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Abstract. We strengthen previously known connections between the
size complexity of two-way finite automata (fas) and the space com-
plexity of Turing machines. We prove that
– every s-state nfa can be simulated on all poly(s)-long inputs by

some poly(s)-state dfa if and only if NL ⊆ L/poly and
– every s-state nfa can be simulated on all 2poly(s)-long inputs by

some poly(s)-state dfa if and only if NLL ⊆ LL/polylog.
Here, dfas and nfas are the deterministic and nondeterministic fas,
NL and L/poly are the standard space complexity classes, and NLL and
LL/polylog are their counterparts for O(log logn) space and poly(logn)
bits of advice. Our arguments strengthen and extend an old theorem
by Berman and Lingas and can be used to obtain variants of the above
statements for other modes of computation or other combinations of
bounds for the input length, the space usage, and the length of advice.

1 Introduction

The question whether nondeterministic computations can be more powerful than
deterministic ones is central in complexity theory. Numerous instantiations have
been studied, for a variety of computational models under a variety of resource
restrictions. This article investigates the connection between two kinds of such
instantiations, those for Turing machines (tms) under space restrictions and
those for two-way finite automata (fas) under size restrictions.

On the one hand, the question whether nondeterminism makes a difference in
space-bounded tms is among the oldest in complexity theory. Formally, it asks
whether there is a bound f with DSPACE(f) + NSPACE(f).(1) For f(n) = n, this
appeared already in [11]. We know that every such bound must be Ω(log log n),
since otherwise all languages involved are regular [17,6,1], and that such bounds
exist in Θ(log log n) ∪ Ω(log n) iff log log n is already one [13,18]. Since compu-
tation in space Ω(log n) is more natural than in space o(log n), research focused
on the log n bound and on the corresponding conjecture that L + NL. An early
observation [2] was that, even if L + NL, a deterministic tm (dtm) of space
O(log n) may still be able to simulate a nondeterministic one if it is allowed
nonuniform behavior. This led to the introduction of the class L/poly of lan-
guages recognizable in space O(log n) by dtms accessing poly(n) ≡ nO(1) bits of
nonuniform advice [10], and to the stronger conjecture that even L/poly + NL.
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Note that, for only O(log n) advice bits, the resulting conjecture L/log + NL is
equivalent to L + NL [10] and that the classes DSPACE(f)/2O(f) for varying f
have been studied in [8] under the names NUDSPACE(f).

On the other hand, the question whether nondeterminism makes a difference
in size-bounded fas was posed already in [14]. Formally, it asks whether there
exist s-state nfas that admit no equivalent dfa with poly(s) states. A robust
theoretical framework around this question appeared in [12], with the introduc-
tion of the complexity classes 2D and 2N. The former consists of every family
of languages (Lh)h≥1 recognizable by a family of poly(h)-state dfas, while the
latter is the corresponding class for nfas. The original question is thus equiv-
alent to whether 2D + 2N. We remark that the answer is known to be positive
if the dfas must obey certain restrictions [14,15,7,9]; and negative if the dfas
are allowed quasi-polynomially many states and the languages are unary [4]. For
the general case, the answer has been conjectured to be positive [14,12].

The above two questions are connected via the lengths of the strings necessary
to confirm the conjecture 2D + 2N. To explain this, let us consider a language
family L = (Lh)h≥1 witnessing the conjecture. Then L ∈ 2N but L /∈ 2D.
The latter means that every family B = (Bh)h≥1 of poly(h)-state dfas fails to
recognize L, in the sense that at least one Bh fails to recognize the respective Lh.
This is equivalent to saying that every such B contains infinitely many failing Bh
(because, if some B contains only finitely many of them, then replacing those with
larger ones that succeed we restore correctness without hurting polynomiality).
Of course, a Bh fails to recognize Lh iff it errs on at least one input xh. Putting
everything together, we see that L /∈ 2D iff for every family B of poly(h)-state
dfas there is a family of inputs X = (xh)h≥1 such that Bh errs on xh for
infinitely many h. Intuitively, these inputs constitute hard instances.

Definition. A family of hard instances of L for B is any (xh)h≥1 where there
exist infinitely many h such that Bh accepts xh ⇐⇒ xh /∈ Lh.

For each B, we can always find hard instances of at most exponential length.

Lemma 0. Let L ∈ 2N. If L /∈ 2D then for every family of poly(h)-state dfas
there is a family of 2poly(h)-long hard instances of L.

However, in the proof of this lemma,(2) the degree of the polynomial for the dfas
lower-bounds the degree of the polynomial exponent for the hard instances.
Hence, as the dfas become polynomially larger, the guaranteed hard instances
become super-polynomially longer. We thus have no exponential global upper
bound, for the lengths of hard instances over all families of poly(h)-state dfas.

Definition. A g-long witness for 2D + 2N is an L ∈ 2N such that for every
family of poly(h)-state dfas there is a family of g(h)-long hard instances of L.

So, by Lemma 0, if 2D + 2N then super-exponentially long witnesses (g-long,
where g = Ω(g′) for all g′ ∈ 2poly(h)) are guaranteed to exist. But what about
exponentially long witnesses? Are they guaranteed? Moreover, what about sub-
exponentially long witnesses, e.g., quasi-polynomially or polynomially long ones?



It has long been known, through a theorem by Berman and Lingas [3], that
a polynomially long witness would imply that L + NL. Here we strengthen that
connection: a polynomially long witness would even imply that L/poly + NL;
furthermore, the converse implication is also true.

