
On the Size Complexity of

Rotating and Sweeping Automata

Christos Kapoutsis, Richard Královič, and Tobias Mömke

Department of Computer Science, ETH Zürich

Abstract. We examine the succinctness of one-way, rotating, sweeping,
and two-way deterministic finite automata (1dfas, rdfas, sdfas, 2dfas).
Here, a sdfa is a 2dfa whose head can change direction only on the
endmarkers and a rdfa is a sdfa whose head is reset on the left end
of the input every time the right endmarker is read. We introduce a list
of language operators and study the corresponding closure properties of
the size complexity classes defined by these automata. Our conclusions
reveal the logical structure of certain proofs of known separations in
the hierarchy of these classes and allow us to systematically construct
alternative problems to witness these separations.

1 Introduction

One of the most important open problems in the study of the size complexity
of finite automata is the comparison between determinism and nondetermin-
ism in the two-way case: Does every two-way nondeterministic finite automaton
(2nfa) with n states have a deterministic equivalent (2dfa) with a number of
states polynomial in n? [6, 5] Equivalently, if 2n is the class of families of lan-
guages that can be recognized by families of polynomially large 2nfas and 2d

is its deterministic counterpart, is it 2d = 2n? The answer is conjectured to be
negative, even if all 2nfas considered are actually one-way (1nfas). That is, even
2d + 1n is conjectured to be true, where 1n is the one-way counterpart of 2n.

To confirm these conjectures, one would need to prove that some n-state
2nfa or 1nfa requires superpolynomially (in n) many states on every equivalent
2dfa. Unfortunately, such lower bounds for arbitrary 2dfas are currently beyond
reach. They have been established only for certain restricted special cases. Two of
them are the rotating and the sweeping 2dfas (rdfas and sdfas, respectively).

A sdfa is a 2dfa that changes the direction of its head only on the input
endmarkers. Thus, a computation is simply an alternating sequence of rightward
and leftward one-way scans. A rdfa is a sdfa that performs no leftward scans:
upon reading the right endmarker, its head jumps directly to the left end. The
subsets of 2d that correspond to these restricted 2dfas are called sd and rd.

Several facts about the size complexity of sdfas have been known for quite
a while (e.g., 1d + sd [7], sd + 2d [7, 1, 4], sd + 1n [7], sd + 1n ∩ co-1n [3])
and, often, at the core of their proofs one can find proofs of the corresponding

?Work supported by the Swiss National Science Foundation grant 200021-107327/1.

facts for rdfas (e.g., 1d + rd, rd + 2d, etc.). Overall, though, our study of
these automata has been fragmentary, exactly because they have always been
examined only on the way to investigate the 2d vs. 2n question.

In this article we take the time to make the hierarchy 1d ⊆ rd ⊆ sd ⊆ 2d

itself our focus. We introduce a list of language operators and study the closure
properties of our complexity classes with respect to them. Our conclusions allow
us to reprove the separation of [3], this time with a new witness language fam-
ily, which (i) is constructed by a sequence of applications of our operators to a
single, minimally hard, ‘core’ family and (ii) mimicks the design of the original
witness. This uncovers the logical structure of the original proof and explains
how hardness propagates upwards in our hierarchy of complexity classes when
appropriate operators are applied. It also enables us to construct many other
witnesses of the same separation, using the same method but a different se-
quence of operators and/or a different ‘core’ family. Some of these witnesses are
both simpler (produced by operators of lower complexity) and more effective

(establish a greater exponential gap) than the one of [3].
More generally, our operators provide a systematic way of proving separations

by building witnesses out of simpler and easier ‘core’ language families. For
example, given any family L which is hard for 1dfas reading from left to right
(as usual) but easy for 1dfas reading from right to left (L 6∈ 1d but LR ∈ 1d), one
can build a family L′ which is hard for sdfas but easy for 1nfas, easy for 1nfas
recognizing the complement, and easy for 2dfas (L′ ∈ (1n∩ co-1n∩ 2d) \ sd), a
simultaneous witness for the theorems of [7, 3, 1, 4]. We believe that this operator-
based reconstruction or simplification of witnesses deepens our understanding of
the relative power of these automata.

The next section defines the objects that we work with. Section 3 introduces
two important tools for working with parallel automata and uses them to prove
hardness propagation lemmata. These are then applied in Sect. 4 to establish
the hierarchy and closures map of Fig. 1. Section 5 lists our final conclusions.

2 Preliminaries

Let Σ be an alphabet. If z ∈ Σ∗ is a string, then |z|, zt, zt, and zR are its
length, t-th symbol (if 1 ≤ t ≤ |z|), t-fold concatenation with itself (if t ≥ 0),
and reverse. If P ⊆ Σ∗, then P R := {zR | z ∈ P}.

A (promise) problem over Σ is a pair L = (Ly, Ln) of disjoint subsets of Σ∗.
The promise of L is Lp := Ly∪Ln. If Lp = Σ∗, then L is a language. If Ly, Ln 6= ∅,
then L is nontrivial. We write w ∈ L iff w ∈ Ly, and w 6∈ L iff w ∈ Ln. (Note
that “x 6∈ L” is equivalent to the negation of “x ∈ L” only when x ∈ Lp.) To
solve L is to accept all w ∈ L but no w 6∈ L (and decide arbitrarily on w 6∈ Lp).

A family of automata M = (Mn)n≥1 solves a family of problems L = (Ln)n≥1

iff, for all n, Mn solves Ln. The automata of M are ‘small ’ iff, for some polyno-
mial p and all n, Mn has at most p(n) states.

Problem operators. Fix a delimiter # and let L, L1, L2 be arbitrary problems.
If #x1# · · ·#xl# denotes strings from #(Lp#)

∗ and #x#y# denotes strings from
#(L1)p#(L2)p#, then the following pairs are easily seen to be problems, too:

¬L := (Ln, Ly) LR := (LR

y
, LR

n
)

L1 ∧ L2 := ({#x#y# | x ∈ L1 ∧ y ∈ L2}, {#x#y# | x 6∈ L1 ∨ y 6∈ L2})

L1 ∨ L2 := ({#x#y# | x ∈ L1 ∨ y ∈ L2}, {#x#y# | x 6∈ L1 ∧ y 6∈ L2})

L1 ⊕ L2 := ({#x#y# | x ∈ L1⇔y 6∈ L2}, {#x#y# | x ∈ L1⇔y ∈ L2})
∧

L := ({#x1# · · · #xl# | (∀i)(xi ∈ L)}, {#x1# · · · #xl# | (∃i)(xi 6∈ L)})
∨

L := ({#x1# · · · #xl# | (∃i)(xi ∈ L)}, {#x1# · · · #xl# | (∀i)(xi 6∈ L)})
⊕

L := ({#x1# · · · #xl# | the number of i such that xi ∈ L is odd},
{#x1# · · · #xl# | the number of i such that xi ∈ L is even})

(1)

over the promises, respectively: Lp, (Lp)
R, #(L1)p#(L2)p# (for L1 ∧ L2, L1 ∨ L2,

L1 ⊕ L2) and #(Lp#)
∗ (for the rest). We call these problems, respectively: the

complement and reversal of L; the conjunctive, disjunctive, and parity concate-

nation of L1 with L2; the conjunctive, disjunctive, and parity star of L.

