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Abstract. On every n-long input, every two-way finite automaton (fa)
can reverse its head O(n) times before halting. A fawith few reversals is
an automaton where this number is only o(n). For every h, we exhibit a
language that requires Ω(2h) states on every deterministic fa with few
reversals, but only h states on a nondeterministic fa with few reversals.

1 Introduction

A long-standing open question in the theory of computation, posed already in the
70s [11,10], is whether every two-way nondeterministic finite automaton (nfa)
has a deterministic equivalent (dfa) with at most polynomially more states.

The answer is conjectured to be negative. Indeed, this has been confirmed in
several special cases: for automata that are single-pass (halting upon reaching
an endmarker [11]) or sweeping (reversing only on endmarkers [12,9]) or almost
oblivious (exhibiting o(n) distinct trajectories on n-long inputs [5]) or moles
(exploring the implicit configuration graph [7]). However, for unary automata
a non-trivial upper bound is known: the simulating dfa need never be more
than quasi-polynomially larger [2]. We also know that the final answer, both
for general and for unary alphabet, may have implications for the old question
whether nondeterminism is essential in space-bounded Turing machines [1,3,8].

Here we confirm the general conjecture in yet another special case: for au-
tomata that reverse their input head (anywhere on the tape, but) only o(n) times
on every n-long input before halting. These ‘fas with few reversals’ stand very
naturally between sweeping fas, which perform only O(1) reversals and only on
the endmarkers, and general fas, which perform O(n) reversals (cf. Lemma 1).

Theorem 1. For every h, there is a language that requires Ω(2h) states on every
dfawith few reversals but only h states on a nfawith few reversals.

Here, the family of witness languages is one-wayliveness [10] (as usual [12,5,7])
and the h-state nfas are actually one-way (so that their ‘few’ reversals are in
fact ‘zero’). So, this can be seen as a generalization of the lower bound of [12].

Given Theorem 1, two questions arise. First, does the theorem really general-
ize [12], or can it perhaps follow from it by proving that the gap from few-reversal
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to sweeping dfas is only polynomial? Second, does the full conjecture really gen-
eralize the theorem, or can it perhaps follow from it by proving that the gap from
general to few-reversal dfas is only polynomial? We answer affirmatively.

Theorem 2. For every h, there is a language that requires 2Ω(h) states on every
sweeping dfa but only O(h) states on a dfawith 2 reversals.

Theorem 3. For every h, there is a language that requires Ω(2h) states on every
dfawith few reversals but only O(h2) states on a general dfa.

Note that Theorems 1-3 answer Hromkovič’s Research Problems 2 and 3 from [4].
We consider the second half of Theorem 1 (upper bound) known, and leave

the proofs of Theorems 2 and 3 for longer versions of this report. We thus prove
only the first part of Theorem 1 (lower bound). We work as in [12]. After fix-
ing notation (Sect. 2), we define generic strings (Sect. 3.1), study their blocks
(Sect. 3.2), build a family of hard instances using such blocks (Sect. 4.1), and ap-
ply the linear algebra bound on vectors derived from these instances (Sect. 4.2).

2 Preparation

Let [n] := {0, . . . , n−1}. For A a set, A is the complement and idA : A→ A the
identity on A. For f : A ⇀ B a partial function, X ⊆ A, and b ∈ B, we define
f [X] := {f(a) | a ∈ X & f(a) defined} and f−1(b) := {a ∈ A | f(a) = b}. If in
addition g : B ⇀ C, then the composition f ◦ g : A ⇀ C is defined on a iff both
f(a) and g(f(a)) are defined. If A = B, then fn is the n-fold composition of f
with itself, and f ≤ g means that f(a) defined =⇒ g(a) defined & g(a) = f(a).

Fact 1. The relation ≤ is a partial order on FA := {f | f : A ⇀ A}, and idA is
maximal in it. Moreover, g ≤ g′ =⇒ f ◦ g ≤ f ◦ g′ for all f,g,g′ ∈ FA.

For z a string, |z| and zj denote its length and its j-th symbol (1 ≤ j ≤ |z|). A

(promise) problem over Σ is any pair (L, L̃) of disjoint subsets of Σ∗. A machine
solves (L, L̃) if it accepts all w ∈ L but no w ∈ L̃. If L̃ = L, then L is a language.

Liveness. For h ≥ 1, the alphabet Σh := {all G ⊆ [h]× [h]} is all two-column
directed graphs with h nodes per column and only rightward arrows (Fig. 1a). An
n-long z ∈ Σ∗h is viewed as an (n+1)-column graph (without arrow directions,
for simplicity); its connectivity is ξ := {(a, b) | there is an n-arrow path from
node a of column 0 to node b of column n}; if ξ = ∅, then z is dead, otherwise
it is live. We define owlh = one-waylivenessh := {z ∈ Σ∗h | z is live} [10].

