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ABSTRACT

We examine the conjecture that no polynomial can upper bound the increase in the
number of states when a one-way nondeterministic finite automaton (1nfa) is converted
into an equivalent two-way deterministic finite automaton (2dfa). We study the prob-
lem of liveness, which admits 1nfas of polynomial size and is known to defy 2dfas of
polynomial size if and only if the conjecture is true. We focus on moles, a restricted
class of two-way nondeterministic automata that includes the 1nfas solving liveness.
We show that, in contrast, 2dfa moles cannot solve liveness, irrespective of their size.

Keywords: One-way nondeterministic finite automata, two-way deterministic finite au-
tomata, Sakoda-Sipser conjecture, 2D versus 2N, descriptional complexity

1. Introduction

It has been known for a long time [17] that the power of one-way deterministic finite
automata (1dfas) does not increase when they are enhanced with nondeterminism
and/or bidirectionality: be they one-way nondeterministic (1nfas), two-way deter-
ministic (2dfas), or even two-way nondeterministic (2nfas), finite automata still fail
against non-regular problems. However, this describes the situation only from the
point of view of computability.
From the complexity perspective, the extra capabilities do increase the power of

1dfas, in the sense that against the same problems the enhanced automata occasion-
ally manage to stay exponentially smaller [1, 14, 16]. This observation has initiated a
more general and systematic investigation: when we convert a machine of a particular

type into an equivalent machine of a different type, how much ‘larger’ need the new

machine be, in general? Even the apparently simple world of regular languages hosts
some most intriguing instances of this question.
The four types of automata mentioned above define a dozen different conversions

(Fig. 1). The famous one is that from 1nfas to 1dfas. We know that every n-state

1Full version of a submission presented at the 7th Workshop on Descriptional Complexity of

Formal Systems (Como, Italy, June 30 – July 2, 2005).
2This research was carried out while the author was at the Massachusetts Institute of Technology,

Computer Science and Artificial Intelligence Laboratory.
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Figure 1: The 12 conversions defined by nondeterminism and bidirectionality, and the known

exact trade-offs. Dashed arrows mark the two open problems.

1nfa can be simulated by a 1dfa that has at most 2n − 1 states [17]; we also know
that, for every n, there exist n-state 1nfas that have no equivalent 1dfa with fewer
than 2n − 1 states [14]; we therefore say that the trade-off from 1nfas to 1dfas is
exactly 2n − 1. Similarly, the exact value of the trade-off for each of the remaining
conversions is known [4, 11, 12]. Except two.

1.1. The Problem

It is surprising how little we know about the conversion from 2nfas to 2dfas. Not
only do we not know the exact value of the associated trade-off, but we cannot even
tell whether it is polynomial. The best known upper bound is exponential (by the
conversion down to 1dfas, Fig. 1c) and the best known lower bound is quadratic (by
the conversion from just unary 1nfas [6]).
When he first posed the question, Seiferas [19] conjectured that the trade-off is at

least 2n − 1 even when the 2nfa being converted is actually one-way, a 1nfa. Given
that a 1nfa can always be converted into a 2dfa via the 1nfa-to-1dfa conversion with
at most this cost, the conjecture amounts to saying that the best general method for
going from 1nfas to 2dfas is actually via 1dfas —a rather impressive claim. It is
this problem that we study. To sum up, the exact value of the trade-off from 1nfas
to 2dfas is conjectured to be 2n− 1, equal to its best known upper bound, and much
greater than the best known lower bound —the quadratic one mentioned above.
Already in [19], Seiferas proved the conjecture under the restriction that the 2dfas

are single-pass, in the sense that they halt as soon as they reach an end-marker.
Later, Sipser [20] did the same under the restriction that the 2dfas are sweeping,
meaning that they can switch direction only on end-markers —Leung [13] showed this
separation holds even on a binary alphabet, as opposed to the exponentially large one
of [20]. Recently, Hromkovic and Schnitger [9] established the conjecture for the case
when the 2dfas are oblivious, in the sense that they move identically on all inputs of
the same length —they also showed the lower bound remains exponential if we relax
the restriction to allow a sublinear (in the input length) number of distinct trajectories.
None of these theorems resolves the conjecture in its generality, as full 2dfas can be



Deterministic Moles Cannot Solve Liveness 217

exponentially more succinct than each of these restricted variants [19, 20, 2, 15].
Beyond limited bidirectionality, Chrobak [6] disproved the conjecture for the case of

unary automata, showing that the trade-off is at mostO(n2) —and also at leastΩ(n2),
the best known lower bound mentioned above. For the more general case, when the
unary automaton being converted is a 2nfa, Geffert, Mereghetti and Pighizzini [7]

have recently established the sub-exponential upper bound 2Θ(lg2 n) —their subse-
quent theorem [8], that the trade-off in the complementation of unary 2nfas is indeed
polynomial, suggests that a polynomial upper bound may actually be possible.
Finally, variations of the problem have appeared. If we demand that the 2dfa can

decide identically to the simulated 2nfa no matter what state and input position the

latter is started at (a requirement conceptually stronger than ordinary simulation, but

always satisfiable [5]), then the trade-off is at least 2lg
k n, for any k [10]. If we demand

that the 2dfa decides identically to the simulated 2nfa only on all polynomially

long inputs (a requirement conceptually weaker than ordinary simulation), then an
exponential lower bound would confirm the old belief that nondeterminism is essential
in logarithmic-space Turing machines (L6=NL) [3]. Last, if we allow the starting 2nfa

to be a Hennie machine (a more powerful device, but still not powerful enough to
solve non-regular problems), then converting to a 2dfa indeed costs exponentially,
but only because converting to a 2nfa already does [4].

1.2. Our Approach

Soon after Seiferas posed the problem, Sakoda and Sipser [18] invested it with a the-
oretical framework. One of their conclusions was that, in order to determine whether
the 1nfa-to-2dfa trade-off is polynomial or not, it is enough to study a particular
complete language, Bn: if there is a polynomial p and a 2dfa that recognizes Bn

with at most p(n) states, then the trade-off is polynomial; otherwise, it is not. More
intuitively and concisely, the trade-off is polynomial iff a small 2dfa can solve Bn.

