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Abstract. This is a talk on the size complexity of two-way finite au-
tomata. We present the central open problem in the area, explain a
motivation behind it, recall its early history, and introduce some of the
concepts used in its study. We then sketch a possible future, describe a
natural systematic way of pursuing it, and record some of the progress
that has been achieved. We add little to what is already known—only
exposition, terminology, and questions.

A problem. On the tape of a Turing machine (tm) lies an input of the form:

(1)

That is, each non-blank symbol is a two-column graph with the same, constant
number of nodes per column. The question that the machine has to answer is the
following: In the multi-column graph produced by identifying adjacent columns

does there exist a path from (a node of) the leftmost column to (a node of)
the rightmost one? For example, in the above graph such paths exist (can you
discover one?) and the answer should be “yes”.

Perhaps it looks a bit strange that an entire graph fits in one tape cell. But
this is not an issue. It is just that the input alphabet of this tm is a bit large: if
each column has h nodes, then this alphabet consists of 2(2h)2 symbols/graphs.

How hard is this problem? How much time/space will the tm need in order
to solve it? Very little. Our problem is, in fact, regular. An easy way to prove this
is to solve it with a two-way nondeterministic finite automaton (nfa)—recall
that nfas solve exactly the regular problems [22,23,26]. Here is how:

We start on the leftmost symbol. We nondeterministically guess a node in the
left column of that symbol, and “focus” on it. From then on, we only remember
which node of the current symbol we focus on, and repeat: nondeterministically
guess one of the arrows out of the focused node, and make its destination the
new focus. If we ever focus on a node in the rightmost column, we accept.

(2)

To implement this simple algorithm, a nfa will need at most 2h states.



An alternative, more direct, but slightly more complicated way to prove the
regularity of our problem is to solve it with a standard (one-way) deterministic
finite automaton (dfa). Here is how:

We start on the leftmost symbol. We always move right. At each step, we
remember for the nodes of the left column of the current symbol the following:
(i) for each of them, whether it is reachable from the leftmost column via a
path that lies entirely to our left, and (ii) for each pair (u, v) of them, whether
v is reachable from u via a path that lies entirely to our left. On reaching a
blank symbol, we accept iff the answer in (i) is “yes” for at least one node.

To implement this algorithm, a dfa will need at most 2h+h
2

states.
So, no matter which of the two algorithms it chooses to implement, our tm

will solve the problem in linear time and zero space. Notice, however, the huge
blow-up in the number of states that it is going to need if it decides not to use
nondeterminism: instead of 2h states, it will need more than 2h

2
. And this is

not due to lack of ingenuity in designing the deterministic algorithm: it can be
proved that no other dfa can do with significantly fewer states. That is, the
blow-up is unavoidable. So, if, e.g., each column has 16 nodes, then drawing the
states of the nfa can be done on 1 page and in 1 minute, whereas drawing the
states of the dfa would need more matter than we can see in the universe and
would finish long after the sun has burnt out.1 Nondeterminism wins.

But this comparison is unfair, one complains. The nondeterministic algorithm
was allowed to use a two-way head, but the deterministic algorithm was not. For
a fair comparison, the deterministic automaton should also be two-way; i.e., it
should be a two-way deterministic finite automaton (dfa). The more powerful
head will probably help it solve the problem with much fewer states.

Good point. So, let’s see. How would a dfa solve the problem? One’s first
attempt would probably be some kind of depth-first search inside the multi-
column graph. But this doesn’t work: it needs a stack of visited nodes which can
grow arbitrarily large, and thus cannot fit in any finite number of states—let
alone a small one. One would not give up so easily, though: sure, out-of-the-box
depth-first search doesn’t work, but certainly some other, cleverer version of
graph exploration does. No it doesn’t. To use significantly fewer states than the
dfa, the dfa must do more than simply explore the graph [14]; it must use its
bidirectionality both within the input [28] and at the two ends of the input [25];
and it must trace at least a linear (with respect to the input length) number of
different trajectories [12].

In fact, nobody knows whether the minimum number of states in a dfa that
solves our problem is closer to the 2h of the nfa or closer to the 2h

2
of the dfa.

The best known lower bound is Ω(h2) [4] and the best known upper bound is
2O(h2) [26]. At this “exponential” level of ignorance, the correct question is:

Can a dfa solve problem (1) with p(h) states, for some polynomial p? (Q)

and is wide open. But, right now, it is probably some other question that mostly
bothers you—a meta-question:

Who cares? (Q)



Determinism v Nondeterminism. A central theme in the theory of compu-
tation is the comparison between deterministic and nondeterministic computa-
tions. Most characteristic in this theme is, of course, the p v np question, a special
case of the following, more general question about the time used by deterministic
and nondeterministic Turing machines (dtms and ntms):

Can dtms always stay at most polynomially slower than ntms? (Qt)

Less prominent, but also very important, is the l v nl question, a special case of
the following, more general question about the space used by Turing machines:

Can dtms always use at most linearly more space than ntms? (Qs)

Despite the richness and sophistication of our theory around these questions, it
is probably fair to say that our progress against their core has been slow. This
has led some to suspect that the same elusive idea may lie at the center of all
problems of this kind, little affected by the particulars of the underlying compu-
tational model and resource. If this view is correct, then a possibly advantageous
approach is to study restricted models of computation.