Machines. A two-way deterministic finite automaton (dfa) is any tuple M =
(Q,Σ, δ, qs, qa, qr), where Q is a set of states, Σ an alphabet, qs,qa,qr ∈ Q are the
start, accept, and reject states, and δ : Q×(Σ∪{`,a})→ Q×{l, r} is the (total)
transition function, for `,a /∈ Σ two endmarkers and l,r the two directions. An
input w ∈ Σ∗ is presented to M endmarked, as `wa. Computation starts at qs
and on `. In each step, the next state and head move are derived from δ and



the current state and symbol. Endmarkers are never violated, except for a if the
next state is qa or qr; i.e., δ(·,`) is always of the form (·, r), and δ(·,a) is always
(qa, r) or (qr, r) or of the form (·, l). So, the computation either loops, or falls
offa into qr, or falls offa into qa. In the last case, we say M accepts w.

In general, the computation of M from state p on the j-th symbol of string z,
denoted compM,p,j(z), is the longest sequence c = ((qt, jt))0≤t<m with 0<m≤∞,
(q0, j0) = (p, j), and every next (qt, jt) derived from the previous one via δ
and z in the natural way. We say (qt, jt) is the t-th point and m the length. If
m = ∞ then c loops; otherwise, jm−1 = 0 or |z|+1 and c hits left or hits right,
respectively, into qm−1 (Fig. 1b). We say c′ = ((q′t, j

′
t))0≤t<m′ parallels c if it is

a ‘shifted copy’ of it: m′ = m and q′t = qt & j′t = jt + j∗ for some j∗ and all t.
The l-computation of M from p on z is lcompM,p(z) := compM,p,1(z) and

is called a lr-traversal, l-turn, or l-loop, depending on whether it hits right, hits
left, or loops. Similarly, the r-computation rcompM,p(z) := compM,p,|z|(z) is a
rl-traversal, r-turn, or r-loop. Two l-/r-computations resemble each other if
they share the same first state, type (l/r-turn/loop, lr/rl-traversal), and last
state (if it exists). The (full) computation of M on w ∈ Σ∗ is compM (w) :=
lcompM,qs(`wa). Hence, M accepts w iff compM (w) hits right into qa.

For w = uzv, the decomposition of c := compM (w) by z is the unique se-
quence c0, c1, . . . of computations, called segments, derived by splitting c wher-
ever it enters or exits z (for each point (qt, jt) produced by crossing the u-z or z-v
boundary, replace (qt, jt) by two copies of it and split between the copies). Note
that every ci for even i (resp., odd i) is a computation on `u or va (resp., z),
and c halts iff there exists a last segment cm and m is even and cm falls off a.

We say M is nondeterministic (nfa) if δ maps Q × (Σ ∪ {`,a}) to the
powerset of Q× {l, r}. Then every compM,p,j(z) is a set of computations, and
M accepts w iff some c ∈ compM (w) hits right into qa.

A reversal in a computation c is any point (qt, jt) whose predecessor and suc-
cessor exist and lie on the same side with respect to it (Fig. 1b): t 6= 0,m−1 and
either jt−1, jt+1 < jt (backward reversal) or jt < jt−1, jt+1 (forward reversal).
We write r(c) for the total number of reversals in c. Note that 0 ≤ r(c) ≤ ∞,
and r(c) =∞ iff c is looping. For n ≥ 0, we write rM (n) for the maximum r(c)
over all full computations c of M on n-long inputs.

Lemma 1. For every s-state dfa M and every length n, either rM (n) =∞ or
rM (n) is even and at most (s− 1)(n+ 2).

3 Building Hard Instances

Hard instances for dfas are built in three stages. We start with generic strings,
which buy us some basic stability in the machine’s behavior. We then use generic
strings to build blocks, where we draw a set of requirements for how the machine
may compute. Finally, in order to force her to meet these requirements, we iterate
the blocks into long strings, and ask her to decide correctly there. This general
strategy is from [12]. Its instantiation here for dfas improves on [7, §3].

From now on, we fix dfaM=(Q,Σ, δ, qs, qa, qr) and drop it from subscripts.
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3.1 Generic Strings

For each y ∈ Σ∗, consider all states that can be produced by lr-traversals of y
inside full computations of M (Fig. 1c), called the lr-outcomes of y:

Qlr(y) :=
{
q ∈ Q | there exist p and u,v such that

lcompp(y) appears in comp(uyv) & hits right into q
}
, (1)

where a computation on y ‘appears in comp(uyv)’ if it parallels one of the
odd-indexed segments in the decomposition of comp(uyv) by y.

We now consider any extension yz of y and compare Qlr(yz) with Qlr(y) and
Qlr(z). For the first comparison, we define a partial function αy,z : Qlr(y) ⇀ Q
as follows (Fig. 1d): for each q ∈ Qlr(y), examine compq,|y|+1(yz); if it hits right
into some state r, set αy,z(q) := r; if it hits left or loops, leave αy,z(q) undefined.

Fact 2a. For all y,z ∈ Σ∗: Qlr(yz) ⊆ αy,z[Qlr(y)] ∩Qlr(z).