Before we describe Bn, let us discuss the alphabet Σn over which it is defined. This
consists of all directed 2-column graphs with n nodes per column and only rightward
arrows (Fig. 2a). Note that Σn contains 2

n2

symbols. An m-long string over Σn is
naturally viewed as a directed (m+1)-column graph (Fig. 2b). In this graph, a node
is called live if it can be reached from the leftmost column. If at least one of the nodes
of the rightmost column is live, then the entire string is also called live; otherwise,
it is called dead. For simplicity, we often omit the direction of the arrows (Fig. 2c).
In this undirected representation, liveness amounts to the existence of a path which
connects the 0th to the mth column and has exactly m edges.
The language Bn consists of all live strings over Σn. It is the property of liveness.
One of the (two) reasons why this language is complete is that a 1nfa can recognize

it with polynomially many states. In fact, there exists a 1nfa Nn that does so with
only n states: At every step, each branch in Nn’s computation ‘remembers’ one of the
live nodes of the current column; on reading the next symbol, it finds what arrows
depart from that node, chooses one nondeterministically, and follows it. Our approach
is inspired by the way this particular solver of Bn works.
More specifically, note that, although at every stepNn reads the entire next symbol,
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Figure 2: (a) Three symbols in Σ5. (b) The string they define. (c) The same string, simplified

and indexed. (d) A 5-long 2-{1, 2, 4}-1 path, which is 2-disjoint on itself.

it actually uses only part of the information in it: each branch ‘sees’ only the arrows
leaving the node it is ‘focused on’ and ignores the rest of the symbol. Put another way,
in the ‘network of tunnels’ defined by the input, Nn behaves like a nondeterministic
robot that reads only the index of its current node and the tunnels departing from it.
Intuitively, Nn is an n-state one-way nondeterministic mole.
It is easy to turn this intuitive description into a formal and general criterion of

when a 2nfa is a ‘mole’ (see Section 2.2). Then, the question about the 1nfa-to-
2dfa conversion can be restricted to the world of moles: as before, Nn shows that
small 1nfa moles can solve Bn; can small 2dfa moles also succeed? Is it possible

that, after all, small 2dfas can solve liveness and the algorithm that achieves this is

nothing more than a clever graph exploration? We give a strong negative answer: no
deterministic mole can recognize Bn, for all n ≥ 5 and irrespective of size.
More generally, we view this study as a first step in a qualitatively new direction:

instead of studying 2dfas of restricted bidirectionality (single-pass, sweeping, oblivi-
ous) but unrestricted information (the automata use all current symbol information),
we examine 2dfas of unrestricted bidirectionality but of restricted information.

The next section formally defines the objects we work with and establishes some of
their most basic properties. In Section 3, we introduce some techniques for construct-
ing hard inputs for 2dfas. The proof of our claim is given in Section 4.

2. The Formal Framework

We write [n] for the set {1, 2, . . . , n}. For A and B sets, |A| denotes size; AªB denotes
symmetric difference. For f and g functions, f ◦ g and fg denote their composition,
returning g

(

f(x)
)

for every x, and fk denotes the k-fold composition of f with itself.
For Σ an alphabet, Σ∗ is the set of all finite strings over Σ. If w is a string, |w|

is its length. The ‘j-th boundary of w’ is the boundary between its jth and j + 1st
symbols, if 1 ≤ j < |w|; or its leftmost (resp., rightmost) boundary, if j = 0 (j = |w|).
(Fig. 3a.) The string of k ≥ 0 copies of w is denoted by wk.

2.1. Finite Automata

We assume the reader is familiar with the intuitive notions of the automata mentioned
in the introduction. Here, we define them formally. We start with 2dfas, which is
the most natural model, and present the other types of automata as variations.
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Figure 3: (a) A 6-long string, a computation that hits left, and one that hangs. (b) State p

of focus (5, l) is reading the middle symbol: if it moves right, the next focus will be (1, l)

or (3, l); if it moves left, the next focus will be (1, r) or (5, r).

A two-way deterministic finite automaton (2dfa) is a triple M = (s, δ, f), where
δ is the transition function, partially mapping Q × (Σ ∪ {`,a}) to Q × {l, r}, for
some set Q of states, some alphabet Σ, two end-marking symbols `,a /∈ Σ, and two
direction tags l and r, while s and f are the start and final states. We insist that δ
never violates an end-marker: on a pair of the form (·,`) (resp., of the form (·,a)), it
can never return a pair of the form (·, l) (of the form (·, r)).
Typically, an input w ∈ Σ∗ is presented to M surrounded by the end-markers and

the computation starts at s and on `. However, many other possibilities exist: for
any w, j, and p, the computation of M when started at state p on the j-th symbol of

the string w (note that w may or may not be end-marked) is the unique sequence

compM,p,j(w) :=
(

(qt, jt)
)

0≤t≤m

where (q0, j0) = (p, j); 0 ≤ m ≤ ∞; every pair is derived from its predecessor via δ
and w; every pair is within w (1 ≤ jt ≤ |w|), except possibly for the last one; and
the last pair is within w iff δ is undefined on the corresponding state and symbol.
We say (qt, jt) is the t-th point and m the length of this computation. If m = ∞,
the computation loops. Otherwise, it hits left into qm, if jm = 0; or hangs at qm, if
1 ≤ jm ≤ |w|; or hits right into qm, if jm = |w| + 1 (Fig. 3a). When j = 1 (resp.,
j = |w|) we get the left (right) computation of M from p on w:

lcompM,p(w) := compM,p,1(w) and rcompM,p(w) := compM,p,|w|(w).

We say M accepts w ∈ Σ∗ iff the computation lcompM,s(`wa) hangs at f . The
behavior of M on w is the partial mapping γw from Q × {l, r} to Q × {l, r} that
encodes all possible ‘entry-exit pairs’ as M computes on w: for every p ∈ Q,

γw(p, l) :=











(q, l) if lcompM,p(w) hits left into q,

(q, r) if lcompM,p(w) hits right into q,

undefined if lcompM,p(w) loops or hangs,

while the value γw(p, r) is defined analogously, with rcomp instead of lcomp.
If M is allowed more than one next move at each step, we say that it is non-

deterministic (a 2nfa). Formally, this means that δ totally maps Q × (Σ ∪ {`,a})
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to the powerset of Q × {l, r} and implies that C = compM,p,j(w) is now a set of
computations. Then, M accepts w ∈ Σ∗ iff some c ∈ lcompM,s(`wa) hangs at f .
If δ never returns pairs of the form (·, l), we say M is one-way (a 1dfa or 1nfa).

2.2. Moles

We now restrict our attention to the alphabet Σn and to 2nfas defined over it.
To refer to a symbol of Σn, we list its arrows in brackets: e. g., the rightmost

symbol in Fig. 2a is [12,14,25,44]. The symbol [] containing no arrows is called the
empty symbol. For a string x ∈ Σ∗n, we define the set of its nodes

Vx := {(i, j) | i ∈ [n] & 0 ≤ j ≤ |x|}

(Fig. 2c). The left-degree of a node (i, j) ∈ Vx is the number of its neighbors on the
column to its left (column j − 1), or 0 if j = 0; similarly for its right-degree. If x has
exactly |x| edges that form 1 live path, we say x is a path (Fig. 2d); for il, ir ∈ I ⊆ [n],
we say x is a il-I-ir path if this one live path connects the ilth leftmost node to the
irth rightmost node and visits only nodes with indices in I. If y ∈ Σ

∗
n, then x ∪ y is

the unique string of length max(|x|, |y|) that has all edges of x, all edges of y, and no
other edges. For k ≥ 0, we say y is k-disjoint on x if in x ∪ ([]ky) the edges from x
and from y meet at no node (Fig. 2d, Fig. 5c).
To define when a 2nfa over Σn is a mole, we need a way of describing the notion of

a state ‘focusing on’ some particular node of the current symbol. We define a focus to
be any pair (i, s) ∈ [n]× {l, r} of index and side. We write s for the side opposite s.
The (i, s)th node of a string x is the ith node of its leftmost (resp., rightmost) column,
if s = l (if s = r). The connected component of that node in the graph implied by x
is called the (i, s)th component of x. By x¹(i, s) we denote the unique string that has
the length of x, all edges of the (i, s)th component of x, and no other edges.
A 2nfa is a mole if each state p of it can be assigned a focus (ip, sp) so that,

whenever at p, the automaton behaves like a mole located on the (ip, sp)th node of
the current symbol and facing sp: (i) it can ‘see’ only the component of that node,
and (ii) it can ‘move’ only to nodes in that same component. More carefully:

Definition 1 Let M = (·, δ, ·) be a 2nfa over a set of states Q and the alphabet Σn.

An assignment of foci for M is any mapping ϕ : Q→ [n]× {l, r} such that, for any

states p, q ∈ Q, symbol a ∈ Σn, and side s ∈ {l, r}: whenever M is at p reading a,
(i) its next move depends only on the component containing the node which p is

focused on: δ(p, a) = δ(p, a¹ϕ(p) ),
(ii) its next state and position can only be such that the new focused node belongs

to the same connected component as the node which p is focused on:

δ(p, a) 3 (q, s) =⇒ (∃i ∈ [n])
(

ϕ(q) = (i, s) & a¹(i, s) = a¹ϕ(p)
)

.
We say ϕ(p) is the focus of p. If an assignment of foci for M exists, M is a mole.

To understand Condition (ii), consider as an example the case s = r (see also Fig. 3b):
If p on a moves right into q, then in the new position q must focus on the left column
(ϕ(q) = (·, s) = (·, l)), the one shared with the previous position. Moreover, if in
this column q focuses on the ith node (ϕ(q) = (i, l)), then in the previous position
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this node (now the ith node of the right column) must belong to the same connected
component as the node which p focused on (a¹(i, r) = a¹ϕ(p)).

We note that the 1nfa Nn from Section 1.2 clearly satisfies Definition 1.

2.3. Mazes

What makes moles so weak is of course the fact that, as they move through the
input, they can only observe the part of the graph directly connected to their current
location. The rest of the graph is not observable, even if it occupies the same symbols
as the observable part, and therefore does not affect the computation. Lemma 1 below
turns this intuition into a clean fact that can be used in proofs. Before stating it, we
need to talk about mazes and how moles compute on them and their compositions.

Intuitively, a maze is any string on which some nodes have been designated as
‘entry-exit gates’ for moles (Fig. 5d). More carefully, for x ∈ Σ∗, let V 0

x ⊆ Vx consist
of every node that has exactly one of its two degrees equal to 0 (and can thus serve
as a gate). A maze on x is any pair (x,X) where X ⊆ V 0

x .

The computation of a mole on a maze is the same object as the computation of
any 2nfa on any string, with the extra condition that it ‘starts by entering a gate’
and ‘if it exits a gate, it ends immediately’. Formally, let χ = (x,X) be a maze,
u = (i, j) ∈ X a gate with 0-degree side s, and p a state of a mole M with focus
ϕ(p) = (i, s). Then, the computation compM,p,u(χ) of M on χ from p and u (note
the overloading of operator comp) is a prefix of either compM,p,j+1(x) (if s = l) or
compM,p,j(x) (if s = r). The prefix ends the first time (if ever) it reaches a point
(qt, jt) where the focus ϕ(qt) = (it, st) is on a gate with 0-degree side st. Note that
x may contain nodes that have degree 0 on one of their two sides but are not gates;
the computation may visit the 0-degree side of these nodes without having to end.

To compose two mazes means to draw their strings on top of each other and then
discard all coinciding gates (Fig. 5e). More carefully, mazes χ = (x,X) and ψ = (y, Y )
are composable iff |x| = |y| (so that Vx = Vy = V ) and their graphs intersect only at
gates and only appropriately: every v ∈ V , either has both its degrees equal to 0 in at
least one of x, y; or is a gate in both mazes, with a different 0-degree side in each of
them. If χ, ψ are composable, then their composition is the pair χ◦ψ = (x∪y,XªY ).
It should be clear that the composition is also a maze.

Note that, by the conditions of composability, in each symbol of x ∪ y every non-
empty connected component comes entirely from exactly one of x or y. Hence, when
a mole reads a symbol, its next step can only depend on exactly one of x or y.
Generalizing this observation, we can prove the following.

Lemma 1 Let χ and ψ be as above, and ω = χ ◦ψ be their composition. Consider a

computation c = compM,p,u(χ ◦ψ) of a mole M from a gate u ∈ X ª Y that happens

to come from X. A unique list of computations c1, c2, . . . exists, such that:

• each ct is a computation of M on χ (resp., on ψ) iff t is odd (even);
• c1 starts from p and u; each ct+1 starts from the state and gate where ct ends;
• if we remove the first point of each ct after c1 and then concatenate, we get c.
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Put another way, if we can decompose a maze ω into two mazes χ and ψ, then any
computation c of a mole on ω can be uniquely decomposed into ‘subcomputations’
c1, c2, . . . that alternate between χ and ψ. We say these computations are the frag-
ments of c with respect to the decomposition ω = χ ◦ψ. Clearly, either all fragments
are finite, and then their list is infinite iff c is; or not all fragments are finite, in which
case their list is finite and the only infinite fragment is the last one. Note that a
different decomposition of ω leads to a different decomposition of c.

3. Hard Inputs

In Section 4 we will fix an arbitrary deterministic mole and prove that it fails against
liveness. To this end, we will construct inputs on which the automaton decides in-
correctly. Those fatally hard strings will be extremely long. However, we will build
them out of other, much shorter (but still very long) strings, which already strain the
ability of the automaton to process the information on its tape. In this section we
describe those shorter strings. We start with inputs which can be built for any 2dfa

and later (Section 3.4) focus on inputs that can be built particularly for deterministic
moles. So, fix M to be an arbitrary 2dfa over state set Q and alphabet Σ.

3.1. Dilemmas

Consider a property T ⊆ Σ∗ of the strings over Σ, and assume that it is infinitely
extensible to the right, in the sense that every string that has the property can be right-
extended into a strictly longer one that also has it: (∀y ∈ T )(∃z)(|z| 6= 0 & yz ∈ T ).

For any y ∈ T , we can perform the following experiment. For each p ∈ Q, we
examine the computation lcompM,p(y) and check if it hits right : if it does, we set a
bit ay,p to 1; otherwise, the computation hangs, loops, or hits left, and ay,p is set to 0.
In the end, we build the bit-vector ay = (ay,p)p∈Q. This is our outcome.

How does the outcome change if we right-extend y into some yz ∈ T? How do ay
and ayz compare? For every p, clearly lcompM,p(y) is a prefix of lcompM,p(yz). So,
if the first computation hits left, loops, or hangs, so does the second one; but if the
first one hits right, there is no guarantee what the second computation does. Hence,
all bits in ay that are 0 keep the same value in ayz; but a bit which is 1 may turn
into a 0. Overall, if “≥” is the natural component-wise order, we have the following.

Fact 1 For all y, yz ∈ T : ay ≥ ayz.

What happens to the outcome of the experiment if we further right-extend y into
yzz′ ∈ T? And then into yzz′z′′ ∈ T? While y is infinitely right-extensible inside T ,
the outcome may decrease only finitely many times. Obviously then, from some point
on it must stop changing. When this happens, the extension of y that we have arrived
at is a very useful tool. The following definition and lemma talk about it formally.
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Figure 4: Computations of a 2dfa under dilemmas, generic strings, and traps (see text);

each gray region indicates the first or the last crossing of some boundary.

Definition 2 Let T ⊆ Σ∗. An lr-dilemma over T is any y ∈ T such that 3

(∀yz ∈ T )(∀p ∈ Q)
[

lcompM,p(y) hits right ⇐⇒ lcompM,p(yz) hits right
]

.

An rl-dilemma over T can be defined symmetrically, on left-extensions and rcomp.

Lemma 2 Suppose T ⊆ Σ∗. If T is non-empty and infinitely extensible to the right

(resp., left), then there exist lr-dilemmas over T (rl-dilemmas over T ).

In [19], dilemmas are called “blocking strings”. We now explain these names.

Fact 2 Assume x ∈ Σ∗, y is an lr-dilemma over T , yz ∈ T , and that some compu-

tation c = lcompM,p(xyz) crosses the xy-z boundary. After the first such crossing,

c never visits x again and it eventually hits right.

Proof. Consider the first time c crosses the xy-z boundary (Fig. 4a). Let r be the
state resulting from this crossing, and q the state resulting from the last crossing of
the x-yz boundary before that. Then, the computation between these two crossings
is lcompM,q(y) and hits right (into r). Since y is an lr-dilemma over T and z does
not spoil the property (yz ∈ T ), we know that lcompM,q(yz) also hits right. But this
computation is a suffix of c. So, c also hits right. Moreover, after crossing the xy-z
boundary, it never visits x again. 2

In total, once the computation crosses the xy-z boundary, it is restricted inside
yz and forced to eventually hit right. Put another way, when M enters y, it faces a
‘dilemma’: either it will stay forever inside xy, never crossing the xy-z boundary; or
it will cross it, but then also hit right without visiting x again. In effect, y ‘blocks’
M from returning to x after having seen z —and ‘locks’ it into hitting right. In yet
other words, y makes sure that every left computation of M on xyz that hits left,
hangs, or loops does so inside xy, before making it to z.

3Note that the displayed condition is the same as (∀yz ∈ T )(ay = ayz); but rather more informa-
tive. Also note that the “⇐=” part of the equivalence there is given, by Fact 1. What is important
is the “=⇒” part: on every extension in T , the computation will keep hitting right.
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3.2. Generic Strings

Consider again a property T ⊆ Σ∗ which is infinitely extensible to the right. For
each y ∈ T , we can define the set of states that can be produced on the rightmost
boundary of y by left computations:

Qlr(y) :=
{

q ∈ Q | (∃p ∈ Q)
(

lcompM,p(y) hits right into q
)}

.

How does this set change if we extend y into yz ∈ T? How does it compare to Qlr(yz)?
Consider the function αy,z, defined as follows (Fig. 4b): for each q ∈ Qlr(y), the

computation compM,q,|y|+1(yz) is examined; if it hits right into some state r, then
αy,z(q) := r; otherwise, it hits left, loops, or hangs, and αy,z(q) is left undefined.
Note that the values of αy,z are all in Qlr(yz): If r is such a value, then r = αy,z(q)

for some q ∈ Qlr(y). Hence, the computation compM,q,|y|+1(yz) hits right into r and
some computation lcompM,p(y) hits right into q. Combining the two, we get the
computation lcompM,p(yz), that hits right into r. Hence, r ∈ Qlr(yz).
Moreover, the values of αy,z cover Qlr(yz): If r ∈ Qlr(yz), then some computation

c = lcompM,p(yz) hits right into r. We know c crosses the y-z boundary, so let q be
the state produced by the first such crossing. The computation before this crossing is
lcompM,p(y) and hits right into q, so q ∈ Qlr(y). The computation after the crossing
is compM,q,|y|+1(yz) and, as a suffix of c, hits right into r. Therefore, αy,z(q) = r.
Overall, αy,z is a partial surjection from Qlr(y) to Qlr(yz). This clearly implies

its domain has enough elements to cover the range, so we know |Qlr(y)| ≥ |Qlr(yz)|.
The next fact summarizes our findings. Analogously to Qlr(y), the set Qrl(z)

consists of all states that can be produced on the leftmost boundary of z by right
computations. Clearly, the symmetric arguments apply. Note that these involve a
partial surjection βy,z from Qrl(z) to Qrl(yz), defined analogously to αy,z.

Fact 3 For y, yz ∈ T , the function αy,z partially surjects Qlr(y) to Qlr(yz); hence
|Qlr(y)| ≥ |Qlr(yz)|. Similarly, in the opposite direction, if yz, z ∈ T then the

function βy,z partially surjects Qrl(z) to Qrl(yz); hence |Qrl(yz)| ≤ |Qrl(z)|.

As in Section 3.1, we now ask what happens to the size of the set Qlr(y) as we
keep right-extending y inside T . Although y is infinitely right-extensible, the size of
the set can decrease only finitely many times. Hence, from some point on it must
stop changing. When this happens, we have arrived at another useful tool.

Definition 3 Let T ⊆ Σ∗. A string y is lr-generic over T if y ∈ T and 4

(∀yz ∈ T )
[

|Qlr(y)| = |Qlr(yz)|
]

.

An rl-generic string over T can be defined symmetrically, on left-extensions and Qrl.

A string that is simultaneously lr-generic and rl-generic over T is called generic.

Lemma 3 Suppose T ⊆ Σ∗. If T is non-empty and infinitely extensible to the right

(resp., left), then there exist lr-generic strings over T (rl-generic strings over T ).
If yl is lr-generic and yr is rl-generic, then every string ylzyr ∈ T is generic.

4Note that the “≥” part of the displayed equality |Qlr(y)| = |Qlr(yz)| is given, by Fact 3. What
is important is the “≤” part: on every extension in T , the set will manage to stay as large.
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Proof. For the last claim, we simply note that every right-extension of an lr-generic
string inside T is also lr-generic, and the same is true in the other direction. 2

Generic strings were introduced in [20], for sweeping automata. As we next show,
they strengthen dilemmas. The proof is immediate after the following alternative
characterizations of the two classes of strings, in terms of the functions αy,z and βy,z.

Lemma 4 Suppose y ∈ T ⊆ Σ∗. Then y is an lr-dilemma over T iff for all yz ∈ T
the function αy,z is total. Similarly for any z ∈ T and for rl and βy,z.

Proof. For the forward direction, assume y is an lr-dilemma over T . Consider any
yz ∈ T and any q ∈ Qlr(y). (Fig. 4b.) Let c = lcompM,p(y) be a computation
that hits right into q. We know c is a prefix of d = lcompM,p(yz). So, d crosses
the y-z boundary (the first such crossing is into q), and hence hits right (by Fact 2).
Therefore, its suffix compM,q,|y|+1(yz) hits right, too. This implies αy,z(q) is defined.
For the reverse direction, fix y ∈ T and suppose αy,z is total for all yz ∈ T .

Consider any such yz, any p ∈ Q, and assume c = lcompM,p(y) hits right into some
state q. (Fig. 4b.) Then q ∈ Qlr(y). Therefore, αy,z(q) is defined. This implies
c′ = compM,q,|y|+1(yz) hits right. Combining c and c′, we get the computation
d = lcompM,p(yz). As c

′ is a suffix of d, we know d hits right as well. 2

Lemma 5 Suppose y ∈ T ⊆ Σ∗. Then y is lr-generic over T iff for all yz ∈ T the

function αy,z is total and bijective. Similarly for any z ∈ T and for rl and βy,z.

Proof. For the forward direction, say y is lr-generic and pick any yz ∈ T . We already
know αy,z is a partial surjection from Qlr(y) to Qlr(yz). Since y is lr-generic, we
also know the two sets have the same size. So, αy,z must be total and injective. 2

Intuitively, a dilemma guarantees that the computations that manage to survive
through it will also survive through every extension that preserves the property. A
generic string guarantees that, in addition, the computations will keep exiting each
extension into different states.

Lemma 6 Let T ⊆ Σ∗. Over T , every lr-generic string is an lr-dilemma and every

lr-dilemma can be right-extended into an lr-generic string. Similarly for rl.

Proof. Lemmata 4 and 5 prove the first claim. For the second claim, we simply note
that every string in T can be right-extended into lr-generic strings. 2

Before moving on, we prove a last fact about the operators Qlr and Qrl.

Fact 4 For all y, z ∈ T : Qlr(yz) ⊆ Qlr(z) and Qrl(y) ⊇ Qrl(yz).

Proof. We prove the first containment. Consider any r ∈ Qlr(yz) and any computa-
tion d = lcompM,p(yz) that hits right into r. (Fig. 4b.) We know d crosses the y-z
boundary. Let q′ be the state produced by the last such crossing. The computation
lcompM,q′(z) is a suffix of d, and therefore also hits right into r. So, r ∈ Qlr(z). 2
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3.3. Traps

Consider a property T ⊆ Σ∗ which is infinitely extensible in either direction and
closed under concatenation. For this section, fix ϑ as a generic string over T , and let

L := Qrl(ϑ), R := Qlr(ϑ),

denote the sets of states producible on the leftmost and rightmost boundary of ϑ by
traversing it. Note that, by Lemma 6, we know ϑ is both an lr- and an rl-dilemma.
A trap (on ϑ) is any string of the form ϑxϑ, where x ∈ T is the infix.
By Lemma 3 and the closure of T under concatenation, traps are still generic

strings. However, they further restrictM ’s freedom: By Lemma 5, the function αϑ,xϑ

is a total bijection from Qlr(ϑ) = R to Qlr(ϑxϑ). Since Qlr(ϑxϑ) ⊆ R (by Fact 4),
αϑ,xϑ is a total bijection from R to a subset of R. Clearly, this is possible only if this
subset is R itself. So, αϑ,xϑ simply permutes R. Similarly, βϑx,ϑ permutes L, and we
proved the next fact. Note that, with ϑ fixed, we can refer to the two permutations
associated with ϑxϑ only through the infix x, as αx and βx.

Fact 5 For all x ∈ T : αx permutes R and βx permutes L.

Intuitively, in each direction, the computations that manage to cross the first copy
of ϑ eventually cross the entire trap; but, after this first copy, they collectively do
nothing more than simply permute the set of states that they have already produced.
As we now show, the two permutations fully describe the behavior5 ofM on the trap.

Fact 6 For all infixes x, y ∈ T : (αx, βx) = (αy, βy) =⇒ γϑxϑ = γϑyϑ.

Proof. Suppose (αx, βx) = (αy, βy) and consider any p ∈ Q. We show γϑxϑ and
γϑyϑ agree on (p, l) —the proof for (p, r) is similar. We examine the computations
cx := lcompM,p(ϑxϑ) and cy := lcompM,p(ϑyϑ). Clearly, these behave identically
up to the first crossing of the ‘critical’ boundary between ϑ and xϑ or yϑ. If one of
them hits left, loops, or hangs, it does so inside ϑ (since ϑ is an lr-dilemma) without
crossing the critical boundary; so, the other computation behaves identically, thus
γϑxϑ(p, l) = γϑyϑ(p, l). If one of them hits right, then it crosses the critical boundary
into some state q and so does the other one; but then they both hit right, into the
same state r := αx(q) = αy(q), so γϑxϑ(p, l) = γϑyϑ(p, l) = (r, r). 2

We call (αx, βx) the inner-behavior ofM on the trap ϑxϑ, to distinguish it from γϑxϑ.
An interesting case arises when ϑ is an infix of the infix itself. Then the inner-

behavior of M on the trap can be deduced from its inner-behavior on the traps that
are induced by the other two pieces of the infix.

Fact 7 Suppose x, y ∈ T and z = xϑy. Then (αz, βz) = (αx ◦ αy, βy ◦ βx).

Proof. To show that αz = αx◦αy (the argument for βz = βy◦βx is similar), we pick an
arbitrary q ∈ R and show that αz(q) = αy

(

αx(q)
)

. (Fig. 4c.) We know q is produced

5Recall the definition of behavior, from Section 2.1 (p. 219).
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by some right-hitting left computation on ϑ, say c1 := lcompM,p(ϑ) for some state
p. Since ϑ is an lr-dilemma over T and ϑzϑ ∈ T , we know c := lcompM,p(ϑzϑ)
also hits right, into some state s. Therefore, αz(q) = s. Before hitting right, c
surely crosses the ϑxϑ-yϑ boundary; let r be the state produced by the first such
crossing. Clearly, the computation c2 := compM,q,|ϑ|+1(ϑxϑ) hits right into r, and
hence αx(q) = r. Moreover, the suffix of c after the first crossing of the ϑxϑ-yϑ
boundary is c3 := compM,r,|ϑxϑ|+1(ϑxϑyϑ) and obviously hits right into s. However,
since ϑ is an lr-dilemma over T and ϑyϑ ∈ T , we know c3 never visits the prefix ϑx.
Hence, it can also be written as c3 = compM,r,|ϑ|+1(ϑyϑ). Since it hits right into s,

we conclude that αy(r) = s. Overall, αz(q) = s = αy(r) = αy

(

αx(q)
)

. 2

An obvious generalization holds when the infix contains multiple copies of ϑ. In
a particular case of interest, the infix consists of several ϑ-separated copies of some
x ∈ T . Specifically, for any k ≥ 1, we define x(k) := x(ϑx)k−1 and prove the following.

Fact 8 For any x ∈ T and any k ≥ 1: (αx(k) , βx(k)) =
(

(αx)
k, (βx)

k
)

.

3.4. Hard Inputs to Deterministic Moles

We now assume that the 2dfa M of the previous sections is defined over Σn and that
it is actually a mole. We will design inputs on which M misses a significant amount
of information. All these inputs are going to be paths (cf. Section 2.2).