Theorem 1. 2D + 2N has poly(h)-long witnesses iff L/poly + NL.

Moreover, exponentially long witnesses and space log log n are similarly linked.

Theorem 2. 2D + 2N has 2poly(h)-long witnesses iff LL/polylog + NLL.

Here, LL/polylog = NUDSPACE(log log n) [8] is the class of languages recogniz-
able in space O(log log n) by dtms with poly(log n) bits of advice, and NLL is
the corresponding class for nondeterministic tms (ntms) and no advice.

These two theorems are the most representative ones in a list of variants
that can be proved by similar arguments. One group of these variants focus on
lengths of other growth rates. E.g., for quasi-polynomial lengths we get:

Theorem 3. Let k ≥ 1 and ε = 1/k. Then 2D + 2N has 2O(logkh)-long witnesses
iff DSPACE(logεn)/2O(logεn) + NSPACE(logεn).

Another group of variants focus on other modes of computation. E.g., consider
alternating fas and the corresponding complexity class 2A. As for 2N, we con-
jecture that 2D + 2A and consider global upper bounds for the lengths of hard
instances of an L ∈ 2A \ 2D over all families of poly(h)-state dfas. We get:

Theorem 4. 2D + 2A has poly(h)-long witnesses iff L/poly + P.

(Notice our use of the fact that AL = ASPACE(log n) = DTIME
(
poly(n)

)
= P.)

For the most part, the proofs of these theorems elaborate on standard, old
ideas [3,12,18]. Perhaps their main value is what they imply for how we approach
the two questions being connected. E.g., consider Theorems 1–3 and suppose that
indeed 2D + 2N. On the one hand, people interested in size-bounded fas can
use our theorems to extract evidence about how hard it is for a certain proof
strategy towards 2D + 2N to succeed: e.g., a strategy that will eventually deliver
a super-exponentially long witness is likely to succeed more easily than one that
promises exponentially long witnesses, because the latter implies an additional
breakthrough in understanding space-bounded ntms, while the former does not.
(All proof techniques currently available are of the former kind.) On the other
hand, people interested in tms of space Ω(log log n) ∩ O(log n) can find in the
2D v 2N question a single unifying setting to work in: separating 2D and 2N
with a super-exponentially long witness can be seen as the first step in a gradual
approach that sees dtms and ntms separate for larger and larger space bounds as
improved proof techniques establish shorter and shorter witnesses for 2D + 2N.

We conclude this introduction with a different strengthening of the Berman-
Lingas Theorem, from [5]: in the case of unary automata 2D + 2N implies
L + NL irrespective of the lengths of hard instances. Our research has been
largely motivated by this recent theorem—and our title tries to reflect this.



2 Preparation

For n ≥ 1, we let [n] := {0, . . . , n−1} and lg n := max(1, dlog2 ne). For S a set,
|S| denotes size. If Σ is an alphabet and x ∈ Σ∗, then |x| is the length of x;
xi is its ith symbol; xi is the concatenation of i copies of it; and 〈x〉 is its binary
encoding, into |x| blocks of lg |Σ| bits each (under a fixed ordering of Σ); ε is
the empty string. A (promise) problem over Σ is a pair L = (L+, L−) of disjoint
subsets of Σ∗, the positive and negative instances of L; if L+ ∪L− = Σ∗ then L
is a language. To solve L means to accept all x ∈ L+ but no x ∈ L−.

2.1 Machines

We assume familiarity with standard notation for fas and tms [16]. Our fas
consist of a finite control and a read-only input tape. Our tms are fas with two
extra tapes: a read-only advice tape and a read-write work tape. Each tape is
accessed via a dedicated two-way head. A transducer is a tm without advice tape
but with a write-only output tape accessed via a one-way head. Details follow.

A (s, σ)-nfa is any A = (S,Σ, δ, q0, F ) with |S| = s, |Σ| = σ, q0 ∈ S, F ⊆ S,
and δ ⊆ S×(Σ∪{`,a})×S×{l,r}, where `,a /∈ Σ are endmarkers and l,r are
directions. An x ∈ Σ∗ is presented on the input tape as `xa and is considered
accepted if δ allows a computation that starts at q0 on ` and eventually falls
off a into a q ∈ F . The language of A is the set L(A) := {x ∈ Σ∗ | A accepts x}.
The binary encoding of A is the string 〈A〉 := 0s10σ1uvw where u, v, w encode
δ, q0, F with 2s2(σ+ 2), lg s, and s bits respectively (in the obvious ways, under
fixed orderings of S and Σ). Note that |〈A〉| = O(s2σ).

A (s, σ, γ)-ntm is any M = (S,Σ,∆, Γ, δ, q0, qf ) with |S|=s, |Σ|=σ, |Γ |=γ,
q0, qf ∈ S, and δ ⊆ S× (Σ ∪{`,a})× (∆∪{`,a})× (Γ ∪{t})×S×Γ ×{l,r}3,
where t /∈ Γ is the blank symbol. An x ∈ Σ∗ and a y ∈ ∆∗ are presented on the
input and advice tapes as `xa and `ya respectively, and are considered accepted
if δ allows a computation which starts at q0, with blank work tape and the input
and advice heads on `, and eventually falls off a on the input tape into qf . We
say M is in internal configuration (q, i, j, w) if its state is q, its advice and work
heads are at positions i and j, and its nonblank work tape content is w ∈ Γ ∗.