For an extreme example, consider tms whose heads neither turn nor write.
Is nondeterminism essential there? Before pondering the question, we should
specify the resource under consideration. Under these restrictions, tms are just
one-way finite automata. So, neither time nor space is interesting, as both dfas
and nfas use linear time and zero space.2 Instead, observation confirms that in
this case it is the size of the machines, as expressed by the number of states, that
reveals the nondeterministic advantage. So, the analogue to (Qt) and (Qs) is:

Can dfas always stay at most polynomially larger than nfas? (Q1)

The answer is well-known to be “no” [20]. E.g., the promise problem(
{αi | α ⊆ [h] and i ∈ α} , {αi | α ⊆ [h] and i ∈ [h]− α}

)
(3)

of checking whether a set α of numbers from 1 to h contains a number i (α and i
given in this order), needs only h states on nfas but at least 2h states on dfas.

Hence, in this first example, the restrictions were so strong that the resulting
question was easy to answer. Backing up a bit, we may now consider tms whose
heads cannot write (but can turn). Such machines are essentially identical to
two-way finite automata. As before, observation confirms size as the resource
that reveals the nondeterministic advantage, and the question

Can dfas always stay at most polynomially larger than nfas? (Q2)

is our new analogue to (Qt) and (Qs).
One might expect that (Q2) is as easy as (Q1). After all, it is again about

finite automata. How hard can a question about finite automata be? Automata
have been studied extensively since the 1950’s and the answers to most inter-
esting questions about them are already in the textbooks, right? Not really.
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Fig. 1. An analogy between p v np and l v nl and d v n.

Such a claim may be fair only if it refers to computability questions about finite
automata. In contrast, complexity questions about finite automata have been
addressed only sporadically and by relatively few researchers. Many interesting
and hard questions about them remain wide open. Question (Q2) is one of them.

Research on (Q2) is supported by an elegant theory that mirrors the the-
ory of np-completeness that was developed around (Qt) and the theory of nl-
completeness that was developed around (Qs) (Fig. 1). Proposed by Sakoda and
Sipser [24] in 1978, the theory starts with the class d of all families of regular
problems that can be solved by dfas of polynomially growing size

d :=
{

(Lh)h≥1

∣∣∣ there exist dfas (Mh)h≥1 and polynomial p such that
Mh solves Lh with at most p(h) states, for all h

}
, (4)

and the class n, defined for nfas in a similar manner. For example, if Ch is
problem (1) when each column has h nodes, then our discussion in the previous
section proves that the family C := (Ch)h≥1 is in n, and (Q) is asking whether
it is also in d. Moreover, the question

d = n ? (Q′)

is easily seen to be equivalent to (Q2) in the special case of families of nfas
whose sizes grow polynomially.

Sakoda and Sipser went on to introduce appropriate reductions between prob-
lem families, the so-called homomorphic reductions, proved that d is closed
under them, and identified a particular family in n that is complete with
respect to them. That family was exactly C, the family whose 5th member
is (1), and this is exactly how they named it—a pretty boring name, we’ll call
it two-wayliveness instead.3 Thus, (Q) is equivalent to (Q′); it is a concrete
version of the d v n problem, in the same sense that the questions

Can a dtm solve satisfiability in p(n) time, for some polynomial p?
Can a dtm solve reachability in lg

(
p(n)

)
space, for some polynomial p?

(where n is the input length) are concrete versions of p v np and l v nl (Fig. 1).



So, to return to our meta-question (Q): One reason why one may want to
care about (Q) is that it can be seen as a “microscopic version” of our big
questions on the power of nondeterminism, p v np and l v nl, a question that
is simultaneously complex enough to seem relevant and simple enough to seem
tractable. Conceivably, by answering (Q) we might get to understand aspects of
nondeterminism which are currently inaccessible through the big questions.

In addition, the connection to l v nl is more than simply conceptual. In 1977
Berman and Lingas [1] proved that, if l = nl then (in our terminology), for
a polynomial p and all h, some p(h)-state dfa decides two-waylivenessh
correctly on every p(h)-long input. Hence, if we can answer (Q) in the negative
using only polynomially long instances, then we can also prove l 6= nl—an excit-
ing connection, which should nevertheless be received with reserve: establishing
a negative answer via exponentially long strings appears to be hard already.

Much like p v np and l v nl, most people believe that d 6= n, as well.

A stronger conjecture. The possibility d 6= n had actually been conjectured
earlier than [24,1] and more strongly. In a 1973 manuscript [25], J. Seiferas had
conjectured that sometimes a nfa can stay super-polynomially smaller than
all dfas even without turning its head. That is, he had conjectured that even
nfas can solve problems with super-polynomially fewer states than dfas.