Proof. Let r ∈ Qlr(yz). Then there exist p and u,v such that c := lcompp(yz)
appears in comp(uyzv) and hits right into r (Fig. 1d). We know c crosses the
y-z boundary at least once. Let q and q∗ be the states right after the first
crossing and after the last crossing, respectively. The prefix of c up to the first
crossing is c1 := lcompp(y) and hits right into q, while the remaining suffix
is c2 := compq,|y|+1(yz) and hits right into r. The suffix of c after the last
crossing is c∗ = lcompq∗(z) and hits right into r. Now, c1 is a lr-traversal of y
that appears in comp(uyzv) and produces q, so q ∈ Qlr(y). By this and c2, we
know αy,z(q) = r. Therefore, r ∈ αy,z[Qlr(y)]. Moreover, c∗ is a lr-traversal of z
that appears in comp(uyzv) and produces r. Therefore, r ∈ Qlr(z). ut

Symmetrically, we let the set Qrl(y) of rl-outcomes of y be all states producible
by rl-traversals of y inside full computations of M . Then βz,y : Qrl(y) ⇀ Q is
introduced so that βz,y(q) is r, if compq,|z|(zy) hits left into r, or undefined, if
the computation loops or hits right. Then a fact symmetric to Fact 2a holds.

Fact 2b. For all y,z ∈ Σ∗: Qrl(zy) ⊆ βz,y[Qrl(y)] ∩Qrl(z).

By the first inclusion of Fact 2a, we know |Qlr(y)| ≥ |Qlr(yz)|. Similarly,
Fact 2b implies |Qrl(zy)| ≤ |Qrl(y)|. Hence, extending a string in either direction
can never increase the respective number of outcomes. Thus, sufficiently long
extensions will minimize this number. Such extensions are called generic strings.

Definition. Let T ⊆ Σ∗ be arbitrary. A string y ∈ T is lr-generic (for M)
over T if |Qlr(y)| = |Qlr(yz)| for all yz ∈ T . It is rl-generic if |Qrl(zy)| =
|Qrl(y)| for all zy ∈ T . It is generic if it is both lr- and rl-generic.

Lemma 2. Every ∅ 6= T ⊆ Σ∗ admits lr- and rl-generic strings. Also, if yl is
lr-generic and yr is rl-generic, then every ylxyr ∈ T is generic over T .

Alternatively, genericity can be characterized via αy,z and βz,y, as follows.



Lemma 3. Let y ∈ T ⊆ Σ∗. Then y is lr-generic over T iff αy,z is total
and bijective from Qlr(y) to Qlr(yz) for all yz ∈ T . Similarly, y is rl-generic
over T iff βz,y is total and bijective from Qrl(y) to Qrl(zy) for all zy ∈ T .

Proof. We focus on the first equivalence (the second one follows symmetrically)
and on the ‘only if’ direction —the ‘if’ direction is immediate, since the existence
of any total bijection from Qlr(y) to Qlr(yz) implies |Qlr(y)| = |Qlr(yz)|.

Let y be lr-generic over T and pick yz ∈ T . We know αy,z partially maps
Qlr(y) to Q (by definition) and covers Qlr(yz) (Fact 2a). Namely, each r ∈
Qlr(yz) has a distinct q ∈ Qlr(y) with αy,z(q) = r. So, if there were q ∈ Qlr(y)
with αy,z(q) undefined or outside Qlr(yz) or equal to αy,z(q

′) for another q′ ∈
Qlr(y), we would have |Qlr(y)| > |Qlr(yz)|, contrary to y being generic. Hence,
αy,z(q) is defined and in Qlr(yz) and distinct, for all q ∈ Qlr(y). Namely, αy,z is
a total injection from Qlr(y) to Qlr(yz). By Fact 2a, it is also a surjection. ut

3.2 Blocks

Fix ∅ 6= T ⊆ Σ∗, fix a generic ϑ over T , and let A := Qlr(ϑ) and B := Qrl(ϑ).
Every string of the form ϑxϑ is a block (on ϑ), and x is its infix. We say the

pair (αx, βx) := (αϑ,xϑ, βϑx,ϑ) are the inner behavior of M on the block.
Recall that αx : A ⇀ Q and βx : B ⇀ Q. In the special case where each

function is the identity, the prefix ϑx and the suffix xϑ are ‘invisible’ to M .

Lemma 4. Suppose (αx, βx) = (idA, idB). Pick any u,v and let c0, c1, . . . and
d0, d1, . . . be the decompositions of comp(uϑv) and comp(uϑxϑv) by ϑ and ϑxϑ,
respectively. Then ci parallels di for all even i, and resembles di for all odd i.
Thus, M behaves (accepts, rejects, or loops) identically on uϑv and uϑxϑv.

In blocks of the form ϑ(xϑy)ϑ, where ϑ is an infix of the infix itself, the inner
behavior of M depends on its inner behaviors on the sub-blocks ϑxϑ and ϑyϑ.

Fact 3. Let z = xϑy. Then αx ◦ αy ≤ αz and βy ◦ βx ≤ βz. In addition, if αz
is total and injective, then so is αx; if βz is total and injective, then so is βy.