For Y = (ym)m≥0 a family of strings over ∆, the language of M under Y is
L(M, Y) := {x ∈ Σ∗ | M accepts x and y|x|}; if Y is the empty advice (ε)m≥0,
we just write L(M). We say Y is strong advice for M if, for all x and m ≥ |x|,
M accepts x and y|x| iff it accepts x and ym. The length of Y is the function
m 7→ |ym|. A function f is strong space bound for M under Y if, for all x and
m ≥ |x|, all computations on all x and ym visit at most f(m) work tape cells; if
this is guaranteed just for the accepted x and ym and then only for at least one
accepting computation, then f is weak. Note that under strong advice ym, M
uses space ≤ f(m) and is correct on all x with |x| ≤ m (and not just |x| = m).
This deviation from standard definitions is unimportant for advice of length
poly(m) or longer (because we can always replace ym with the concatenation
of y0, y1, . . . , ym). For shorter advice, though, it is not clear whether there is a
difference. Our theorems need the strong version.



For G a set of functions, NSPACE
(
f
)
/G consists of every L(M, Y) where M is

a ntm, Y is strong advice for M , with length in G, and f is strong space bound
for M under Y. If G = {0} then only the empty advice is possible, and we just
write NSPACE(f). Then NL := NSPACE(log n) and NLL := NSPACE(log log n).

A machine is deterministic (dfa, dtm) if its δ allows at most one computa-
tion per input. We define DSPACE(f)/G, DSPACE(f), L, LL analogously, and let
L/poly :=DSPACE(log n)/poly(n), LL/polylog :=DSPACE(log log n)/poly(log n).

A function f is fully space constructible if there is a dtm which, on any
input x and any advice, halts after visiting exactly f(|x|) work tape cells.

Lemma 1. Consider a ntm M under strong advice Y of length g, obeying a
weak space bound f . For each length m, there is a 2O(f(m)+lg g(m))-state nfa Am
that agrees with M under Y on all instances of length at most m.

If M is deterministic, then so is Am. If Y is empty, then Am also agrees
with M under Y on all negative instances (of any length). If f is fully space
constructible, then there is a transducer T which, given m (in unary) and the
corresponding ym, computes Am (in binary) in space O(f(m) + lg g(m)).

Proof. Let M be a (s, σ, γ)-ntm and Y = (ym)m≥0, g, f as described. Fix m and
consider M working on any input (of any length) and on ym. Let Sm be the set
of all internal configurations that can occur with ≤ f(m) work tape cells. Then

|Sm| ≤ s(|ym|+2)
∑f(m)
t=0 (t+ 2)γt = O

(
g(m)f(m)2γf(m)

)
= 2O(f(m)+ lg g(m)) .

We let Am := (Sm, Σ, δm, q0, Fm) where Σ is M ’s input alphabet, q0 and Fm
are the initial and accepting internal configurations in Sm, and (c, a, c′, d) ∈ δm
iff, reading a ∈ Σ, M under ym can change its internal configuration from c to c′

moving the input head towards d. Clearly, if M is deterministic, then so is Am.
Now fix any input x (of any length). Let τm be the computation tree of M

on x and ym, and τ ′m the computation tree of Am on x. It should be clear that
each branch β in τm using ≤ f(m) work tape cells is fully simulated in τ ′m by an
equally long branch β′, which accepts iff β does. In contrast, each β using > f(m)
work tape cells is only partially simulated, by a shorter β′ which hangs (at a
rejecting state). Moreover, the β′ of these two cases cover all branches in τ ′m.

Now suppose |x| = n ≤ m. Let τn be the computation tree of M on x and yn.
We know τn accepts iff τm does (because Y is strong). Thus, if x ∈ L(M, Y), then
τn accepts and so does τm; hence, some accepting branch β in τm uses ≤ f(m)
work tape cells (because f is a weak space bound); hence, its counterpart β′

in τ ′m completes the simulation and accepts, too; so, Am accepts x. Conversely,
if x /∈ L(M, Y), then τn does not accept and neither does τm; hence, every branch
in τ ′m is nonaccepting (because it either fully simulates a nonaccepting branch
of τm or hangs after partially simulating one); so, Am does not accept x.

If Y is empty, then Am agrees also on all x /∈ L(M, Y) with n > m. Because
then yn = ym = ε implies τn = τm, so τm does not accept, and neither can τ ′m.

If f is fully space constructible, then 〈Am〉 can be computed from 0m and ym,
as follows. We first mark exactly f(m) work tape cells, by running on 0m the
dtm that fully constructs f . Using these cells and ym, we then mark another



lg s + lg(|ym| + 2) + lg
(
f(m) + 2

)
cells. Now the marked region is as long as

the longest description of a c ∈ Sm. This makes it possible to iterate over all
c ∈ Sm or pairs thereof (by lexicographically iterating over all possible strings
and discarding non-descriptions). From this point on, computing the bits of 〈Am〉
is straightforward. Overall, O(f(m) + lg g(m)) cells will suffice. ut

Corollary 1. (a) For each ntm M (under empty advice) of weak space O(log n)
there is a log-space transducer which, given a length m (in unary), computes a
nfa Am (in binary) that has poly(m) states and may disagree with M only on
positive instances longer than m. If M is deterministic, then so is Am.

(b) For each ntm M (under empty advice) of weak space O(log log n) and
each length m there is a poly(logm)-state nfa Am that may disagree with M
only on positive instances longer than m. If M is deterministic, then so is Am.