Seiferas went on to suggest a few such problems. In one of them, the input
alphabet is all sets of numbers from 0 to h− 1. E.g., if h = 8, then the string

{1,2,4}∅{4}{0,4}{2,4,6}{4}{4,6}∅{3,6}∅{2,4}{5,7}{0,3}{4,7}∅{4}∅{4}{0,1}{2,5,6}{1} (5)

is an input. A substring α0α1 · · ·αl of sets forms a block if the first set contains
the number of sets after it, i.e., if α0 3 l. The question is: Can the input be
separated into blocks? E.g., the answer for (5) is “yes” because of the separation

{1,2,4}∅{4} {0,4}{2,4,6}{4}{4,6}∅ {3,6}∅{2,4}{5,7} {0,3} {4,7}∅{4}∅{4}{0,1}{2,5,6}{1}

where indeed the first set in each substring contains the number of sets after it
in the substring, as indicated by boldface. In contrast, the answer for the string
{1,2,7}{4}{5,6}∅{3,6}{2,4,6} is “no”, as there is (easily) no way to break it into blocks.
Seiferas called the set of all separable strings Lh—another boring name, we’ll
call it separabilityh instead, and let separability := (separabilityh)h≥1.

Solving this problem nondeterministically is straightforward and cheap. A
nfa can implement the following algorithm with only h states:

We scan the input from left to right. At the start of each block, we read the first
set. If it is empty, we just hang (in this nondeterministic branch). Otherwise,
we nondeterministically select from it the correct number of remaining sets in
the block. We then consume as many sets, counting from that number down.
When the count reaches 0, we know the block is over and a new one will follow.
In the end, we accept if the input and our last count-down finish together.

(6)

Seiferas conjectured that, in contrast, no dfa can solve separabilityh with
p(h) states, for any polynomial p.4
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Sakoda and Sipser agreed with this stronger conjecture. In their terminology,
this could be written as d + n, where the class n is defined as in (4) but for
nfas (Fig. 2a). They also identified a problem family that is n-complete with
respect to homomorphic reductions: the restriction of two-wayliveness to
symbols/graphs with only left-to-right arrows. They called that restriction B—
names were really boring in the 70’s, we’ll call it one-wayliveness (Fig. 2bc).
Of course, completeness implied that d + n ⇐⇒ one-wayliveness 6∈ d.
Hence, unlike Seiferas’ witness, which was proposed based only on intuition,
theirs was guaranteed to confirm the conjecture iff the conjecture was true.

Still, Seiferas’ intuitively suggested candidate turned out to be n-complete,
as well [24].5 We already saw why it is in n (Alg. 6), so let us also see why it is
n-hard. For this, it is enough to homomorphically reduce one-wayliveness to
separability. This means (see [24] for the formal details) to provide a system-
atic way g of replacing each symbol a from the alphabet of one-waylivenessh
and the endmarkers `,a with a string g(a) over the alphabet of separabilityq(h)
so that, for each instance w = a1 · · · al of one-waylivenessh, performing all
replacements preserves membership across the problems:

w ∈ one-waylivenessh ⇐⇒ g(`)g(a1) · · · g(al)g(a) ∈ separabilityq(h) ;

here, q must be a polynomial. What g should we use? Here is an idea.

Consider any multi-level graph (Fig. 2c). Imagine “flattening” it by toppling
each column to the left, so that its topmost node becomes leftmost (Fig. 2d).
Then, an arrow from the ith node of a column to the jth node of the next
column spans 2 + (h − i) + (j − 1) nodes: its source, its target, all nodes
below/after its source, and all nodes above/before its target. We add to this
graph two extra nodes, one on the left, pointing at all nodes of the leftmost
column, and one on the right, pointed at by all nodes of the rightmost column.

Clearly, the resulting graph contains a path connecting the two extra nodes iff
the original graph contains a live path. Moreover, every such path naturally



separates the nodes into groups: each arrow in the path defines the group of
all nodes spanned by it, except for its target (Fig. 2d).

We are now ready to produce an instance of separability. We replace each node
u with a set of numbers that describe the arrows departing from u. Each arrow
is described by the number of nodes between u and its target. E.g., in Fig. 2d,
the bold arrow out of the left extra node is described by 2, the extra node
itself is replaced by {0, 1, 2, 3, 4}, and the full graph gives rise to the instance

{0,1,2,3,4}∅{4}{4}{4}{4}{4,6}∅{3,6}∅{2,4}{5,7}{7}∅{4}∅{4}{3}{2}{1}{0} .

(No set describes the right extra node.) Notice the numbers in bold: they
represent the bold arrows of Fig. 2d; and they separate the sets into blocks, in
the same way that the bold arrows separate the nodes into groups!

Formally, for each symbol/graph a, we define g(a) := α1α2 · · ·αh where

αi :=
{

(h− i) + (j − 1)
∣∣∣ a contains an arrow from the ith node of the

left column to the jth node of the right column

}
;

we also set g(`) := {0, 1, . . . , h− 1} and g(a) := {h− 1} · · · {1}{0}. All numbers
involved are from 0 to 2h− 2, so the result is an instance of separability2h−1,
so q(h) = 2h−1. A careful proof can easily be extracted from these observations.

Most attempts to prove d 6= n have actually focused on confirming this
stronger conjecture. The lower bounds mentioned in the introductory section for
two-wayliveness [14,28,25,12] were actually proved for one-wayliveness.

