
An Exponential Gap between LasVegas and

Deterministic Sweeping Finite Automata

Christos Kapoutsis, Richard Královič, and Tobias Mömke

Department of Computer Science, ETH Zürich

Abstract. A two-way finite automaton is sweeping if its input head can
change direction only on the end-markers. For each n ≥ 2, we exhibit a
problem that can be solved by a O(n2)-state sweeping LasVegas automa-
ton, but needs 2Ω(n) states on every sweeping deterministic automaton.

1 Introduction

One of the major goals of the theory of computation is the comparative study
of probabilistic computations, on one hand, and deterministic and nondetermin-
istic computations, on the other. An important special case of this comparison
concerns probabilistic computations of zero error (also known as “LasVegas com-
putations”): how does zpp compare with p and np? Or, in informal terms: Can

every fast LasVegas algorithm be simulated by a fast deterministic one? Can

every fast nondeterministic algorithm be simulated by a fast LasVegas one?

Naturally, the computational model and resource for which we pose these
questions are the Turing machine and time, respectively, as these give rise to the
best available theoretical model for the practical problems that we care about.
However, the questions have also been asked for other computational models and
resources. Of particular interest to us is the case of restricted models, where the
questions appear to be much more tractable. Conceivably, answering them there
might also improve our understanding of the harder, more general settings.

In this direction, Hromkovič and Schnitger [1] studied the case of one-way
finite automata, where efficiency is measured by size (number of states). They
showed that, in this context, LasVegas computations are not more powerful
than deterministic ones—intuitively, every small one-way LasVegas finite au-

tomaton (1p0fa) can be simulated by a small deterministic one (1dfa). This
immediately implied that, in contrast, nondeterministic computations are more
powerful than LasVegas ones: there exist small one-way nondeterministic finite

automata (1nfas) that cannot be simulated by any small 1p0fa.
For the case of two-way finite automata (2dfas, 2p0fas, and 2nfas), though,

the analogous questions remain open [2]: Can every small 2p0fa be simulated by

a small 2dfa? Can every small 2nfa be simulated by a small 2p0fa? Note that
a negative answer to either question would confirm the long-standing conjecture
that 2nfas can be exponentially more succinct than 2dfas [5].

⋆Work supported by the Swiss National Science Foundation grant 200021-107327/1.

In this article we provide such negative answers for the special case where the
two-way automata involved are sweeping (sdfas, sp0fas, snfas), in the sense that
their input head can change direction only on the end-markers. Both answers use
the crucial fact (adapted from [2, 4]) that a problem can be solved by small sp0fas
iff small snfas can solve both that problem and its complement. Based on that,
the answer to the second question is an immediate corollary of the recent result
of [3]. The first question is answered by exhibiting a specific problem (inspired by
liveness [5]) than cannot be solved by small sdfas but is such that small snfas
can solve both it and its complement. Our contribution is this latter theorem.

We stress that the expected running time of all probabilistic automata in this
article is (required to be finite, but) allowed to be exponential in the length of the
input, as our focus is on size complexity only. Our theorem should be interpreted
as a first step towards the more natural (and more faithful to the analogy with
zpp, p, and np) case where size and time must be held small simultaneously.

The next section defines the basics and presents the problem witnessing the
separation. Section 3 describes a sp0fa that solves this problem with O(n2) states.
Section 4 proves that every sdfa solving the same problem needs at least 2Ω(n)

states. Finally, Section 5 sketches a bigger picture that our theorem fits in.

2 Preliminaries

By [n] we denote {1, 2, . . . , n}. If Σ is an alphabet, then Σ∗ is the set of all finite
strings over Σ. If z ∈ Σ∗, then |z|, zt, zt, and zR are its length, t-th symbol (if
1 ≤ t ≤ |z|), t-fold concatenation with itself (if t ≥ 0), and reverse. A problem

(or language) over Σ is any L ⊆ Σ∗; then L is its complement. If # 6∈ Σ, then
L# is the problem #(L#)∗ of all #-delimited finite concatenations of strings of L.

An automaton solves (or recognizes) a problem iff it accepts exactly the
strings of that problem. A family of automata M = (Mn)n≥0 solves a family

of problems Π = (Πn)n≥0 iff, for all n, Mn solves Πn. The automata of M are
‘small’ iff, for some polynomial p and all n, Mn has at most p(n) states. Often,
the generic member of a family informally denotes the family itself: e.g., “Πn

can be solved by a small 1dfa” means that some family of small 1dfas solves Π .
If f is a function and t ≥ 1, then f t is the t-fold composition of f with itself.

Sweeping automata. A sweeping deterministic finite automaton (sdfa) [6]
over an alphabet Σ and a set of states Q is any triple M = (qs, δ, qa) of a start

state qs ∈ Q, an accept state qa ∈ Q, and a transition function δ which partially
maps Q× (Σ∪{⊢,⊣}) to Q, for some end-markers ⊢,⊣ /∈ Σ. An input z ∈ Σ∗ is
presented to M surrounded by the end-markers, as ⊢z⊣. The computation starts
at qs and on ⊢. The next state is always derived from δ and the current state and
symbol. The next position is always the adjacent one in the direction of motion;
except when the current symbol is ⊢ or when the current symbol is ⊣ and the
next state is not qa, in which cases the next position is the adjacent one towards
the other end-marker. Note that the computation can either loop, or hang, or
fall off ⊣ into qa. In this last case we call it accepting and say that M accepts z.

More generally, for any input string z ∈ Σ∗ and state p, the left computation

of M from p on z is the unique sequence

lcompM,p(z) := (qt)1≤t≤m

where q1 := p; every next state is qt+1 := δ(qt, zt), provided that t ≤ |z| and
the value of δ is defined; and m is the first t for which this provision fails. If
m = |z|+1, we say that the computation exits z into qm; otherwise, 1 ≤ m ≤ |z|
and the computation hangs at qm. The right computation of M from p on z is
denoted by rcompM,p(z) and defined symmetrically, with qt+1 := δ(qt, z|z|+1−t).