By the definitions, we easily have ¬(LR) = (¬L)R, and also:

¬(L1 ∧ L2) = ¬L1 ∨ ¬L2

¬(L1 ∨ L2) = ¬L1 ∧ ¬L2

¬(L1 ⊕ L2) = ¬L1 ⊕ L2

¬(
∧

L) =
∨¬L

¬(
∨

L) =
∧¬L

(
∧

L)R =
∧

LR

(
∨

L)R =
∨

LR

(L1 ∧ L2)
R = LR

2 ∧ LR

1

(L1 ∨ L2)
R = LR

2 ∨ LR

1

(L1 ⊕ L2)
R = LR

2 ⊕ LR

1.

(2)

Our definitions extend naturally to families of problems: we just apply the
problem operator to (corresponding) components. E.g., if L,L1,L2 are families
of problems, then ¬L = (¬Ln)n≥1 and L1 ∨ L2 = (L1,n ∨ L2,n)n≥1. Clearly, the
identities of (2) remain true when we replace L, L1, L2 with L,L1,L2.

Finite automata. Our automata are one-way, rotating, sweeping, or two-way.
We refer to them by the naming convention bdfa, where b = 1,r, s, 2. E.g., rdfas
are rotating (r) deterministic finite automata (dfa). We assume the reader is
familiar with all these machines. This section simply fixes some notation.

A sdfa [7] over an alphabet Σ and a set of states Q is a triple M = (qs, δ, qa)
of a start state qs ∈ Q, an accept state qa ∈ Q, and a transition function δ
which partially maps Q× (Σ ∪ {`,a}) to Q, for some endmarkers `,a /∈ Σ. An
input z ∈ Σ∗ is presented to M surrounded by the endmarkers, as `za. The
computation starts at qs and on `. The next state is always derived from δ and
the current state and symbol. The next position is always the adjacent one in
the direction of motion; except when the current symbol is a and the next state
is not qa or when the current symbol is `, in which two cases the next position is
the adjacent one towards the other endmarker. Note that the computation can
either loop, or hang, or fall off a into qa. In this last case, we say M accepts z.

More generally, for any input string z ∈ Σ∗ and state p, the left computation

of M from p on z is the unique sequence lcompM,p(z) := (qt)1≤t≤m where:
q1 := p; every next state is qt+1 := δ(qt, zt), provided that t ≤ |z| and the value
of δ is defined; and m is the first t for which this provision fails. If m = |z| + 1,
we say the computation exits z into qm or results in qm; otherwise, 1 ≤ m ≤ |z|
and the computation hangs at qm and results in ⊥; the set Q⊥ := Q ∪ {⊥}
contains all possible results. The right computation of M from p on z is denoted
by rcompM,p(z) and defined symmetrically, with qt+1 := δ(qt, z|z|+1−t).

We say M is a rdfa if its next position is decided differently: it is always
the adjacent one to the right, except when the current symbol is a and the next
state is not qa, in which case it is the one to the right of `.

We say M is a 1dfa if it halts immediately after reading a: the value of δ on
any state q and on a is always either qa or undefined. If it is qa, we say q is a
final state; if it is undefined, we say q is nonfinal. The state δ(qs,`), if defined,
is called initial. If M is allowed more than one next move at each step, we say
it is nondeterministic (a 1nfa).

Parallel automata. The following additional models will also be useful.

A (two-sided) parallel automaton (p21dfa) [7] is any triple M = (L, R, F)
where L = {C1, . . . , Ck}, R = {D1, . . . , Dl} are disjoint families of 1dfas, and
F ⊆ QC1

⊥ ×· · ·×QCk

⊥ ×QD1

⊥ ×· · ·×QDl

⊥ , where QA is the state set of automaton A.
To run M on z means to run each A ∈ L∪R on z from its initial state and record
the result, but with a twist: each A ∈ L reads from left to right (i.e., reads z),
while each A ∈ R reads from right to left (i.e., reads zR). We say M accepts z
iff the tuple of the results of these computations is in F . When R = ∅ or L = ∅,
we say M is left-sided (a pl1dfa) or right-sided (a pr1dfa), respectively.

A parallel intersection automaton (∩21dfa, ∩l1dfa, or ∩r1dfa) [5] is a parallel
automaton whose F consists of the tuples where all results are final states. If
F consists of the tuples where some result is a final state, the automaton is a
parallel union automaton (∪21dfa, ∪l1dfa, or ∪r1dfa) [5]. So, a ∩21dfa accepts
its input iff all components accept it; a ∪21dfa accepts iff any component does.

We say that a family of parallel automata M = (Mn)n≥1 are ‘small’ if for
some polynomial p and all n, each component of Mn has at most p(n) states.
Note that this restricts only the size of the components—not their number.

Complexity classes. The size-complexity class 1d consists of every family of
problems that can be solved by a family of small 1dfas. The classes rd, sd, 2d,
∩l1d, ∩r1d, ∩21d, ∪l1d, ∪r1d, ∪21d, pl1d, pr1d, p21d, and 1n are defined similarly,
by replacing 1dfas with rdfas, sdfas, etc. The naming convention is from [5];
there, however, 1d, 1n, and 2d contain families of languages, not problems.(1)

If C is a class, then re-C consists of all families of problems whose reversal is
in C and co-C consists of all families of problems whose complement is in C. Of
special interest to us is the class 1n ∩ co-1n; we also denote it by 1∆.

The following inclusions are easy to verify, by the definitions and by [7,
Lemma 1], for every side mode σ = l, r, 2 and every parallel mode π = ∩,∪, p :

co-∩σ1d = ∪σ1d

re-πl1d = πr1d

∩σ1d,∪σ1d ⊆ pσ1d

πl1d, πr1d ⊆ π21d

1d ⊆ ∩l1d,∪l1d,rd ⊆ pl1d

rd ⊆ sd ⊆ p21d, 2d.
(3)

A core problem. Let [n] := {1, . . . , n}. All witnesses in Sect. 4 will be derived
from the operators of (1) and the following ‘core’ problem: “Given two symbols
describing a set α ⊆ [n] and a number i ∈ [n], check that i ∈ α.” Formally,

Jn := ({αi | α ⊆ [n] & i ∈ α}, {αi | α ⊆ [n] & i ∈ α}). (4)

Lemma 1. J := (Jn)n≥1 is not in 1d but is in re-1d, 1n, co-1n, ∩l1d, ∪l1d.(2)

3 Basic Tools and Hardness Propagation

To draw the map of Fig. 1, we need several lemmata that explain how the
operators of (1) can increase the hardness of problems. In turn, to prove these
lemmata, we need two basic tools for the construction of hard inputs to parallel
automata: the confusing and the generic strings. We first describe these tools
and then use them to prove the hardness propagation lemmata.