A pause. The first goal of this talk so far has been to acquaint the reader
with the study of the size complexity of two-way finite automata: the central
open question in the area, a motivation behind it, some history, some termi-
nology. Has this goal been achieved for you? Test yourself by answering the
following questions: What is d? How does it compare to n? How does it relate
to separability? How does it relate to two-wayliveness? 6 (for the answers)

The second goal of this talk so far has been to convince with examples that the
important word in its title is not “Automata”, but “Complexity”. Automata the-
ory is strongly associated with computability questions (“Can such-and-such an
automaton recognize language such-and-such?”) and with formal language the-
ory. In contrast, this talk examines complexity questions (“I know such-and-such
an automaton can solve problem such-and-such, but how efficient can it be?”)
and is closer to computational complexity theory : we discuss “algorithms” (that
happen to run on automata) and “problems” and “reductions” and “complexity
classes”and “completeness”. Furhtermore, we don’t necessarily care about au-
tomata or size; we just use this model and resource in the hope of improving our
understanding of the properties of general computation.

At this point we are also ready to address a possible complaint: How come
we call this “size complexity”? Since we are counting states, shouldn’t we call
it “state complexity”? The best measure of the size of an automaton, goes the
complaint, is the number of bits needed to write down its transition function.



For a nfa with σ input alphabet symbols and s states, this is 2σs2 bits.7 So,
whenever the symbols greatly outnumber the states, “size” (as number of bits)
and “number of states” are hugely different. E.g., the nfa implementing Alg. 2
has 2h states, but its size is 2 ·2(2h)2·(2h)2 = 2Θ(h2), already close to that of the
best known equivalent dfa; so, d v n is about “number of states”, not “size”!

This argument is misleading. To see why, let binarytwo-wayliveness be
defined over the binary alphabet and differ from two-wayliveness only in that
each two-column graph is now encoded in (2h)2 bits. The new problem is still in
n, again by Alg. 2—it’s just that the implementation will now need O(h4) states,
so as to locate the start/end of each graph and the bit representing each arrow,
by counting. The new problem is also n-complete, by a homomorphic reduc-
tion from two-wayliveness—just replace each graph with its binary encoding.
So, d v n is also equivalent to questions of constant alphabet, where “number
of states” and “size” are polynomially related. There, removing nondeterminism
causes a super-polynomial blow-up either in both measures or in neither, making
it safe to use either one. In short, large alphabets are “abbreviations” that allow
us to focus on the combinatorial core of a problem. They can always be replaced
by small alphabets, where “number of states” and “size” are interchangeable.

So, our use of the term “size complexity” is not wrong. Moreover, it seems
advantageous to prefer this term whenever our question about the least upper
bound for the blow-up in the number of states is only whether it is polynomial or
not. The term “state complexity” may then be reserved for the finer part of our
studies where, after having answered the polynomiality question, we go on to find
the asymptotic behavior of the bound or, for even greater detail, its exact value;
then, “number of states” may behave differently from “size” (as number of bits
in description) and/or other measures (e.g., “number of transitions”).

A theory to develop. In sharp contrast with tm time/space complexity, where
a plethora of complexity classes have been introduced and studied since the 70’s
[21,29], the study of fa size complexity has been progressing very slowly and
has stayed focused mostly on d v n. Figure 3a sketches a map of some tm time
complexity classes for three primary modes of computation: determinism, alter-
nation, and randomization.8 Figure 3b shows what the analogous map should be
for fas and size. The key to the analogy is that the time bound f(n) for tms
(where n is the input length) becomes the size bound f(h) for fas (where h is
the family index). More specifically, if X is a mode of computation and F is a
class of functions, then the tm time complexity class{

L
∣∣∣ there exist Xtm M and f ∈ F such that M solves L using

at most f(n) steps, for all n and all n-long positive instances

}
(7)

corresponds to the fa size complexity class{
(Lh)h≥1

∣∣∣ there exist Xfas (Mh)h≥1 and f ∈ F such that
Mh solves Lh using at most f(h) states, for all h

}
. (8)

Let’s explore the similarities and differences between these two maps.
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Determinism. If X is determinism and F is all polynomial functions, then (7)
and (8) define p and d, respectively. If F is all exponential functions (2p(n), for
polynomial p), then dtms define exp, while dfas define the class of problem
families that are solvable with at most exponentially many states—we propose
the name 2d. Similarly, if F is all doubly-exponential functions, we get eexp
and 22d

(again, a proposed name); and so on, for higher exponentials. When F
becomes all elementary functions, we get the union of all these classes on each
side; for dtms, this is elementary; for dfas, we propose the name ed. Further
up, decidable problems is the tm class when F is all recursive functions; for the
corresponding fa class, we propose the name rd. Finally, if F is all functions,
we get all semi-decidable problems and all families of regular problems.

The deterministic size complexity classes are all closed under complement—
below the elementary bounds, this is non-trivial [27,9]. In addition, the well-
known strict hierarchy

p ( exp ( eexp ( · · · ( elementary ( decidable ( semi-decidable

maps to a hierarchy that is also strict:

d ( 2d ( 22d

( · · · ( ed ( rd ( regular.