2.2 Reductions

Let L1, L2 be problems over alphabets Σ1, Σ2. A homomorphic reduction of L1 to
L2 [12] is any function r : Σ1∪{`,a} → Σ∗2 such that x ∈ L+

1 =⇒ r(`xa) ∈ L+
2

and x ∈ L−1 =⇒ r(`xa) ∈ L−2 , where r(`xa) := r(`)r(x1) · · · r(x|x|)r(a). If
there exists such an r, we write L1 ≤h L2. The expansion of r is the function
n 7→ max{|r(`xa)| | x ∈ Σ∗1 and |x| = n}. The ternary encoding 〈r〉 of r is the
string 〈r(`)〉#〈r(a1)〉# · · · #〈r(aσ1)〉#〈r(a)〉, for a1, . . . , aσ1 a fixed ordering of Σ1.

Lemma 2 ([12]). If L1 ≤h L2 via a reduction r and L2 is solvable by an s-state
nfa A2, then L1 is solvable by a 2s-state nfa A1. If A2 is deterministic, then
so is A1. Moreover, there exists a log-space transducer Th which, given r (in
ternary) and a deterministic A2 (in binary), computes A1 (in binary).

Proof. Let Σ1 and Σ2 be the alphabets of L1 and L2, and consider r and A2 =
(Q2, Σ2, δ2, q2, F2) as in the statement, where |Q2| = s.

On input x ∈ Σ∗1 , the new automaton A1 simulates A2 on r(`xa) piece-by-
piece: on each symbol a on its tape, A1 does what A2 would eventually do on
the corresponding infix r(a) on its own tape (if a is ` or a, this corresponding
infix is `r(`) or r(a)a). This way, each branch β in the computation tree of A2

on r(`xa) is simulated by a branch in the computation tree of A1 on x, which
is accepting iff β is. Thus, x is accepted iff r(`xa) is. Hence, if x ∈ L+

1 , then
r(`xa) ∈ L+

2 (by the selection of r), hence A2 accepts, and so does A1; if x ∈ L−1 ,
then r(`xa) ∈ L−2 (as before), hence A2 does not accept, and neither does A1.

To perform this simulation, A1 keeps track of the current state of A2 and the
side (l or r) from which A2 enters the current corresponding infix. Formally,
A1 :=

(
Q2×{l,r}, Σ1, δ1, (q2,l), F2×{l}

)
, where δ1 is easily derived from the

above informal description. E.g., if a ∈ Σ1 then
(
(p,l), a, (q,l),r

)
∈ δ1 iff δ2

allows on r(a) a computation that starts at p on the leftmost symbol and even-
tually falls off the rightmost boundary into q (thus entering the following infix
from its left side); and

(
(p,l),a, (q,r), l

)
∈ δ1 iff δ2 allows on r(a)a a computa-

tion that starts at p on the leftmost symbol and eventually falls off the leftmost
boundary into q (thus entering the preceding infix from its right side).



If A2 is deterministic, then clearly A1 is also deterministic. Plus, 〈A1〉 can be
computed from 〈r〉 and 〈A2〉 in logarithmic space. To see how, let σ1 := |Σ1| and
σ2 := |Σ2|, and recall that 〈A1〉 = 02s10σ11u1v1w1 and 〈A2〉 = 0s10σ21u2v2w2,
where the u, v, w encode respectively the transition functions, the start states,
and the sets of final states. Each part of 〈A1〉 can be computed from the corre-
sponding part of 〈A2〉 (using no work tape), except for 0σ1 and u1. The former is
computed from 〈r〉, by counting #s. For the latter, we mark 2 lg s+lg(σ1+2)+3 =
O
(
log(σ1s)

)
work tape cells and use them to iterate over all encodings of tuples(

(p,d), a, (q,d′), d′′
)

where p, q ∈ [s] and a ∈ Σ1 ∪ {`,a} and d, d′, d′′ ∈ {l,r},
outputing 1 bit per tuple. To decide each bit, we locate 〈r(a)〉 in 〈r〉 and simulate
A2 on r(a) (or on the appropriate endmarked version, if a is ` or a) starting
at p on side d, until we either exceed s · |〈r(a)〉|/ lg σ2 steps or fall off the string;
if we fall off side d′′ into q and d′ 6= d′′ then we output 1, otherwise we output 0.
This simulation needs only a finite number of pointers into 〈r〉 and u2, plus the
aforementioned counter. Overall, the space used is logarithmic in |〈r〉+〈A2〉|. ut

For h ≥ 1, the alphabet Γh consists of every directed graph with two columns
of h nodes each (like the ones on the left, for h = 5). Easily, |Γh| = 2(2h)

2

. Each

x ∈ Γ ∗h defines a multicolumn graph, derived by identifying adjacent columns
(as shown on the right, for the three symbols on the left); if this graph contains a
path from its leftmost to its rightmost column, we say x is live. We let twlh :=
{x ∈ Γ ∗h | x is live} (where ‘twl’ abbreviates ‘two-wayliveness’). Then the
family twl := (twlh)h≥1 is 2N-complete [12], because of the following.

Lemma 3 ([12]). Let A be any s-state nfa. Then L(A) ≤h twl2s via a reduc-
tion which has expansion n+ 2 and is log-space constructible from 〈A〉.(3)

The binary encoding 〈a〉 of an a ∈ Γh is a string of (2h)2 bits that describes a
(in the obvious way, under a fixed ordering of the 2h nodes). Using these encod-
ings, we can “join” all languages twlh into the single binary language

twl join := {0h1〈a1〉〈a2〉 · · · 〈al〉10t | h ≥ 1 & h divides t &

l ≥ 0 & each ai ∈ Γh & a1a2 · · · al is live} ,

where the h leading 0s determine the interpretation: the leftmost and rightmost
1s must be separated by 0 or more (2h)2-long blocks of bits (the “middle bits”),
and the multicolumn graph described by these blocks must contain a path from
its leftmost to its rightmost column; finally, the number t of trailing 0s must
be a multiple of h.(4) If this last condition that “h divides t” is replaced by the
stronger condition that “every j ≤ h divides t” (“Szepietowski-padding” [18]),
we get an alternative join, which we call twl long-join.



