σ∗. It is well-known that L ≤h twl2s via a reduction f with
|f(x)| = |x|+2 (e.g., see [7, Lemma 3]). So, we focus on the first two claims.

A segment of M on x is a computation of M on x that starts and ends on
an end-marker visiting no end-markers in between, or a single-step computation
that starts on a and falls off into qf. The end-points of a segment are its first
and last configurations. The summary of M on x is a subgraph G(x) of K2s+1

that encodes all segments, as follows. The vertices represent segment end-points:
vertex 0 represents (q0, 0); vertices 1, 2, . . . , 2s−1 represent the remaining points
of the form (q, 0) and all points of the form (q, |x|+1); and vertex 2s represents
(qf, |x|+2). Hence, each arrow of K2s+1 represents a possible segment. The
summary G(x) contains exactly those arrows which correspond to segments that
M can perform on x. Easily, every accepting branch in the computation of M
on x corresponds to a path in G(x) from vertex 0 to vertex 2s, and vice-versa.

Now let the functions f2(x):=〈G(x)〉2 and f1(x):=〈G(x)〉1 map every x to
an instance of bgap2s+1 and of ugap2s+1. If x ∈ L, then the computation of M
on x contains an accepting branch, so G(x) contains a path 0 2s, thus f2(x)
and f1(x) are positive instances. If x ∈ L̃, then there is no accepting branch,
hence G(x) contains no path 0 2s, thus f2(x) and f1(x) are negative instances.
So, f2 and f1 are the desired reductions, if they can be computed appropriately.

To compute f2(x) from x ∈ Σ∗, a dft T2 iterates over all arrows of K2s+1; for
each of them, it checks whether M can perform on x the corresponding segment,
and outputs 1 or 0 accordingly. To check a segment, from end-point (p, i) to end-
point (q, j), it iterates over all configurations (p′, i′) that are nondeterministically
visited by M right after (p, i); for each of them, it checks whether M can compute
from (p′, i′) to (q, j); the segment check succeeds if any of these checks does.
Finally, to check the computation from (p′, i′) to (q, j), the transducer could

simulate M from (p′, i′) and up to the first visit to an end-marker. This is indeed
possible, since M would behave deterministically throughout this simulation.
However, M could also loop, causing T2 to loop as well, which is a problem.

To avoid this, T2 simulates a halting variant M ′ of M , derived as follows.
First, we remove from M all transitions performed on ` or a. Second, we add
a fresh start state q′0, along with transitions which guarantee that, on its first
transition leaving q′0, the machine will be in state p′ and cell i′ (since cell i′ is
adjacent to either ` or a, this requires either a single step from q′0 to p′ on ` or a
full forward sweep in q′0 followed by a single backward step on a into p′). Third,
we add a fresh final state q′f, along with transitions which guarantee that, from
state q reading the end-marker of cell j, the machine sweeps the tape in state q′f
until it falls off a (since cell j contains either ` or a, this is either a full forward
sweep followed by a single step off a, or just a single step off a). Now we have a
dfa which first brings itself into configuration (p′, i′), then simulates M until
the first visit to an end-marker, and eventually accepts only if this simulation
reaches (q, j). So, this is a (2+s)-state dfa that accepts x iff M can perform
on x the segment from (p′, i′) to (q, j). By [4], this dfa has an equivalent halting
dfa with ≤ 4·(2+s) states. This is our M ′.

To recap, T2 iterates over all O(s2) arrows of K2s+1 and then over all
O(s) first steps of M in each corresponding segment, finally simulating a O(s)-
state dfa in each iteration. Easily, T2 needs no more than O(s4) states and
O(s2) printing transitions, each used at most once. This proves our claim for f2.

To prime-compute f1(x) from x ∈ Σ∗, a dft T1 must print a prime encoding
#z1 · · · #zm of the length of 〈G(x)〉1 (making sure no infix #zi is split between
printing steps). By (2), this length is the product of the primes pk for which
the k-th bit of 〈G(x)〉2 is 1. So, m must equal the number of 1s in T2(x) and
each zi must encode one of the prime powers p1k corresponding to those 1s.
Hence, T1 simulates T2 and, every time T2 would print a 1 as its k-th ouput bit,
T1 performs a printing step with output #z, where z is the encoding of p1k. Easily,
the state diagram of T1 differs from that of T2 only in the output strings on the
printing transitions. So, the size and print of T1 are also O(s4) and O(s2). ut

For two families T =(Th)h≥1 of dfts and F=(fh)h≥1 of string functions,
we say T (prime-) computes F if every Th (prime-) computes fh. The members
of T are laconic if every Th performs ≤ p(h) printing steps on each input, for
some polynomial p. The members of F are tight if |fh(x)| ≤ p(h)·|x| for some
polynomial p, all h, and all x.