Proof. To prove αx ◦ αy ≤ αz, let p ∈ A and assume (αx ◦ αy)(p) is defined and
equal to some r ∈ Q. Then αx(p) is defined and equal to some q ∈ Q, and αy(q) is
defined and equal to r. By αx(p) = q, we know cx := compp,|ϑ|+1(ϑxϑ) hits right
into q. (Fig. 1e.) By αy(q) = r, we also know cy := compq,|ϑ|+1(ϑyϑ) hits right
into r. Now, concatenating cx, cy gives exactly cz := compp,|ϑ|+1(ϑxϑyϑ). Hence
cz hits right into r. Therefore αz(p) is defined and equal to (αx ◦ αy)(p).

Now suppose αz is total and injective. If αx is not total, then αx(p) is un-
defined for some p ∈ A, namely cx := compp,|ϑ|+1(ϑxϑ) hits left or loops. But
cx is a prefix of cz := compp,|ϑ|+1(ϑxϑyϑ), so cz also hits left or loops. Hence
αz(p) is undefined, and αz is not total—contradiction. If αx is not injective,
then αx(p) = αx(p′) for two distinct p, p′ ∈ A, namely cx := compp,|ϑ|+1(ϑxϑ)
and c′x := compp′,|ϑ|+1(ϑxϑ) hit right into the same state. But cx and c′x are
prefixes of cz := compp,|ϑ|+1(ϑxϑyϑ) and c′z := compp′,|ϑ|+1(ϑxϑyϑ), so cz and
c′z continue identically after the ϑxϑ-yϑ boundary, hitting right into the same
state. Hence αz(p) = αz(p

′), and αz is not injective—contradiction. ut



We will need a variant of Fact 3 for blocks of the form ϑ(xϑxϑ · · ·xϑx)ϑ,
where the infix is multiple ϑ-separated copies of x. Let x(k) := x(ϑx)k−1 for
k ≥ 1. Note that ϑx(k)ϑ = ϑ(xϑ)k = (ϑx)kϑ and (x(k))(l) = x(lk) for all k, l.

Fact 4. Let k ≥ 1. Then (αx)k ≤ αx(k) and (βx)k ≤ βx(k) . In addition, if αx(k)

is total and injective, then so is αx; if βx(k) is total and injective, then so is βx.

Proof. We prove (αx)k ≤ αx(k) inductively. Case k = 1 is trivial. For the induc-
tive step, assume (αx)k ≤ αx(k) . Then (αx)k+1 = αx ◦(αx)k ≤ αx ◦αx(k) (Fact 1)
and αx ◦ αx(k) ≤ αx(k+1) (Fact 3 for z = xϑ(x(k)) = xϑx(ϑx)k−1 = x(ϑx)k =
x(k+1)). So, (αx)k+1 ≤ αx(k+1) (by transitivity of ≤), and we are done. The ad-
ditional claim follows from that of Fact 3 when z = xϑ(x(k−1)) = x(k). ut

If any infix x(k) causes the inner behavior of M to just permute the outcomes
of ϑ, then longer infixes force the behavior into the special case of Lemma 4.

Fact 5. If (αx(k) , βx(k)) permute (A,B), then (αx(tlk) , βx(tlk)) = (idA, idB) for
some l ≥ 1 and all t ≥ 1.

Proof. Let z := x(k) and suppose αz and βz are permutations of A and B. Pick
l ≥ 1 so that both permutations become identity after l iterations: (αz)

l = idA
and (βz)

l = idB . Then (αz)
l ≤ αz(l) (Fact 4), where z(l) = (x(k))(l) = x(lk); i.e.,

idA ≤ αx(lk) , so αx(lk) = idA (Fact 1). Similarly, βx(lk) = idB . Now, let t ≥ 1. By
Fact 4, (αx(lk))t ≤ α(x(lk))(t) . By (αx(lk))t = (idA)t = idA and (x(lk))(t) = x(tlk),
we know idA ≤ αx(tlk) , so αx(tlk) = idA (Fact 1). Similarly, βx(tlk) = idB . ut

We will now state a condition that forces the number of reversals to become
more than sublinear. We say (A,B) use reversals on x if some compp,|ϑ|+1(ϑxϑ)
for p ∈ A or some compp,|ϑx|(ϑxϑ) for p ∈ B contains at least one reversal.

Lemma 5. If (A,B) use reversals on x and (αx, βx) permute (A,B), then it
cannot be rM (n) = o(n).

Proof. Since (A,B) use reversals, there is a d := compq,|ϑ|+1(ϑxϑ) with q ∈ A
(or a compq,|ϑx|(ϑxϑ) with q ∈ B, and we work similarly) containing ≥ 1 reversal
(Fig. 1f); in fact, d contains ≥ 1 forward reversal (because d hits right, since αx
permutes A =⇒ αx(q) is defined). Since (αx, βx) permute (A,B), there exists
l ≥ 1 such that (αx(tl) , βx(tl)) = (idA, idB) for all t ≥ 1 (by Fact 5 for k = 1).

Let z := x(l). Then z(t) = x(tl) and thus (αz(t) , βz(t)) = (idA, idB), for all t.
Using this, we show that each dt := compq,|ϑ|+1(ϑz(t)ϑ) reverses a lot (Fig. 1g).