Confusing strings. Let M = (L, R) be a ∩21dfa and L a problem. We say a
string y confuses M on L if it is a positive instance but some component hangs
on it or is negative but every component treats it identically to a positive one:

y ∈ L & (∃A ∈ L ∪ R)
(

A(y) = ⊥
)

or
y 6∈ L & (∀A ∈ L ∪ R)(∃ỹ ∈ L)

(

A(y) = A(ỹ)
) (5)

where A(z) is the result of lcompA(z), if A ∈ L, or of rcompA(z), if A ∈ R. It
can be shown that, if some y confuses M on L, then M does not solve L. Note,
though, that (5) is independent of the selection of final states in the components
of M . So, if F(M) is the class of ∩21dfas that may differ from M only in the
selection of final states, then a y that confuses M on L confuses every M ′ ∈
F(M), too, and thus no M ′ ∈ F(M) solves L, either. The converse is also true.

Lemma 2. Let M = (L, R) be a ∩21dfa and L a problem. Then, strings that

confuse M on L exist iff no member of F(M) solves L.

Proof. [⇒] Suppose some y confuses M on L. Fix any M ′ = (L′, R′) ∈ F(M).
Since (5) is independent of the choice of final states, y confuses M ′ on L, too.
If y ∈ L: By (5), some A ∈ L′ ∪R′ hangs on y. So, M ′ rejects y, and thus fails.
If y 6∈ L: If M ′ accepts y, it fails. If it rejects y, then some A ∈ L′ ∪ R′ does
not accept y. Consider the ỹ guaranteed for this A by (5). Since A(ỹ) = A(y),
we know ỹ is also not accepted by A. Hence, M ′ rejects ỹ ∈ L, and fails again.

[⇐] Suppose no string confuses M on L. Then, no component hangs on a
positive instance; and every negative instance is ‘noticed’ by some component,
in the sense that the component treats it differently than all positive instances:

(∀y ∈ L)(∀A ∈ L ∪ R)
(

A(y) 6= ⊥
)

and
(∀y 6∈ L)(∃A ∈ L ∪ R)(∀ỹ ∈ L)

(

A(y) 6= A(ỹ)
)

.
(6)

This allows us to find an M ′ ∈ F(M) that solves L, as follows. We start with
all states of all components of M unmarked. Then we iterate over all y 6∈ L. For
each of them, we pick an A as guaranteed by (6) and, if the result A(y) is a state,
we mark it. When this (possibly infinite) iteration is over, we make all marked
states nonfinal and all unmarked states final. The resulting ∩21dfa is our M ′.

To see why M ′ solves L, consider any string y. If y 6∈ L: Then our method
examined y, picked an A, and ensured A(y) is either ⊥ or a nonfinal state. So, this
A does not accept y. Therefore, M ′ rejects y. If y ∈ L: Towards a contradiction,
suppose M ′ rejects y. Then some component A∗ does not accept y. By (6),
A∗(y) 6= ⊥. Hence, A∗(y) is a state, call it q∗, and is nonfinal. So, at some point,
our method marked q∗. Let ŷ 6∈ L be the string examined at that point. Then,
the selected A was A∗ and A(ŷ) was q∗, and thus no ỹ ∈ L had A∗(ỹ) = q∗. But
this contradicts the fact that y ∈ L and A∗(y) = q∗. ut

Generic strings [7]. Let A be a 1dfa over alphabet Σ and states Q, and
y, z ∈ Σ∗. The (left) views of A on y is the set of states produced on the right
boundary of y by left computations of A:

lviewsA(y) := {q ∈ Q | (∃p ∈ Q)[lcompA,p(y) exits into q]}.
The (left) mapping of A on y and z is the partial function

lmapA(y, z) : lviewsA(y) → Q

which, for every q ∈ lviewsA(y), is defined only if lcompA,q(z) does not hang
and, if so, returns the state that this computation exits into. It is easy to verify
that this function is a partial surjection from lviewsA(y) to lviewsA(yz).(3)

This immediately implies Fact 1. Fact 2 is equally simple.(4)

Fact 1 For all A, y, z as above: |lviewsA(y)| ≥ |lviewsA(yz)|.
Fact 2 For all A, y, z as above: lviewsA(yz) ⊆ lviewsA(z).

Now consider any pl1dfa M = (L, ∅, F) and any problem L which is infinitely

right-extensible, in the sense that every u ∈ L can be extended into a uu′ ∈ L.
By Fact 1, if we start with any u ∈ L and keep right-extending it ad infinitum
into uu′, uu′u′′, uu′u′′u′′′, · · · ∈ L then, from some point on, the corresponding
sequence of tuples of sizes (|lviewsA(·)|)A∈L will become constant. If y is any
of the extensions after that point, then y satisfies

y ∈ L & (∀yz ∈ L)(∀A ∈ L)
(

|lviewsA(y)| = |lviewsA(yz)|
)

(7)

and is called l-generic (for M) over L. The next lemma uses such strings.

Lemma 3. Suppose a pl1dfa M = (L, ∅, F) solves
∧

L and y is l-generic for M
over

∧

L. Then, x ∈ L iff lmapA(y, xy) is total and injective for all A ∈ L.

Proof. [⇒] Let x ∈ L. Then yxy ∈ ∧

L (since y ∈ ∧

L and x ∈ L). So, yxy right-
extends y inside

∧

L. Since y is l-generic, |lviewsA(y)| = |lviewsA(yxy)|, for all
A ∈ L. Hence, each partial surjection lmapA(y, xy) has domain and codomain
of the same size. This is possible only if the function is both total and injective.

[⇐] Suppose each partial surjection lmapA(y, xy) is total and injective. Then
it bijects the set lviewsA(y) into the set lviewsA(yxy), which is actually a
subset of lviewsA(y) (Fact 2). Clearly, this is possible only if this subset is the
set itself. So, lmapA(y, xy) is a permutation πA of lviewsA(y).

Now pick k ≥ 1 so that each πk
A is an identity, and let z := y(xy)k. It is easy

to verify that lmapA

(

y, (xy)k
)

equals lmapA(y, xy)k = πk
A, and is therefore the

identity on lviewsA(y). This means that, reading through z, the left computa-
tions of A do not notice the suffix (xy)k to the right of the prefix y. So, no A
can distinguish between y and z: it either hangs on both or exits both into the
same state.(5) Thus, M does not distinguish between y and z, either: it either
accepts both or rejects both. But M accepts y (because y ∈ ∧

L), so it accepts
z. Hence, every #-delimited infix of z is in L. In particular, x ∈ L. ut

If M = (L, R, F) is a p21dfa, we can also work symmetrically with right
computations and left-extensions: we can define rviewsA(y) and rmapA(z, y) for
A ∈ R, derive Facts 1, 2 for rviewsA(y) and rviewsA(zy), and define r-generic
strings. We can then construct strings, called generic, that are simultaneously
l- and r-generic, and use them in a counterpart of Lemma 3 for p21dfas:

Lemma 4. Suppose a p21dfa M = (L, R, F) solves
∧

L and y is generic for M
over

∧

L. Then, x ∈ L iff lmapA(y, xy) is total and injective for all A ∈ L and

rmapA(yx, y) is total and injective for all A ∈ R.

