
SOMETIMES PROOFS ARE NOT EXPLANATIONS

CHRISTOS KAPOUTSIS

Abstract. To wonder why a theorem is true before reading a proof of it
is normal. To wonder why a theorem is true after we have read somebody
else’s proof of it is a little strange. But to wonder why a theorem is true
after having actually proved it on our own, that is very weird. Still, it
happens. We present a simple example of this phenomenon and attempt
an analysis. Although our first steps lie within the theoretical framework
of why-questions, we quickly need to pay attention to the extra-logical
features that a mathematical proof necessarily has as an entity upon
which a reader’s mind computes.

1. Introduction

1.1. A game. On the top of a table lies a stack of b boxes. You want to
break this stack into b stacks of 1 box each via a sequence of legal moves. A
legal move consists of picking one of the stacks currently on the table and
breaking it into two smaller stacks. Every such move is worth a number of
points, which is equal to the product of the sizes of the two stacks that it
produces. Your final score in this game is the total number of points that
your moves are worth.

For example, starting with b = 5 boxes, one of the many ways you can
reach 5 stacks of height 1, is to proceed as shown in the following sketch:

2× 3

- - - -q q q q q 1× 1

1× 2

1× 1

Your first move creates a new stack out of the 3 topmost boxes of the original
stack, a move that is worth 2× 3 = 6 points. The three following moves are
worth 1, 2, and 1 points, respectively, for a final score of 6 + 1 + 2 + 1 = 10.

How should you play this game in order to achieve the highest possible
final score? What is the best strategy? Please spend a minute trying to
answer this question before reading on.

1.2. A sum. What is the sum of the first n natural numbers? A nice closed-
form formula for this sum is well-known and easy to prove. We state and
prove this little theorem now, before using it in later sections.

Theorem 1. For any n ≥ 1, we have
∑n−1

i=0 i = n(n−1)
2 .

Proof. By induction on n. For the base case, we have
∑1−1

i=0 i = 0 = 1(1−1)
2 ,

as required. For the inductive step, we assume that the claim holds for some
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n ≥ 1 and try to prove it for n + 1. We calculate:
(n+1)−1∑

i=0

i =
n∑

i=0

i =
( n−1∑

i=0

i
)

+n = n(n−1)
2 + 2n

2 = (n+1)n
2 ,

where the third equality holds because of the inductive hypothesis. Hence,
the claim is true for n + 1, as well, which completes the induction. �

1.3. A basket of apples. Consider the following setting:
Bob is eating apples from a basket that originally contains 10 of them.

Now consider the following problem with respect to this setting:
When the basket gets empty, how many apples will Bob have eaten?

Please solve this problem before moving on.
You are probably surprised I call this question a problem. Maybe you

have read the setting and the question twice, to make sure you have not
misread anything. Or you may think there is a catch. No. This is an honest
problem, with an easy solution: by the time the basket is empty, Bob will
have eaten ten apples. So then, what is the point?

This problem is extremely easy. You would probably say it is a no-
brainer. I agree, but I think I have in mind something much closer to the
literal meaning of the phrase than you do. Not, of course, that somebody
without a brain could solve this problem. No, because one would need her
brain to understand the question, in the first place. And that is the point.

Here is a plausible, I think, way to describe how easy this problem is.
First, we read the description of the setting. Then, we understand it. This

certainly involves some computation in our minds, and one could speculate
on what this computation consists of. Maybe we identify in our long-term
memory objects that look like “basket”, “apple”, “Bob”, and so on, and
fetch them into our short-term memory for further processing. We probably
also identify the process of “some original quantity being consumed”, and
bring this into our short-term memory for further processing, as well. Note
that we do not need to have seen a basket of apples before and a Bob eating
from it. It is enough that we know that people have names and that “Bob”
can be one. And it is enough that we have experienced ourselves eat from
a bowl spoonful after spoonful, walk home one step at a time, spend our
stipend dollar after dollar, live through the day hour after hour. Overall,
analogies are made between the objects and processes in the setting and
similar objects and processes stored in our long-term memory. These are
then brought into our short-term memory and computed upon in order for
the meaning of the setting to emerge.

I suggest that, during this computation that assembles the meaning of
the setting, the answer to the question “When the basket gets empty. . . ”
emerges, too, as an unavoidable by-product. In other words, it is hard for us
to understand the setting without also producing somewhere in our short-
term memory the prediction that eventually Bob will eat all ten apples and
the basket will get empty.

Now, having understood the setting, we read the question; and understand
it, by assembling its meaning in a similar way. When this is over, we attempt
to find the answer. But the answer is already there. It has been lying in our
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short-term memory all this time. Finding it is more like a look-up operation
rather than a cumbersome search. In particular, no further analogies are
necessary and our long-term memory does not need to get involved. So, the
problem is a no-brainer because we have spent our brains understanding it
rather than searching for its solution.