Inclusions are trivial.9 Strictness follows from the fact that the minimum number
of states on a dfa solving the unary singleton problem {0x} is x+1 [2].10 So, for
an appropriately selected f , the family ({0f(h)})h≥1 can witness any of the above
differences; e.g., to show ed ( rd, just let f be recursive but non-elementary.

Alternation. If X is alternation and F is all polynomial functions, then we arrive
at alternating tms (atms) of polynomial time and the class ap. In studying
this class, people have distinguished subclasses of problems by restricting the
maximum number of runs of existential and universal steps that the atm may
perform throughout a computation. Fixing this number to a particular i ≥ 0, we
get the two classes σip and πip, depending on whether the first run consists of
existential or universal steps, respectively. This way, p = σ0p = π0p, np = σ1p,
conp = π1p, and the infinite polynomial-time hierarchy rises above them, which
may or may not be strict. Equivalently, one can think of σip as the problems
that are solvable in polynomial time by a ntm with access to an oracle for a
problem in σi−1p, namely as npsi−1p; and of πip as all their complements, namely
as conpsi−1p. Then, the class δip can also be considered, defined analogously
but with a dtm, namely as psi−1p. By the definitions and a few relatively easy
observations, we end up with the well-known relationships:

np σ2pp⊆np ∩ conp ⊆⊆
⊆
⊆δ2p⊆σ2p ∩ π2p ⊆⊆

⊆
⊆ · · · ⊆ ph⊆ap⊆exp

conp π2p
(9)

where ph is the union of all restricted classes.
Analogous complexity classes can be considered for fas and size—we pro-

pose11 the names σi and πi for the ith level of the hierarchy, h for the union



of all levels, and a for all problem families solvable by alternating fas (afas)
with polynomially many states. E.g., a problem family should be in σi iff its hth
member can be solved by a small (p(h)-state, for some polynomial p) afa that
performs ≤ i runs of existential and universal steps per computation, starting
with existential ones. This way, d = σ0 = π0, n = σ1, and con = π1.

It should also be possible to work with the oracle-based definition. E.g., a
problem family should be in the class δ2 = dn if its hth member can be solved
by a small dfa that has access to an oracle which responds to any question that
can be answered by a small nfa executed on the same input. This way, the join
two-wayliveness ./ two-wayliveness, defined as12

Given an instance w of two-wayliveness check that
either w has even length and is live or it has odd length and is dead.

is in δ2 by the straightforward algorithm

We scan the input once to check whether its length is even. We return to the
leftmost symbol and call the oracle to check whether the input is live. If the
two checks returned the same result, we accept; otherwise, we reject.

but is not known to be in n ∪ con (if it were, then we could disprove13 the
conjecture n 6= con). Similarly, one can define nn, conn, etc. However,
some work is necessary in order to clarify these definitions: one should describe
how exactly oracle calls work14 and compare with the earlier definitions (is σi =
nsi−1?). Such work is beyond the purposes of this exploratory exposition.

In the end, after appropriate fine-tuning, we should probably be able to
produce a situation similar to the one in (9):

n σ2d⊆n ∩ con ⊆⊆
⊆
⊆ δ2⊆σ2 ∩ π2 ⊆⊆

⊆
⊆ · · · ⊆ h⊆a⊆22d

con π2

Note that, for a tight analogy with (9), the last inclusion should be ap ⊆ 2d.
But this seems not to known. The listed inclusion follows from [18].15

Randomization. If X is randomization, we need to clarify what it means for
a probabilistic tm (ptm) or probabilistic fa (pfa) M to solve a problem L.
Depending on what we want to model, this can be done in different ways:

two-sided error : To model all nontrivial probabilistic algorithms, we require that
a cut-point λ ∈ (0, 1) distinguishes between positive and negative instances:
each w ∈ L is accepted w.p. > λ and each w 6∈ L is accepted w.p. < λ.
Then, the completeness c(n) of M is the smallest acceptance probability
over positive n-long instances; and the soundness s(n) of M is the largest
acceptance probability over negative n-long instances. Hence, the cut-point
separates completeness and soundness: s(n) < λ < c(n), for all n. The
difference c(n)− s(n) is the isolation of the cut-point.

two-sided error of bounded probability : To model all practical probabilistic algo-
rithms (i.e., those allowing us to efficiently extract statistically reliable an-
swers by sampling and majority vote), we further require that the isolation



of the cut-point is significant in the length of the input: c(n)− s(n) ≥ 1
r(n) ,

for some polynomial r and all n.
one-sided error of bounded probability : To model all Monte Carlo algorithms, we

further require that M never errs on negative instances, namely s(n) = 0.
(“zero-sided”) error of zero probability : To model all Las Vegas algorithms, we

require that M always halts with either the correct answer or no answer at
all and that, for all n and all n-long instances, the probability of it returning
an answer is significant (≥ 1

r(n) , for some polynomial r).

The tm time complexity classes that correspond to these requirements when F
is all polynomial functions are pp, bpp, rp, and zpp, respectively. For the fa
size complexity analogues, we propose16 the names p, p2, p1, and p0—and call
the corresponding automata pfas, p2fas, p1fas, and p0fas.