We fix some I ⊆ [n] and i ∈ I, and consider the set Π ⊆ Σ∗n of all i-I-i paths.
Clearly, Π is non-empty, infinitely extensible in both directions, and closed under
concatenation. Hence, by Lemma 3, generic strings over Π exist. We fix ϑ to be one,
and let κ := |ϑ|. We also set L := Qrl(ϑ), R := Qlr(ϑ), and let µ := lcm(|L|!, |R|!)
be the least common multiple of the sizes of the corresponding permutation groups.

For every length l ≥ 1, we consider all traps (on ϑ) with infixes of length l and
collect into a set Ωl all inner-behaviors that M exhibits on these traps:

Ωl := {(αx, βx) | x is an i-I-i path of length l}.

As shown in the next fact, every inner-behavior that can be induced by an l-long infix
can also be induced by an infix of length l+ 2µ(l+ κ). The subsequent fact explains
that sometimes the converse is also true.

Fact 9 For every l ≥ 1: Ωl ⊆ Ωl+2µ(l+κ).

Proof. Pick any behavior (α, β) ∈ Ωl. We know that some l-long infix x ∈ Π induces
this behavior, namely (α, β) = (αx, βx). Consider the path x

(2µ+1) = x(µ)ϑxϑx(µ).
This is also in Π and of length (2µ+ 1)l + 2µκ = l + 2µ(l + κ). Moreover, by Fact 8
and the selection of µ, we know that this path induces the behavior (α2µ+1

x , β2µ+1
x ) =

(

(αx)
2µαx, βx(βx)

2µ
)

= (αx, βx) = (α, β). Hence, (α, β) ∈ Ωl+2µ(l+κ). 2

Fact 10 There exist l ≥ 1 such that Ωl = Ωl+2µ(l+κ).
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Proof. As the constant (|L|!) × (|R|!) upper bounds the sizes of all sets Ω1, Ω2, . . . ,
we know at least one of them is of maximum size. Pick l so that Ωl is such. Then
both Ωl ⊆ Ωl+2µ(l+κ) (by Fact 9) and |Ωl| ≥ |Ωl+2µ(l+κ)| (by the selection of l).
Necessarily then, the two sets must be equal. 2

Intuitively, for the two lengths l and l + 2µ(l + κ), this last fact says that between
two copies of ϑ, every i-I-i path of either length can be replaced by some path of the

other length without M noticing the trick (recall Fact 6).

4. The Proof

We now fix an arbitrary deterministic mole M = (s, δ, f) over Σ5 and prove that it
fails to solve liveness. To this end, in Sections 4.2 and 4.3 we construct a maze that
‘confuses’ M . Our most important building blocks are the paths of the next section.

4.1. Three Important Paths

In this section we fix n := 5, i := 2, I := {1, 2}. For these n, i, and I, we fix Π, ϑ, κ
and µ as in Section 3.4, let λ be a length as in Fact 10, and set Λ := 2µ(λ+ κ).

Lemma 7 There exist paths π, %, σ ∈ Π such that

• M cannot distinguish among them: γπ = γ% = γσ.
• % is Λ-disjoint on itself, and π is Λ-disjoint on σ.
• π is Λ-shorter than %, and % is Λ-shorter than σ: |%| − |π| = |σ| − |%| = Λ.
• π is non-empty but short: 0 < |π| ≤ Λ.

Proof. Each of π, %, σ is a trap on ϑ. We carefully select the infixes x, y, z ∈ Π.
We set % := ϑyϑ, where y has length λ + Λ and guarantees % is Λ-disjoint (cf.

Section 2.2, p. 220) on itself. Constructing y is straightforward (Fig. 5a): We pick
paths

η := any 2-I-1 path of length λ,
ϑ′ := the 1-I-1 path of length κ that is 0-disjoint on ϑ,
ι := any 1-I-1 path of length Λ− (2κ+ λ), and
η′ := the 1-I-2 path of length λ that is 0-disjoint on η.

Then, setting y := ηϑ′ιϑ′η′ we see this is indeed a 2-I-2 path of length λ + Λ; and
shifting % = ϑyϑ = ϑηϑ′ιϑ′η′ϑ on a copy of itself by Λ = |ϑηϑ′ι| causes only its prefix
ϑηϑ′ to overlap with the ‘mirroring’ suffix ϑ′η′ϑ, so that no vertex is shared (Fig. 5b).
We set π := ϑxϑ, where x has length λ and guarantees π is indistinguishable from %.

Selecting x is easy: Since y is of length λ + Λ, the inner-behavior (αy, βy) of M on
% is in Ωλ+Λ, and therefore in Ωλ. Hence, there exist λ-long paths that induce this
inner-behavior. Picking x to be such, we know (αx, βx) = (αy, βy) and hence γπ = γ%.
We set σ := ϑzϑ, where z has length λ + 2Λ and guarantees that π is Λ-disjoint

on σ and that σ is indistinguishable from π. Note that, given the lengths of x and z,
the disjointness condition amounts to saying that π and σ should not intersect when
‘centered’ on top of each other. The construction of z is trickier.
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We start by selecting a path y′ that is as long as y (namely, of length λ+ Λ) and
does not intersect with π when the two paths are ‘centered’ on top of each other
(namely, ϑxϑ is (Λ2 − κ)-disjoint on y

′). This selection is trivial: We simply take the
unique 1-I-1 path that is as long as π (namely, of length λ+2κ) and 0-disjoint on it,
then extend it by Λ

2 − κ in both directions into any 2-I-2 path.
Now, the inner-behavior (αy′ , βy′) of M on ϑy′ϑ is in Ωλ+Λ, and hence in Ωλ. So,

we can find a λ-long x′ ∈ Π that induces the same behavior, (αx′ , βx′) = (αy′ , βy′).
We set z := (x′)(µ)ϑy′ϑ(x′)(µ−1)ϑx, the path containing 2µ+1 ϑ-separated paths, all
copies of x′ except the middle and rightmost ones, which copy y′ and x.
The length of z is indeed λ+ 2Λ. Moreover, σ = ϑzϑ symmetrically extends y′ by

|ϑ(x′)(µ)ϑ| = |ϑ(x′)(µ−1)ϑxϑ| = Λ
2 + κ, which in turn symmetrically out-lengths π by

Λ
2 − κ. Overall, σ symmetrically out-lengths π by Λ without intersecting it. In other
words, π is Λ-disjoint on σ. Finally, the inner-behavior (αz, βz) of M on σ is

(

(αx′)
µαy′(αx′)

µ−1αx, βx(βx′)
µ−1βy′(βx′)

µ
)

=
(

(αx′)
2µαx, βx(βx′)

2µ
)