Hardness Propagation. We are now ready to show how the operators of (1)
can allow us to build harder problems out of easier ones.

Lemma 5. If no m-state 1dfa can solve problem L, then no ∩l1dfa with m-

state components can solve problem
∨

L. Similarly for
⊕

L.

Proof. Suppose no m-state 1dfa can solve L. By induction on k, we prove that no
∩l1dfa with k m-state components can solve

∨

L (the proof for
⊕

L is similar).
If k = 0: Fix any such ∩l1dfa M = (L, ∅). By definition, # 6∈ ∨

L. But M
accepts #, because all components do (vacuously, since L = ∅). So M fails.

If k ≥ 1: Fix any such ∩l1dfa M = (L, ∅). Pick any D ∈ L and remove it
from M to get M1 = (L1, ∅) := (L − {D}, ∅). By the inductive hypothesis, no
member of F(M1) solves

∨

L. So (Lemma 2), some y confuses M1 on
∨

L.
Case 1: y ∈ ∨

L. Then some A ∈ L1 hangs on y. Since A ∈ L, too, y confuses
M as well. So, M does not solve

∨

L, and the inductive step is complete.
Case 2: y 6∈ ∨

L. Then every A ∈ L1 treats y identically to a positive instance:

(∀A ∈ L − {D})(∃ỹ ∈ ∨

L)
(

A(y) = A(ỹ)
)

. (8)

Let M2 be the single-component ∩l1dfa whose only 1dfa, call it D′, is the one
derived from D by changing its initial state to D(y). By the hypothesis of the
lemma, no member of F(M2) solves L. So (Lemma 2), some x confuses M2 on
L. We claim that yx# confuses M on

∨

L. Thus, M does not solve
∨

L, and the
induction is again complete. To prove the confusion, we examine cases:

Case 2a: x ∈ L. Then yx# ∈ ∨

L, since y ∈ (
∨

L)p and x ∈ L. And D′ hangs on
x (since x is confusing and D′ is the only component), thus D(yx#) = D′(x#) =
⊥. So, component D of M hangs on yx# ∈ ∨

L. So, yx# confuses M on
∨

L.
Case 2b: x 6∈ L. Then yx# 6∈ ∨

L, because y 6∈ ∨

L and x ∈ Lp. And, since x
is confusing, D′ treats it identically to some x̃ ∈ L: D′(x) = D′(x̃). Then, each
component of M treats yx# identically to a positive instance of

∨

L:
• D treats yx# as yx̃# : D(yx̃#) = D′(x̃#) = D′(x#) = D(yx#). And we know

yx̃# ∈ ∨

L, because y ∈ (
∨

L)p and x̃ ∈ L.
• each A 6= D treats yx# as ỹx#, where ỹ the string guaranteed for A by (8):

A(ỹx#) = A(yx#). And we know ỹx# ∈ ∨

L, since ỹ ∈ ∨

L and x ∈ Lp.
Overall, yx# is again a confusing string for M on

∨

L, as required. ut
Lemma 6. If L1 has no ∩l1dfa with m-state components and L2 has no ∩r1dfa

with m-state components, then L1∨L2 has no ∩21dfa with m-state components.

Similarly for L1 ⊕ L2.

Proof. Let M = (L, R) be a ∩21dfa with m-state components. Let M1 := (L′, ∅)
and M2 := (∅, R′) be the ∩21dfas derived from the two ‘sides’ of M after chang-
ing the initial state of each A ∈ L ∪ R to A(#). By the lemma’s hypothesis, no
member of F(M1) solves L1 and no member of F(M2) solves L2. So (Lemma 2),
some y1 confuses M1 on L1 and some y2 confuses M2 on L2. We claim that
#y1#y2# confuses M on L1 ∨ L2 and thus M fails. (Similarly for L1 ⊕ L2.)

Case 1: y1 ∈ L1 or y2 ∈ L2. Assume y1 ∈ L1 (if y2 ∈ L2, we work similarly).
Then #y1#y2# ∈ L1 ∨ L2 and some A′ ∈ L′ hangs on y1. The corresponding
A ∈ L has A(#y1#y2#) = A′(y1#y2#) = ⊥. So, #y1#y2# confuses M on L1 ∨ L2.

Case 2: y1 6∈ L1 and y2 6∈ L2. Then #y1#y2# 6∈ L1 ∨ L2, and each component
of M1 treats y1 identically to a positive instance of L1, and same for M2, y2, L2:

(∀A′ ∈ L
′)(∃ỹ1 ∈ L1)

(

A′(y1) = A′(ỹ1)
)

, (9)

(∀A′ ∈ R′)(∃ỹ2 ∈ L2)
(

A′(y2) = A′(ỹ2)
)

. (10)

It is then easy to verify that every A ∈ L treats #y1#y2# as #ỹ1#y2# ∈ L1∨L2 (ỹ1

as guaranteed by (9)), and every A ∈ R treats #y1#y2# as #y1#ỹ2# ∈ L1∨L2 (ỹ2

as guaranteed by (10)). Therefore, #y1#y2# confuses M on L1 ∨ L2, again. ut
Lemma 7. Let L′ be nontrivial, π ∈ {∩,∪, p}, σ ∈ {l, r,2}. If L has no πσ1dfa

with m-state components, then neither L∧L′ has. Similarly for ¬L and L⊕L′.

Proof. We prove only the first claim, for π = ∩ and σ = l. Fix any y′ ∈ L′. Given
a ∩l1dfa M ′ solving L ∧ L′ with m-state components, we build a ∩l1dfa M
solving L with m-state components: We just modify each component A′ of M ′

so that the modified A′ works on y exactly as A′ on #y#y′
#. Then, M accepts y

⇔ M ′ accepts #y#y′
⇔ y ∈ L. The modifications are straightforward. ut

Lemma 8. If L has no ∩l1dfa with
(

m
2

)

-state components, then
∧

L has no

pl1dfa with m-state components.