Let anfa := {〈A〉#〈x〉 | A is a nfa and A accepts x} be the acceptance
problem for nfas, and adfa the corresponding problem for dfas. Note that
no alphabet is fixed: solving these problems involves checking that the bits after #
can be interpreted as an input for the fa that is encoded by the bits before #.

Lemma 4. Let A be an (s, σ)-nfa. Then L(A) ≤h-reduces to each of anfa,
twl join, and twl long-join via reductions of expansion O(s2σn), O(s2n),
and 2O(s)n.(5) The first two reductions are log-space constructible from 〈A〉.

Proof. For Σ = {a0, . . . , aσ−1} the alphabet of A, let r1 be the homomorphism
that maps ` to 〈A〉#, each ai to the lg σ-long binary code of i, and a to ε. Then
each n-long x is sent to r1(`xa) = 〈A〉#〈x〉, of length (|〈A〉|+1) + n lg σ + 0 =
O(s2σ) + n lg σ = O(s2σn), which (clearly) is in anfa iff x ∈ L(A).

For r : Σ ∪ {`,a} → Γ2s the reduction from Lemma 3, let r2 be the homo-
morphism that maps ` to 02s1〈r(`)〉, each ai to 〈r(ai)〉, and a to 〈r(a)〉102s.
Then each n-long x is sent to r2(`xa) = 02s1〈r(`)〉〈r(x1)〉 · · · 〈r(xn)〉〈r(a)〉102s,
of length (2s+1) + (n+2)(4s)2 + (1+2s) = O(s2n), which is in twl join iff
r(`)r(x1) · · · r(xn)r(a) is live (all other conditions in the definition of twl join
are satisfied), namely iff r(`xa) ∈ twl2s, which is true iff x ∈ L(A).

Let r3 be the homomorphism that differs from r2 only in that it maps a to
〈r(a)〉10λ(2s), where λ(2s) is the least common multiple of all j = 1, . . . , 2s.
Since λ(2s) = 2Θ(s) [18, Lemma, part (b)], now each n-long x is sent to r3(`xa),
of length (2s+1) + (n+2)(4s)2 + (1+2Θ(s)) = 2O(s)n, which (as before) is in
twl long-join iff r(`)r(x1) · · · r(xn)r(a) is live, and thus iff x ∈ L(A). ut

Lemma 5. anfa and twl join are NL-complete and twl long-join ∈ NLL.

Proof. That anfa is NL-complete is well-known; in fact, NL-hardness follows
from Corollary 1a and Lemma 4. The NL-hardness of twl join follows similarly.

To solve twl join by a ntm in space O(log n), we work in two stages. First,
we deterministically verify the format: we check that there are at least two 1s,
count the number h of leading 0s, check that h divides the number of trailing
0s (by scanning and counting modulo h) and that (2h)2 divides the number
of “middle bits” (similarly). Then, we nondeterministically verify liveness, by
simulating on the “middle bits” the 2h-state nfa solving twlh [12]. Each stage
can be performed in space O(log h). Since h ≤ n, twl join ∈ NL.

To solve twl long-join we use the same algorithm, but with a preliminary
stage [18]. This starts by incrementing a counter from 1 upto the first number, t̃,
that does not divide the number t of trailing 0s (divisibility is always tested by
scan-and-count, as above). On reaching t̃, we compare it with the number h of
leading 0s (scan-and-count, again). If t̃ ≤ h, we reject; otherwise we continue
to the two main stages. Correctness should be clear. The space used in the
preliminary stage is O(log t̃). The two main stages cost O(log h), as above, which
is also O(log t̃) because we get to them only if h < t̃. Since t̃ = O(log t) [18,
Lemma, part (d)] and t ≤ n, the total space used is O(log log n). ut



3 The Berman-Lingas Theorem

The Berman-Lingas Theorem [3, Th. 6] is usually cited as: if L = NL then every
s-state nfa can be simulated on poly(s)-long inputs by some poly(s)-state dfa.
However, Berman and Lingas actually claim a stronger statement [3, p. 17]:(6)

L = NL iff for each alphabet Σ there exists a log-space dtm TΣ which, on
input a nfa A over Σ (in binary) and a length m (in unary), outputs a
dfa B (in binary) that has poly(sm) states, for s the number of states
in A, and may disagree with A only on positive instances longer than m.

Namely, the promised dfa is log-space constructible from the nfa and the
length bound and, with this into account, the converse is also true. Then, the
preceding citation is a corollary for the special case where m = poly(s).

However, these statements are valid only if Σ is constant. If instead the
alphabet grows with s, which is true for some 2N-complete problems, then the
bound for the states in B might even be exponential in s. To highlight this subtle
point, we state and prove the theorem under no assumptions for alphabet size.

Theorem (Berman-Lingas [3]). L ⊇ NL iff there exists a log-space dtm T which,
on input a nfa A (in binary) and a length m (in unary), outputs a dfa B (in
binary) that has poly(sσm) states, for s and σ the number of states and symbols
in A, and may disagree with A only on positive instances longer than m.

Proof. [⇒] Suppose L ⊇ NL. Then anfa ∈ L. Hence, some dtm M solves anfa
under empty advice and in space strongly bounded by log n.