Of course, the details of the speculation above are almost certainly wrong,
if they mean anything at all. They are there just to fill in the gaps of a story
that I had to say to adequately describe the much weaker suggestion: That,
in attacking a problem, we first spent some effort trying to understand
the setting that gives rise to it and then some effort trying to find the
solution. That, in the first stage, we unavoidably make some steps toward
the search for the solution, by involuntarily producing facts which are not
strictly necessary for understanding the setting. And that one reason why
a problem may be very easy is that these unavoidable steps immediately
consume all there is to the problem.

2. Dissecting the Game

Let us return to the game of Section 1.1 and to our question there:
What is the best strategy for playing this game?

If you have tried it, you may have observed a quite strange phenomenon:
several different strategies yield the same final score! This is no coincidence.

Theorem 2. The final score is independent of strategy.

Proof 2A. I will prove a stronger claim, that for b boxes in the initial stack:

no matter how you play on b boxes, your final score will be b(b−1)
2 .

The proof is by (strong) induction on b. The base case b = 1 is simple: the
game ends before you make any move, so your final score is 0, or 1(1− 1)/2.

For the inductive step, I start by assuming that, for any a = 1, 2, . . . , b−1,
any strategy for playing the game on a stack of a boxes will bring you
a(a − 1)/2 points. Then, I consider the game on a stack of b boxes: No
matter what your strategy is, you will start by breaking this initial stack
into two stacks of sizes x and b−x, respectively, for some 1 ≤ x ≤ b−1; you
will then proceed to break the two new stacks until every box on the table
is in its own stack. Your first move will be worth

x(b− x)

points, while breaking the two new stacks will bring you, respectively,
x(x−1)

2 and (b−x)(b−x−1)
2

points (by the inductive hypothesis). Therefore, your final score will be

x(b− x) + x(x−1)
2 + (b−x)(b−x−1)

2

= xb− x2 + x2

2 −
x
2 + b2

2 −
bx
2 −

b
2 −

xb
2 + x2

2 + x
2

= b2

2 −
b
2 = b(b−1)

2 ,

(1)

as required. This concludes the induction, and the proof of the claim. �
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Now, is this a good proof? There is no doubt that it meets all reasonable
standards of a mathematically rigorous proof. But is it a natural one, in the
sense that after you have read it you are left with no questions whatsoever
about it? Put another way, suppose you try to reproduce this proof, to tell
yourself the same explanatory story as to why all strategies achieve the same
score. As you follow the reasoning of the proof, is every step going to look
like the most natural next step you could make at the particular point? Or
is it the case that for some steps you will not be able to immediately justify
why you are making them? Try this experiment.

2.1. Where did that come from? The complaint that you probably have
is that the number b(b− 1)/2 is brought into the discussion with absolutely
no justification. Prior to its introduction, there is nothing to suggest that
the invariant value of the final score should be this particular one. It looks
like somebody who knew more has tipped me to it. As Polya [3] would say,
the value enters the proof as a “deus ex machina”.

Question 1. Where did the value b(b−1)
2 come from?

Answer. To answer this question, I retrace my thoughts in the construction
of the proof. First, the suspicion that all strategies yield the same final score,
naturally led me to the assumption that knowing this invariant score as a
function of b would help me prove the theorem. Then, to find this function,
say f(b), I knew it was enough to apply any strategy and calculate what
final score it yields. But since any strategy would do, I naturally picked the
simplest one: “as long as the original stack has 2 or more boxes, remove its
topmost box”. Under this strategy, f clearly satisfies the recurrence

f(b) = (b− 1) + f(b− 1),

since you first earn 1× (b− 1) = b− 1 points by removing the topmost box
from the b-tall stack and then another f(b− 1) points for bringing down the
remaining (b− 1)-tall stack. Applying this recurrence repeatedly, I got

f(b) = (b− 1) + f(b− 1)

= (b− 1) + (b− 2) + f(b− 2)
· · ·
= (b− 1) + (b− 2) + · · ·+ 1 + f(1)

= (b− 1) + (b− 2) + · · ·+ 1 + 0,

which is exactly b(b− 1)/2, according to Theorem 1. �

So, the mystery behind the discovery of the value of the final score is
resolved. Hopefully, no other mysteries remain as to how I found this proof:
Experimentation led me to the suspicion that all strategies produce the same
score. This suspicion led me to the discovery of an expression for this score
in terms of b. Then, I could restate the theorem as a claim about the natural
number b. At that point, induction was a natural technique to apply. And
applying it could not have been easier.

Overall, there is now no difference between you and me. Previously, I
was the person that had built the proof and you were a person that had
simply read it. Naturally, there was stuff that I knew but you did not.
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As a result, although you were convinced that the theorem was true, you
remained (partially) puzzled as to how the proof was found. That is, you
were in the position of a reader who is convinced but puzzled. Resolving this
puzzlement required some (easy, but still) non-trivial reasoning, that you
either discovered on your own or you found in the answer to Question 1.