Proof. Let M = (L, ∅, F) be a pl1dfa solving
∧

L with m-state components. Let
y be l-generic for M over

∧

L. We will build a ∩l1dfa M ′ solving L.
By Lemma 3, an arbitrary x is in L iff lmapA(y, xy) is total and injective

for all A ∈ L; i.e., iff for all A ∈ L and every two distinct p, q ∈ lviewsA(y),

lcompA,p(xy) and lcompA,q(xy) exit xy, into different states. (11)

So, checking x ∈ L reduces to checking (11) for each A and two-set of states
of lviewsA(y). The components of M ′ will perform exactly these checks. To
describe them, let us first define the following relation on the states of an A ∈ L:

r �A s ⇐⇒ lcompA,r(y) and lcompA,s(y) exit y, into different states,

and restate our checks as follows: for all A ∈ L and all distinct p, q ∈ lviewsA(y),

lcompA,p(x) and lcompA,q(x) exit x, into states that relate under �A. (11′)

Now, building 1dfas to perform these checks is easy. For each A ∈ L and p, q ∈
lviewsA(y), the corresponding 1dfa has 1 state for each two-set of states of A.
The initial state is {p, q}. At each step, the automaton applies A’s transition
function on the current symbol and each state in the current two-set. If either
application returns no value or both return the same value, it hangs; otherwise,
it moves to the resulting two-set. A state {r, s} is final iff r �A s. ut

Lemma 9. If L has no ∩21dfa with
(

m
2

)

-state components, then
∧

L has no

p21dfa with m-state components.

4 Closure Properties and a Hierarchy

We are now ready to confirm the information of Fig. 1. We start with the positive
cells of the table, continue with the diagram, and finish with the negative cells
of the table. On the way, Lemma 11 proves a few useful facts.

Lemma 10. Every ‘+’ in the table of Fig. 1b is correct.

Proof. Each closure can be proved easily, by standard constructions.(6) We also
use the fact that every m-state rdfa (resp., sdfa) can be converted into an
equivalent one with O(m2) states that keeps track of the number of rotations
(resp., sweeps), and thus never loops. Similarly for 2dfas and O(m) [2]. ut

Lemma 11. The following separations and fact hold:

[i] ∩l1d + re-1d, [iii] ∩21d + ∪l1d ∩ rd, [v] there exists L ∈ ∪l1d ∩ rd

[ii] pl1d + re-1d, [iv] ∩l1d ∪ ∩r1d + ∩21d ∩ sd such that
∧L 6∈ p21d.

+

2

3

4

5

6

7

8

A B C D E F G H

⊕

∨

∧

¬

∧

∨

⊕

·R

2dsd∪21d∩21drd∪l1d∩l1d1d

+

−

+

+

+

+

+

+

−

−

+

−

−

−

−

+

+

−

−

+

−

+

+

+

−

−

?

−

+

−

−

−

+

−

−

+

+

+

+

+

−

−

?

+

+

+

+

+

+

+

+1d

2d

(b)(a)

− + −

+−+ −

+

−

+ −

+

∩l1d ∪l1d

∩21d rd ∪21d

sd

g

dc

m

i

fe h

a b

jk l

n

p

q

r 1

Fig. 1. (a) A hierarchy from 1d to 2d: a solid arrow C → C′ means C ⊆ C′ & C + C′;
a dashed arrow means the same, but C ⊆ C′ only for the part of C that can be solved
with polynomially many components; a dotted arrow means only C + C′. (b) Closure
properties: ‘+’ means closure; ‘−’ means non-closure; ‘?’ means we do not know.

Proof. [i] Let L :=
∨J . We prove L is a witness. First, J 6∈ 1d (Lemma 1)

implies
∨J 6∈ ∩l1d (Lemma 5). Second, J R ∈ 1d (Lemma 1) implies

∨J R ∈ 1d

(by A7 of Fig. 1b), and thus (
∨J)R ∈ 1d (by (2)).

[ii] Let L :=
∧∨J . We prove L is a witness. First,

∨J 6∈ ∩l1d (by i) implies
∧∨J 6∈ pl1d (Lemma 8). Second, (

∨J)R ∈ 1d (by i) implies
∧

(
∨J)R ∈ 1d

(by A6 of Fig. 1b), and thus (
∧∨J)R ∈ 1d (by (2)).

[iii] Let L := (
∨J)∨(

∨J R). We prove L is a witness. First,
∨J 6∈ ∩l1d (by i)

implies (
∨J)R 6∈ re-∩l1d or, equivalently,

∨J R 6∈ ∩r1d (by (2), (3)). Overall, both
∨J 6∈ ∩l1d and

∨J R 6∈ ∩r1d, and thus L 6∈ ∩21d (Lemma 6). Second, J ∈ ∪l1d

via ∪l1dfas with few components (Lemma 1) and thus
∨J ∈ ∪l1d also via

∪l1dfas with few components (by C7); therefore
∨J ∈ rd via the rdfa that

simulates these components one by one. Hence,
∨J ∈ ∪l1d ∩ rd. In adddition,

J R ∈ 1d (Lemma 1) implies
∨J R ∈ 1d (by A7), and thus

∨J R ∈ ∪l1d ∩ rd as
well (since 1d ⊆ ∪l1d,rd). Overall, both

∨J and
∨J R are in ∪l1d∩rd. Hence,

L ∈ ∪l1d ∩ rd as well (by C4,D4).
[iv] Let L := (

∨J) ∧ (
∨J R). We prove L is a witness. However, given that

LR = (
∨J R)R ∧(

∨J)R =
∨

(J R)R ∧∨J R = L, we know L ∈ ∩l1d ⇐⇒ L ∈ ∩r1d,
and thus it enough to prove only that L ∈ (∩21d∩ sd)\∩l1d. Here is how. First,
∨J 6∈ ∩l1d (by i) and

∨J R is nontrivial, so L 6∈ ∩l1d (by Lemma 7). Second,
∨J R ∈ 1d (by i) implies (

∨J)R ∈ ∩21d ∩ sd (since 1d ⊆ ∩21d, sd) and thus
∨J ∈ ∩21d ∩ sd as well (by E2,G2). Since both

∨J and
∨J R are in ∩21d ∩ sd,

the same is true of L (by E3,G3).
[v] Let L := (

∨J) ∨ (
∨J R). By iii, L ∈ (∪l1d ∩ rd) \ ∩21d. By Lemma 9,

L 6∈ ∩21d implies
∧L 6∈ p21d. ut

Lemma 12. Every arrow in the hierarchy of Fig. 1a is correct.

Proof. All inclusions are immediate, either by the definitions or by easy con-
structions. Note that g, h, m, n refer only to the case of parallel automata with
polynomially many components. The non-inclusions are established as follows.

[a,b] By Lemma 1. [d,k,m] By iii. [c,l,n] By d,k,m, respectively, and (3),D1,G1.
[g,p,h] By k,l. [e] By i, since re-1d ⊆ ∩21d. [f] By e and (3). [i,q,j] By ii and since
re-1d ⊆ ∩21d,∪21d, sd and rd ⊆ pl1d. [r] Pick L as in v. Then

∧L 6∈ sd (since
sd ⊆ p21d) but

∧L ∈ 2d (by H6 and since L ∈ rd ⊆ 2d). ut

Lemma 13. Every ‘−’ in the table of Fig. 1b is correct.