Pick any (s, σ)-nfa A and length m. By Lemma 4, we know L(A) ≤h anfa
via a reduction that has expansion µ(n) = O(s2σn) and is constructible from 〈A〉.
Hence (Lemma 2), constructing a dfa B for L(A) and lengths ≤ m reduces to
constructing a dfa B̃ for L(M) and lengths ≤ µ(m). This latter construction
is indeed possible, by Corollary 1a. We thus employ the series of transductions:

〈A〉#0m T1−→ 〈A〉#0µ(m) TM−→ 〈A〉#〈B̃〉 T2−→ 〈r〉#〈B̃〉 Th−→ 〈B〉 .

First, a simple log-space transducer T1 converts the original input 〈A〉#0m into
〈A〉#0µ(m), by doing the algebra. Then the log-space transducer TM guaran-
teed by Corollary 1a for M converts 0µ(m) into a dfa B̃ that has poly

(
µ(m)

)
states and can disagree with M only on positive instances longer than µ(m).
Then the log-space transducer T2 guaranteed by Lemma 4 for L(A) ≤h anfa
converts 〈A〉 into the encoding of the underlying homomorphism r. Finally, the
log-space transducer Th from Lemma 2 converts 〈r〉#〈B̃〉 into the desired dfa B
of 2 · poly

(
µ(m)

)
= poly(sσm) states. By the transitivity of log-space transduc-

tions, the full algorithm can also be implemented in logarithmic space.

[⇐] Suppose the log-space dtm T of the statement exists. Then anfa can be
reduced to adfa in logarithmic space, which implies L ⊇ NL (since anfa is NL-
hard, adfa ∈ L, and L is closed under log-space reductions). The reduction works
in two log-space steps. We first run a simple log-space transducer to convert the



input 〈A〉#〈x〉 into 〈A〉#0m#〈x〉, where m := |x| = |〈x〉|/ lg σ, for σ the size of
the alphabet of A. We then apply T on 〈A〉#0m to produce 〈B〉#〈x〉, where B a
dfa that agrees with A on all inputs of length at most m, including x. ut

It is now clear that, in the special case where we restrict to inputs of length
m = poly(s), the bound for the states in B is just poly(sσ). Hence, for an A
over an alphabet of size σ = 2Ω(s) (e.g., a nfa for twls), our bound for the
states in a dfa simulating A on poly(s)-long inputs is just 2poly(s). We stress
that this looseness is inherent in the Berman-Lingas argument, and not just
in our analysis of it: a larger alphabet for A implies longer encoding 〈A〉, thus
longer inputs to the alleged log-space dtm M for anfa, more space available
for M on its work tape, more internal configurations, more states in the dfa B̃
simulating M , and thus more states in the final dfa B simulating B̃.

It is also clear that the above theorem cannot be an equivalence without
a constructive relationship between the given nfa A and length m and the
promised dfa B. That is, if in the converse direction we are promised that
for each A and m a fitting B simply exists, as opposed to it being log-space
constructible, then the argument fails. This is an additional obstacle in connect-
ing with the 2D v 2N question, which is purely existential: a proof that 2D ⊇ 2N
needs no log-space conversion of s-state nfas to equivalent poly(s)-state dfas.

The next theorem removes both of the above dependences, on alphabet size
and on log-space constructibility. To remove dependence on alphabet size, we
switch to another NL-complete problem; to remove dependence on constructibil-
ity, we switch to nonuniform L. The main structure of the argument is similar.

Theorem 1. L/poly ⊇ NL iff for every nfa A and length m there is a dfa B
that has poly(sm) states, for s the number of states in A, and agrees with A on
all instances of length at most m.

Proof. [⇒] Suppose L/poly ⊇ NL. Then twl join ∈ L/poly. Hence, some dtmM
solves twl join under strong advice Y of length g(m) = poly(m) in space
strongly bounded by f(m) = logm.

Pick any (s, σ)-nfa A and length m. By Lemma 4, L(A) ≤h twl join with
expansion µ(n) = O(s2n). Hence (Lemma 2), a poly(sm)-state dfa B for L(A)
and lengths ≤ m exists if there exists a poly(sm)-state dfa B̃ for L(M, Y) and
lengths ≤ µ(m). Such a B̃ is given by Lemma 1 for M and Y: both f(µ(m)) and
lg g
(
µ(m)

)
are O

(
log(sm)

)
, and thus 2O(f(µ(m))+lg g(µ(m))) = poly(sm).

[⇐] Suppose that for every s-state nfa A and length m there is a poly(sm)-state
dfa B that agrees with A on all instances of length ≤ m.

Pick any L ∈ NL. LetΣ be its alphabet andM some ntm that solves it (under
empty advice) in space strongly bounded by log n. We know (Corollary 1a) that
for each lengthm there is a poly(m)-state nfa Am overΣ that agrees withM on
lengths ≤ m. Applying our assumption to each Am and m, we find a dfa Bm
over Σ that has poly(poly(m) · m) = poly(m) states and agrees with Am on
lengths ≤ m, meaning that it decides L correctly on lengths ≤ m.

Now let Y = (ym)m≥0 := (〈Bm〉)m≥0 and consider the dtm U over Σ which,
on input x and advice y, reads y as the encoding of a dfa and simulates it on x.