Let us use the name Proof 2A′ for the full argument that we get by
incorporating the answer to Question 1 into Proof 2A. Then, what I just
said in the previous paragraph is that with respect to Proof 2A′ I have no
more information than you do; that is, information-wise we are both in the
position of the person that has discovered the proof. So, it is no more “you,
me, and Proof 2A”. Rather, it is “us and Proof 2A′”. And not only are we
both convinced that the theorem is true, but we are also both free of any
puzzlement as to how the proof of the theorem was found.

At this point, it is tempting to conclude that we are also free of any
puzzlement as to why the theorem is true. After all, what else is there to
a theorem other than its proof? If we have been able to prove it, then we
cannot possibly be puzzled as to why it is true, can we? Well. . .

2.2. But why is it true? Why is the theorem true? Is there a single
reason which we can put our finger on and say “That’s why!”? Or, if no
single reason is behind it, is there a succinct story that will carefully select
those aspects of the world that make it necessary for the theorem to hold?

It probably sounds strange that I am asking this question right after we
have finished a proof of the theorem. Isn’t this proof already the story
that I am after? Not really. To see what I mean, try removing from this
proof all unnecessary mathematical formalities and focus on the heart of its
argument: what does it say? The reason why our strategy does not matter
when we start with b boxes on the table is because

it does not matter on the 1-box stacks that we will eventually
create; and, because of this, it does not matter on the 2-box
stacks that we will create, either; and because of these two
facts, it does not matter on the 3-box stacks that we may
create; and so on, up to the b-box stack that we start with.

Are you happy with this story? I am not. Although I do understand that
the irrelevance of strategy is a property that propagates from shorter to
taller stacks, I still do not see how each step in this propagation happens.

My discomfort is not surprising, of course, as this little story has com-
pletely ignored the content of the inductive step. We cannot possibly achieve
understanding without incorporating that argument. Let us try. What
does the argument say? It says that, no matter how we break a stack of b
boxes, the x(b−x) points from our move will nicely combine with the scores
x(x − 1)/2 and (b − x)(b − x − 1)/2 that we will earn from the two new
stacks, so as to build a total that is exactly as claimed.

But how does this happen? I can see that the math works out in Equa-
tion (1), but why does it? Isn’t it strange that these three quantities ‘con-
spire’ the way they do? In particular, notice how conveniently the several
occurrences of x in (1) end up canceling each other, leaving the final score
independent of the way the first stack was split. What kind of a coincidence
is this? Can you explain it? I cannot. To me, it is a mystery.
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Hopefully, you agree with me that there is something here to discuss. And
you also feel the discomfort that, somehow, the reasons why the theorem is
true have been screened from us. That, natural as it may be, Proof 2A′ is
not telling us what is really happening. I will assume that you indeed feel
this way, and I will continue discussing ‘our’ puzzlement about the situation.
If this is not the case, I can only suggest that you read on: most probably,
the point will be clearer at the end of the next section. Either way, it is
important to mention that I am not inventing these issues as part of some
strange philosophical scheme. This is the sincere puzzlement that students
have actually had after being exposed to Theorem 2.

So, here is a summary of our situation:
• We have a rigorous proof. We are convinced the theorem is true.
• We even have a natural proof. One that, apart from establishing the

truth of the theorem, also resolves all questions as to how itself was
discovered. We (could) have proved the theorem by ourselves.
• We still do not see why the theorem is true. We remain puzzled.

Overall, we are in the position of a prover who is convinced but puzzled. We
encode this strange situation in the following question.

Question 2. But why is the theorem true?

Notice that our puzzlement is, in fact, as serious as it would have been if,
before finding or reading Proof 2A′, we were told by some oracle that we
trust that the theorem is indeed true.

2.3. That’s why! I am about to give a different proof of Theorem 2. But I
believe this proof is already in your mind, waiting for the correct questions
to put it together. So let me first ask you these questions.

• What is the height of a box? That is, if you freeze the game at any
particular point, what number would you assign to each box in order
to appropriately describe how high on the table that box is?
• What is the total height of the b boxes on the table?
• What is the total height when the game starts? What is the total

height at the end of the game?
• How does the total height change in each move? Does it increase or

does it decrease? By how much?
Try to answer these questions before moving on. The hope is that the proof
will then pop out. If not, you should just read the next paragraph.

Proof 2B. Consider a configuration of the boxes on the table. For any given
box, define its height to be the number of boxes below it in its stack. Define
the total height on the table to be the sum of the heights of all boxes. For
example, in the configuration

00

1

0

1

2

the labels indicate the heights of the boxes; the total height is 4. (Can you
now complete the proof without reading on? Try it!)
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Now consider a single move in the game, where the x topmost boxes of
a stack of size m are removed to form a new stack. What change does this
cause in the total height? Clearly, only the height of the x boxes that are
moved is modified. For each of them, it decreases by an amount equal to
the number of boxes that remained in the stack; that is, by m− x. Hence,
the total height decreases by

x(m− x).

Which is exactly the number of points that the move is worth!
Therefore, in each move the player increases his score by exactly the

amount by which he decreases the total height. Hence, in the end his final
score will equal the overall decrease in total height. But this overall decrease
is independent of strategy: no matter how the player plays, the original and
final configurations of the game are fixed. �

So, here is a succinct story that I believe adequately answers Question 2.
The reason why our strategy in this game will not matter is because

no matter how we play, in each move we increase our score by
as much as we decrease the total height of the configuration;
so, our final score will necessarily be the difference between
the initial and the final total height.

Are you satisfied with this story? I am, and I hope so are you. The next
section tries to explain what makes this story a satisfactory one. Before
that, let us finish with a couple of remarks.

First, as already mentioned in the little story above, the new proof can
immediately give us the value of the invariant score.

Corollary. The common score of all strategies is b(b−1)
2 .

Proof. In the starting configuration, all b boxes are on the same stack, so
their heights cover all numbers in 0, 1, 2, . . . , b−1, and hence the total height
is b(b−1)/2, by Theorem 1. In the final configuration, every box is on its own,
so that all boxes have height 0, and thus the total height is 0. Therefore, the
overall decrease in total height in the course of the game is b(b− 1)/2. �

The second remark addresses the concern that the introduction of the
concepts “height of a box” and “total height on the table” is as unnatural
as the introduction of b(b− 1)/2 in Proof 2A.

Question 3. Where did the concept of “height” come from?

Answer. Again, I retrace my thoughts in building Proof 2B. After Proof 2A,
I already knew that the final score was always b(b − 1)/2. Searching for a
‘better’ proof, I tried to identify this quantity on the table as the value of
some ‘natural’ magnitude there:

where on the table can I find the value b(b− 1)/2?

In this search, it was natural to think of the well known fact of Theorem 1:
if I could identify the numbers 0, 1, 2, . . . , b − 1 somewhere on the table, I
would also have the required value, as their sum. So, the question became:

where on the table can I find the numbers 0, 1, 2, . . . , b− 1?
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But then, since there were b boxes on the table, it was natural to try to
identify each of these numbers as the value of some property of one of the
boxes. The concept of “height of a box” was the first idea. �

2.4. The second proof is better. What makes Proof 2B so much better
is of course the introduction of the concept of ‘height’.

The new concept becomes the center of the entire network of concepts that
the game gives rise to: a configuration of the boxes is now only a number,
the total height that it defines; a move by the player is a mere number, too,
the decrease in total height; this same number is also the player’s gain. By
understanding what the ‘height’ of a box is and how it behaves throughout
the game, one almost immediately has a grasp of all aspects of the game that
are relevant to the question why the final score is independent of strategy.
In effect, the new proof tightly reorganizes the discussion around a well-
defined center and in a way that distinctly reveals the connections among
the different relevant concepts.

However, it is as important that the new center of the discussion is very
intuitive, as you may have already verified on your own by successfully an-
swering the questions in the beginning of Section 2.3.

Understanding what the height of a box is involves no thinking at all. It
is as simple as ‘how high the box is’. When Proof 2B defines it, it does not
really describe a property of the boxes that we did not know of; it simply
makes us aware of its importance in the discussion. The property has always
been there and, after we are reminded of it, it is almost impossible to keep
thinking of the boxes without also having their height in mind.

Moreover, the behavior of the property is equally familiar. That splitting
a stack will somehow decrease the height of some of its boxes and that at
the end of the game the total height will be 0 are facts that we know before
we think about them. Equally familiar is the interaction of this behavior
with the behavior of our score: some initial total height is being gradually
transferred from the table into our score until it is completely consumed.
Rings a bell? Put ten apples and Bob’s stomach in the place of the initial
total height and our score and you will see a process that in Section 1.3 we
agreed we can reason about almost without using our brains.

These two attributes of Proof 2B, the tight reorganization of the discussion
around a very intuitive new center, seem (quite vaguely, sure enough) to
explain why we consider it a significantly better proof. We will clarify and
elaborate in later sections. Before that, another interesting point is due.

2.5. No, that ’s why! Coming up with the notion of ‘height of a box’ is
only one way to start an explanatory proof of Theorem 2. Here is another.

Proof 2C. Assume an arbitrary (but fixed throughout the game) numbering
of the boxes from 1 to b and consider a configuration of them on the table.
We define the adjacency graph for this configuration to be a graph with
vertices {1, 2, . . . , b} and an edge between vertices i and j if and only if boxes
i, j belong to the same stack. For example, for the numbering indicated by
the labels on the boxes, the configuration on the left has the adjacency graph
shown on the right:
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Note that, at the start of the game all boxes are in the same stack, so the
adjacency graph contains all possible edges. In contrast, when the game is
over, each box is in a stack of its own, so the graph contains no edges at all.

Now, consider a move in the game, where the x topmost boxes of a stack
of size m are removed to form a new stack. How does this change the
adjacency graph? Clearly, no edges are added, but some are removed. In
particular, an existing edge between vertices i and j is removed if and only
if boxes i and j are separated by the split; that is, if and only if one of them
is among the x topmost boxes of the stack being split and the other one is
among the remaining m − x. Hence, the number of edges being removed
equals the number of couples of boxes being separated; that is, equal to

x(m− x).

Which is exactly the number of points that the move is worth!
Hence, each move increases the player’s score and decreases the number

of edges in the adjacency graph by the same amount. So, the final score
of the player has to equal the overall decrease in the number of edges. But
this overall decrease is determined by the starting and final graphs only, and
these do not depend on how the player plays. �

How does this new proof compare to the previous two? Clearly, it is as
rigorous and establishes the truth of the theorem as strongly. But how good
is it in terms of explanatory power? You hopefully agree with me that it
is clearly better than Proof 2A (for the same reasons that made Proof 2B
better as well), but not as satisfactory as Proof 2B. We will discuss this latter
comparison in the next section. Before that, let’s finish with two remarks
similar to those that followed Proof 2B.

First, the new proof also gives us the invariant value of the final score.

Corollary. The common score of all strategies is b(b−1)
2 .

Proof. In the initial graph, all possible edges among the b nodes are drawn.
To count them, iterate over all nodes and count the number of edges leaving
out of each one. You will get a total of b(b − 1), because on each of the b
nodes you will see all edges that can depart from it toward the other b− 1
nodes. But you will also have counted each edge exactly twice, once when
you were on its one end and once more when you were on its other end. So,
you should divide your count by 2. The initial graph has b(b− 1)/2 edges.

In contrast, the final graph has 0 edges. Therefore, the overall decrease
in the number of edges in the course of the game is b(b− 1)/2. �

Second, we should again address the “where did this come from” question.

Question 4. Where did the “adjacency graph” come from?
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Answer. As in the answer to Question 3, I tried to identify b(b−1)/2 as the
value of some natural quantity on the table. This time I recalled that (as
shown in the proof of the last corollary) this number is exactly the number
of edges in a complete graph with b vertices, which is a well-known fact.
It was natural then to associate the configuration on the table with such
a graph. It was clear that the vertices of the graph should correspond to
boxes on the table, so it remained to interpret what the presence of an edge
would mean. It had to mean that some relation between the corresponding
boxes should hold. Being in the same stack was the first such relation to
come to mind. �

2.6. The second proof is still better. Like Proof 2B, the new proof also
has the two important attributes that it tightly reorganizes the discussion
around an intuitive new center, the adjacency graph.

That the new organization of the discussion is as successful as the one
in Proof 2B cannot be denied. The two proofs follow the same pattern: a
quantity associated with the central concept (the number of edges in the
adjacency graph; the total height on the table) decreases in every move, and
the decrease always equals the increase in the player’s score, so that the
final score is the total decrease of this quantity. The same apples-and-Bob
argument, but with a different kind of apples in each case.

What makes Proof 2B more satisfactory is therefore its being more suc-
cessful in the selection of the central concept: the total height on the table
is more intuitive than the adjacency graph. In a sense, the heights of the
boxes are on the table, their presence and behavior being within our im-
mediate perceptive faculties. In contrast, the adjacency graph seems to be
a concept on the side, whose behavior requires some (straightforward, but
still) non-trivial extra step in order to understand and work with.

3. Requesting an Explanation

Questions 1 through 4 are typical of the kind of questions that students
ask after they have been exposed to a proof and while they are still trying to
“understand”. As already seen, Question 2 is of a sharply distinct nature.

All other questions request some kind of explanation as to how a certain
concept used in the proof was arrived at. They are questions about the proof ;
about its discovery; about the history of the prover’s thoughts during and
behind the construction of the proof. Naturally, the prover never asks ques-
tions of this kind. It is a (convinced, but) puzzled reader that poses them.

In contrast, Question 2 is about the theorem, about the fact being proved.
It is a request for a ‘deeper’ reason why the theorem actually holds. And it
is characterized by the surprising property that it can be posed even by the
person that has just finished constructing the proof.

In this study we focus on questions of the latter kind. Questions of the
former type are not less interesting; discussions of them can be found in
Polya’s [3] and in the related analysis by Sandborg [4].

3.1. Why-questions. The connective that introduces Question 2 serves
only as a reminder of the context in which the question has been asked. If
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we remove it, Question 2 is simply

(2) Why is the theorem true?

or, using the statement of Theorem 2 explicitly,
Why is the final score independent of strategy?

A framework for analyzing questions of this type, called why-questions, in
the context of scientific explanation has been developed by van Fraassen [6].

3.1.1. Motivation and definitions. The main motivation there has been the
resolution of two important problems faced by the philosophy of science in
previous attempts to describe scientific explanation: rejection and asym-
metry. The first refers to the situation where a scientific theory rejects
a request for explanation as illegitimate, although the request lies clearly
within the theory’s domain. The second refers to the situation where, be-
tween two equivalent propositions, a theory uses one as an explanation of
why the other holds, but not conversely. An example (from [6]) that illus-
trates both problems is the following: According to atomic physics, each
chemical element has a characteristic atomic structure and a characteristic
spectrum (of light emitted upon excitation). So, the proposition that an el-
ement exhibits a particular atomic structure is equivalent to the proposition
that this element exhibits the corresponding particular spectrum. Now, if
we ask why an element has a particular spectrum, the explanation is given
in terms of its atomic structure. But if we ask why the element has a partic-
ular atomic structure, a response in terms of its spectrum is not considered
an explanation. The theory actually rejects this latter question.

The direction followed by van Fraassen bases on the crucial realization
that “scientific explanation is not (pure) science but an application of sci-
ence” (p. 156). Hence: “An explanation is not the same as a proposition,
or an argument, or list of propositions: it is an answer. (Analogously, a son
is not the same as a man, even if all sons are men, and every man is a son.)
An explanation is an answer to a why-question. So, a theory of explanation
must be a theory of why-questions.” (p. 134). And since any such theory
must take into account the context in which a why-interrogative is asked, so
must any theory of explanation.

According to van Fraassen, a why-question expressed by an interrogative
in a given context is a triple Q = 〈P,X, R〉, where (concrete examples of
these definitions are given in the next section):

• P is the topic: the proposition which is the subject of the interrog-
ative; the interrogative asks for an explanation why P is true.
• X is the contrast-class: a set of propositions that contains P and all

alternatives to it; the interrogative asks for an explanation why it is
the case that P as opposed to some other member of X.
• R is the relevance relation: a relation between topic/contrast-class

pairs and propositions; among the possibly many reasons why P and
not some other member of X, the interrogative asks for one that is
R-related to 〈P,X〉.

Then, a direct answer to Q is any proposition B which is true exactly when
〈P ; and, for all P ′ ∈ X − {P}, not P ′; and A〉, for A some proposition that
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R-relates to 〈P,X〉. This A is the reason offered by B. For simplicity, we
also refer to B as “Because A” and to A as an answer.

In addition, to ask Q presupposes that there exists a direct answer to it
which is true. So, the presupposition of Q is that only P is true in X and that
there exists a true proposition in R-relation to 〈P,X〉. If this presupposition
is false according to the body K of accepted background theory and factual
information that is associated with the current context, then Q does not
arise at all in this context and can therefore be rejected.

3.1.2. An example. Suppose Q is the question expressed by the interrogative
I =“why does the sun exert a force on earth?”. Then the topic P is the
proposition expressed by the sentence “the sun exerts a force on earth”.

In the rather strange context where we would be asking why the sun exerts
a force on earth as opposed to some other planet, the contrast-class X ′ would
consist of all propositions that can be expressed by the sentence scheme “the
sun exerts a force on planet x”, as x ranges over all planets. Note how the
definitions above capture our discomfort in this question: With this topic P
and contrast-class X ′, the question presupposes that the sun does not exert
a force on any planet other than the earth. In the ordinary context, the
associated factual information makes this presupposition false. Therefore,
this question does not arise and, if asked, it would be rejected.

Now consider the more natural context, in which the interrogative I would
be just asking why there is a force as opposed to not there being a force.
Then, the contrast-class would simply be X = {P, not P}.

For these P and X, at least three relevance relations could emerge.
For a natural context, suppose I is one of the questions in a high school

exam. Then the relevance relation R relates to 〈P,X〉 propositions that
lie within Newton’s theory. One of them is, of course, the proposition A
expressed by the sentence “every mass exerts a force on every other mass”.
Hence, “Because A” is a possible direct answer to Q = 〈P,X, R〉.

On the other hand, suppose that I happens to be the n-th successive
interrogative of the form “Daddy, why. . . ?” asked by the 7-year-old while
he is observing the night sky through the telescope and after his father has
quickly summarized to him the essentials of Newton’s theory. Then the
interrogative is really a concrete way to express the deeper question why
forces between masses exist in the first place, and the relevance relation
R′ relates 〈P,X〉 only to propositions that are in this spirit. In particular,
A is not R′-related to 〈P,X〉, and “Because A” is not an answer to Q′ =
〈P,X, R′〉. In fact, in the associated background theory of Newton, no true
proposition is in R′-relation to 〈P,X〉. Hence, the presupposition of Q′ fails,
and Q′ does not arise. The poor father will have to reject the question.

Finally, suppose I is one of the rhetorical questions asked by a philosopher
as he describes how man invents concepts —the phlogiston, the force, the
electron— that help him organize his experience into networks of knowledge
that are as unified and as tight as possible. Then I is really asking why
Newton’s story of the world needs the sun to exert a force on earth, and the
relevance relation R′′ follows this unusual spirit. For example, the philoso-
pher may go on to answer that this is because the earth revolves around
the sun; that is, Newton needs the sun to exert a force on earth so that
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his story both stays concise and accounts for the observation that the earth
revolves around the sun. So, the proposition P ′ expressed by the sentence
“the earth revolves around the sun” is R′′-related to 〈P,X〉. Notice how the
twisted context allows P ′ to be offered as an explanation for P , when in the
ordinary context it is P that is actually offered as an explanation for P ′.

3.1.3. Evaluation of explanations. Because of what problems it set out to
solve, the framework of why-questions focuses on deciding whether some
proposition A may be offered as an answer to a particular question or not.
Although this alone is an important problem, it is also important to be able
to evaluate answers.

So, if A may indeed be offered as an answer to a question Q = 〈P,X, R〉,
how good an answer is it? Van Fraassen mentions three ways in which this
evaluation can be done in a context with background knowledge K (p. 146):

The first concerns the evaluation of A itself, as acceptable
or as likely to be true. The second concerns the extent to
which A favours the topic P as against the other members of
the contrast-class. [..] The third concerns the comparison of
Because A with other possible answers to the same question;
and this has three aspects. The first is whether A is more
probable (in view of K); the second whether it favours the
topic to a greater extend; and the third, whether it is made
wholly or partially irrelevant by other answers that could be
given. (To this third aspect, Salmon’s considerations about
screening off apply.)

Recall that, in the Reichenbach-Salmon sense, an answer A′ screens off an-
other answer A from the topic P if and only if the probability of P given
both A and A′ is the same as the probability of P given A′ alone.

3.2. Our explanation request as a why-question. We now model Ques-
tion 2 as a why-question. Namely, we build the why-question expressed by
the interrogative of (2) when this is asked in the context of Section 2.2.

The topic P is the proposition that the theorem is true, i.e., that the final
score is independent of strategy. The contrast-class is just X = {P, not P},
since the only alternative that we considered was that the theorem is false.

To determine the relevance relation we first note that the interrogative
in (2) can be asked even in a situation where one has read the statement
of the theorem but has seen no proof of it yet. Then, the why-question
would have (the same contrast-class X, and) a relevance relation Rm that
would allow any mathematically rigorous argument as an answer. However,
in the context of Section 2.2, an answer must not only be mathematically
rigorous but also satisfy our demand for ‘deeper’ reasons, for a story that will
‘unveil the conspiracy’. Hence, the implied relevance relation Rd is clearly
a restriction of Rm. In particular, it renders Proof 2A irrelevant while it
allows Proofs 2B and 2C.

Overall, when modeled as a why-question, Question 2 is the triple

Q2 = 〈P,X, Rd〉
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for the P , X, and Rd just described. One can quickly see that this modeling
completely avoids the issues that we want to address. In particular, we still
have no analysis of

• the difference between Proof 2A on the one hand and Proofs 2B and
2C on the other, and
• the difference between Proofs 2B and 2C,

which is what we are really after. However, the modeling does give us a nice
vocabulary to describe these issues and thus make our conclusions more
general. In this vocabulary, the first of the two differences above is the
difference between Rm and Rd, while the second one asks for the evaluation
of answers that have passed the Rd test.

3.3. Rm versus Rd. So, how do Rm and Rd differ? What makes one
argument succeed in satisfying our request for ‘deeper’ reasons and another
one fail? What is the difference between an argument that manages to
trigger in our mind this feeling of ‘understanding’ and one that doesn’t?
What is this feeling of ‘understanding’, anyway?

We certainly cannot give precise descriptions of the relations Rm and
Rd. But we have agreed that, although each one of the Proofs 2A, 2B,
and 2C passes the Rm test, only Proofs 2B and 2C make it through Rd.
Sections 2.4 and 2.6 have already discussed what promotes the two proofs,
by saying that each of them manages to tightly reorganize the argument
around a very intuitive new center. To say anything more than just this, we
need to allow ourselves to speculate. So, although the rest of the section is
written in the form of a claim, it is really only a reasonable suggestion.

To understand is to create an analogy with the physical world. To map the
new experience to past experience about the physical objects that surround
us. To find between the new phenomenon and an already experienced phys-
ical one an isomorphism which preserves the behavior of the participating
concepts. To invent a metaphor through which discussing the new phenom-
enon is like discussing an old physical one. To reduce the new stuff to stuff
about our everyday interaction with the physical environment. (Here, the
meaning of the words analogy, mapping, isomorphism, metaphor, reduction
is that of metaphor as described in [1] and [2].)

This is exactly what Proofs 2B and 2C did. The first one reduced the
discussion to a discussion about how high the several boxes collectively stay
on the table. The second one mapped the discussion down to a discussion
about how many lines remain drawn between several dots on a page. Both
described the evolution of the game in terms of an apples-and-Bob pro-
cess. Overall, analogies re-described the setting of the theorem in terms of
everyday experience that exists in almost everyone’s memory.

Proof 2A tried to move toward the same direction. It first described the
invariability of score as a property of the stacks that can possibly appear on
the table throughout the game, and then used induction to describe how this
property climbs up from shorter to taller stacks backward in time. But after
that point, the analogy broke. In describing the elementary steps in this
climb, the proof switched platforms, to transfer us to the world of symbolic
manipulation, in line (1).
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The problem with this switch is not that by jumping to symbolic manip-
ulation we lifted ourselves into some abstract world that is not in any way
mapped to our physical experience. It is exactly by analogy to the physical
world that we can actually understand symbols and manipulate them. The
variables of an arithmetic expression are like fresh objects on the page. We
can move them around, regroup them, take them away in pairs, as if they
were pebbles of different colors, or “guys” (a metaphor quite common among
students of mathematics) belonging to different teams. So, throughout the
calculations in line (1), we are still in some correspondence to the physical
world. We could not do otherwise.