Still, some further clarifications are necessary.
i. Isolation: In the bounded-error models, we require that the cut-point isola-

tion be significant in the input length (≥ 1
r(n) for some polynomial r). This way,

given the probabilistic machine and an n-long input w, one can extract from the
machine a statistically reliable answer about w efficiently (in time polynomial
in n). This is true irrespective of whether the machine is a standalone ptm M
or a member Mh of a p2fa-family. In the latter case, however, we must require
that the isolation be significant in h as well (or else we may lose the connections
to tm space complexity—via theorems à la Berman and Lingas [1]). Hence, for
p2 and p1 we require that the cut-point isolation of Mh on n-long instances is
≥ 1

r(h,n) , for some polynomial r and all h, n. Similarly, for p0 we require that
Mh returns an answer w.p. ≥ 1

r(h,n) .
ii. Time complexity : In contrast to deterministic and alternating fas, where

accepting computations are always at most linearly longer than the input, a
probabilistic fa may very well run much slower: when finite, its expected run-
ning time may be exponential in the input length. Hence, to describe efficient
computation, our complexity classes must also require that the expected time is
polynomial in n—and also in h, for reasons similar as above. E.g., p2 must be{

(Lh)h≥1

∣∣∣∣∣ there exist p2fas (Mh)h≥1 and polynomials p, q such that
Mh solves Lh using at most p(h) states and q(h, n) steps
on average, for all h and all n and all n-long instances

}
,

and similarly for the other classes. Still, the case of polynomial size but expo-
nential expected time is not uninteresting. To discuss such “small but slow”
algorithms, we propose the names px, p2x, p1x, and p0x, respectively.

iii. Fineness of distributions: A probabilistic fa can be coin-flipping, if the
probability of each transition is either 0 or 1

2 or 1; or rational, if rational transition
probabilities are allowed; or real, if real transition probabilities are allowed. To
describe discrete efficient computation, we must assume that our complexity
classes have been defined based on automata of the first kind. Still, one can
prove that every rational fa has an equivalent coin-flipping fa that is at most
linearly larger and slower. Hence, redefining our classes on the basis of rational



automata would not affect them. Finally, to discuss the variant classes that we
get when we let all fas be real, we propose the names real-p0, real-p1x, etc.

iv. Regularity : It is easy to see that p0fas and p1fas can solve only regular
problems. In contrast, p2fas can solve only regular problems iff we restrict their
expected time to be polynomial [5,7], and pfas can solve non-regular problems
even with polynomial expected time [5]. Hence, in order to keep all members of
every family in our classes regular, the definitions of p2x, p, px must include
the explicit requirement that “each Lh is regular”.

With these clarifications, we are ready to list some known facts. First of all,
the well-known relationships

p ⊆ zpp = rp ∩ corp ⊆ rp ⊆ bpp ⊆ pp

translate directly (by the definitions and an easy fact) to the relationships

d ⊆ p0 = p1∩ cop1⊆ p1⊆ p2⊆ p,

and similarly for the *x classes; also, we clearly have p0⊆ p0x, p1⊆ p1x, etc.
Moreover, it can be proved (using the ideas of [19]) that the freedom to be slow
allows Monte Carlo and Las Vegas automata to simulate nondeterminism:

p1x = n and thus p0x = p1x ∩ cop1x = n ∩ con.

Finally, we also know (by the theorems of [5, Sect. 6]) that small & fast p2fas
can be simulated by large dfas, but not by small ones:17

d ( p2⊆ 2d

but small & slow p2fas may even need non-recursively larger dfa simulators:

p2x 6⊆ rd ,

i.e., no recursive function can upper bound the size of the simulating dfas.

Programmatic access. Although some of the open questions posed by the
diagram of Fig. 3b are certainly hard, none seems to be hopeless. Moreover, each
of them can be approached via three other questions of gradually decreasing
difficulty: the corresponding questions for sweeping, rotating, and one-way au-
tomata (Fig. 4). A fa is sweeping (sfa: sdfa, snfa, etc.) if its head can turn
only on the end-markers, so that each computation is a series of one-way scans
of alternate directions; it is rotating (rfa: rdfa, rnfa, etc.) if its head can only
move right or jump from the right end-marker to the left one, so that each com-
putation is a series of rightward scans; and it is one-way (fa: dfa, nfa, etc.)
if its head moves always right, in a single rightward scan.

So, e.g., if the full d v n problem seems hard, we can step back and study the
relationship between determinism and nondetermism for sfas first: Can sdfas



Fig. 4. The full range: two-way, sweeping, rotating, and one-way automata.

always stay at most polynomially larger than snfas? Or, introducing the classes
sd and sn (as in (4) but for sdfas and snfas), we can ask the restriction:

sd = sn ?

If this is still hard, we can attack the even simpler question for rdfas and rnfas:

rd = rn ?

for rd and rn defined analogously. Finally, our last retreat is the one-way case:

d = n ?

These same simplifying steps can be made in the study of any relationship in
Fig. 3b. Typically, solving the one-way case is indeed a lot easier than all other
cases. Then, a serious boost of ideas is required for the rotating case; here, an
indispensible lower-bound technique is Sipser’s “generic strings” method [28], in
which one studies the behavior of the automaton on inputs that are long enough
to minimize a carefully chosen measure.18 The sweeping case is then relatively
easy; one just needs to carefully exploit symmetry. Finally, moving from the
sweeping to the two-way case is currently beyond our reach, in general.