Claim. For every t ≥ 1, computation dt contains ≥ t forward reversals.
Proof. By induction. For t = 1, d1 = compq,|ϑ|+1(ϑz(1)ϑ). By z(1) = z = x(l)

and l ≥ 1, we know ϑz(1)ϑ has ϑxϑ as prefix, hence d1 has d as prefix, and
thus contains ≥ 1 forward reversals. For t > 0, dt = compq,|ϑ|+1(ϑz(t)ϑ). Since

ϑz(t)ϑ = ϑz(t−1)ϑzϑ, the prefix of dt up to the ϑz(t−1)ϑ-zϑ boundary is dt−1,
the state after crossing this boundary is αz(t−1)(q) = idA(q) = q, and thus the
remaining suffix compq,|ϑz(t−1)ϑ|+1(ϑz(t−1)ϑzϑ) parallels d1. Hence, dt contains
the ≥ t−1 forward reversals of dt−1 plus the ≥ 1 of d1, for a total of ≥ t. �



Since q ∈ A = Qlr(ϑ), there exist p,u,v such that c := lcompp(ϑ) appears
in ĉ := comp(uϑv) and hits right into q (Fig. 1h). Consider the family of in-
puts wt := uϑz(t)ϑv for t ≥ 1, and the respective computations ĉt := comp(wt)
(Fig. 1i). By Lemma 4 and (αz(t) , βz(t)) = (idA, idB), we know c resembles a seg-
ment ct in the decomposition of ĉt by ϑz(t)ϑ. So, ct is a l-computation on ϑz(t)ϑ
from p. Since ϑ is a prefix of ϑz(t)ϑ, the prefix of ct up to the ϑ-z(t)ϑ boundary
is c, the state after crossing the boundary is q, and the suffix compq,|ϑ|+1(ϑz(t)ϑ)
from then on parallels dt. So, ĉt also contains ≥ t forward reversals, and thus
≥ 2t reversals overall (ĉt is full, so each forward reversal follows a backward one).

Now, each ĉt works on input length nt := |wt| = |uϑx(tl)ϑv| = |uϑ(xϑ)tlv| =
l|xϑ| · t + |uϑv|. Thus rM (nt) ≥ r(ĉt) ≥ 2t = (2/l|xϑ|) · nt − 2|uϑv|/l|xϑ|. So,
rM (n) exceeds a linear function inifinitely often. Hence, rM (n) 6= o(n). ut

Now fix T̃ ⊆ T . With respect to the problem (T, T̃ ), an infix x is positive, neg-
ative, or neutral if ϑxϑ is in T , in T̃ , or in neither. We will encounter cases which
meet the promise that either some x(k) are positive or all x(k) are negative. We
then say that ϑ,x respect (T, T̃ ); and that they select T (resp., T̃ ), if the promise
is met by its left (resp., right) disjunct. If in addition M solves (T, T̃ ), then we
can tell which disjunct is selected using a ‘local’ criterion for M on ϑxϑ. The
next fact assembles this criterion; the next lemma states it more compactly.

Fact 6. If positive x(k) exist, then (αx, βx) permute (A,B). Almost conversely,
if M solves (T, T̃ ) and (αx, βx) permute (A,B), then non-negative x(k) exist.

Proof. [⇒] Suppose z := x(k) is positive for some k ≥ 1. We shall prove that
αx : A ⇀ Q is a permutation of A (the claim for βx follows similarly). For this, it
is enough to prove two Claims: (1) αx is total and injective, and (2) αx[A] ⊆ A.

Since z is positive, namely ϑzϑ = ϑ(xϑ)k ∈ T , we know αz = αϑ,(xϑ)k is a
total bijection from A = Qlr(ϑ) to A′ := Qlr(ϑzϑ) (Lemma 3). But A′ ⊆ A
(Fact 2a, since ϑzϑ ends in ϑ) and |A′| = |A| (since αz is bijective), so A′ = A.
Thus, αz = αx(k) permutes A. By a symmetric argument, βz = βx(k) permutes B.

Since αx(k) is total and injective, Claim 1 is true (Fact 4). For Claim 2, let
r ∈ αx[A]. Then there is q ∈ A = Qlr(ϑ) with αx(q) = r. I.e., there exist p,q and
u,v such that c := lcompp(ϑ) appears in ĉ := comp(uϑv) and hits right into q
(Fig. 1h), and d := compq,|ϑ|+1(ϑxϑ) hits right into r (Fig. 1f). Note that c is an
odd-indexed segment in the decomposition of ĉ by ϑ. Now pick any t ≥ 1 with
(αz(t) , βz(t)) = (αx(tk) , βx(tk)) = (idA, idB) (Fact 5). Lemma 4 says c resembles an
odd-indexed segment ct in the decomposition of ĉt := comp(uϑz(t)ϑv) by ϑz(t)ϑ
(Fig. 1j). So, ct is also a l-computation from p, on ϑz(t)ϑ. Since ϑxϑ is a prefix
of ϑz(t)ϑ, the prefix of ct up to the first crossing of the right boundary of ϑxϑ
is c followed by a parallel of d. In particular, if q̃ is the state in d after the
last crossing of the ϑx-ϑ boundary, then d̃ := lcompq̃(ϑ) hits right into r and
appears in ĉt = comp((uϑx)ϑ(x(tk−1)ϑv)). Hence, r ∈ Qlr(ϑ) = A.