Proof. We examine the cells visiting them row by row, from top to bottom.
[B1] By C1 and (3). [C1] Pick L as in iii. Then L ∈ ∪l1d but L 6∈ ∩21d, so

¬L 6∈ ∪21d and thus ¬L 6∈ ∪l1d. [E1] Pick L as in iii. Then L 6∈ ∩21d. But
¬L ∈ ∩21d (because L ∈ ∪l1d, so ¬L ∈ ∩l1d). [F1] By E1 and (3).

[A2] By Lemma 1, J R ∈ 1d but J 6∈ 1d. [B2] Pick L as in i. Then L 6∈ ∩l1d

but LR ∈ 1d ⊆ ∩l1d. [C2] Pick L as in i. Since L 6∈ ∩l1d, we know ¬L 6∈ ∪l1d.
Since LR ∈ 1d, we know ¬(LR) ∈ 1d (by A1) and thus (¬L)R ∈ ∪l1d. [D2] Pick L
as in ii. Then LR ∈ 1d ⊆ rd but L 6∈ pl1d ⊇ rd.

[F3] Let L1,L2 be the witnesses for E4. Then L1,L2 ∈ ∩21d, hence ¬L1,¬L2 ∈
∪21d. But L1∨L2 6∈ ∩21d, hence ¬(L1∨L2) 6∈ ∪21d or, equivalently ¬L1∧¬L2 6∈
∪21d. [E4] Pick L as in i. Then LR ∈ 1d, hence LR ∈ ∩21d (since 1d ⊆ ∩21d), and
thus L ∈ ∩21d (by E2). But L ∨ LR 6∈ ∩21d (by iii).

[B5,E5] Let L be the complement of the family of iii. Then L ∈ ∩l1d ⊆ ∩21d.
But ¬L 6∈ ∩21d, and thus L ⊕ L 6∈ ∩21d ⊇ ∩l1d (Lemma 7). [C5,F5] Pick L
as in iii. Then L ∈ ∪l1d ⊆ ∪21d. But L 6∈ ∩21d, hence ¬L 6∈ ∪21d, and thus
L ⊕ L 6∈ ∪21d ⊇ ∪l1d (Lemma 7).

[C6,D6,F6,G6] Pick L as in v. Then L ∈ ∪l1d∩rd ⊆ ∪21d, sd. But
∧L 6∈ p21d

and thus
∧L 6∈ ∪l1d,rd,∪21d, sd. [B7,D7,E7,G7] Let L be the complement of

the family of v. Then L ∈ ∩l1d ∩ rd (by D1), and thus also L ∈ ∩21d, sd. But
¬∨L =

∧¬L 6∈ p21d, so ¬∨L 6∈ ∩l1d,rd,∩21d, sd, and same for
∨L (by D1,G1).

[B8,C8,E8,F8] By B5,C5,E5,F5. The witnesses there, are problems of the form
L ⊕ L, for some L. Such problems simply restrict the corresponding

⊕L. ut

5 Conclusions

For each n ≥ 1, let Sn be the problem: “Given a set α ⊆ [n] and two numbers
i, j ∈ [n] exactly one of which is in α, check that the one in α is j.” Formally:

Sn := ({αij | α ⊆ [n] & i ∈ α & j ∈ α}, {αij | α ⊆ [n] & i ∈ α & j ∈ α}).

For S := (Sn)n≥1 the corresponding family, consider the family

R = (Rn)n≥1 :=
∧

(

(
⊕S) ⊕ (

⊕SR)
)

.

It is easy to see that S ∈ 1∆ = 1n∩co-1n and that 1∆ is closed under ·R, ⊕,⊕,
∧

.
Hence, R ∈ 1∆ as well. At the same time, S 6∈ 1d (easily), so

⊕S 6∈ ∩l1d

(Lemma 5) and
⊕SR = (

⊕S)R 6∈ ∩r1d, which implies (
⊕S) ⊕ (

⊕SR) 6∈ ∩21d

(Lemma 6) and thus R 6∈ p21d (Lemma 9). Hence, R 6∈ sd either. Overall, R
witnesses that 1∆ * sd. This separation was first proven in [3]. There, it was
witnessed by a language family (Πn)n≥1 that restricted liveness [5].(7)

We claim that, for all n, Πn and Rn are ‘essentially the same’: For each di-
rection (left-to-right, right-to-left), there exists a O(n)-state one-way transducer
that converts any well-formed instance u of Πn into a string v in the promise
of Rn such that u ∈ Πn ⇐⇒ v ∈ Rn. Conversely, it is also true that for each
direction some O(n)-state one-way transducer converts any v from the promise
of Rn into a well-formed instance u of Πn such that u ∈ Πn ⇐⇒ v ∈ Rn.(8)

Therefore, using our operators, we essentially ‘reconstructed’ the witness
of [3] in a way that identifies the source of its complexity (the witness of 1∆ * 1d

at its core) and reveals how its definition used reversal, parity, and conjuction to
propagate its deterministic hardness upwards from 1d to sd without increasing
its hardness with respect to 1∆.

At the same time, using our operators, we can easily show that the witness
of [3] is, in fact, unnecessarily complex. Already from the proof of Lemma 11[v]
(and the easy closure of 1∆ under ·R, ∨,∨,

∧

), we know that even

L = (Ln)n≥1 :=
∧

(

(
∨J) ∨ (

∨J R)
)

witnesses 1∆ * sd. Indeed, L is both simpler than R (uses J ,
∨

,∨ instead of
S,

⊕

,⊕) and more effective (we can prove it needs O(n) states on 1nfas and co-
1nfas and Ω(2n/2) states on sdfas, compared to R’s O(n2) and Ω(2n/2/

√
n) [3]).

Finally, using our operators, we can systematically produce many different
witnesses for each provable separation. The following corollary is indicative.

Corollary 1. Let L by any family of problems.

• If L ∈ 1∆ \ 1d, then
∧∨L ∈ 1∆ \ rd.

• If L ∈ 1∆ \ (1d ∪ re-1d), then
∧∨L ∈ 1∆ \ sd.

• If L ∈ re-1d \ 1d, then
∧∨

(L ∨ LR) ∈ (1∆ ∩ 2d) \ sd.

Note how the alternation of
∧

and
∨

(in ‘conjunctive normal form’ style) in-
creases the hardness of a core problem; it would be interesting to further under-
stand its role in this context. Answering the ?’s of Fig. 1b would also be very
interesting—they seem to require tools other than the ones currently available.