The traversals of M on z are the members of the unique sequence (ct)1≤t<m

where c1 := lcompM,p1
(z) for p1 := δ(qs,⊢); every next traversal ct+1 is either

rcompM,pt+1
(z), if t is odd and ct exits into a state qt such that δ(qt,⊣) =

pt+1 6= qa, or lcompM,pt+1
(z), if t is even and ct exits into a state qt such that

δ(qt,⊢) = pt+1; and m is either the first t for which ct cannot be defined or ∞,
if ct exists for all t. Then, the computation of M on z, denoted by compM (z),
is the concatenation of (qs), c1, c2, . . . and possibly also (qa), if m is finite and
even and cm−1 exits into a state qm−1 such that δ(qm−1,⊣) = qa.

If M is allowed more than one next move at each step, we say it is nondeter-

ministic (a snfa). Formally, this means that δ partially maps Q×(Σ∪{⊢,⊣}) to
the set of all non-empty subsets of Q. Hence, on any z ∈ Σ∗, compM (z) is a set

of computations. If at least one of them is accepting, we say that M accepts z.
If M follows exactly one of its nondeterministic choices at each step accord-

ing to some rational distribution, we say it is probabilistic (a spfa). Formally,
this means that δ partially maps Q × (Σ ∪ {⊢,⊣}) to the set of all rational dis-

tributions over Q—i.e., all total functions from Q to the rational numbers that
obey the axioms of probability. Hence, on any z ∈ Σ∗, compM (z) is a rational

distribution of computations. The expected length of a computation drawn from
this distribution is called the expected running time of M on z.

For M to be a LasVegas spfa (a sp0fa), a few extra conditions should hold.
First, a special reject state qr ∈ Q must be specified—so that M = (qs, δ, qa, qr).
Second, whenever the current symbol is ⊣ and the next state is qr, the next
position is the adjacent one in the direction of motion—so that a computation
may also fall off ⊣ into qr, in which case we call it rejecting. Last, on any z ∈ Σ∗, a
computation drawn from compM (z) must be either accepting with probability 1
or rejecting with probability 1. In the former case, we say that M accepts z.

Finally, a sweeping automaton is called one-way (1dfa, 1nfa, 1pfa, 1p0fa)
if it halts immediately after reading the right end-marker. Formally, this means
that the value of the transition function on any state and on ⊣ is always either
undefined or qa (for 1dfas); or {qa} (for 1nfas); or the unique distribution over
{qa} (for 1pfas); or some distribution over {qa, qr} (for 1p0fas).

The witness. In this section we define the family of problems Π that witnesses
the separation between small sp0fas and small sdfas. Let n ≥ 2 be arbitrary.

Problem Πn consists of all #-delimited concatenations of the strings of an-
other problem, Π ′

n. That is, Πn := (Π ′
n)# = #(Π ′

n#)
∗. So, we need to present Π ′

n.

(e)

1

3

4

5

2

(d)(c)(b)(a)

(g)(f)

1

Fig. 1. (a) Three symbols of Γ5; e.g., the leftmost one is (3, 4, {2, 4}). (b) The symbol
{(3, 4), (5, 2)} of X5. (c) Two symbols of ∆5. (d) The string defined by the six symbols
of (a)-(c); in circles: the roots of the four trees; in bold: the two upper trees; the string
is in Π ′

5. (e) The upper left tree vanishes. (f) No tree vanishes, but the middle edges
miss the upper left tree. (g) A well-formed string that does not respect the tree order.

Problem Π ′
n is defined over the alphabet Σ′

n := Γn ∪ Xn ∪ ∆n, where:

Γn := { (i, j, α) | i, j ∈ [n] and i < j and ∅ 6= α ([n] },

Xn := { {(i, r), (j, s)} | i, j, r, s ∈ [n] and i 6= j and r 6= s },

∆n := { (α, j, i) | i, j ∈ [n] and i < j and ∅ 6= α ([n] }.

Intuitively, each (i, j, α) ∈ Γn represents a two-column graph (Fig. 1a) that has n
nodes per column and contains exactly the edges that connect the ith left node
to all right nodes inside α and the jth left node to all right nodes outside α.
Symmetrically, each (α, j, i) ∈ ∆n represents a similar graph (Fig. 1c) containing
exactly the edges that connect the ith and jth right nodes to the left nodes inside
α and outside α, respectively. Finally, each {(i, r), (j, s)} ∈ Xn represents a graph
(Fig. 1b) containing only the edges connecting the ith and jth left nodes to the
rth and sth right nodes, respectively. In all cases, we say that i and j (and r
and s, in the last case) are the roots of the given symbol.

Of all strings over Σ′
n, consider those following the pattern Γ ∗

nXn∆∗
n. Each

of them represents the multi-column graph (Fig. 1d) that we get from the cor-
responding sequence of two-column graphs when we identify adjacent columns.
The symbol of Xn is called ‘the middle symbol’—although it may very well not
be in the middle position. If we momentarily hide the edges of that symbol, we
easily see that the graph consists of exactly four disjoint trees, stemming out of
the roots of the leftmost and rightmost columns. The tree out of the upper root
of the leftmost column is naturally referred to as “the upper left tree”. Similarly,
the other trees are called “lower left”, “upper right”, and “lower right”. Notice
that, starting from the leftmost column, the two left trees may or may not both
reach the left column of the middle symbol, as one of them may at some point
‘cover all nodes’ (Fig. 1e). Similarly, at least one of the two right trees reaches
the right column of the middle symbol, but not necessarily both. Also observe
that, in the case where all four trees make it to the middle symbol, the two edges

of that symbol may or may not collectively ‘touch’ all trees (Fig. 1f). A string
over Σ′

n is called well-formed if it belongs to Γ ∗
nXn∆∗

n and is such that each of
the four trees contains exactly one of the roots of the middle symbol (Fig. 1dg).