= (αx, βx),

where we used Facts 7 and 8, and the selection of µ. Hence, γσ = γπ. 2

4.2. A Maze of Questions

We start (Fig. 5f) with the two strings τ1 := []3Λ%[] and

τ2 := [33]
Λ−1

[32][22]
Λ−1

[23][33]
Λ−1

[32,34][45][55]
Λ−1

[54][44]
|π|−1

[23,43],

which are equally long and each is Λ-disjoint on itself (recall the selection of %). Also,
in τ := τ1 ∪ τ2 their graphs intersect only at the endpoints of %, so τ is Λ-disjoint on
itself, too. This implies τ i is also Λ-disjoint on itself, for all i ≥ 1 (Fig. 5g).
Let T := {τ i | i ≥ 1} be the set of all powers of τ . Select τl and τr as lr- and

rl-dilemmas over T . Fix m = 2|Q| + 1. The live string z = τlτ
mτr is also a power

of τ and in it we think of the m ‘middle’ copies of τ as special. On this string, we
consider the natural maze ω = (z, Z) = (z, {u, v}), where u = (3, 0) and v = (3, |z|).
Consider the |Q| computations of the form6 compM,p,ε(ω) that we get as we vary

p ∈ Q and pick ε = u when p focuses on the left (ϕ(p) = (·, l)), and ε = v otherwise.
Some of them are infinite (i.e., they loop) or finite but non-crossing (i.e., they hang;
or start and end on the same gate). We disregard them and keep only those that are
crossing (i.e., they start and end in different gates). Let k ≤ |Q| be their number.
Fix d to be any of these k computations and fix 1 ≤ i ≤ m. We know d ‘visits’

the ith special copy of τ , and we want to discuss its behavior there. In particular, we
want to consider the parity bi,d ∈ {0, 1} of the number of times that d ‘fully crosses’
the copy of % in the ith special copy of τ . A careful definition of bi,d follows.
If we ‘rip off’ % from the ith special copy of τ and then add the two endpoints ui,

vi of the path as new gates, we construct a new maze,

χi :=
(

(τlτ
i−1) τ2 (τ

m−iτr), {u, v, ui, vi}
)

.

6Recall the overloading of operator comp that we defined in Section 2.3 (p. 221).



230 C. A. KAPOUTSIS

(7)

u u′ vlu′l v′rvr v′vul v′l ur u′r

(6)

πσ

(4)

(3)

(2)

%

u u′ v′v

(9)

Λ− 1 Λ− 1 Λ− 1 Λ− 1 |π| − 1

(5)

%%

(1)

η ι ϑη′

ϑ ϑ′η ι

ϑ′ϑ′ϑ

(B)

Λ

κ

ϑ′

ϑ η′
η ι

λ Λ− (2κ + λ)

(A)

(8)

π

σ

Figure 5: (a) in A: picking η, ι; then the mirrors ϑ′, η′. (b) in B: the path % and how it is

Λ-disjoint on itself. (c) in each of 1, 2, 3: a 29-long string, 6-disjoint on itself; see 5. (d) in

each of 1, 2, 3: a maze; gates marked with circles. (e) in 3: the composition of the mazes of 1,

2. (f) in 1, 2, 3: examples of τ2, τ1, τ , respectively, for a schematic case Λ = 6, |π| = 4, and a

schematic %. (g) in 4: a schematic of τ 4; in 5: a snippet of the union of a τ i with a Λ-shifted

copy of itself. (h) in 7: a schematic of χ′, focusing on the snippets around the leftmost, i1th

special, i2th special, and rightmost pairs of copies of τ . (i) in 8: a schematic of ψ′, for the

same snippets. (j) in 9: a schematic of ω′ = χ′ ◦ ψ′, for the same snippets; in 5, 6: a better

view of how σ, π connect the two disjoint graphs of x′ when they replace two copies of %.
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By the ‘complementary’ operation, where we rip off everything except the particular
copy of %, we can construct the ‘complementary’ maze,

ψi :=
(

([]|τlτ
i−1|) []3Λ%[] ([]|τ

m−iτr|), {ui, vi}
)

.

Clearly, ω = χi ◦ψi, and d is a finite computation on this composition. By Lemma 1,
we can break d into its finitely many, finite fragments d1, d2, . . . , dν . We know every
even(-indexed) fragment is a computation on ψi; we call it crossing if its starting and
ending gates differ. The bit bi,d records the parity of the number of such fragments,
namely: bi,d = 0 ⇐⇒ d exhibits an even number of crossing even fragments.
Intuitively, as the mole develops a crossing computation on ω, each special copy

of τ asks: “odd or even?” The mole answers with the parity of the number of times
that it fully crosses % in that copy. The bits bi,d record these answers.
Organizing these m × k bits into m k-long vectors bi = (bi,d)d, for i = 1, . . . ,m,

we see that there are more vectors than values for them: 2k ≤ 2|Q| < 2|Q| + 1 = m.
Hence, bi1 = bi2 for some 1 ≤ i1 < i2 ≤ m. Which means that, in each crossing finite
computation, the answer to the i1th question equals the answer to the i2th one.

4.3. A More Complex Maze

We now return to ω = (z, {u, v}). We remove % from the i1th and i2th special copies
of τ , and name the four natural new gates ul, vl (endpoints of % in the i1th copy) and
ur, vr (endpoints of % in the i2th copy) to get the new maze

χ := (x,X) =
(

(τlτ
i1−1) τ2 (τ

i2−i1−1) τ2 (τ
m−i2τr), {u, v, ul, vl, ur, vr}

)

.

As previously, the ‘complementary’ maze (remove everything except the two %’s) is

ψ := (y, Y ) =
(

(· · · ) []3Λ%[] (· · · ) []3Λ%[] (· · · ), {ul, vl, ur, vr}
)

,

where ellipses stand for appropriately many []s (namely: |τlτ
i1−1|, |τ i2−i1−1|, and

|τm−i2τr| []s, respectively). Obviously, ω = χ ◦ ψ. In this section, we will construct
a maze ω′ = χ′ ◦ ψ′, where χ′ and ψ′ are going to be ‘more complex’ versions of χ
and ψ, respectively.
We start by noting that x is Λ-disjoint on itself (because z is). So, in the union

x′ := x ∪ ([]Λx) of x with a Λ-shifted copy of itself, the two graphs do not intersect.
(Fig. 5h.) So, letting χ′ := (x′, X ′), where X ′ := X ∪ {u′, v′, u′l, v

′
l, u

′
r, v

′
r} contains

all gates of χ plus their counterparts in the shifted copy, we know every computation
on χ′ visits and depends on exactly one of the two disjoint graphs.
Similarly, y is Λ-disjoint on itself (because % is), the union y ∪ ([]Λy) contains two

pairs of disjoint copies of %, and Y ′ := Y ∪ {u′l, v
′
l, u

′
r, v

′
r} contains their endpoints.

Viewing each pair of copies of % as a copy of %∪ ([]Λ%), we can replace it with a copy
of %′ := σ ∪ ([]Λπ). If y′ is the new sting, we set ψ′ := (y′, Y ′). (Fig. 5i.) Crucially,
this substitution preserved (i) the lengths of strings: |y′| = |y ∪ ([]Λy)|, because

|%′| = |σ ∪ ([]Λπ)| = |σ| = 2κ+ λ+ 2Λ = |%|+ Λ = |% ∪ ([]Λ%)|;

(ii) the number and disjointness of paths: since π is Λ-disjoint on σ, we know %′ also
contains two disjoint paths; and (iii) the set of endpoints of paths: e. g., on the copy of
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%′ on the left, σ and π have endpoints ul, v
′
l and u

′
l, vl. Note that every computation

on ψ′ visits and depends on exactly one of the paths.