References

1. P. Berman. A note on sweeping automata. In Proc. of ICALP, pages 91–97, 1980.
2. V. Geffert, C. Mereghetti, and G. Pighizzini. Complementing two-way finite au-

tomata. Information and Computation, 205(8):1173–1187, 2007.
3. C. Kapoutsis, R. Královič, and T. Mömke. An exponential gap between LasVegas

and deterministic sweeping finite automata. In Proc. of SAGA, pages 130–141, 2007.
4. S. Micali. Two-way deterministic finite automata are exponentially more succinct

than sweeping automata. Information Processing Letters, 12(2):103–105, 1981.
5. W. J. Sakoda and M. Sipser. Nondeterminism and the size of two way finite au-

tomata. In Proc. of STOC, pages 275–286, 1978.
6. J. I. Seiferas. Untitled manuscript. Communicated to Michael Sipser, Oct. 1973.
7. M. Sipser. Lower bounds on the size of sweeping automata. Journal of Computer

and System Sciences, 21(2):195–202, 1980.

Appendix: technical comments (not to appear in final version)

(1)Working with promise problems instead of languages allows us to stop wor-
rying about strings that do not encode legal inputs. Our automata become easier
to design and describe, as they do not need to include the distracting “check that
the input is in the correct form”. Our arguments become more direct: e.g., we
can directly write ¬∧

L =
∨¬L without worrying which of the two languages,

∧

L or its complement, contains the strings that are not #-separated instances
of L (with languages, the equation ¬∧

L =
∨¬L would be false).

At the same time, none of our upper and lower bounds is harmed: For every
problem L = (Ln)n≥1 in this article, the corresponding family of promises Lp =
((Ln)p)n≥1 is at most as hard as L (for every class C, L ∈ C =⇒ Lp ∈ C) and
every class C in this article is closed under intersection. Therefore, a membership
L ∈ C is true or false irrespective of whether we consider L and the members of
C to be families of promise problems or families of languages.

In short, promise problems allow us to work directly at the combinatorial core
of a computational problem, by removing the distracting formalities imposed by
languages. And, if used properly, they preserve the validity of our conclusions.�

(2)Proof of Lemma 1: It is easy to verify that Jn needs ≥ 2n states on any
1dfa, but ≤ n states on a 1nfa, ≤ n components of ≤ 2 states each on a ∩l1dfa,
and ≤ n components of ≤ 1 state each on a ∪l1dfa. Also, (Jn)R needs ≤ n states
on a 1dfa and ¬Jn needs ≤ n states on a 1nfa. �

(3)First, the values of lmapA(y, z) are all in lviewsA(yz). Indeed: Let r be a
value of lmapA(y, z). Then some q ∈ lviewsA(y) is such that lmapA(y, z)(q) =
r. Since q ∈ lviewsA(y), we know some c := lcompA,p(y) exits into q. Since
lmapA(y, z)(q) = r, we know d := lcompA,q(z) exits into r. Overall, the com-
putation lcompA,p(yz) must be exactly the concatenation of c and d. So, it exits
into the same state as d, namely r. Therefore r ∈ lviewsA(yz).

Second, the values of lmapA(y, z) cover the entire lviewsA(yz). Indeed:
Suppose r ∈ lviewsA(yz). Then some c′ := lcompA,p(yz) exits into r. Let q be
the state of c′ right after crossing the y-z boundary. Clearly, (i) the computation
lcompA,p(y) exits into q, and (ii) the computation lcompA,q(z) exits into the
same state as c′, namely r. By (i), we know that q ∈ lviewsA(y). By (ii), we
know that lmapA(y, z)(q) = r. Therefore, r is a value of lmapA(y, z).

Therefore, lmapA(y, z) partially surjects lviewsA(y) onto lviewsA(yz). �

(4)Proof of Fact 2: Suppose r ∈ lviewsA(yz). Then some computation c :=
lcompA,p(yz) exits into r. If q is the state of c after crossing the y-z boundary,
then lcompA,q(z) is a suffix of c and exits into r. So, r ∈ lviewsA(z). �

(5)Suppose A accepts z = y(xy)k and let c := lcompA,p

(

y(xy)k
)

be its com-
putation, where p the initial state. Then c exits into a final state r. Easily, c can
be split into subcomputations c′ := lcompA,p(y), which exits into some state q,

and c′′ := lcompA,q

(

(xy)k
)

, which exits into r. By the selection of q and r and
the fact that πk

A is an identity, we know

r = lmapA

(

y, (xy)k
)

(q) = πk
A(q) = q.

Hence, c exits z = y(xy)k into the same state into which c′ exits y. (Intuitively,
in reading (xy)k to the right of y, the full computation c achieves nothing more
than what is already achieved on y by its prefix c′.) Since r is final, A accepts y.

Conversely, any accepting computation of A on y can be extended into an
accepting computation on z—this time by pumping up (as opposed to pumping
down) and by using the computations that cause πk

A to be an identity. �

(6)Proof of Lemma 10: None of the constructions is hard. We briefly sketch
the ideas involved. We examine the cells column by column, from left to right.

Suppose m-state 1dfas M1, M2 solve L1, L2, respectively. [A1] To solve ¬L1,
an (m + 1)-state 1dfa simulates M1 and accepts iff M1 does not accept. [A3] To
solve L1 ∧ L2, a O(m)-state 1dfa simulates M1 between the first # and the
second #, then M2 between the second # and the third #, then accepts iff both
simulations accepted. [A4-A5] Similarly to A3. [A6] To solve

∧

L1, a O(m)-state
1dfa simulates M1 between every two successive #, then accepts iff all simula-
tions accepted. [A7-A8] Similarly to A6.

Suppose ∩l1dfas M1, M2 solve L1, L2, respectively, with k m-state compo-
nents each. [B3] To solve L1 ∧L2, a ∩l1dfa uses k O(m)-state components, each
constructed as in A3 out of a component of M1 and the corresponding compo-
nent of M2. [B4] To solve L1 ∨ L2, a ∩l1dfa uses k2 O(m)-state components,
each constructed as in A4 out of a component of M1 and a component of M2.
[B6] To solve

∧

L1, a ∩l1dfa uses k O(m)-state components, each constructed as
in A6 out of a component of M1. [C3,C4,C7] As in B4, B3, and B6, respectively.

Suppose m-state rdfas M1, M2 solve L1, L2, respectively. Assume that they
never loop (if one does, we can modify it so as to reject if its number of rotations
exceeds m; the result is a O(m2)-state rdfa). [D1] As in A1. [D3] To solve L1∧L2,
a O(m)-state rdfa simulates M1 on the first part of the input ignoring the second
part, then M2 on the second part of the input ignoring the first part, then accepts
iff both simulations accepted. [D4,D5] As in D3.

Suppose ∩21dfas M1, M2 solve L1, L2, respectively, with m-state compo-
nents. [E2] To solve LR

1, an ∩21dfa simulates M1 but with left and right compo-
nents swapped. [E3,E6,F2,F4,F7] As in B3, B6, E2, C4, and C7, respectively.