Of all well-formed strings over Σ′
n, problem Π ′

n consists of those that ‘respect
the tree order’, in the sense that the two edges of the middle symbol do not
connect an upper tree to a lower one (Fig. 1d). In other words, this is the set

Π ′
n := {z ∈ (Σ′

n)∗ | z is well-formed and respects the tree order}.

Hence, to solve Πn = #(Π ′
n#)

∗ means to check that the input string (over Σn :=
Σ′

n ∪ {#}) starts and ends with # and is such that every infix between two
successive copies of # is well-formed and respects the tree order.

3 The upper bound

In this section we prove that Πn can be solved by a sp0fa with O(n2) states.

One-way nondeterministic finite automata. The next two simple lemmata
reduce solving Πn with a small sp0fa to solving Π ′

n and Π ′
n with small 1nfas.

Lemma 1 (adapted from [2, 4]). If each of L and L can be solved by a 1nfa

with m states, then L can be solved by a sp0fa with 1 + 2m states.

Proof. Suppose M and M are two m-state 1nfas solving L and L, respectively.
Then, on any input z, exactly one of the computation trees of M and M on z
contains accepting computations. We construct a sp0fa M ′ for L that navigates
probabilistically through these trees, trying to discover such a computation. If
it succeeds, then it accepts or rejects, depending on which tree the computation
was found in. If it fails, it sweeps back to the left end-marker and tries again.

More specifically, on input z, M ′ performs a series of sweeps. Each left-to-
right sweep is an attempt to find an accepting computation of either M or M
on z, while right-to-left sweeps are just rewinds. A left-to-right sweep starts
with M ′ selecting one of M and M uniformly at random. Then, the selected
1nfa is simulated on z: at each step, M ′ either follows one of the possible next
states uniformly at random or—if there are no such states (i.e., the 1nfa would
hang at that point)—simply stops the simulation and sweeps blindly to ⊣. If
the simulation ever reaches a situation where the 1nfa would be about to fall
off ⊣ into its accepting state, then M ′ has discovered the desired accepting
computation and therefore falls off ⊣, too, into its own accepting or rejecting
state (depending on whether it had been simulating M or M , respectively).
Otherwise, the simulation stops somewhere before or at ⊣, in which case M ′

finishes the left-to-right sweep, sweeps back to ⊢, and starts a new attempt.
It is not hard to see that M ′ can be constructed out of a copy of M , a copy of

M , and 1 extra state.(1) Also, M ′ halts only after finding an accepting computa-
tion, which happens with probability 1, and then decides correctly. Finally, since
each attempt uses at most 2|z| + 2 steps and succeeds with probability at least
1
2 (1

m
)|z|+1, the average running time is at most (2|z|+ 2) · 2m|z|+1 = 2O(|z|). ⊓⊔

Lemma 2. If L can be solved by a 1nfa with m states, then L# can be solved

by an 1nfa with 2 + m states. Similarly, if L can be solved by a 1nfa with m
states, then L# can be solved by an 1nfa with 4 + m states.

Proof. Suppose M is an m-state 1nfa solving L. A 1nfa M ′ for L# can simply
simulate M successively on every #-delimited infix of its input, until the input
is exhausted or one of these simulations produces no accepting computation.
Easily, M ′ can be constructed out of one copy of M and two new states.(2)

Similarly, if M is an m-state 1nfa for L, then a 1nfa M ′ for L# can simply
simulate M on a nondeterministically chosen #-delimited infix of its input, and
accept if the simulation accepts; at the same time, additional nondeterministic
threads accept if the input fails to be a #-delimited concatenation of infixes.
Easily, M ′ can be constructed out of one copy of M and four new states.(3) ⊓⊔

Two upper bounds for Π
′

n
. It is now enough to prove that each of Π ′

n and
Π ′

n can be solved by a 1nfa with O(n2) states. To see how, let us first suppose
that the input is promised to be of the form Γ ∗

nXn∆∗
n.

It is easy to see that such an input is in Π ′
n iff it contains two disjoint

paths that run from the leftmost to the rightmost column and have their right
endpoints in the same order as their left endpoints. To verify this condition, a
1nfa M can simply guess the two paths (at each step remembering only the
most recent node in each of them) and accept iff their last nodes are in the
order in which the paths started. This can be done easily with 2

(

n

2

)

states.(4)

To disprove this condition, a 1nfa M can look for one of the following ‘flaws’:
(i) in some a ∈ Γn, one of the roots touches two roots of the following symbol,
(ii) in some a ∈ ∆n, one of the roots touches two roots of the preceding symbol,
or (iii) the input (is well-formed, but) does not respect the tree order. The last
flaw can be detected easily, with a slightly modified copy of M ; detecting (ii) is
then possible with one additional state; a final modification—requiring

(

n
2

)

new

states—ensures that (i) is also detected. Overall, 1 + 3
(

n
2

)

states are enough.(5)

Now, if the input is not promised to be of the form Γ ∗
nXn∆∗

n, we can simply
augment M and M to also check this additional condition. Specifically, given
that Γ ∗

nXn∆∗
n can be recognized by a 1dfa M ′ with only two states, Π ′

n can
be solved by the (standard) Cartesian product of M and M ′ that accepts iff
both of them accept (and is twice as big as M); similarly, Π ′

n can be solved by
an augmented version of M that includes M ′ as an additional nondeterministic
thread (and has two more states than M).

4 The lower bound

Much like what we did in Section 3, we first reduce the task of proving a lower
bound for sdfas solving Πn to the task of proving a lower bound for a simpler
class of automata (the parallel intersection automata, see below) solving Π ′

n.
Essential in this reduction is the notion of generic strings (adapted from [6]).
So, we start with the definition and properties of these strings, continue with
the reduction, and conclude with the lower bound for the simpler setting.

Generic strings. Let M be a sdfa over an alphabet Σ and state set Q. For
any y ∈ Σ∗, consider the set of all states that can be produced on the rightmost
boundary of y by left computations of M :

lviewsM (y) := {q ∈ Q | (∃p ∈ Q)[lcompM,p(y) exits into q]}.

How does this set change if we replace y with some right-extension yz of it? In
other words, how do the sets lviewsM (y) and lviewsM (yz) compare?

Consider the partial function lmapM (y, z) : lviewsM (y) → Q which, for
every q ∈ lviewsM (y), is defined only if lcompM,q(z) does not hang and, if
so, returns the state that this computation exits into. Easily, the values of this
function: (i) are all in lviewsM (yz),(6) and (ii) cover the entire lviewsM (yz).(7)

So, lmapM (y, z) is a partial surjection from lviewsM (y) to lviewsM (yz). This
immediately implies Fact 1. Fact 2 is equally simple.(8)

Fact 1 For all y, z: |lviewsM (y)| ≥ |lviewsM (yz)|.

Fact 2 For all y, z: lviewsM (yz) ⊆ lviewsM (z).

Now consider any property ∅ 6= P ⊆ Σ∗ which is infinitely extensible to the

right, in the sense that every string that has the property can be right-extended
into a longer one that also has it. Fact 1 implies the following about the behavior
of M on P : if we start with any y ∈ P and keep right-extending it ad infini-
tum into yz, yzz′, yzz′z′′, · · · ∈ P , then from some point on the corresponding
sequence of the sizes of the sets |lviewsM (·)| will become constant. Any of the
extensions after that point is called l-generic (for M) over P . Summarizing:

Definition 1. A string y is l-generic over P if

y ∈ P & for all yz ∈ P : |lviewsM (y)| = |lviewsM (yz)|.

Fact 3 Suppose P ⊆ Σ∗ is non-empty and infinitely extensible to the right.
Then l-generic strings over P exist.

Note that a symmetric argument works in the other direction, too: work-
ing with right computations and left-extensions, we can define rviewsM (y) and
rmapM (z, y); conclude Facts 1 and 2 for rviewsM (y) and rviewsM (zy); define
r-generic strings; and conclude Fact 3 for them, too. In fact, we can often con-
struct strings, called simply generic, that are simultaneously l- and r-generic:

Fact 4 Suppose that yl and yr are l-generic and r-generic over P , respectively.

Then every string in P of the form ylzyr is generic over P .

Proof. For any l-generic string over P , all right-extensions of it in P are clearly
also l-generic. In the other direction, the symmetric statement is true. ⊓⊔

The next lemma is the key for the reduction presented in Lemma 4.

Lemma 3. Suppose a sdfa M solves L# and y is generic for it over L#. Then a

string x belongs to L iff lmapM (y, xy) and rmapM (yx, y) are total and injective.

Proof. Suppose x ∈ L. Since y ∈ L# (because y is generic over L#), we know yxy
is also in L#. Hence, yxy is a right-extension of y in L#. Since y is l-generic, this
implies that |lviewsM (y)| = |lviewsM (yxy)|.

Now consider lmapM (y, xy). By the discussion before Fact 1, we already
know this is a partial surjection from lviewsM (y) to lviewsM (yxy). Since the
two sets are of equal size, the function must be total. For the same reason, it
must also be injective. The argument for rmapM (yx, y) is symmetric.

Conversely, suppose lmapM (y, xy) is total and injective. Since we already
know that it partially surjects lviewsM (y) to lviewsM (yxy), we can conclude
that it is actually a bijection between the two sets. Now, by Fact 2, we also know
that lviewsM (yxy) ⊆ lviewsM (y). Hence, lmapM (y, xy) bijects lviewsM (y)
into one of its subsets. Clearly, this is possible only if this subset is the set
itself. So, lmap(y, xy) is a permutation π of lviewsM (y). Symmetrically, if
rmapM (yx, y) is total and injective, then it is a permutation ρ of rviewsM (y).

Now pick any k ≥ 1 such that each of πk and ρk is the identity on its
domain, and consider the string z := y(xy)k = (yx)ky. It is easy to verify that
lmapM

(

y, (xy)k
)

equals lmapM (y, xy)k = πk, and is therefore the identity on

lviewsM (y). Similarly, rmapM

(

(yx)k, y
)

equals ρk, and is therefore the identity
on rviewsM (y). Intuitively, this means that, computing through z, the left-to-
right computations of M do not notice the presence of (xy)k to the right of the
prefix y; similarly, the right-to-left computations do not notice the presence of
(yx)k to the left of the suffix y. Consequently, M does not distinguish between y
and z: it either accepts both of them or rejects both of them.(9) Since M solves
L# and y ∈ L#, we know M accepts y. Therefore, M accepts z as well. Hence,
every #-delimited infix of z is in L. In particular, x ∈ L. ⊓⊔

Parallel intersection automata. A parallel intersection automaton over Σ
is any pair M = (L,R) of families of 1dfas over Σ. To run M on an input x
means to run each of its component 1dfas on x, but with a twist: each D ∈ L
reads x from left to right, while each D ∈ R reads x from right to left. We say
M accepts x iff all these computations are accepting—i.e., iff all D ∈ L accept
x and all D ∈ R accept xR. The next lemma presents a non-trivial connection
with sdfas—implicitly present already in the argument of [6].

Lemma 4. If L# can be solved by a sdfa of size m, then L can be solved by a

parallel intersection automaton with at most 2
(

m

2

)

components, each of size
(

m

2

)

.

Proof. Suppose a sdfa M over a set Q of m states solves L#. We will construct
a parallel intersection automaton M ′ = (L,R) that solves L, as follows.

First, we fix y to be any generic string for M over L# (we know such y exist,
by Facts 3,4 and easy properties of L#). Then (Lemma 3) an arbitrary x is in L
iff lmapM (y, xy) and rmapM (yx, y) are both total and injective, namely iff:
• for all distinct p, q ∈ lviewsM (y): both lcompM,p(xy) and lcompM,q(xy)

exit xy, and they do so into different states, and

• for all distinct p, q ∈ rviewsM (y): both rcompM,p(yx) and rcompM,q(yx)
exit yx, and they do so into different states.

Letting ml := |lviewsM (y)| and mr := |rviewsM (y)|, we see that checking
x ∈ L reduces to checking

(

ml

2

)

+
(

mr

2

)

separate conditions, one for each unordered
pair of distinct states from lviewsM (y) or from rviewsM (y). The components
of M ′ are designed to check exactly these conditions.

Before describing these components, let us rewrite the above conditions a bit
more nicely. First, we need a concise way of saying whether two left computations
on y exit into different states or not, and similarly for right computations. To
this end, we define the following relations on Q:

• p ≍l q iff both lcompM,p(y) and lcompM,q(y) exit y, and they do so into
different states.

• p ≍r q iff both rcompM,p(y) and rcompM,q(y) exit y, and they do so into
different states.

Now, the conditions from above can be rephrased as follows:

• for all distinct p, q ∈ lviewsM (y): both lcompM,p(x) and lcompM,q(x)
exit x, and they do so into states that are ≍l-related, and

• for all distinct p, q ∈ rviewsM (y): both rcompM,p(x) and rcompM,q(x)
exit x, and they do so into states that are ≍r-related,

and it is now straightforward to build 1dfas that check each of them.

For example, the 1dfa checking the condition for the pair p, q ∈ lviewsM (y)
has 1 state for each unordered pair of distinct states from Q, with {p, q} being
both the start and the accept state. On ⊢, {p, q} simply goes to itself. At every
step after that, the automaton tries to compute the next pair by applying the
transition function of M on the current symbol and each of the two states of the
current pair. If either application returns no value or both return the same value,
the automaton simply hangs; else, it moves to the corresponding pair. On ⊣, the
pairs leading to {p, q} (and thus to acceptance) are exactly the ≍l-related ones.

Overall, we need
(

ml

2

)

+
(

mr

2

)

≤ 2
(

m
2

)

automata, each of size
(

m
2

)

. ⊓⊔

A lower bound for Π
′

n
. By Lemma 4, it is now enough to prove that no parallel

intersection automaton can solve Π ′
n with a small number of small components.

The next lemma proves something much stronger: no parallel intersection au-
tomaton can solve Π ′

n with small components, irrespective of their number. The
argument is similar to that of [5, Theorem 4.2.3].

Lemma 5. In any parallel intersection automaton solving Π ′
n, at least one of

the components has size strictly greater than (2n − 2)/n.

Proof. Towards a contradiction, suppose M = (L,R) solves Π ′
n with at most

(2n−2)/n states in each one of its components. We can then prove the following.

Claim. There exists a string u ∈ Γ ∗
n that admits well-formed right-extensions

and has all of them accepted by every D ∈ L. Symmetrically, some v ∈ ∆∗
n

admits well-formed left-extensions and has all of them accepted by every D ∈ R.

i′

j′

u′ a c

j

i

z

p

α0

q

i′

j′

u′ b c

j

i

z

p

α1

q

Fig. 2. Confusing D in the proof of Lemma 5.

Intuitively, u is a string that manages to ‘confuse’ every left component of M :
each of them accepts every well-formed right-extension of u (no matter whether
it respects the tree order or not), exactly because it has failed to correctly keep
track of the tree order inside u. Similarly for v and the right components of M .

We will prove only the first half of the claim, as the argument for the other
half is symmetric. Before that, though, let us see how the claim implies a con-
tradiction. First, since u has well-formed right-extensions, we can find nodes
i, j ∈ [n] on its rightmost column that belong to different trees. Similarly, the
leftmost column of v contains nodes r, s ∈ [n] that belong to different trees of v.
Now, consider the two symbols of Xn that have i, j, r, s as their roots, namely
x := {(i, r), (j, s)} and x′ := {(i, s), (j, r)}, and the strings uxv and ux′v. Clearly,
each string is well-formed, right-extends u, and left-extends v. So, by the claim,
each of them is accepted by all components of M . Hence, M accepts both strings.
However, by the selection of x and x′, we know that one of the strings does not
respect the tree order. So, after all, M does not solve Π ′

n—a contradiction.

To prove the first half of the claim, we work by induction on the size of L.

If L is empty, then the claim holds vacuously for, say, the empty u.

If L is non-empty, we pick any D in it and let L′ := L − {D}. Then L′

is smaller than L, so (by the inductive hypothesis) some u′ ∈ Γ ∗
n admits well-

formed right-extensions and has all of them accepted by all D′ ∈ L′. Our goal is
to find two symbols a, c ∈ Γn such that the string u := u′ac admits well-formed
right-extensions and has all of them accepted by all members of L. (Fig. 2.)

We start by noting (as above) that, since u′ has well-formed right-extensions,
there exist nodes i′ and j′ in its rightmost column that belong to different trees.

Moreover, some of the well-formed right-extensions of u′ respect the tree
order (because, for each extension that does not, there is one that does: the
one that differs only in the pairing of the roots of the middle symbol) and are
therefore accepted by M . In particular, they are accepted by D. Thus, the left
computation of D on each of them exits to the right. Hence, the left computation
of D on u′ exits to the right, too. Let p be the corresponding exit state.

Based on D, i′, j′, and p, we can now find the symbols a, c that we are after.

Consider all symbols of Γn that have i′ and j′ as roots. Each of them is of
the form (i′, j′, α) and takes p to some next state. Since there are 2n − 2 such
symbols (one for each ∅ 6= α ([n]) and D has at most (2n−2)/n states, we know
some next state attracts at least (2n − 2)/

(

(2n − 2)/n
)

= n symbols. Call this
state q. Among the α’s that correspond to the symbols taking p to q, two must

be incomparable (otherwise, they would form a chain of n or more non-trivial
subsets of [n]—a contradiction). Call these subsets α0 and α1. Then symbol a
is one of the two corresponding symbols, say a := (i′, j′, α0). We also name the
other symbol, say b := (i′, j′, α1), and a node in each side of the symmetric
difference of the two sets, say i ∈ α0 \ α1 and j ∈ α1 \ α0 (both sides are non-
empty, by the incomparability of α0, α1). It is important to note that a connects
i′ and j′ to i and j, respectively, whereas in b this connection is reversed. Finally,
c is selected to be any symbol with i and j as roots, say c := (i, j, {1}).

Let us see why u = u′ac is the string that we want (ubc would also do).
First, by the choice of i′ and j′, we know that a extends both trees of u′: one

to α0, the other one to α0. Similarly, c extends both trees of u′a, since i ∈ α0 and
j ∈ α0. Hence, u = u′ac can indeed be right-extended into well-formed strings.

Second, every such extension of u is obviously a well-formed right-extension
of u′, and is thus accepted by all D′ ∈ L′ (recall the inductive hypothesis).

Finally, every such extension of u, say uz, is also accepted by D. To see why,
consider the computations of D on u′a and u′b. Both exit into q (by the selection
of a, b, q). So, the computation of D on uz = u′acz has the same suffix as the
computation of D on u′bcz. Hence, D either accepts both strings or rejects both
strings. In the latter case, M would also reject both strings, contradicting the
fact that one of them respects the tree order (the strings differ only at a and b,
which connect i′ and j′ to i and j differently). Hence, D must be accepting both
strings. In particular, it accepts u′acz = uz. ⊓⊔

5 A bigger picture

Our theorem is only a piece in the puzzle defined by the study of size complexity
in finite automata. An elegant theoretical framework for describing this puzzle
is due to Sakoda and Sipser [5]. Analogous to the framework built on other com-
putational models and resources (e.g., Turing machines and time), it is based
on the notions of a reduction and of a complexity class. However, a member of
a class in this framework is always a family of problems and each class contains
exactly every family that is solvable by a family of small automata of a corre-
sponding type. For example, 1d contains exactly every family of problems that

can be solved by some family of small 1dfas. Similarly, the classes 1n, 2d, and 2n

were defined for 1nfas, 2dfas, and 2nfas, respectively, while co1d, co1n, co2d,
and co2n were defined to consist of the corresponding families of complements.

Replacing 1dfas with sdfas, sp0fas, or snfas in the above definition, we can
naturally define the classes sd, sp0x, and sn, respectively, for sweeping and/or
LasVegas automata.1 Then, sd ⊆ sp0x ⊆ sn (trivially), Π ∈ 1n ∩ co1n ⊆ sp0x

(by Sect. 3), Π 6∈ sd (by Sect. 4), and therefore sd + sp0x (our theorem; note
that we have actually proved a stronger fact: sd + 1n ∩ co1n). At the same
time, we also have sp0x ⊆ sn ∩ cosn (trivially) and cosn + sn (by [3]), so that
sp0x + sn. Overall, the trivial chain sd ⊆ sp0x ⊆ sn is actually sd (sp0x (sn.

1 Note the “x” in “sp0x”. The name “sp0” is reserved for the more natural class where
the sp0fas must run in polynomial expected time. Similarly for 2p0x, rp0x, sp1x, etc.

cos∆ co2∆

co1p0

co1d

cosp0x

cosp1x

rp0x

corp0x

corp1x

corn

corp2x

sd

cosd

sp2x

sn

sp1x

sp0x

cosn

cosp2x

2d

co2d

2p2x

2n

2p1x

2p0x

co2p0x

co2p1x

co2n

co2p2x

1∆ r∆ s∆ 2∆

cor∆

rd
C

coC
d

p0x

∆

p1x

n

p2x

r s 21 ⊆ ⊆ ⊆

⊆
⊆

⊆
⊆

⊆

co1∆

1n

1d

1p0

co1n

cord

rp2x

rn

rp1x

Fig. 3. A map of classes: boxes mean equality; the axes show the easy inclusions; a
solid arrow A → B means A + B; a dashed arrow A → B means we conjecture A + B.

Figure 3 shows in more detail the relations between the several classes, includ-
ing those for Monte-Carlo automata (“p1” and “p2”—for one-sided and two-sided
error), self-verifying automata (“∆”—these capture the intersection of nondeter-
minism and co-nondeterminism; e.g., 1∆ = 1n ∩ co1n), and rotating automata
(“r”—these are sweeping automata capable of only left-to-right sweeps).

Most facts on this map are trivial, or easy, or modifications/consequences
of known results [1–6] and of our main theorem. Exceptions include the ability
of small nondeterministic and probabilistic rotating automata to simulate their
sweeping counterparts: rn = sn, rp0x = sp0x, rp1x = sp1x, and rp2x = sp2x. A
more detailed presentation will appear in the full version of this article.

Some open questions are already indicated on the map. We also do not know
what changes if our probabilistic automata run in polynomial expected time.

References

1. J. Hromkovič and G. Schnitger. On the power of Las Vegas for one-way commu-
nication complexity, OBDDs, and finite automata. Information and Computation,
169:284–296, 2001.

2. J. Hromkovič and G. Schnitger. On the power of Las Vegas II: two-way finite
automata. Theoretical Computer Science, 262(1–2):1–24, 2001.

3. C. A. Kapoutsis. Small sweeping 2NFAs are not closed under complement. In
Proceedings of the ICALP, pages 144–156, 2006.

4. I. I. Macarie and J. I. Seiferas. Strong equivalence of nondeterministic and random-
ized space-bounded computations. Manuscript, 1997.

5. W. J. Sakoda and M. Sipser. Nondeterminism and the size of two way finite au-
tomata. In Proceedings of the STOC, pages 275–286, 1978.

6. M. Sipser. Lower bounds on the size of sweeping automata. Journal of Computer

and System Sciences, 21(2):195–202, 1980.

Appendix: technical comments (not to appear in final version)

(1)Formally, suppose M = (qs, δ, qa), M = (qs, δ, qa), and the corresponding state sets,
Q and Q, are disjoint. Then M ′ := (q′s, δ

′, qa, qa) is defined over Q′ := Q ∪ Q ∪ {q′s}.
The fresh start state q′s is also the one entered whenever M ′ must ‘abort’. So, put

on any symbol a 6= ⊢, the state should sweep its way back to ⊢. To achieve this, we set

for all a 6= ⊢: δ
′(q′s, a) := U({q′s}),

where U(S) stands for the uniform distribution over the set S, for every S 6= ∅.
During an attempt to find an accepting computation of M , the automaton needs

to explore M ’s computation tree probabilistically. This is easily achieved by setting

for all q ∈ Q and all a: δ
′(q, a) := U

�
δ(q, a)

�
,

except for a small problem: if δ(q, a) is undefined, then so is δ′(q, a), contrary to our
intention that M ′ should sweep back to ⊢. The fix is simple: we extend the definition of
U(S) so as to return the distribution U({q′s}) whenever S is undefined. (Note that this
is also doing the correct thing whenever a = ⊣, exactly because then δ(q, a) is known
to be either undefined or {qa}.) The definition of δ′ on states from Q is similar.

Last, we focus on δ′(q′s,⊢). The intention is that M ′ should randomly select a set
between S1 := δ(qs,⊢) and S0 := δ(qs,⊢), and then a state from the chosen set. So,
δ′(q′s,⊢) is the distribution defined over S1 ∪ S0 by the following:

δ
′(q′s,⊢)(q) :=

(
1

2|S1|
if q ∈ S1

1
2|S0|

if q ∈ S0.

The only problem (again) is that δ(qs,⊢) or δ(qs,⊢) may be undefined. In those cases,
we just set S1 := {q′s} or S0 := {q′s}, respectively, and the definition becomes correct.

(2)Formally, let M = (qs, δ, qa) be defined over the state set Q. Then M ′ := (q′s, δ
′, q′a)

is defined over Q′ := Q ∪ {q′s, q
′
a}, where q′s and q′a are new states.

The computation of M ′ starts with q′s consuming the left end-marker and the first #
to start off the first simulation of M , on the first #-delimited infix of the input:

δ
′(q′s,⊢) := {q′s}, δ

′(q′s, #) := δ(qs,⊢) ∪ {q′a}.

Note the “∪{q′a}” part of the definition: along with

δ
′(q′a,⊣) := {q′a},

this makes sure that the input ⊢#⊣ will be accepted, as it should. These three statements
cover all definitions for the new states (on any other symbol, q′s and q′a just hang) and
for the end-markers (on ⊢ or ⊣, any other state just hangs).

Inside an infix, M ′ should behave identically to M . This is achieved by letting
δ′(q, a) := δ(q, a) for all q ∈ Q and a 6= #,⊢,⊣. When a = #, M ′ should start a new
simulation of M (on the next infix) iff the current one accepted. This is easily achieved
by forcing a new simulation iff the state would lead M to acceptance from ⊣:

δ
′(q, #) :=

(
δ(qs,⊢) ∪ {q′a} if δ(q,⊣) = {qa},

undefined if δ(q,⊣) undefined.

(Recall that δ(q,⊣) can be either {qa} or undefined.) Again, note the “∪{q′a}” part of
the definition, which handles the case where the current infix is the last one.

(3)Formally, let M = (qs, δ, qa) be defined over the alphabet Σ and state set Q. Then
M ′ := (q′s, δ

′, q′a) is defined over Σ ∪ {#} and Q′ := Q∪ {q′s, qi, qii, q
′
a}, where the extra

states are new. It is easy to verify that M ′ should accept iff the input has one of the
following flaws: (i) it does not begin with #, (ii) it does not end with #, or (iii) M

accepts some #-delimited infix of it.
State q′a is entered whenever a flaw is detected, and then simply consumes the rest

of the input to fall off ⊣, namely: δ′(q′a, a) = δ′(q′a, #) = δ′(q′a,⊣) := {q′a}, for all a ∈ Σ.

State q′s scans the input from left to right, releasing the nondeterministic threads
that attempt to verify a flaw. Flaws (i) and (ii) occur iff the tape contains a sequence
of the form ⊢a or ⊢⊣ or a⊣, for a ∈ Σ. These are detected by computations of the form

q
′
s

⊢
−→ qi

a,⊣
−→ q

′
a and q

′
s

a,⊢
−→ qii

⊣
−→ q

′
a,

so that the transitions out of qi and qii are as in: δ′(qi, a) = δ′(qi,⊣) = δ′(qii,⊣) := {q′a}.
Flaw (iii) is detected by starting M every time after a # has been read, and from the
states where qs would take it on reading ⊢. Overall, the definitions

δ
′(q′s,⊢) := {qi, qii} ∪ {q′s} δ

′(q′s, #) := δ(qs,⊢) ∪ {q′s} δ
′(q′s, a) := {qii} ∪ {q′s}

ensure that the scan will go through the entire input and that it will generate all
necessary flaw-detecting threads. For all other state-symbol pairs that involve the new
states, δ′ is undefined.

Finally, the behavior of M ′ inside the copy of M is the same as that of M , namely:
δ′(q, a) := δ(q, a), for all q ∈ Q and a ∈ Σ; except that the end-markers are now not
recognized: δ′(q,⊢) and δ′(q,⊣) stay undefined. Instead, the role of the right end-marker
is now played by the new symbol #:

δ
′(q, #) :=

(
{q′a} if δ(q,⊣) = {qa},

undefined if δ(q,⊣) undefined.