For two problem families L=(Lh)h≥1 and L′=(L′h)h≥1, we say L reduces to L′
in polynomial size (L ≤2D L′) if every Lh reduces to L′p(h) for some polynomial p,
and the family F of underlying reductions is computed by a family T of small
dfts; if the problems in L′ are unary and T prime-computes F , then L prime-
reduces to L′ in polynomial size (L �2D L′); if the dfts in T are laconic, then
L (prime-) reduces to L′ in polynomial size/print (L ≤lac

2D L′ orL �lac
2D L′). If

every Lh homomorphically reduces to L′p(h) for some polynomial p, then L homo-

morphically reduces to L′ (L ≤h L′); if the underlying homomorphisms are tight,
then L reduces to L′ under tight homomorphisms (L ≤t

h L′).

As usual, if C is a class of problem families and ≤ a type of reductions, then
a family L is C-complete under ≤ if L ∈ C and every L′ ∈ C satisfies L′ ≤ L.

Corollary 2. The following statements are true:
1. bgap is 2N/poly-complete and 2O-complete, under polynomial-size/print

reductions (≤lac
2D).

2. ugap is 2N/unary-complete and 2O-complete, under polynomial-size/print
prime reductions (�lac

2D).
3. short twl is 2N/poly-complete under tight homomorphic reductions (≤t

h).

4 Closures

We now prove that 2D is closed under all of the above reductions. As usual, a
class C is closed under a type ≤ of reductions if L1 ≤ L2 & L2 ∈ C⇒ L1 ∈ C.

Lemma 6. Suppose L2 is solved by an s-state dfa. Then the following hold.
1. If L1 ≤m L2 via a reduction which is computable by an r-state dft

performing ≤ t printing steps on every input, then L1 is solved by a dfa
with O(rst2) states.

2. If L1 �m L2 via a reduction which is prime-computable by an r-state dft,
then L1 is solved by a dfa with O(rs2) states.

3. If L1 �m L2L1 ≤h L2, then L1 is solved by a dfa with 2s states.

Proof. Part 3 is well-known (e.g., see [7, Lemma 2]), so we focus on the first
two claims, starting with 1. Suppose f : Σ∗1→Σ∗2 reduces L1 to L2. Let T =
(S,Σ1, Σ2, . , . , .) be a dft that computes f , with |S| = r and ≤ t printing
steps on every input. Let M2 = (S2, Σ2, . , . , .) be a dfa that solves L2, with
|S2| = s. We build a dfa M1 = (S1, Σ1, . , . , .) for L1.

On input x ∈ Σ∗1 , M1 simulates T on x to compute f(x), then simulates M2

on f(x) and copies its decision. (By the choice of f , this is clearly a correct
algorithm for L1.) Of course, M1 cannot store f(x) in between the two
simulations. So, it performs them simultaneously: it simulates T on x and, every
time T would print a string z (an infix of f(x)), M1 resumes the simulation
of M2 from where it was last interrupted and for as long as it stays within z.

The only problem (a classic, from space complexity) is that T prints f(x)
by a one-way head but M2 reads f(x) by a two-way head. So, whenever the
simulation of M2 falls off the left boundary of an infix z, the simulation of T
should not continue unaffected to return the next infix after z, but should return
again the infix before z. The solution (also a classic) is to restart the simulation
of T , continue until the desired infix is ready to be output, and then resume the
simulation of M2. This is possible exactly because of the bound t, which implies
that f(x) = z1z2 · · · zm where m ≤ t and zi is the infix output by T in its i-th
printing step. Thus M1 keeps track of the index i of the infix currently read by
the simulation of M2, and uses it to request zi−1 from the next simulation of T .

Easily, M1 can implement this algorithm with S1:=S2×{l,r}×[t]×S×[t],
where state (q, d, i, p, j) ‘means’ the simulation of M2 is ready to resume from

state q on the d-most symbol of zi+1, and the simulation of T (to output zi+1) is
in state p and past the printing steps for z1, . . . , zj . As claimed, |S1| = O(rst2).

Now suppose Σ2={0} and T prime-computes f . Then M1 implements a
modification of the above algorithm. Now every string returned by the simulation
of T is an infix not of f(x) but of a prime encoding #z1#z2# · · · #zm of n:=|f(x)|.
So, we need to change the way these infixes are treated by the simulation of M2.

By the analyses of [8, 3], it follows that there exist a length bound l = O(s)
and a O(s)-state rdfa M̃2 = (S̃2, {0}, δ̃, q̃0, q̃f) such that M̃2 agrees with M2

on all lengths ≥ l, and is in the following ‘normal form’. The states S̃2 \ {q̃0,q̃f}
can be partitioned into a number of cycles C1, C2, . . . , Ck. Every rotation on an
input y starts on ` with a transition into a state q̃ of some Cj , and finishes on a
in the state p̃ of the same Cj that is uniquely determined by the entry state q̃,
the cycle length |Cj |, and the input length |y|. From there, the next transition is
either off a into q̃f to accept, or back to ` and again in p̃ to start a new rotation.
Our modified M1 will use this M̃2 for checking whether M2 accepts f(x).

In a first stage, M1 checks whether n = |T (x)| is one of the lengths < l,
where M̃2 and M2 may disagree; if so, then it halts, accepting iff M2 accepts 0n;
otherwise, it continues to the second stage below. To check whether n < l, it
iterates over all n̂ ∈ [l], checking for each of them whether n = n̂. To check n = n̂,
it checks whether the prime factorizations of the two numbers contain the same
prime powers. This needs 1+m̂ simulations of T on x, for m̂ ≤ log n̂ the number
of prime powers in the factorization of n̂: during the 0-th simulation, M1 checks
that every infix #zi of every string output by T encodes some prime power of n̂;
during the j-th simulation (1 ≤ j ≤ m̂), M1 checks that the j-th prime power
of n̂ (under some fixed ordering of prime powers) is encoded by some infix #zi
of some string output by T . Overall, this first stage can be implemented on the
state set [l]× [1 + log l]×S, where state (n̂, j, q) ‘means’ that the j-th simulation
of T for checking n = n̂ is currently in state q.

In the second stage, n ≥ l is guaranteed, so M1 can simulate M̃2 instead
of M2. This is done one rotation at a time. Starting the simulation of a single
rotation, M1 knows the entry state q̃ and cycle Cj to be used; the goal is to
compute the state p̃ of Cj when the rotation reaches a. Clearly, this reduces to
computing the remainder n mod lj , where lj :=|Cj | is the cycle length. If ni is
the prime power encoded by the infix #zi of T (x), then n mod lj equals(∏m

i=1 ni

)
mod lj =

((
· · ·
(
(n1 mod lj) · n2

)
mod lj · · ·

)
· nm

)
mod lj . (3)

So, to compute the value ρ of this remainder, M1 simulates T on x, building ρ as
in (3): ρ← 1 at start, and ρ← (ρ · ni) mod lj for every infix #zi inside a string
printed by T . When the simulation of T halts, M1 finds p̃ in Cj at distance ρ

from q̃. From there, if δ̃(p̃,a) = q̃f then M̃2 accepts, and so does M1; otherwise,
M̃2 starts a new rotation from state δ̃(δ̃(p̃,a),`), and M1 goes on to simulate it,
too. Overall, the second stage can be implemented on the state set S̃2×S×[|S̃2|],
where state (q̃, q, ρ) ‘means’ that the simulation of T for simulating a rotation
of M̃2 from state q̃ is currently in state q and the remainder is currently ρ.

Overall, S1:=([l]× [1+log l]×S)∪(S̃2×S× [|S̃2|]). Hence |S1| = O(rs2). ut

Corollary 3. 2D is closed under polynomial-size/print reductions (≤lac
2D), under

polynomial-size prime reductions (�2D), and under homomorphic reductions (≤h).

5 Characterizations and conjectures

Our main theorem is now a direct consequence of [7] and Corollaries 2 and 3.

Theorem 1. The following statements are equivalent to L/poly ⊇ NL:

1. 2D ⊇ 2N/poly 3. 2D ⊇ 2N/unary 5. 2D ⊇ 2O

2. 2D 3 bgap 4. 2D 3 ugap 6. 2D 3 short twl

Proof. We have L/poly ⊇ NL iff (1), by [7]; (1)⇔(2)⇔(5), by Cor. 2.1 and the
closure of 2D under polynomial-size/print reductions; (3)⇔(4)⇔(5) by Cor. 2.2
and the closure of 2D under polynomial-size prime reductions; and (1)⇔(6) by
Cor. 2.3 and the closure of 2D under homomorphic reductions. ut

The statements of Th. 1 are believed to be false. In particular (statement 6), it
is conjectured that no poly(h)-state dfa can check liveness on inputs of height h
and length ≤h. It is thus natural to study shorter inputs. In fact, even inputs
of length 2 are interesting: How large need a dfa be to solve compact twlh?
Although it can be shown (by Savitch’s algorithm) that 2O(log2 h) states are
enough, it is not known whether this can be reduced to poly(h). We conjecture
that it cannot. In other words, we conjecture that L/poly + NL because already:

Conjecture A. 2D 63 compact twl.