Suppose m-state sdfas M1, M2 solve L1, L2, respectively. Assume that they
never loop (as for rdfas, they can count the number of sweeps). [G1] As in A1.
[G2] To solve LR

1, an (m + 1)-state sdfa moves its head to a, then simulates M1

but with left and right motions and endmarkers swapped. [G3-G5] As in D3-D5.
Suppose m-state 2dfas M1, M2 solve L1, L2, respectively. Assume that they

never loop (by [2]). [H1] As in A1. [H2] As in G2. [H3-H8] As in A3-A8. �

(7)Definition of (Πn)n≥1.For convenience, we include here the definition of
the language family (Πn)n≥1, as it appeared in [3].

(e)

1

3

4

5

2

(d)(c)(b)(a)

(g)(f)

1

Fig. 2. (a) Three symbols of Γ5; e.g., the leftmost one is (3, 4, {2, 4}). (b) The symbol
{(3, 4), (5, 2)} of X5. (c) Two symbols of ∆5. (d) The string defined by the six symbols
of (a)-(c); in circles: the roots of the four trees; in bold: the two upper trees; the string
is in Π ′

5. (e) The upper left tree vanishes. (f) No tree vanishes, but the middle edges
miss the upper left tree. (g) A well-formed string that does not respect the tree order.

Language Πn consists of all #-delimited concatenations of the strings of an-
other language, Π ′

n. That is, Πn := #(Π ′
n#)

∗. So, we need to present Π ′
n.

Language Π ′
n is defined over the alphabet Σ′

n := Γn ∪ Xn ∪ ∆n, where:

Γn := { (i, j, α) | i, j ∈ [n] & i < j & ∅ 6= α ([n] },
Xn := { {(i, r), (j, s)} | i, j, r, s ∈ [n] & i 6= j & r 6= s },
∆n := { (α, j, i) | i, j ∈ [n] & i < j & ∅ 6= α ([n] }.

Intuitively, each (i, j, α) ∈ Γn represents a two-column graph (Fig. 2a) that has n
nodes per column and contains exactly the edges that connect the ith left node
to all right nodes inside α and the jth left node to all right nodes outside α.
Symmetrically, each (α, j, i) ∈ ∆n represents a similar graph (Fig. 2c) containing
exactly the edges that connect the ith and jth right nodes to the left nodes inside
α and outside α, respectively. Finally, each {(i, r), (j, s)} ∈ Xn represents a graph
(Fig. 2b) containing only the edges connecting the ith and jth left nodes to the
rth and sth right nodes, respectively. In all cases, we say that i and j (and r
and s, in the last case) are the roots of the given symbol.

Of all strings over Σ′
n, consider those following the pattern Γ ∗

nXn∆∗
n. Each

of them represents the multi-column graph (Fig. 2d) that we get from the cor-
responding sequence of two-column graphs when we identify adjacent columns.
The symbol of Xn is called ‘the middle symbol’—although it may very well not
be in the middle position. If we momentarily hide the edges of that symbol, we
easily see that the graph consists of exactly four disjoint trees, stemming out of
the roots of the leftmost and rightmost columns. The tree out of the upper root
of the leftmost column is naturally referred to as “the upper left tree”. Similarly,
the other trees are called “lower left”, “upper right”, and “lower right”. Notice
that, starting from the leftmost column, the two left trees may or may not both
reach the left column of the middle symbol, as one of them may at some point
‘cover all nodes’ (Fig. 2e). Similarly, at least one of the two right trees reaches

the right column of the middle symbol, but not necessarily both. Also observe
that, in the case where all four trees make it to the middle symbol, the two edges
of that symbol may or may not collectively ‘touch’ all trees (Fig. 2f). A string
over Σ′

n is called well-formed if it belongs to Γ ∗
nXn∆∗

n and is such that each of
the four trees contains exactly one of the roots of the middle symbol (Fig. 2dg).

Of all well-formed strings over Σ′
n, problem Π ′

n consists of those that ‘respect
the tree order’, in the sense that the two edges of the middle symbol do not
connect an upper tree to a lower one (Fig. 2d). In other words, this is the set

Π ′
n := {z ∈ (Σ′

n)∗ | z is well-formed and respects the tree order}.

Hence, to solve Πn = #(Π ′
n#)

∗ means to check that the input string (over Σn :=
Σ′

n ∪ {#}) starts and ends with # and is such that every infix between two
successive copies of # is well-formed and respects the tree order. �

(8)Intuitively, every instance of Sn inside v simulates and is simulated by a one-
level extension of two left trees inside u, and is positive (resp., negative) iff the
extension swaps (resp., preserves) the order of the trees; similarly for instances of
SR

n and right trees. Hence, for either conversion, a transducer simply ‘translates’
between instances of Sn or SR

n and one-level extensions of left or right trees.
More carefully, the transducer from Πn to Rn converts the symbols of a

string u ∈ Σ∗
n as follows:

• each symbol (i, j, α) is converted into the string ij#α;
• each symbol (α, j, i) is converted into the string α#ji;
• each symbol {(i, r), (j, s)} is converted into the string ij###rs;
• the symbol # is converted into a string of the form x#y, where

• x is {i}##, if u contains to the left of # a symbol of the form (α, j, i);
otherwise, x is the empty string;

• y is ##{i}, if u contains to the right of # a symbol of the form (i, j, α);
otherwise, y is the empty string.

It should be clear that a one-way transducer can indeed perform these conver-
sions, irrespective of whether it is scanning u from left to right or from right
to left. Moreover, non-constant memory is required only for the conversion of #,
and then only i needs to be remembered. Overall, O(n) states are enough. For
the correctness of the conversion, one can prove that, if each #-delimited infix of
u is well-formed, then the resulting v is in the promise of Rn; and then, u ∈ Πn

iff v ∈ Rn. We omit a careful proof.
The transducer from Rn to Πn converts the symbols of a v ∈ (Rn)p (recall

that the alphabet of Rn consists of all α ⊆ [n], all i ∈ [n], and #) as follows:
• each symbol α within the left operand of a ⊕ converts into (1, n, α);
• each substring ij within the left operand of a ⊕ converts into (i, j, [n − 1]);
• each symbol α within the right operand of a ⊕ converts into (α, n, 1);
• each substring ji within the right operand of a ⊕ converts into ([n− 1], j, i);
• each substring ### between the operands of a ⊕ converts into {(1, n), (n, 1)};

if next to an endmarker, it converts into #;
• each substring ##### converts into #.

It should be clear that a one-way transducer can indeed perform these conver-
sions, irrespective of whether it is scanning v from left to right or from right to
left. Moreover, non-constant memory is required only for converting a substring
ij (or ji), and then only i or j needs to be remembered. So, O(n) states suffice.
For the correctness of the conversion, one can prove that, if v is in the promise
of Rn, then each #-delimited infix of the resulting u is well-formed; and then,
u ∈ Πn iff v ∈ Rn. We omit a careful proof. �

