
Small Sweeping 2NFAs

Are Not Closed under Complement

Christos A. Kapoutsis

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

cak@mit.edu

Abstract. A two-way nondeterministic finite automaton is sweeping

(snfa) if its input head can change direction only on the end-markers.
For every n, we exhibit a language that can be recognized by an n-state
snfa but requires 2Ω(n) states on every snfa recognizing its complement.

1 Introduction

Understanding the power of nondeterminism is one of the most important goals
of the theory of computation. In the past four decades, huge efforts have been
invested into problems like Pvs. NP and L vs.NL, with limited success. To some,
this is creating the suspicion that essentially the same elusive idea lies at the core
of all problems of this kind, little affected by the particulars of the underlying
computational model or resource.

In this context, a possibly advantageous approach is to focus on weak mod-
els of computation. Provided that they are also powerful enough to be relevant,
such models allow us to meaningfully study the power of nondeterministic algo-
rithms in a much simpler setting, closer to the set-theoretic objects produced by
their computations and in some distance from our often misleading algorithmic
intuitions about how these computations may behave.

One such model is the two-way finite automaton. The question whether non-
determinism strictly increases its power, in the sense that it allows exponential
economy in the number of states, was raised by Seiferas [1] in the early 70’s. Now
known as the 2Dvs. 2N question, it was reduced by Sakoda and Sipser [2] to the
study of certain complete problems and remains essentially as wide open as its
famous counterparts above. The conjecture is that indeed 2D6=2N, and its more
precise variants are quite surprising—see [3] for a brief history and discussion.

Given that small two-way deterministic finite automata (2dfas) are closed
under complement [4, 5], one way to confirm the conjecture is by proving that
this closure fails in the nondeterministic case (2nfas). In this track, Geffert,
Mereghetti and Pighizzini [5] have recently studied the special case of small
unary 2nfas, but concluded that these are in fact closed under complement.

Following the same track, we study a different special case. We focus on
sweeping 2nfas (snfas), which are 2nfas that can change the direction of their

input head only on the end-markers. We prove that small snfas are not closed
under complement—reaffirming, in a sense, the promise of the general direction.

The sweeping restriction was originally introduced by Sipser [6], in the first
major step towards the conjecture, where he showed that no small sdfa can solve
liveness—a problem that even small one-way nondeterministic finite automata
(1nfas) can solve. Indeed, our proof has the structure of that argument: we show
that no small snfa can solve the complement of liveness. Note that this was
already known for 1nfas (by a relatively simple argument of [2]) and sdfas (by
a combination of the arguments of [6] and [4]), so our theorem can be seen as a
generalization of those facts to sweeping bidirectionality and to nondeterminism,
respectively. In fact, this generalization was already asked for in [6].

2 Preliminaries and Outline

We write [n] for the set {1, 2, . . . , n}. If Σ is an alphabet, Σ∗ is the set of all finite
strings over Σ. If z is a string, then |z|, zt, and zt are its length, t-th symbol, and
t-fold concatenation with itself. A property P ⊆ Σ∗ is infinitely right-extensible

if every string in P has a right extension in P : (∀y ∈ P)(∃z)(|z| 6= 0 & yz ∈ P);
infinitely left-extensible properties are defined symmetrically.

2.1 Sets, Functions, and Relations

If U is a set, then U , |U |, P(U), and U2 denote its complement, size, powerset,
and set of pairs. The following simple lemma plays a central role in our proof.

Lemma 1. Let (ui)i∈I and (vi)i∈I be two sequences of subsets of a set U , where

I is a set of indices totally ordered by <. If for all i′, i ∈ I we have

i′ < i =⇒ ui′ ∩ vi = ∅ and i′ = i =⇒ ui′ ∩ vi 6= ∅,

then |I| ≤ |U |.

Proof. For each i ∈ I, let ai be any element of the non-empty intersection ui∩vi.
If the list (ai)i∈I contains a repetition, say ai′ = ai =: a for two indices i′ < i,
then a = ai′ ∈ ui′ and a = ai ∈ vi; hence a ∈ ui′ ∩ vi, a contradiction. Therefore
the list (ai)i∈I contains |I| distinct elements of U . Hence, |I| ≤ |U |.

Let V ⊆ P(U) be a set of points in the lattice of subsets of U . For u ∈ V ,
the part of V below u is Vu := {u′ ∈ V | u′ ⊆ u}; the height hV (u) of u in V is
the length of the longest chain ∅ 6= u1 (· · · (uk in Vu. For f : V → V , we say
f is monotone if it respects inclusion: u′ ⊆ u =⇒ f(u′) ⊆ f(u); we say f is an
automorphism if its restriction to Vu is a bijection from Vu to Vf(u), for all u.

Clearly, every automorphism respects heights: hV (u) = hV

(

f(u)
)

, for all u. By
f t we mean the t-fold composition of f with itself; if t = 0, this is the identity.

Lemma 2. Suppose f : V → V , where V ⊆ P(U) is a finite set of points from

the lattice of a set U . If f is injective and monotone, then it is an automorphism.

Proof. Pick any u ∈ V , set v := f(u), and let fu be the restriction of f to Vu.
We will show fu is a bijection from Vu to Vv. Since f is monotone, fu has all its
values in Vv: u′ ∈ Vu =⇒ u′ ⊆ u =⇒ f(u′) ⊆ f(u) =⇒ fu(u′) ∈ Vv. Since
f is injective, so is fu. So, fu is an injection from Vu to Vv. To show that it is a
bijection, it is sufficient to show that Vv does not have more elements than Vu.

Since f is injective and V is finite, f is a permutation of V . Hence, for some
t ≥ 1, f t is the identity. Let f ′ := f t−1. Since f is injective and monotone, f ′ is
also injective and monotone. Moreover, u = f t(u) = f t−1

(

f(u)
)

= f ′(v). Now
the same argument as in the previous paragraph shows that the restriction f ′

v

of f ′ to Vv is an injection from Vv to Vu. Consequently, |Vv| ≤ |Vu|.

Let R ⊆ U2 be a binary relation. We write R(·) for the mapping of each u ⊆ U
to the set R(u) := {b ∈ U | (∃a ∈ u)(aRb)} of all elements related to elements
of u; we usually write R(a) for R({a}). Clearly, R(·) is monotone. If R′ ⊆ U2

is also a binary relation, we write R′ ◦ R for the composition: a(R′ ◦ R)b ⇐⇒
(∃c ∈ U)(aR′c & cRb). Clearly, (R′ ◦ R)(u) = R

(

R′(u)
)

, for all u.
A total order < on P(U)2 is nice if each pair “escapes” from every strictly

smaller pair in at least one component: (u′, v′) < (u, v) =⇒ u′ + u ∨ v′ + v.
It is not hard to verify that nice orders on P(U)2 exist, for every finite U .

2.2 Sweeping Automata and Liveness

A sweeping deterministic finite automaton (sdfa, [6]) is a triple M = (qs, δ, qf),
where δ is the transition function, partially mapping Q × (Σ ∪ {�}) to Q, for
some set Q of states, some alphabet Σ, and some end-marker � /∈ Σ, while qs

and qf are the start and final states. An input z ∈ Σ∗ is presented to M between
two copies of �. The computation starts at qs, on the symbol to the right of the
left copy of �, heading rightward. The next state is always derived from δ and
the current state and symbol. The next position is always the adjacent one in
the direction of motion; except when the current symbol is � and the next state
is not qf , in which case the next position is the adjacent one in the opposite
direction. Note that the computation can either loop, or hang, or fall off the
string �z� into qf . In this last case we say that M accepts z.

More generally, for any z ∈ Σ∗ and p ∈ Q, the left computation of M from p
on z is the unique sequence

lcompM,p(z) := (qt)1≤t≤m

where q1 = p; every next state is qt+1 = δ(qt, zt), provided that t ≤ |z| and
the value of δ is defined; and m is the first t for which this last provision
fails. If m = |z| + 1, the computation exits into qm; otherwise, 1 ≤ m ≤ |z|
and the computation hangs at qm. The right computation of M from p on z,
rcompM,p(z) :=

(

qt)1≤t≤m, is defined symmetrically, with qt+1 = δ(qt, z|z|+1−t).
If M is allowed more than one next move at each step, we say that it is

nondeterministic (snfa). Formally, this means that δ totally maps Q×(Σ∪{�})
to the powerset of Q and implies that, on any z ∈ Σ∗, M exhibits a set of
computations. If at least one of them falls off �z� into qf , then M accepts z.

2

(b)(a)

1 30 2

(c)

11

3

4

5

Fig. 1. (a) Three symbols in Σ5; e.g., the third symbol is {(1, 2), (1, 4), (2, 5), (4, 4)}.
(b) The string defined by them. (c) The string simplified and indexed; here ξ = {(3, 5)}.

Similarly, lcompM,p(z) is now a set of computations. To encode how states
connect via left computations, we define the binary relation lviewM (z) ⊆ Q2

(p, q) ∈ lviewM (z) ⇐⇒
(

∃c ∈ lcompM,p(z)
)

(c exits into q),

and call it the left behavior of M on z. Then, for u ⊆ Q, the set lviewM (z)(u)
of states reachable via left computations from within u is the left view of u on z.
The right behavior rviewM (z) of M on z and the right view rviewM (z)(u) of

u on z are defined similarly. Note that, if |z| = 1, the automaton has the same
behavior in both directions: lviewM (z) = rviewM (z) = {(p, q) | δ(p, z) ∋ q}.
Also, if extending z does not cause a view to include any new states, then this
remains true on all identical further extensions, as described in the next lemma.

Lemma 3. The following implications are true, for all t ≥ 1:

• lviewM (z)(u) ⊇ lviewM (zz̃)(u) =⇒ lviewM (z)(u) ⊇ lviewM (zz̃t)(u),
• rviewM (z)(u) ⊇ rviewM (z̃z)(u) =⇒ rviewM (z)(u) ⊇ rviewM (z̃tz)(u).

Liveness. For n ≥ 1, we consider the alphabet Σn := P([n]2) of all directed
2-column graphs with n nodes per column and only rightward arrows (Fig. 1a).
An m-long string over Σn is naturally viewed as a directed (m + 1)-column
graph (Fig. 1b), in which for simplicity we often omit the direction of the arrows
(Fig. 1c). We say that the string has connectivity ξ ⊆ [n]2 if ξ correctly describes
all connections between the outer columns: (a, b) ∈ ξ iff there exists an m-long
path from the a-th node of the 0-th column to the b-th node of the m-th column.
We write Bn,ξ for the set of all strings of connectivity ξ. The strings of Bn,∅

are called dead ; all other strings are called live. We define Bn := Bn,∅ as the
collection of all live strings. So, Bn is the property of liveness —as defined in [2].

2.3 Outline

It is easy to see that Bn can be recognized by a snfa (a 1nfa, actually) with only
n states. Our goal is to prove that, in contrast, for the complementary language
Bn = Bn,∅ a snfa would need exponentially many states.

Theorem 1. Every snfa that recognizes Bn,∅ has 2Ω(n) states.

The rest of the article proves this fact. We fix n and a snfa M = (qs, δ, qf)
over a set Q of k states that recognizes Bn,∅. We will prove that k = 2Ω(n).

The proof is based on Lemma 1. We build two sequences (Xι)ι∈I and (Yι)ι∈I

that are related as in the lemma. The indices are all pairs of non-empty subsets
of [n], the universe is all sets of 1 or 2 steps of M :1

I := {(α, β) | ∅ 6= α, β ⊆ [n]} S :=
{

{s′, s} | s′, s ∈ Q2
}

,

and the total order < is the restriction on I of some nice order on P([n])2. If
we indeed construct these sequences, then the lemma says |I| ≤ |S|, therefore

(2n − 1)2 ≤ k2 +
(

k2

2

)

,

hence k = 2Ω(n). For the remainder, we fix I and S as here.
Note that from now on some subscripts in our notation are redundant. We

thus drop them: e.g., Bn,∅ and lviewM (z)(u) become B∅ and lview(z)(u).
Also, before moving on, let us prove a fact that will be useful later: In order

to accept a dead string but reject a live one, M must produce on the dead string
a single-state view that “escapes” the corresponding view on the live string.

Lemma 4. Let z′ be live and z dead. Then at least one of the following is true:
• lview(z′)(p) + lview(z)(p) for some p ∈ Q.

• rview(z′)(p) + rview(z)(p) for some p ∈ Q.

Proof. Suppose lview(z′)(p) ⊇ lview(z)(p) and rview(z′)(p) ⊇ rview(z)(p),
for all p. Pick any accepting computation c of M on z. Break c into its traversals

c1, . . . , cm, in the natural way: for j < m, each cj starts at some state pj next
to a � and ends at some state qj on the other �; p1 = qs; δ(qj , �) ∋ pj+1; and
cm = (qf). Then, for each odd (resp., even) j < m, we know qj is in lview(z)(pj)
(resp., in rview(z)(pj)) and thus also in lview(z′)(pj) (resp., rview(z′)(pj));
hence, some computation c′j of M on z′ starts and ends identically to cj . If we
also set c′m := (qf) and concatenate c′1, . . . , c

′
m, we end up with a computation

c′ of M on z′ which is also accepting. So, M accepts z′, a contradiction.

3 Hard Inputs and the Two Sequences

3.1 Generic Strings

Consider any y ∈ Σ∗ and the set of views produced via left computations on it:

lviews(y) := {lview(y)(u) | u ⊆ Q},

i.e., the range of lview(y)(·). How does this set change if we extend y into yz?
Let lmap(y, z) be the function that for every left view produced on y returns

its left view on z —i.e., lmap(y, z) simpy restricts lview(z)(·) to lviews(y). It

1 A step of M is any s ∈ Q2. Also, note that {s′, s} represents a singleton when s′ = s.

is easy to verify that lviews(yz) contains all values of this function, and is
covered by them. In other words, lmap(y, z) is a surjection from lviews(y) to
lviews(yz). This immediately implies that |lviews(y)| ≥ |lviews(yz)|.

The next fact encodes this conclusion, along with the obvious remark that
lmap(y, z) is monotone. It also shows the symmetric facts, for left extensions
and right views. The set rviews(y) consists of all views produced on y via right
computations, and rmap(z, y) is the restriction of rview(z)(·) on rviews(y).

Fact 1.For all y, z: lmap(y, z) monotonically surjects lviews(y) to lviews(yz),
so |lviews(y)| ≥ |lviews(yz)|; symmetrically, in the other direction, rmap(z, y)
monotonically surjects rviews(y) to rviews(zy), so |rviews(y)|≥|rviews(zy)|.

Now suppose y belongs to an infinitely right-extensible property P ⊆ Σ∗.
What happens to the size of lviews(y) if we keep extending y into yz, yzz′, . . .
inside P? Although there are infinitely many extensions, the size of the set can
decrease only finitely many times. So, at some point it must stop changing. When
this happens, we have arrived at a very useful tool. We define it as follows.

Definition 1. Let P ⊆ Σ∗. A string y is l-generic over P if y ∈ P and

(∀yz ∈ P)
[

|lviews(y)| = |lviews(yz)|
]

.

An r-generic string over P is defined symmetrically, with left-extensions and

rviews(·). A string that is both l-generic and r-generic over P is called generic.

Lemma 5. Let P ⊆ Σ∗. If P is non-empty and infinitely right-extensible (resp.,
left-extensible), then there exist l-generic (resp., r-generic) strings over P . If yl

is l-generic and yr is r-generic, then every string ylxyr ∈ P is generic.

Proof. For the last claim, we just note that all right-extensions of an l-generic
string inside P are also l-generic, and the same is true in the other direction.

Generic strings were introduced in [6] (for sdfas and over Bn). Intuitively,
they are among the richest strings with property P , in the sense that they exhibit
a greatest subset of the “features” that M is “prepared to pay attention to”.
This makes them useful in building hard inputs, as described in the next lemma
and in Sect. 3.2. For the lemma, we will also need the following simple fact.

Fact 2. For all y, z: lviews(yz) ⊆ lviews(z) and rviews(zy) ⊆ rviews(z).

Proof. By Fact 1, lviews(yz) is the range of lmap(y, z), which is a restriction
of lview(z)(·); so, the first containment follows. Similarly in the other direction.

Lemma 6. Suppose y is generic over P ⊆ Σ∗, and x ∈ Σ∗. If yxy ∈ P , then

• lmap(y, xy) is an automorphism on lviews(y), and

• rmap(yx, y) is an automorphism on rviews(y).

Proof. Suppose yxy ∈ P . Then |lviews(y)| = |lviews(yxy)| (since y is generic)
and lviews(yxy) ⊆ lviews(y) (by Fact 2). Hence, lviews(y) = lviews(yxy).
By this and Fact 1, we conclude lmap(y, xy) surjects lviews(y) onto itself, which
is possible only if it is injective. Since lmap(y, xy) is also monotone, Lemma 2
implies it is an automorphism. The fact about rmap(yx, y) is proved similarly.

3.2 Constructing the Hard Inputs

Fix ι = (α, β) ∈ I and let Pι := Bα×β be the property of connecting exactly
every leftmost node in α to every rightmost node in β. Easily, Pι is non-empty
and infinitely extensible in both directions. So, an l-generic string yl and an
r-generic string yr exist (Lemma 5). Then, for η = [n]2 the complete symbol, we
easily see that ylηyr ∈ Pι, too. Hence, this string is generic over Pι (Lemma 5).
We define yι := ylηyr. We also define the symbol xι := β × α.

Lemma 7. The two sequences (yι)ι∈I and (xι)ι∈I are such that, for all ι′, ι ∈ I:

ι′ < ι =⇒ yιxι′yι ∈ Pι and ι′ = ι =⇒ yιxι′yι ∈ B∅.

Proof. Fix ι′ = (α′, β′) and ι = (α, β) and let z := yιxι′yι. Note that the
connectivities of yι and xι′ are respectively ξ := α × β and ξ′ := β′ × α′.

α

yιyι xι′

β

a∗b∗

β′ α′

yιyι xι′

α
β

β′ α′

If ι′ < ι (on the left), then α′ + α or β′ + β (since < is nice). Suppose β′ + β
(if α′ + α, use a similar argument) and fix any b∗ ∈ β \ β′ and any a∗ ∈ α. For
any a, b ∈ [n], consider the a-th leftmost and b-th rightmost nodes of z. If a 6∈ α
or b 6∈ β, then the two nodes do not connect in z, since neither can “see through”
yι. If a ∈ α and b ∈ β, then (a, b∗) ∈ ξ and (b∗, a∗) ∈ ξ′ and (a∗, b) ∈ ξ, so the
two nodes connect via a path of the form a b∗ → a∗

 b. Overall, z ∈ Pι.
If ι′ = ι (on the right), then ξ′ = β × α. Suppose z 6∈ B∅. Then some path

in z connects the leftmost to the rightmost column. Suppose it is of the form
a b∗ → a∗

 b. Then b∗ ∈ β and (b∗, a∗) ∈ ξ′ and a∗ ∈ α, a contradiction.

3.3 Constructing the Two Sequences

Suppose ι′ < ι. Since the extension yιxι′yι of yι preserves Pι (Lemma 7), each of
lmap(yι, xι′yι) and rmap(yιxι′ , yι) is an automorphism (Lemma 6). Put another
way, the interaction between the steps of M on xι′ and its two behaviors on yι

is such that these two mappings are automorphisms. Put formally, both
• the restriction of

(

Sι′ ◦ lview(yι)
)

(·) on lviews(yι) and

• the restriction of
(

Sι′ ◦ rview(yι)
)

(·) on rviews(yι)
are automorphisms, for Sι′ := {(p, q) | δ(p, xι′) ∋ q} = lview(xι′) = rview(xι′).

What if ι′ = ι? What is the status of lmap(yι, xιyι) and rmap(yιxι, yι)? We
can show that, since yιxιyι is dead (Lemma 7), we cannot have both functions
be automorphisms.2 However, something stronger is true: we can even convince

2 If they were, they would be bijections (because each of lviews(yι) and rviews(yι)
has a maximum). Hence, M would not be able to distinguish between the live yι

and the dead yι(xιyι)
t, for t any exponent that turns both bijections into identities.

(Note that this is true even for the n-state snfa that solves liveness. Therefore, this
observation alone can give rise to no interesting lower bound for k.)

ourselves that one of the functions is not an automorphism by pointing at only

1 or 2 of the steps of M on xι. The next figure shows three examples of this.
In each, we sketch the left behavior of M on yι and all single-state views, and
consider all heights to be with respect to lviews(yι).

s′

s

s

s′

s

xιyι yι

(i)

xιyι yι

u uu′v
(ii)

xιyι yι

(iii)
u′ v′u vvv′

Example i shows only 1 of the steps of M on xι, say s = (p, q) —many more
may be included in Sι. Is lmap(yι, xιyι) an automorphism? Normally, we would
need to know the entire Sι to answer this question. Yet, in this case s is enough
to answer no. To see why, note that the view v of q on yι has height 2, while
one of the views that contain p is u, of height 1. Irrespective of the rest of Sι,
lmap(yι, xιyι) will map u to a view that contains v and thus has height 2 or
more. So, it does not respect heights, which implies it is not an automorphism.

Example ii shows 2 of the steps in Sι, say s′ = (p′, q′) and s = (p, q). Is
lmap(yι, xιyι) an automorphism? Observe that neither step alone can force a
negative answer: the view v′ of q′ on yι has height 1, as does the lowest view u′

containing p′; similarly for s, u, v, and height 2. Hence, individually each of s′

and s may very well participate in sets of steps that induce automorphisms. Yet,
they cannot belong to the same such set. To see why, suppose they do. Since
u′ ⊆ u, the image of u would be v′ ∪ v or a superset. Since v′ * v, the height
of that image would be greater than the height of v, and thus greater than the
height of u, violating the respect to heights.

Example iii also shows 2 of the steps in Sι, say s′ = (p′, q′) and s = (p, q),
neither of which can disqualify lmap(yι, xιyι) from being an automorphism.
Yet, together they can. To see why, suppose both steps participate in the same
automorphism. Then the image of u′ must be exactly v′: otherwise, it would be
some strict superset of v′, of height 2 or more, disrespecting the height of u′. On
the other hand, u must map to a set that contains v, and thus also v′. Hence, v′

must be the exact image of some u∗ ⊆ u. But then both u∗ and u′ map to v′,
when u∗ 6= u′ (since u′ * u), a contradiction to the map being injective.

In short, each step in Sι severely restricts the form of lmap(yι, xιyι) and
rmap(yιxι, yι). And, either individually or in pairs, some steps can be so restric-
tive that they cannot be part of any set of steps that induces an automorphism
in both directions. To describe this formally, we introduce the next definition.

Definition 2. A set of steps S ⊆ Q2 is compatible with yι if there exists a set

Ŝ such that S ⊆ Ŝ ⊆ Q2 and the following are both automorphisms:

• the restriction of
(

Ŝ ◦ lview(yι)
)

(·) on lviews(yι), and

• the restriction of
(

Ŝ ◦ rview(yι)
)

(·) on rviews(yι).

E.g., {s} in Example i and {s′, s} in Examples ii,iii are incompatible with yι.

We are now ready to define the sequences promised in Sect. 2.3. For each
ι ∈ I, we let Xι consist of all sets of 1 or 2 steps of M on xι, and Yι consist of
all sets of 1 or 2 steps of M that are incompatible with yι:

Xι :=
{

S ∈ S | S ⊆ Sι

}

, Yι :=
{

S ∈ S | S is incompatible with yι

}

.

We need, of course, to show that the sequences relate as in Lemma 1.
The case ι′ < ι is easy. Each S ∈ Xι′ can be extended to the set of all steps

of M on xι′ (i.e., Ŝ := Sι′), which does induce automorphisms, so Xι′ ∩ Yι = ∅.
The case ι′ = ι is harder. We analyze it in the next section.

4 The Main Argument

Suppose ι′ = ι. Our goal is to exhibit a singleton or two-set S ⊆ Sι that is
incompatible with yι. First, some preparation.

The witness. Consider the strings yι(xιyι)
t = (yιxι)

tyι, for all t ≥ 1. Since
yιxιyι is dead, so are all of them. Since yι is live, Lemma 4 says for all t ≥ 1:
• lview(yι)(p) + lview

(

yι(xιyι)
t
)

(p) for some p ∈ Q, or

• rview(yι)(p) + rview
(

(yιxι)
tyι

)

(p) for some p ∈ Q.
Namely, in order to accept the extensions yι(xιyι)

t = (yιxι)
tyι but reject the

original yι, M must exhibit on each of them a single-state view that “escapes”
its counterpart on the original. In a sense, among all 2k single-state views on
each extension, the escaping one is a “witness” for the fact that the extension is
accepted, and Lemma 4 says that every extension has a witness. Of course, this
allows for the possibility that different extensions may have different witnesses.
However, we can actually find the same witness for all extensions:

Fact 3. At least one of the following is true:
• lview(yι)(p) + lview

(

yι(xιyι)
t
)

(p) for some p ∈ Q and all t ≥ 1.

• rview(yι)(p) + rview
(

(yιxι)
tyι

)

(p) for some p ∈ Q and all t ≥ 1.

Proof. Suppose neither is true. Then each of the 2k single-state views has an
extension on which it fails to escape from its counterpart on yι. Namely, every
p has some tp,l ≥ 1 such that lview(yι)(p) ⊇ lview

(

yι(xιyι)
tp,l

)

(p) and some

tp,r ≥ 1 such that rview(yι)(p) ⊇ rview
(

(yιxι)
tp,ryι

)

(p). Consider the exponent

t∗ :=
(
∏

p∈Q tp,l

)

·
(
∏

p∈Q tp,r

)

and the extension z := yι(xιyι)
t∗ = (yιxι)

t∗yι. Then each p has some t ≥ 1 such
that z = yι((xιyι)

tp,l)t, and thus Lemma 3 implies lview(yι)(p) ⊇ lview(z)(p);
similarly, rview(yι)(p) ⊇ rview(z)(p). Overall, all single-state views on z fall
within their counterparts on yι, contradicting Lemma 4.

We fix p to be a witness as in Fact 3. We assume p is of the first type,
involving left views (otherwise, a symmetric argument applies). Moreover, among
all witnesses of this type, we select p so as to minimize the height of lview(yι)(p)
in lviews(yι). We let V := lviews(yι), h := hV , and v0 := lview(yι)(p).

By the selection of p, no p̃ with lview(yι)(p̃) (v0 can be a witness of the
first type. Hence, for every such p̃ there is some t̃ ≥ 1 such that lview(yι)(p̃) ⊇

lview
(

yι(xιyι)
t̃
)

(p̃). We fix t∗ to be the product of all such t̃. Then:

Fact 4. For all such p̃ and all λ ≥ 1: lview(yι)(p̃) ⊇ lview(yι(xιyι)
λt∗)(p̃).

Proof. Fix such a p̃ and the t̃ for which lview(yι)(p̃) ⊇ lview
(

yι(xιyι)
t̃
)

(p̃). Fix

any λ ≥ 1. Then λt∗ is a multiple of t̃ and Lemma 3 applies.

Escape computations. For all t ≥ 1, collect into a set Ct all computations c ∈
lcompp(yι(xιyι)

t) that exit into some q 6∈ v0. These are the escape computations

for p on the t-th extension. We also define C := ∪t≥1Ct.
Let us see how an escape computation looks like. Pick any c ∈ C (Fig. 2a), say

on the t-th extension, exiting into q. Let s1, . . . , st be the steps of c on xι, where
sj = (pj , qj) ∈ Sι. These are the critical steps along c. Let vj := lview(yι)(qj)
be the view of the right end-point of sj . Along with v0, these views form the
list v0, v1, . . . , vt of the major views along c. Clearly, each of them contains the
left end-point of the following critical step: vj−1 ∋ pj (similarly, vt ∋ q). So, for
each sj there exist views u ∈ V that contain its left end-point and are contained
in the preceding major view: vj−1 ⊇ u ∋ pj (similarly, vt ⊇ u ∋ q). Among
them, let uj−1 be one of minimum height in V (select ut similarly). Then the
list u0, . . . , ut−1, ut are the minor views along c.

We will find an incompatible S among the critical steps of such computations.
Case 1: Some c ∈ C contains some critical step s such that the singleton {s}

is incompatible with yι. Then we can select S := {s}, and we are done.
Case 2: For all c ∈ C and all critical steps s in c, the singleton {s} is compat-

ible with yι. In this case, we will find an incompatible two-set.
Steepness. First of all, every c ∈ C (say with t, sj , vj , uj as above) has every

major view at least as high as the next minor one (h(vj) ≥ h(uj), since vj ⊇ uj)
and every minor view at least as high as the next major one (h(uj) ≥ h(vj+1),
otherwise {sj+1} would be incompatible, as in Example i). Hence, every c ∈ C has
views of monotonically decreasing height (h(v0) ≥ h(u0) ≥ h(v1) ≥ · · · ≥ h(ut)).
To capture the “rate” of this decrease, we record the list of minor view heights
Hc :=

(

h(uj)
)

0≤j≤t
, and order each Ct lexicographically: c′ ≤ c iff Hc′ ≤lex Hc.

With respect to this total order, “smaller” computation means “steeper”.
Long and steepest computation. We fix t to be a multiple of t∗ which is at

least |V |, and select c to be steepest in Ct. We let q, sj , vj , uj be as usual.
Since t ≥ |V |, the list u0, . . . , ut contains repetitions. Let j′ < j be the

indices for the earliest one. Then uj′ = uj , so h(uj′) = h(uj), and thus all views
in between have the same height: h(uj′) = h(vj′+1) = · · · = h(vj) = h(uj). As a
result, each major view equals the next minor one: vj′+1 = uj′+1, . . . , vj = uj.

Case 2A: j′ = 0. Then h(u0) = h(v1) = · · · = h(vj) = h(uj), and therefore
v1 = u1, . . . , vj = uj . In fact, we also have h(v0) = h(u0), and therefore v0 = u0.

To see why, suppose h(v0) 6= h(u0). Then v0) u0. Since u0 ∈ V , some state
p̃ has lview(yι)(p̃) = u0 (Fig. 2a), and thus Fact 4 applies to it (since u0 (v0).
In particular, lview(yι)(p̃) ⊇ lview

(

yι(xιyι)
t
)

(p̃) (since t is a multiple of t∗).

s4

s2

s1

s5
s4

s3s2
s1

s3s2

s′l

u2

1 2 3 4 5

v4

u5

v5

q

v0

u0

u0

v0

(c)

(b)

(a)

v3

v1

p

yι xι yι xι xι xι xιyι yι yι yι

v2v0

p

yι xι yι xι xι xι xιyι yι yι yι

u1
q

q′

v1 v0

v′l−1 v′l

q

u3

u2
v2

0

p

p̃

yι xι yι xι xι xι xιyι yι yι yι

u3u2

v1

u1 u4

v2

Fig. 2. (a) An escape computation c ∈ C5, exiting into q. (b) An example of Case 2A,
for j = 3 and l = 2; in dashes, the new computation c′ ∈ Cj . (c) An example of Case 2B,
for j′ = 2 and j = 4; in dashes, the hypothetical case uj′−1 ⊇ uj−1 and c′.

On the other hand, u0 contains the left end-point of s1, so the part of c after
s1 shows that q ∈ lview

(

yι(xιyι)
t
)

(p̃), and thus q ∈ lview(yι)(p̃) = u0. Since
u0 ⊆ v0, this means that c is not an escape computation, a contradiction.

So, h(v0) = h(u0) = · · · = h(vj) = h(uj) and v0 = u0, . . . , vj = uj (Fig. 2b).
By the selection of p, its view on the j-th extension escapes v0. Pick any c′ ∈ Cj ,
with exit state q′ /∈ v0, critical steps s′1, . . . , s

′
j , and major views v′0, . . . , v

′
j . Then

v′0 = v0 (since both c′ and c start at p) and q′ ∈ v′j \ vj (since vj = uj = u0 = v0

and q′ /∈ v0). So, the respective major views start with inclusion v′0 ⊆ v0 but end
with non-inclusion v′j * vj . So there is 1 ≤ l ≤ j so that v′l−1 ⊆ vl−1 but v′l * vl.

We are now ready to prove that {s′l, sl} is incompatible with yι. The argument
is as in Example ii. Suppose the two steps participate in a set inducing an
automorphism f . Since v′l−1 ⊆ vl−1, both s′l and sl have their left end-points in
vl−1. Hence, f(vl−1) ⊇ v′l ∪vl. Since v′l * vl, the height of f(vl−1) is greater than
that of vl. But h(vl−1) = h(vl). Therefore h

(

f(vl−1)
)

> h(vl−1), a contradiction.

Case 2B: j′ 6= 0. Then we can talk of the minor views uj′−1 and uj−1 that
precede the first repetition. Of course, uj′−1 6= uj−1. In fact, uj′−1 + uj−1.

To see why, suppose uj′−1 ⊇ uj−1 (Fig. 2c). Then uj′−1) uj−1 (since uj′−1 6=
uj−1) and thus h(uj′−1) > h(uj−1). Moreover, sj has its left end-point in vj′−1

(since vj′−1 ⊇ uj′−1 ⊇ uj−1) while its right end-point has view uj′ (since vj =
uj = uj′). Hence, by replacing sj′ with sj , we get a new computation c′ that is

also in Ct. In addition, Hc′ differs from Hc only in that h(uj′−1) is replaced by
h(uj−1). But then c′ is strictly steeper than c, a contradiction.

We are now ready to prove that {sj′ , sj} is incompatible with yι. The argu-
ment is as in Example iii. Suppose the two steps participate in a set inducing
an automorphism f . Because of sj , f(uj−1) ⊇ uj; but h(uj−1) = h(uj) and f
respects heights, so in fact f(uj−1) = uj . Because of sj′ , f(uj′−1) ⊇ uj′ = uj ; so
there exists u∗ ⊆ uj′−1 such that f(u∗) = uj . Overall, u∗ 6= uj−1 (since exactly
one is in uj′−1) and f(u∗) = f(uj−1). Hence f is not injective, a contradiction.

This concludes the analysis of the case ι′ = ι and thus the proof of Theorem 1.

5 Conclusion

We proved that small snfas are not closed under complement. In order to stay
close to the combinatorial core of the problem, we used a non-standard transition
function (implicit direction of motion; unusual reject and accept) and a large
alphabet (exponential in n). It is not hard to show that the lower bound remains

exponential even under more standard definitions and over the binary alphabet.
In addition, by selecting the hard inputs more carefully in Sect. 3.2, we can ensure
that a small 2dfa can correctly decide liveness on all of them. This way, we also
have a proof that 2dfas can be exponentially more succinct than snfas, which
generalizes the analogous known relationship between 2dfas and sdfas [6–8].
More details about these claims will appear in the full version of this article.

An interesting next question concerns the exact value of our lower bound (for
our definition and alphabet). The smallest known snfa for Bn,∅ is the obvious
2n-state 1dfa. Is this really the best snfa algorithm? If so, then nondeterminism
and sweeping bidirectionality together are completely useless in this context.

Of course, the full 2Dvs. 2N question remains as wide open and challenging
as ever: Is there a small 2dfa for liveness?

References

1. Seiferas, J.I.: Manuscript communicated to Michael Sipser. (1973)
2. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.

In: Proceedings of the Symposium on the Theory of Computing. (1978) 275–286
3. Kapoutsis, C.: Deterministic moles cannot solve liveness. In: Proceedings of the

Workshop on Descriptional Complexity of Formal Systems. (2005) 194–205
4. Sipser, M.: Halting space-bounded computations. Theoretical Computer Science

10 (1980) 335–338
5. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite au-

tomata. In: Proceedings of the International Conference on Developments in Lan-
guage Theory. (2005) 260–271

6. Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer
and System Sciences 21(2) (1980) 195–202

7. Berman, P.: A note on sweeping automata. In: Proceedings of the International
Colloquium on Automata, Languages, and Programming. (1980) 91–97

8. Micali, S.: Two-way deterministic finite automata are exponentially more succinct
than sweeping automata. Information Processing Letters 12(2) (1981) 103–105