Clearly, the graphs of x′ and y′ intersect only at the gates in Y ′. So, χ′, ψ′ are
composable, into ω′ = (z′, Z ′) := χ′ ◦ ψ′ = (x′ ∪ y′, {u, v, u′, v′}). (Fig. 5j.) Note that
u, u′ are on the far left; v, v′ are on the far right; and the four paths of y′ connect the
two graphs of x′: the mole can switch graphs only if it fully crosses one of the paths.

4.4. The Hidden Gate

Consider the dead input z′[] and the computation c′ = lcompM,s(`z
′[]a) on it.

From now on, our goal is to prove that c′ never visits []. Equivalently, that M never
visits the 0-degree side of the rightmost node v′ of z′. Intuitively, that the maze

implied by z′ hides v′ from the mole. This will immediately imply the failure of M :
on the live input z′[33] the mole will compute exactly as on the dead input z[], as
it will never visit the 0-degree side of v′ to note the difference.

We start by remarking that, since the first symbol of z′ is [33], any attempt of
the mole to depart from ` into a state of focus other than (3, l) is followed by a step
back to `. Ignoring these attempts and also noting that the mole can never move
past [], we see that c′ consists essentially of zero or more computations of the form
compM,p,1(z

′[]) with ϕ(p) = (3, l). For our purposes, it is enough to study the case
where c′ consists of exactly one such computation.

So, suppose c′ = compM,p,1(z
′[]), where ϕ(p) = (3, l). As a mole, every time M

visits the 0-degree side of the nodes u′, v, v′, it changes direction to ‘return into the
graph’ of z′. Call every such move a turn and break c′ into segments c′1, c

′
2, . . . so that

successive segments are joined at a turn: the later segment starts at the state and
position following the last state and position of the earlier segment. Clearly: each
segment is a computation on ω′; c′1 = compM,p,u(ω

′) but later segments start at a
gate in {u′, v, v′}; and either all segments are finite, in which case their list is finite
iff c′ is, or not, in which case the list is finite and only the last segment is infinite.

To prove that c′ never visits [], it is enough to show that no segment ends in v′.
This, in turn, is a corollary of the following: (i) c′1 starts at u, (ii) a finite segment
that starts at u and does not hang necessarily ends on either u or v, and (iii) a finite
segment that starts at v and does not hang necessarily ends on either u or v. We only
show (ii), in the next section. Statement (iii) is similar, and (i) is known.

4.5. The Final Argument

Let d′ be a non-hanging finite segment of c′ that starts at u. As a finite computation
on ω′ = χ′ ◦ ψ′, it can be broken into finitely many, finite fragments d′1, d

′
2, . . . , d

′
ν ;

odd(-indexed) fragments compute on χ′ and even(-indexed) fragments compute on ψ′

(Lemma 1). By previous remarks, every odd fragment visits and depends on exactly
one of the two graphs (non-shifted and shifted) inside x′; and every even fragment
visits and depends on exactly one of the four paths in y′. Calling an even fragment
crossing if its start and final gates differ, we clearly see that two successive odd
fragments visit different graphs in x′ iff the even fragment between them is crossing.
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Generalizing, and since d′ starts on u, each odd fragment visits the shifted graph in x′

iff the number of crossing even fragments that precede it is odd.
Towards a contradiction, assume d′ does not end in u or v. Then it ends in either u′

or v′. Hence, d′ν is an odd fragment that visits the shifted graph in x
′. This implies

the total number of crossing even fragments (before d′ν , and so throughout d
′) is odd.

In particular, even fragments exist and d′1 necessarily ends at a gate in Y .
To reach a contradiction, we will show that, by replacing every fragment d′i of d

′

with an appropriate computation di on the original maze ω, we can create a computa-
tion d on ω that cannot really exist. Before we start, let h : X ′ → X be the mapping
of every gate in X ′ to its unprimed version in X: e. g., h(ul) = h(u′l) = ul.

• If d′i is an odd fragment (a computation on exactly one of the two graphs in χ′)
from state q and gate ε to state r and gate ζ, we let di be the computation
on (the one graph of) χ from q and h(ε). Clearly, di ends at r and h(ζ). In
particular, d1 starts at h(u) = u and ends at a gate in h(Y ) = Y .

• If d′i is an even fragment (a computation on exactly one of the four paths in ψ′)
from state q and gate ε to state r and gate ζ, we let di be the computation on
(one of the two copies of % in) ψ from q and h(ε). Since % is indistinguishable
from each of π and σ, we know di ends at r and h(ζ). Note here the critical use
of the inability of the mole to detect the big difference in the lengths of π, %, σ.

Reviewing the list d1, d2, . . . , dν , we see that: d1 starts at h(u) = u; for 1 ≤ i < ν, di
ends at the state and gate where di+1 starts; dν ends on h(u

′) = u or h(v′) = v; and
every even fragment di is crossing (on the path of ψ that it visits) iff d

′
i is (on the path

of ψ′ that it visits). Hence, concatenation builds a computation d on χ ◦ ψ = ω, that
starts at u, ends at u or v, and contains an odd number of crossing even fragments.
But is this possible?
If d ends at u, then it never moves beyond τl (if it did, it would traverse the lr-

dilemma and get ‘blocked’ away from u). In particular, d1 never reaches a gate in Y .
But (by a previous remark) this is where it is supposed to end. Contradiction.
If d ends in v, then it is a crossing computation on ω. As ω equals each of the

compositions χ ◦ ψ, χi1 ◦ ψi1 , and χi2 ◦ ψi2 , we know d can be fragmented in three
different ways. Clearly, every even fragment with respect to either χi1 ◦ψi1 or χi2 ◦ψi2

is also an even fragment with respect to χ ◦ ψ, and vice versa; and is crossing or not
(on the copy of % that it visits) irrespective of which composition we look at it through.
So, letting ξ, ξ1, ξ2 be the numbers of crossing even fragments with respect to the
three compositions, we know ξ = ξ1 + ξ2 and (as established above) ξ is odd. Yet, by
the selection of i1 and i2, the parities of ξ1, ξ2 are respectively bi1,d, bi2,d and hence
equal (as bi1 = bi2), so that ξ should be even. Contradiction. Again. 2

5. Conclusion

We discussed the question whether small 2dfas can solve liveness. We focused on a
natural class of restricted but still fully bidirectional 2nfa algorithms, which includes
the small 1nfa solvers. We asked whether small 2dfas from that class can succeed
and proved that they cannot, no matter how large they are.
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It is certainly good to provably know that graph exploration alone can never be
a sufficient strategy. However, in the context of the full conjecture, the emphasis
above stresses an alarming mismatch: a complexity question received a computability
answer. This suggests that the reasons why deterministic moles fail against liveness

are only loosely related to the reasons why small 2dfas fail – if they really do.
In order for our approach in this article to ultimately be of any use against the full

conjecture, we need restricted versions of fully bidirectional 2dfas that are both weak
enough to succumb to our arguments and strong enough to keep us in complexity:
large 2dfas of this kind should be able to solve liveness.
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