[⇐] Suppose M solves (T, T̃ ) and (αx, βx) = (αx(1) , βx(1)) permute (A,B).
Pick any t ≥ 1 with (αx(t·1) , βx(t·1)) = (idA, idB) (Fact 5). Pick k = t ·1. Then M
behaves identically on ϑ and ϑx(k)ϑ (Lemma 4 with empty u,v). Since it accepts
ϑ ∈ T , it also accepts ϑx(k)ϑ, thus ϑx(k)ϑ /∈ T̃ . So, x(k) is positive or neutral. ut



Lemma 6. Suppose M solves (T, T̃ ) and ϑ,x respect (T, T̃ ). Then ϑ,x select T iff
each outcome of ϑ is hit exactly once by the respective half of the inner behavior:(

∀r ∈ A
)(
|α−1x (r)| = 1

)
&

(
∀r ∈ B

)(
|β−1x (r)| = 1

)
. (2)

Proof. If ϑ,x select T , then positive x(k) exist, so αx permutes A (Fact 6) and
thus hits every r ∈ A exactly once; similarly for βx,B. Conversely, if αx : A ⇀ Q
hits every r ∈ A, then it is total and injective and stays in A (or else its values
are not enough to cover A), hence it bijects A into A, i.e., permutes it; similarly
for βx,B. So, nonnegative x(k) exist (Fact 6). So ϑ,x do not select T̃ , but T . ut

If M uses sublinearly many reversals, then we can simplify (2) by replacing
α−1x (r), β−1x (r) by two simpler sets α∗x(r), β∗x(r), which we now introduce. Recall
that α−1x (r) is all p ∈ A for which compp,|ϑ|+1(ϑxϑ) hits right into r. Of course,
each p may reach r after arbitrary meanders inside ϑxϑ. Now suppose we demand
computations that stay inside xϑ and cross the x-ϑ boundary only once; then
α∗x(r) is all p ∈ A that reach r via such ‘simple computations’ (Fig. 1k):

α∗x(r) = α∗ϑ,xϑ(r) := {p ∈ A | (∃q ∈ Q)(lcompp(x) hits right into q

& lcompq(ϑ) hits right into r)} . (3)

Symmetrically, β∗x(r) = β∗ϑx,ϑ(r) is all p ∈ B for which compp,|ϑx|(ϑxϑ) hits left
into r having crossed the ϑx-ϑ and ϑ-xϑ boundaries 0 and 1 times respectively.

The simplification of (2) is proved in the next lemma. Before that, the next
fact studies the new sets. The boolean functions δlr(p, x, q) and δrl(q, x, p) are 1
iff lcompp(x) hits right into q and iff rcompp(x) hits left into q, respectively.

Fact 7. For all r ∈ Q: α∗x(r) ⊆ α−1x (r) and β∗x(r) ⊆ β−1x (r). Moreover :

|α∗x(r)| =
∑

p∈A & lcompq(ϑ)
hits right into r

δlr(p, x, q) |β∗x(r)| =
∑

p∈B & rcompq(ϑ)
hits left into r

δrl(q, x, p) . (4)

Proof. The inclusions are easy. For the left equality, consider any p ∈ A and the
inner sum Sp :=

∑
q δlr(p, x, q) over all q for which lcompq(ϑ) hits right into r

(Fig. 1l). Since M is deterministic, Sp ≤ 1. And Sp = 1 iff one of these q is the
witness required in (3); i.e., Sp = 1⇐⇒ p ∈ α∗x(r). So, the number

∑
p∈A Sp of

p ∈ A for which Sp = 1, is the size of α∗x(r). Similarly for the other equality. ut

Lemma 7. Suppose M solves (T, T̃ ) with rM (n) = o(n), and ϑ,x respect (T, T̃ ).
Then ϑ,x select T iff each outcome of ϑ is hit by exactly one ‘simple computation’ :(

∀r ∈ A
)(
|α∗x(r)| = 1

)
&

(
∀r ∈ B

)(
|β∗x(r)| = 1

)
. (5)

Proof. Suppose ϑ,x select T . Then (αx, βx) permute (A,B) (Fact 6), so (A,B) do
not use reversals (Lemma 5 and rM (n) = o(n)). Now pick any r ∈ A. Then
|α∗x(r)| ≤ 1, because α∗x(r) ⊆ α−1x (r) (Fact 7) and |α−1x (r)| = 1 (Lemma 6). And
|α∗x(r)| ≥ 1, because the r-hitting compp,|ϑ|+1(ϑxϑ) of the unique p ∈ α−1x (r)
uses no reversals (because (A,B) do not use reversals), thus p ∈ α∗x(r). Overall,
|α∗x(r)| = 1. Similarly for β∗x,B. Conversely, if (5) is true, then (2) is true (since
α∗x(r) ⊆ α−1x (r) and β∗x(r) ⊆ β−1x (r)), and thus ϑ,x select T (Lemma 6). ut



4 The Proof

Fix h ≥ 1. Suppose Σ = Σh and M solves owlh with rM (n) = o(n) reversals.
We will prove that M needs exponentially many states, namely |Q| = Ω(2h).