We find this conjecture quite appealing, because of its simple and symmetric
setup: just one dfa working on just two symbols. Still, this is an algorithmic
statement (it claims the inexistence of an algorithm), engaging our algorithmic
intuitions. These are surely welcome when we need to discover an algorithm,
but may be unfavorable when we need to prove that no algorithm exists. It
could thus be advantageous to complement this statement with an equivalent
one which is purely combinatorial. Indeed, such a statement exists: it says that
we cannot homomorphically reduce relational to functional match (cf. p. 6).

Conjecture B. rel match 6≤h fun match.

To get a feel of this conjecture, it is useful to note first that rmh ≤h fm2h2 ,
and then that this does not imply rel match ≤h fun match, because of the
super-polynomial blow-up. So, Conjecture B claims that this blow-up cannot
be made poly(h) or, more intuitively, that no systematic way of replacing h-tall
relations with poly(h)-tall functions respects the existence of cycles.

To prove the equivalence of the two conjectures, we first show that checking
for cycles is ≤h-equivalent to checking for cycles through the top left vertex.

Lemma 7. The following reductions hold:
1. rel zero-match ≤h rel match and rel match ≤h rel zero-match.
2. fun zero-match ≤h fun match and fun match ≤h fun zero-match.

Using this, we then prove that compact twl and rel match reduce to each
other in such a way that small dfas can solve either both or neither, and that
rel match is solvable by small dfas iff it ≤h-reduces to fun match.

Lemma 8. The following statements hold:
1. compact twl ≤lac

2D rel match and rel match ≤h compact twl.
2. 2D 3 rel match iff rel match ≤h fun match.

Combining the two facts, we see that Conjectures A and B are indeed equivalent.

6 Conclusion

We proved several characterizations of L/poly versus NL in terms of unary, binary,
or general fas. Our main theorem complements two recent improvements [5, 7]
of an old theorem [1], and our approach introduced some of the concepts and
tools that had been asked for in [6] for enriching the framework of [9].

It would be interesting to see similar characterizations in terms of unary fas
for the uniform variant of the question (L versus NL), or for variants for other
bounds for space and advice length (e.g., LL/polylog versus NLL [7]). Another
interesting direction is to elaborate further on the comparison between fa
computations on short and on unary inputs; for example, using the ideas of
this article, one can show that for every L ∈ 2N/poly there is L′ ∈ 2N/unary
such that L �lac

2D L′. Finally, further work is needed to fully understand the
capabilities and limitations of the reductions introduced in this article.

References

1. P. Berman and A. Lingas. On complexity of regular languages in terms of finite
automata. Report 304, Institute of Computer Science, Polish Academy of Sciences,
Warsaw, 1977.

2. V. Geffert, B. Guillon, and G. Pighizzini. Two-way automata making choices only
at the endmarkers. In Proceedings of LATA, 2012. To appear.

3. V. Geffert, C. Mereghetti, and G. Pighizzini. Converting two-way nondeterministic
unary automata into simpler automata. Theoretical Computer Science, 295:189–203,
2003.

4. V. Geffert, C. Mereghetti, and G. Pighizzini. Complementing two-way finite
automata. Information and Computation, 205(8):1173–1187, 2007.

5. V. Geffert and G. Pighizzini. Two-way unary automata versus logarithmic space.
Information and Computation, 209(7):1016–1025, 2011.

6. C. Kapoutsis. Size complexity of two-way finite automata. In Proceedings of DLT,
pages 47–66, 2009.

7. C. Kapoutsis. Two-way automata versus logarithmic space. In Proceedings of CSR,
pages 197–208, 2011.

8. M. Kunc and A. Okhotin. Describing periodicity in two-way deterministic finite
automata using transformation semigroups. In Proceedings of DLT, pages 324–336,
2011.

9. W. J. Sakoda and M. Sipser. Nondeterminism and the size of two-way finite
automata. In Proceedings of STOC, pages 275–286, 1978.