Then L(U, Y) = {x ∈ Σ∗ | U accepts x and y|x|} = {x ∈ Σ∗ | B|x| accepts x} =
{x ∈ Σ∗ | x ∈ L} = L. Note that Y is strong advice: if |x| ≤ m then U accepts
x and ym ⇔ Bm accepts x ⇔ x ∈ L ⇔ B|x| accepts x ⇔ U accepts x and y|x|.
Also, |ym| = |〈Bm〉| = O(poly(m)2 · |Σ|) = poly(m) since Σ is constant, and
the simulation uses space strongly logarithmic in the number of states in Bm,
namely O

(
log poly(m)

)
= O(logm), irrespective of x. Overall, L ∈ L/poly. ut

We remark that the two dependences, on alphabet size and constructibility,
do not need to be removed from the Berman-Lingas Theorem simultaneously.
Each can also be removed individually, leading to two more variants of the orig-
inal theorem: one that differs from it only in that the bound for B is poly(sm),
and one that differs from Theorem 1 only in that the bound for B is poly(sσm).

Our second extension of the Berman-Lingas Theorem reduces the dependence
on the input lengths exponentially, by connecting to the stronger statement that
nondeterminism can be nonuniformly removed even on the log log n level. The
argument is again similar, we just need to switch to the long join of twl.

Theorem 2. LL/polylog ⊇ NLL iff for every nfa A and length m there is a
dfa B that has poly(s logm) states, for s the number of states in A, and agrees
with A on all instances of length at most m.

Proof. [⇒] If LL/polylog ⊇ NLL then twl long-join ∈ LL/polylog, so a dtm M
solves twl long-join under strong advice Y of length g(m) = poly(logm) in
space strongly bounded by f(m) = log logm. As above, for any (s, σ)-nfa A and
length m, we know L(A) ≤h twl long-join via a reduction of expansion µ(n) =
2O(s)n (Lemma 4). So (Lemma 2), it suffices to find a poly(s logm)-state dfa B̃
for L(M, Y) on lengths ≤ µ(m). This is given by Lemma 1, as both f(µ(m)) and
lg g
(
µ(m)

)
are O

(
log(s+ logm)

)
, and so 2O(f(µ(m))+lg g(µ(m))) = poly(s logm).

[⇐] Suppose for each s-state nfa A and length m there is a poly(s logm)-state
dfa B that agrees with A on lengths ≤ m. As above, we pick any L ∈ NLL over
some Σ and let M be a ntm solving L in space strongly bounded by log log n.
Corollary 1b guarantees that for each m some poly(logm)-state nfa Am over Σ
agrees with M on lengths ≤ m. Hence (by our assumption), there is also a
dfa Bm over Σ with poly(poly(logm) · logm) = poly(logm) states that agrees
with Am on lengths ≤ m, and thus correctly decides L on these lengths. So, we
consider Y = (ym)m≥0 := (〈Bm〉)m≥0. Under this advice, the same dtm U as
above (over the specific Σ) solves L. The advice is strong for the same reasons,
but its length now is |ym| = |〈Bm〉| = O(poly(logm)2 · |Σ|) = poly(logm),
causing the space usage to be O

(
log poly(logm)

)
= O(log logm). ut

A third extension is proved via the variants of twl join where the padding
condition “h divides t” is replaced by “every j ≤ logkh divides t”, for k ≥ 1.

Theorem 3. DSPACE(logεn)/2O(logεn) ⊇ NSPACE(logεn), where ε = 1/k ≤ 1,
iff for every nfa A and length m there is a dfa B that has poly(s2log

εm)
states, for s the number of states in A, and agrees with A on all instances of
length at most m.



4 Conclusion

We can now observe that Theorems 1-3 of the previous section are respectively
equivalent to Theorems 1-3 of the Introduction. For the pair of Theorems 1 this
is shown by the following lemma. Similar lemmas are possible for the other pairs.

Lemma 6. 2D + 2N has no poly(h)-long witnesses iff for every nfa A and
length m there is a dfa B that has poly(sm) states, for s the number of states
in A, and agrees with A on all instances of length at most m.

Proof. [⇒] Suppose 2D + 2N has no poly(h)-long witnesses. In particular, twl is
not an h-long witness. Hence, some family B′ = (B′h)h≥1 of poly(h)-state dfas
admits no h-long hard instances of twl: i.e., for each family X = (xh)h≥1 of
such instances, B′ errs on X only finitely often. Hence, only finitely many B′h fail
to be correct on all ≤ h-long instances of twlh. Replacing the failing B′h with
larger dfas that do not fail, we get a new family B = (Bh)h≥1 of poly(h)-state
dfas where Bh decides twlh correctly on all ≤ h-long instances, for all h.

Pick any s-state nfa A and length m. Let τ := max(2s,m+2). By Lemma 3,
we know L(A) ≤h twl2s with expansion µ(n) = n+2. Also, twl2s ≤h twlτ
with expansion µ′(n) = n (simply map `,a to ε, and each a ∈ Γ2s to the a′ ∈ Γτ
that has only the arrows of a). So, L(A) ≤h twlτ with expansion µ′(µ(n)). So
(Lemma 2), a dfa B for L(A) on lengths ≤ m can be derived from a dfa
for twlτ on lengths ≤ µ′(µ(m)) = m+2 ≤ τ . Such a dfa is Bτ , with poly(τ)
states. Hence, B has 2 · poly(τ) ≤ 2 · poly(2s+ (m+2)) = poly(sm) states.