Another natural restriction one can focus on is that of unary automata.
For each class C in Fig. 3b, one can consider the class unary-C that is defined
identically to C but for unary automata. For example, one can ask:

unary-d = unary-n ?

Although a lot simpler, the unary case can still be highly demanding. Moving
from it to the multi-symbol case is currently again beyond our reach, in general.

Some facts. When our questions are asked for the restricted models, as opposed
to full-fledged fas, the diagram of Fig. 3b changes as in Fig. 5. More specifically:

For sfas (Fig. 5s), we have confirmed that nondeterminism beats determin-
ism: sd ( sn [28],19 which directly implies 2sd ( 2sn, 22sd ( 22sn

, etc. In fact, we
even know that in the series of trivial inclusions

sd
1

⊆ sp0
2

⊆ sp0x = sp1x ∩ cosp1x = sn ∩ cosn
3

⊆ sn ,
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both 3 and at least one of 1, 2 are strict [15,13]. That one of 1, 2 is strict fol-
lows from the fact that sd 6= sp0x—i.e., slow Las Vegas behavior beats determin-
ism [15].20 Note that, although we can confirm the strictness of neither inclusion,
we do know that 2 is strict in the special case where the fast sp0fas must run in
linear expected time (as opposed to arbitrary polynomial) [17]. That inclusion 3
is strict follows from the fact that sn 6= cosn—i.e., nondeterminism is not closed
under complement [13].21 Note that this easily implies that sn ∪ cosn ( sδ2,
as well.22 The remaining relationships in Fig. 5s hold for the same reasons as
for fas. Note that there is no arrow to indicate sp2 * sn, as the witness of [5,
Thm 6.2.1] for p2 * n needs the full bidirectionality of the p2fa.

The diagram for rfas (Fig. 5r) is identical to that for sfas, for essentially the
same reasons. Typically, a theorem for the sweeping case comes with a proof that
is stronger than the statement (as indicated in the Notes) and, in fact, implies
the theorem for the rotating case. In addition, sometimes small rfas already
have all the power of small sfas (e.g., rn = sn, rp2x = sp2x, rpx = spx [15]),
and thus a theorem for either case implies the same for the other one.

The diagram for fas (Fig. 5) is not very different. Once again, we know
that each one of the trivial inclusions d ⊆ n∩ con ⊆ n, con ⊆ δ2 is strict
[24, §4.1].23 But now, of course, there are no probabilistic classes for exponential
expected time. In addition, we know that d = p0—i.e., Las Vegas behavior is
no more powerful than determinism [11].

Finally, for unary fas (Fig. 5u) important differences exist. First, a sub-
exponential upper bound is known for the increase in size when removing nonde-
terminism [8]. So, starting at exponential size, nondeterminism is not essential:24

unary-2d = unary-2n, unary-22d

= unary-22n

, etc.

Second, nondeterminism is closed under complement [9]:

unary-n = unary-con ,

which implies that slow Las Vegas behavior is as powerful as nondeterminism:

unary-p0x = unary-p1x ∩ unary-cop1x = unary-n ∩ unary-con = unary-n ,

Overall, the evidence in the unary case is that nondeterminism offers no signif-
icant advantage over determinism, which contrasts with what we know for the
one-way, rotating, and sweeping cases and what we believe for the two-way case.

Conclusion. This has been a semi-formal talk on the size complexity of two-
way finite automata. In the first half, we presented a central open problem
and the main concepts in the area, explained a motivation, and recalled some
early history. In the second half, we sketched where the area is heading for, if
it is to mimic the development of Turing machine time/space complexity. We
expressed all our statements in terms of size complexity classes (rather than the
commoner “trade-off” vocabulary) and proposed names where necessary—all
in continuation and in the style of the Sakoda-Sipser framework [24]. We then



described how each open question may be approached via restrictions to the
unary alphabet or to the sweeping, rotating, or one-way input head. Finally, we
expressed in this framework some of the progress that has been achieved so far.
Our exposition has tried to be welcoming and informative, rather than rigorous
or complete, and it represents this author’s perspective on the subject.

The diagram of Fig. 3b remains, for the most part, unexplored: an open
question lies behind any line that is not an arrow, and behind any pair of
classes with no upward path between them. To a lesser but still great extent,
the same is true of the diagrams of Fig. 5. A few of these questions may have
already been answered—in which case this author offers his apologies for not
knowing/realizing it. Other questions will be relatively easy, especially in cases
where the corresponding question for tm complexity has been answered. Still,
the (many) remaining questions will be hard, although certainly not impossible.

In studying these questions one will probably need to choose appropriate def-
initions where necessary (e.g., for oracle-fas), identify new complete problems
(e.g., for σi, a), introduce new types of reductions (e.g., more powerful than
the homomorphic ones), explore connections with time/space complexity (e.g.,
by extending the Berman-Lingas theorem [1]), add other modes of computation
into the picture (e.g., interaction, the quantum mode), and more.