4.1 The Hard Instances

We focus on a family of hard instances of owlh similar to that of [6, §3.2]. This
is all blocks ϑxϑ where ϑ and x are drawn from two families (ϑi)i∈I and (xi)i∈I
of generic and single-symbol strings, respectively. Here, i ranges over all pairs
of non-empty subsets of [h], namely I := {(α, β) | ∅ 6= α,β ⊆ [h]}.1 These are
totally ordered by the rule (α′, β′) < (α, β)⇔def 〈α′〉〈β′〉 <b 〈α〉〈β〉, where 〈·〉 is
the natural h-bit encoding of subsets of [h] and <b is the natural order on 2h-bit
positive integers. For each i = (α, β) ∈ I, the string ϑi is any fixed generic string
over Ti := {z ∈ Σ∗ | z has connectivity α × β}, and xi := β × α is the 1-long
string of all arrows not in β × α. We also let T∅ := {z ∈ Σ∗ | z is dead}.

We picture these blocks on a |I| × |I| matrix. Cell (i, j) hosts block ϑixjϑi
and copies of the objects associated with it in Lemma 7: the sets Ai := Qlr(ϑi),
Bi := Qrl(ϑi) and the functions α∗i,j := α∗ϑi,xjϑi

, β∗i,j := β∗ϑixj ,ϑi
. Crucially, the

assumptions of Lemma 7 are satisfied in all cells, and its conclusions follow a
simple pattern on and below the diagonal (i.e., when i ≥ j).

Fact 8. For all i,j ∈ I, the assumptions of Lemma 7 are satisfied by M,ϑi,xj for
(Ti, T∅). Furthermore, if i > j then ϑi,xj select Ti; if i = j then ϑi,xj select T∅.

Proof. Fix any i = (α, β) and j = (α′, β′). We first check the assumptions of the
lemma. Easily, M solves (Ti, T∅) (since all of Ti is live and all of T∅ is dead) with
rM (n) = o(n) (by assumption), and ϑi is generic for M over Ti (by selection).
To show that ϑi,xj respect (Ti, T∅), we take cases. If ϑixjϑi is dead, then all
ϑi(xjϑi)

k for k ≥ 1 are dead (since all extensions of a dead string are dead),
namely all (xj)

(k) are negative. If ϑixjϑi is live, then some path a∗  b∗ for
a∗,b∗ ∈ [h] connects its outer columns (cf. next figure, left side). If b′,a′ are the
visited nodes on the columns of xj , then the path has the form a∗ b′→ a′ b∗

and ϑi has paths a∗ b′ and a′ b∗. Hence (a∗, b′), (a′, b∗) ∈ ξ, for ξ = α×β the
connectivity of ϑi. Thus, b′∈ β and a′∈ α. Now, for any a,b ∈ [h], consider the
ath leftmost and bth rightmost nodes of ϑixjϑi. If a 6∈ α ∨ b 6∈ β, then the two
nodes do not connect, since neither can ‘see through’ ϑi; but if a ∈ α & b ∈ β,
then (a, b′), (a′, b) ∈ ξ, so the two nodes connect via a path a b′→ a′ b.
Hence, ϑixjϑi has connectivity ξ, namely ϑixjϑi ∈ Ti, and (xj)

(1) is positive.
Overall, ϑi,xj respect (Ti, T∅). In particular, ϑi,xj select Ti iff ϑixjϑi is live.

α′ β′ α′β′ xj

α
β

ϑi ϑi

α

xj

b′

ϑi ϑi

a′

β
a∗

b∗

1 Here α,β (without subscripts) denote subsets of [h]. This causes no confusion with the
names (with subscripts) for M ’s inner behavior, and preserves notational symmetry.



If i > j (cf. left side), then 〈α′〉〈β′〉 <b 〈α〉〈β〉. Thus α′ + α ∨ β′ + β
(otherwise α′ ⊇ α & β′ ⊇ β, thus the 1’s of 〈α′〉 and 〈β′〉 cover all 1’s of 〈α〉
and 〈β〉, hence 〈α′〉〈β′〉 ≥b 〈α〉〈β〉, a contradiction). Suppose β′ + β (if α′ + α,
apply a similar argument). Pick any a∗ ∈ α, b′ ∈ β \ β′, a′ ∈ α, and b∗ ∈ β.
Then (a∗, b′) ∈ ξ and (b′, a′) ∈ β′ × α′ and (a′, b∗) ∈ ξ, therefore ϑixjϑi contains
the path a∗ b′→ a′ b∗, and is live. Thus, ϑi,xj select Ti.