[⇐] Suppose for each s-state nfa and length m there is a poly(sm)-state dfa
agreeing on all ≤ m-long instances. Pick any L = (Lh)h≥1 ∈ 2N and p ∈
poly(h). Since L ∈ 2N, there is a q ∈ poly(h) and a family A = (Ah)h≥1
of q(h)-state nfas solving L. Applying our assumption on each Ah and p(h),
we find a dfa Bh that agrees with Ah on all ≤ p(h)-long instances and has
poly(q(h)p(h)) = poly(h) states. Hence, (Bh)h≥1 is a family of poly(h)-state
dfas that admit no family of p(h)-long hard instances of L. ut

In closing, we suggest some notation that may facilitate discussions like ours.
Consider any fa family A = (Ah)h≥1, any family of promise problems L =
(Lh)h≥1, and any two function classes F ,G. We say A is F-large if Ah has ≤ f(h)
states, for some f ∈ F and all h; and that L is G-long if |x| ≤ g(h), for some
g ∈ G and all h and x ∈ L+

h ∪L
−
h . Then the class 2NSIZE(F)/G consists of every

G-long family of promise problems solvable by some F-large family of nfas
—if we just write 2N/G, we mean F = poly(h); if we just write 2NSIZE(F), we
mean G contains all functions. We specifically let 2N/poly := 2N/poly(h) and
2N/exp := 2N/2poly(h). For dfas, we define the classes 2DSIZE(F)/G, 2D/G,
2DSIZE(F) analogously. Now, Theorems 1, 3, and 2 can be restated as:

2D ⊇ 2N/poly ⇐⇒ L/poly ⊇ NL

2D ⊇ 2N/2O(logk n) ⇐⇒ DSPACE(logεn)/2O(logεn) ⊇ NSPACE(logεn)
2D ⊇ 2N/exp ⇐⇒ LL/polylog ⊇ NLL

where ε = 1/k ≤ 1. Note that, next to a tm complexity class, “/·” bounds the
advice length; next to a fa complexity class, it bounds the length of the inputs.
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Notes

(1)Note the unusual form ‘A + B’. Whenever A ⊆ B, this is of course equivalent
to the more familiar ‘A ( B’. Still, we will be studying cases where A ⊆ B is false
(e.g., A = L/poly & B = NL) and thus ‘A + B’ is appropriate. We thus stick to



it throughout the article, so that every statement is easy to compare with any
other. We read and think of ‘A + B’ as ‘A does not cover B’ or ‘B eludes A’.

(2)Proof (Lemma 0). The behavior of a nfa A on a string x is the set of
tuples (p, d, q, e) of states p, q and sides d, e ∈ {l,r} such that A can exhibit a
computation that starts at p on the dmost symbol of x and eventually falls off
the emost symbol of x into q. Easily, if A has s states, then it can exhibit at most
2(2s)

2

distinct behaviors. For a dfa, this number is (2s+1)2s = 22s lg(2s+1).
Now suppose L ∈ 2N\2D. Pick any dfa family B = (Bh)h≥1 where Bh has

O(hb) states, for a constant b. Since L /∈ 2D, B admits a family X = (xh)h≥1 of
hard instances: Bh errs on xh for infinitely many h. Since L ∈ 2N, there is a nfa
family A = (Ah)h≥1 where Ah solves Lh with O(ha) states, for a constant a.

The number of distinct behaviors that Ah and Bh can exhibit on a particular

input are respectively 2O(h2a) and 2O(hb log h). Hence, the number gh of distinct

pairs of behaviors of Ah and Bh is 2O(h2a+hb log h) = 2O(hc), if c = max(2a, b+1).
If xh is longer than gh, then it contains two prefixes on which Ah behaves the
same and Bh behaves the same, too. Removing the infix of xh between the right
boundaries of these prefixes, we get a shorter input x′h that neither Ah nor Bh
can distinguish from xh. In particular, Bh errs on x′h iff it errs on xh. Repeating
this process, we eventually bring the length of x′h below gh.

The family of inputs X′ = (x′h)h≥1 obtained this way is also a family of hard
instances of L for B, and their lengths are 2O(hc) = 2poly(h). Notice that, for a
family B′ of polynomially larger dfas (i.e., b′ > b and b′ ≥ 2a), our argument
will return a family of super-polynomially longer hard instances (i.e., c′ > c —to
be precise, they will be quasi-polynomially longer). ut

(3)Proof (Lemma 3). The reduction maps each a ∈ Σ∪{`,a} to a single symbol
r(a) ∈ Γ2s that fully encodes the “behavior of A on a” (as defined in Note 2,
see [12] for details). Hence, |r(`xa)| = |x| + 2 for all x ∈ Σ∗. Constructing 〈r〉
out of 〈A〉 is easily done with a finite number of pointers into 〈A〉. ut

(4)The suffix 10t and the condition ‘h divides t’ are redundant. They are in-
cluded only for symmetry, as the respective suffix and condition are needed in the
variants of twl join (twl long-join and the one described before Theorem 3).

(5)More tightly, the first expansion is O(s2σ) +n log σ. But the looser O(s2σn)
is simpler and does not harm conclusions, since it is later ([⇒] of B-L Theorem)
fed to an unspecified polynomial. Similar looseness is adopted elsewhere, too.

(6)The actual statement of [3, Th. 6] is very close to the usual citation given in
our text. However, it also includes a pointer to a Remark on p. 17, which explains
that the promised dfa can be constructed in logarithmic space and that with
this observation the theorem becomes an equivalence.

Also note that the second, complete statement in our text uses m as the
length bound. The actual statement of [3, Th. 6] uses s ·m, for s the number of
states in the nfa. These two statements are equivalent. We have opted for the
one that is simpler and facilitates comparison with subsequent statements.