(4)The states are all ordered pairs of distinct nodes, Q := {(i, j) | i, j ∈ [n] and i 6= j},
the intention being that the two components represent the last nodes of the upper and
lower path, respectively. Then M :=

�
qs, δ, qa

�
, with qs = qa := (1, n). On ⊢, the start

state goes to every state representing a possibility for the two starting nodes:

δ
�
(1, n),⊢

�
:= {(i, j) ∈ Q | i < j}.

On ⊣, the final state is reached from exactly these same states, as these are the only
ones representing the fact that the paths finished in the same order as they started:

δ
�
(i, j),⊣

�
:=

(
(1, n) if i < j

undefined if i > j.
(1)

Finally, on a ∈ Σ′
n, a state goes to all states denoting a possible extension of the paths:

δ
�
(i, j), a

�
:=

(
{(i′, j′) ∈ Q | a has edges (i, i′), (j, j′)} if non-empty,

undefined otherwise.
(2)

Note that this set is at most a singleton whenever a ∈ Xn∪∆n, so that the computation
of the machine is deterministic after the middle symbol.

(5)Starting from M , we first complement the set of states that can lead to qa = (1, n)
when reading ⊣: instead of those where i < j, we use those where i > j. This is easily
achieved by replacing (1) with

δ
�
(i, j),⊣

�
:=

(
undefined if i < j,

qa if i > j.
(3)

Now M accepts all well-formed inputs that do not respect the tree order. Namely, it
accepts all inputs that do not have flaws (i) or (ii), but have flaw (iii).

Next, we further modify M so that it also accepts all inputs with flaw (ii). We
start by changing the accept state: instead of (1, n), state qa is now a fresh state; the
previous modification is repeated so that (3) refers to this fresh state, and we set

δ(qa, a) = δ(qa,⊣) := qa, for all a ∈ Γn ∪ Xn ∪ ∆n

so that, upon entered, qa simply consumes the rest of the input and falls off ⊣. Then,
we change (2) for the case when a ∈ ∆n:

δ
�
(i, j), a

�
:=

(
{(i′, j′) ∈ Q | a has edges (i, i′), (j, j′)} if non-empty,

qa otherwise.

(Recall that Q contains only pairs of distinct nodes.) Now M additionally accepts all
inputs that do not have flaw (i), but have flaw (ii).

Last, we make sure that inputs having flaw (i) are also accepted. To this end, we
introduce

�
n

2

�
new states, one for every unordered pair of distinct nodes:

Q
′ :=

�
{i, j} | i, j ∈ [n] and i 6= j},

and modify (2) again, this time for the case when a ∈ Γn and its roots are i and
j: previously, the automaton would have guessed the pair of the (left) roots of the
next symbol among the pairs of children of i and j; now, it also guesses among the
(unordered) pairs of children of i and the (unordered) pairs of children of j:

δ
�
(i, j), a

�
:= {(i′, j′) ∈ Q | a has edges (i, i′), (j, j′)}

∪
�
{i′, j′} ∈ Q

′ | a has edges (i, i′), (i, j′) or edges (j, i′), (j, j′)
	
.

This way, if the input has flaw (i), one of the new threads will detect it and immediately
move to acceptance: δ({i′, j′}, a) := {qa}, for all a ∈ Γn ∪ Xn with left roots i′ and j′.

Overall, after all modifications, the automaton accepts Π ′
n with 1 + 3

�
n

2

�
states.

(6)Suppose r is a value of lmapM (y, z). Then some q ∈ lviewsM (y) is such that
lmapM (y, z)(q) = r. Since q ∈ lviewsM (y), we know some c := lcompM,p(y) exits
into q. Since lmapM (y, z)(q) = r, we know d := lcompM,q(z) exits into r. Overall,
lcompM,p(yz) must be exactly the concatenation of c and d. So, it exits into the same
state as d, namely r. Therefore r ∈ lviewsM (yz).

(7)Suppose r ∈ lviewsM (yz). Then some c′ := lcompM,p(yz) exits into r. Let q

be the state of c′ right after crossing the y-z boundary. Clearly, (i) the computation
lcompM,p(y) exits into q, and (ii) the computation lcompM,q(z) exits into the same
state as c′, namely r. By (i), we know that q ∈ lviewsM (y). By (ii), we know that
lmapM (y, z)(q) = r. Therefore, r is a value of lmapM (y, z).

(8)Proof of Fact 2. Let r ∈ lviewsM (yz). Then some computation c := lcompM,p(yz)
exits into r. Let q be the state of c right after crossing the y-z boundary. Clearly,
lcompM,q(z) is a suffix of c. Hence, it also exits into r. So, r ∈ lviewsM (z).

(9)Suppose M accepts z and let (ct)1≤t<m be its traversals. We know no ct hangs.
Consider any odd t. Then ct is lcompM,p

�
y(xy)k

�
, for some p ∈ Q, and exits into

some state r. Easily, ct can be broken into subcomputations c′t := lcompM,p(y), which
exits into some state q, and c′′t := lcompM,q

�
(xy)k

�
, which exits into r. Now, by the

selection of q and r and the fact that πk is an identity function, we know

r = lmapM

�
y, (xy)k

�
(q) = π

k(q) = q.

In other words, ct exits z = y(xy)k into the same state into which c′t exits y. Intuitively,
in reading (xy)k to the right of y, the full computation ct achieves nothing more than
what is already achieved on y by its prefix c′t. Similarly, for any even t, the traversal
ct = rcompM,p

�
(yx)ky

�
can be broken into a prefix c′t := rcompM,p(y) and a suffix

c′′t := rcompM,q

�
(yx)k

�
, where the state q which c′t exits into is the same as the one

which ct exits into—exactly because ρk is an identity function.
Now, the sequence (c′t)1≤t<m is a sequence of traversals on y and the concatenation

of (qs), c
′
1, . . . , c

′
m−1, (qa) is exactly compM (y). Since it is accepting, M accepts y.

Conversely, any accepting computation of M on y can be converted into an accept-
ing computation of M on z—this time by pumping up (as opposed to pumping down)
and by using the computations that cause πk and ρk to be identities.