If i = j (cf. right side), then xj has connectivity ξ′ = β × α. If ϑi,xj do not
select T∅, then they select Ti, so ϑixjϑi is live. Pick any witnessing path, say of
the form a∗ b′→ a′ b∗. Then (a∗, b′) ∈ ξ and (b′, a′) ∈ ξ′ and (a′, b∗) ∈ ξ.
Therefore b′ ∈ β and (b′, a′) ∈ β × α and a′ ∈ α, a contradiction. ut

4.2 The Bound

Now consider the following two families of experiments.
First, fix ϑi and r ∈ Q, let xj range over all possibilities, and observe how

the sizes of α∗i,j(r) and β∗i,j(r) vary with xj . The result is two 1 × |I| vectors,
ai,r := (|α∗i,j(r)|)j∈I and bi,r := (|β∗i,j(r)|)j∈I . Repeat for all ϑi and r, to obtain
the two sets of vectors A := {ai,r | i ∈ I, r ∈ Q} and B := {bi,r | i ∈ I, r ∈ Q}.

Second, fix p,q ∈ Q, let xj range over all possibilities, and observe how the
bits δlr(p, xj , q) and δrl(q, xj , p) vary. The result is two 1 × |I| binary vectors,
up,q := (δlr(p, xj , q))j∈I and vq,p := (δrl(q, xj , p))j∈I . Repeat for all p and q, to
obtain the two sets of vectors U := {up,q | p, q ∈ Q} and V := {vq,p | p, q ∈ Q}.

Fact 9a. Every vector in A ∪ B is a linear combination of vectors from U ∪ V.

Proof. Fix i ∈ I and r ∈ Q. The left equality in Fact 7 implies that for all j ∈ I:

ai,r(j) = |α∗i,j(r)| = |α∗ϑi,xjϑi
(r)| =

∑
p∈Ai & lcompq(ϑi)
hits right into r

δlr(p, xj , q) =
∑

p∈Ai & lcompq(ϑi)
hits right into r

up,q(j)

and thus ai,r =
∑

up,q for the specific ranges of p,q. Similarly, bi,r =
∑

vq,p if
the sum ranges over all p ∈ Bi and all q for which rcompq(ϑi) hits left into r. ut

Fact 9b. The set A ∪ B contains |I| − 1 linearly independent vectors.

Proof. We will find in A∪B a vector family (ci)i∈I such that i > j =⇒ ci(j) = 1
and i = j =⇒ ci(j) = 0, for all i,j ∈ I. This will be enough. Because then the
numbers ci(j) form a |I| × |I| matrix with 0s on the diagonal and 1s below it,
which has rank |I| − 1 (easily), and thus |I| − 1 of the ci must be independent.

Pick i ∈ I. Since ϑi, xi select T∅ (Fact 8), there exist r ∈ Ai or r ∈ Bi which
are not hit by exactly 1 simple computation (Lemma 7), respectively |α∗i,i(r)| 6= 1
or |β∗i,i(r)| 6= 1. One of these r must, in fact, be hit by 0 simple computations
(otherwise, each r is hit by ≥ 1 value of αi,i or βi,i and at least one is hit by ≥ 2
values, for an absurd total of ≥ |Ai| + |Bi| + 1 values of αi,i and βi,i). If ri is
this unhit state, then ri ∈ Ai & |α∗i,i(ri)| = 0 or ri ∈ Bi & |β∗i,i(ri)| = 0. In the
former case, we let ci := ai,ri ; in the latter case, we let ci := bi,ri .



By this definition, clearly ci(i) = 0. Moreover, if i > j then ϑi,xj select Ti
(Fact 8) and thus each r ∈ Ai and r ∈ Bi is hit by exactly 1 simple computation
(Lemma 7). Hence, so is ri. Therefore, depending on the case in ci’s definition,
either ci(j) = ai,ri(j) = |α∗i,j(ri)| = 1 or ci(j) = bi,ri(j) = |β∗i,j(ri)| = 1. ut

So, U ∪V span a space of dimension ≥ |I|−1. Clearly then |U ∪V| ≥ |I|−1,
therefore 2|Q|2 ≥ (2h−1)2−1. Hence |Q| = Ω(2h), and the proof is complete.

5 Conclusion

We confirmed the Sakoda-Sipser conjecture in the special case of fas performing
o(n) reversals, by proving that owl needs exponentially large dfas of this kind.

The large alphabet of owlh is not a problem, as binary witnesses exist, too:
Just encode the symbols of Σh into h2-bit strings. Then dfas still need Ω(2h)
states (same proof, as all reasoning is on cell boundaries), while nfas need only
O(h2). So, our title is valid even if ‘small fas’ means ‘fas of small description’.

Theorem 1 says that all dfas for owlh satisfy rM (n) 6= o(n)∨ |Q| = Ω(2h),
but the stronger condition rM (n) = Ω(n) ∨ |Q| ≥ 2h is probably also true. An-
other possible direction for further work is to continue with Research Problem 4
of [4] and fully analyze the trade-off between size and number of reversals.

References

1. Piotr Berman and Andrzej Lingas. On complexity of regular languages in terms
of finite automata. Report 304, Institute of Computer Science, Polish Academy of
Sciences, Warsaw, 1977.

2. Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Converting two-way
nondeterministic unary automata into simpler automata. Theoretical Computer
Science, 295:189–203, 2003.

3. Viliam Geffert and Giovanni Pighizzini. Two-way unary automata versus logarith-
mic space. In Proceedings of DLT, pages 197–208, 2010.
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