Much like the questions themselves, some of the ideas for answering them
may come directly from answers that have already been given to corresponding
questions in tm time/space complexity (e.g., inductive counting was borrowed
from the proof of nl = conl to help prove unary-n = unary-con [9]). By
testing these ideas in new settings, we can explore their limits and deepen our
understanding of their power (e.g., inductive counting appears inadequate for
showing n = con; and it will eventually prove so, if the conjecture n 6= con is
true). In turn, this may help us arrive at extensions or completely new techniques,
hopefully advancing our understanding of tm complexity as well.
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Notes

1Assuming that the observable universe contains 1080 atoms, the sun runs out of
fuel in 10 billion years, and drawing 1 state takes 1 atom and 1 picosecond.

2By now the reader has probably picked up our naming conventions. But, for one last
time, let’s just make sure: “nfa” means one-way nondeterministic finite automaton.

3The “liveness” part of the name hints at the behavior of problem instances under
extension: A path from the leftmost to the rightmost column is called live; an instance
that contains live paths is called live, as well; an instance that contains no live paths
is called dead. Now think of what happens when we prepend or append extra sym-
bols/graphs to an instance: if the instance is live, it may remain live or become dead;
in contrast, if the instance is dead, it will remain dead—a most tight analogy. The
“two-way” part hints at the fact that paths may grow in either direction.

4In fact, his conjecture was even stronger: that the minimum number of states in a
dfa solving separabilityh is exactly 2h—as it is for dfas.

5One can also prove the same for all other candidate witnesses that he proposed.
6By analogy to d (and n and n), d is the class of problem families that can

be solved by families of dfas of polynomially growing size. The formal definition is
as in (4) but for dfas. We have d ⊆ n (trivially) and d 6= n (e.g., the problem
family implicit in (3) is in n − d). Overall, d ( n, and thus also d ( n (since
n ⊆ n). Since separability is n-complete, we know separability 6∈ d. Since
two-wayliveness is n-complete, we know two-wayliveness 6∈ d. (Here we are
using the fact that d is closed under homomorphic reductions.)

7For each direction d (left, right), input symbol a, and pair of states (p, q), we need
1 bit saying whether being at p and reading a causes the automaton to jump to q and
move its head in the d direction.

8One could also include here one more map for tm space complexity and/or augment
all maps with interaction [6], parallelism, the quantum mode, etc. But time complexity
and the three primary modes are enough to make our point.

9In fact, [26] implies that even n ⊆ 2d, 2n ⊆ 22d

, etc.
10In fact, x + 1 states are sufficient even for a dfa; and they are necessary even for

a nfa [2, Fact 5.2].
11Here, we follow the Sakoda-Sipser two-symbol naming convention: one symbol for

the head mode, one more for the transition function mode—as in “d”, “n”, etc.
12See [24, §4.1] for a similar join, witnessing that d * n ∪ con. Also, see Note 3

for what it means for an instance of two-wayliveness to be live/dead.
13Proof : Suppose the join is in n ∪ con. W.l.o.g., assume it is in n (if in con,

work similarly but with even lengths). Let M be a small nfa solving the join. Using
M , we can construct a small nfa M ′ solving two-wayliveness. Here is how: We
scan the input w once to check the parity of its length. If odd, we just simulate M
on w—and thus end up accepting iff w is dead. If even, we simulate M on rw, where
r is the two-column graph that contains all (2h)2 arrows—since rw is of odd length,
we end up acepting iff rw is dead, and thus iff w is dead. It should be clear that M ′



can indeed implement this algorithm, and thus solves two-wayliveness with roughly
twice as many states as M . This implies two-wayliveness ∈ n, and thus con = n.

14How does the oracle read a query? Is the query always the entire input of the fa,
is it some portion of the input, or is it produced from the input by a small two-way
transducer? How does the fa read the oracle’s answer?

15In fact, [18, Thm 4.2.1] proves that even 22d

contains a.
16Again, we follow the Sakoda-Sipser naming convention: “p” means “probabilistic”

and the index counts the sides of bounded error or, if the error is unbounded, is absent.
17In fact, [5] proves much more: Thm 6.1 says that even real-p2 ⊆ 2d (small & fast

p2fas can be simulated by large dfas even when they are real and even when the
dfas are actually one-way) and Thm 6.2 says that even n + p2 (small dfas cannot
simulate every small & fast p2fa even if they are allowed to use nondeterminism).

18The method was first applied to deterministic (rotating/sweeping) automata [28],
then also to nondeterministic ones [13] and to probabilistic ones [17]. For other appli-
cations to deterministic automata, see [14,15,16].

19In fact, [28] proves that even sd + n.
20In fact, [15] proves that even sd + n ∩ con.
21In fact, [13] proves that even cosn + n.
22In [13], the witness for sn * cosn is one-way liveness. So, consider the join

one-way liveness ./ one-way liveness. As in Note 13, we can easily prove that (i) the
join is in sdsn and (ii) if it were in sn∪ cosn, we would have one-way liveness ∈ cosn.

23For the strictness of n ∪ con ⊆ d2, consider the join Tn used in [24, §4.1].
24In fact, [8] implies that even unary-2sd ⊇ unary-2n, unary-22sd

⊇ unary-22n

, etc.