The problem is that this correspondence does not compose well with the
analogy that the argument of Proof 2A had already established via its in-
ductive structure. What does the occurrence of b

2 in line (1) mean exactly in
terms of how high the boxes are on the table and what move I have made?
And why does it come with a negative sign? What about the first occur-
rence of x2

2 ? What about the second one? What does it mean, in terms
of my first move, that these two occurences together cancel out with the
negative occurrence of x2? And how do you make sense of the fact that,
while we start and end the manipulation with ‘apples’, in between there are
both ‘apples’ and ‘oranges’? (The three original terms and the final term
are all squares of numbers of boxes, but in between we also see terms that
are just numbers of boxes.)

Are there answers to these questions? There have to be! In fact, some of
them are easy. But some are harder. Can you answer them? Maybe you
can, but how long will it take you? In any case, I am confident that you
think about these issues only now that I am asking and, in particular, long
after the proof has convinced you about the truth of the theorem.

In general, at the beginning of every symbolic manipulation, the variables
of the arithmetic expression are fresh objects that map to concepts of the
main context, the one that gives rise to the expression. When we start the
manipulation, this mapping is forgotten, the fresh objects enter the algebraic
battle field semantically uncharged, and fight their way through each line.
Those that finally make it across the last equal sign put on again their
original meaning, and that is the only thing that we keep as we return to
the main context. This tactic of forgetting, manipulating, then remembering
again is exactly the power of algebra, what makes it so widely applicable. It
is by severing the links to the main context that we manage to perform all
these calculations. If we had to maintain these links all the way through, to
constantly have in mind the meaning of each variable, some easy calculations
would immediately become hard or impossible.

Overall, in order to achieve efficiency, we switch our correspondence with
the physical world: from the one implied by the main context, we move to the
one implied by the context of symbolic manipulation, and then back to that
of the main context. When the two correspondences do not compose well,
the price that we pay is in explanatory power. What intervenes between the
start and the end of the symbolic manipulation stays behind an impenetrable
brick wall. Our only option is to simply walk around it, by switching to the
appropriate correspondence, and verify the correctness of what lies behind.
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This is where Proof 2A fails. It uses more than one analogies with the
physical world and these do not compose well. As a result, it does not pro-
vide us with one analogy that can take us throughout the entire argument.
Under these conditions, we can verify but we can not understand. In the
general terms of Rm and Rd, the suggestion is that a mathematically rigor-
ous argument can make it through Rd only if it provides a single analogy to
the physical world that can be used throughout the entire proof.

3.4. Inside Rd. So far, the modeling of Section 3.2 and the description of
Rd in the previous section have sketched the gross outline of a systematic
reasoning that can weed Proof 2A out of the possible answers to Question 2,
exactly as our intuition has already dictated clearly but unsystematically.

The next issue that we want to address is of course the comparison be-
tween Proofs 2B and 2C. According to our reasoning, both should be de-
clared possible answers to Question 2, which is in par with our original
intuition. But this intuition also tells us that 2B is better than 2C. Does
this show up in our modeling?

We should first check whether the three criteria suggested by van Fraassen
in Section 3.1.3 for the evaluation of explanations can tell this difference.

Clearly, each of the proofs is true with probability 1 and supports the
topic P of the question against its alternative in the strongest possible sense.
Hence, both proofs score maximally in the first two criteria, so that the first
two aspects of the third criterion cannot distinguish between them.

The last aspect of the last criterion cannot help, either. If we interpret it
as implying the Reichenbach-Salmon criterion for an answer being “screened
off” by another (which is the only interpretation suggested by van Fraassen),
then all relevant probabilities are 1, rendering the criterion completely blind.
Of course, some other interpretation of “made wholly or partially irrelevant”
might do better. But it is hard to imagine one that will decide Proof 2C
is made irrelevant by Proof 2B without at the same time also deciding that
Proof 2B is made irrelevant by Proof 2C, as the concepts involved in the
two proofs are tightly entwined.

It is easy to describe this entwinement precisely. Fix a configuration of the
boxes on the table and consider one of the stacks in this configuration. On
the one hand, each box in this stack has a height and the sum of these heights
is a number at most the total height of the configuration. Call this number
the total height of the particular stack. On the other hand, each box in the
stack corresponds to a node in the adjacency graph for this configuration
and thus the stack corresponds to a subgraph of the adjacency graph. Call
this subgraph the subgraph of the particular stack. Now, it is easy to see that
all nodes in this subgraph connect to each other and to no nodes outside
the subgraph. Hence, if the stack has size m and therefore total height
m(m − 1)/2, its subgraph has m nodes and m(m − 1)/2 edges. Overall,
a configuration consisting of s stacks corresponds to an adjacency graph
consisting of s complete graphs as connected components, each the subgraph
of a stack. Splitting one of the stacks to create two new stacks is the same as
removing the appropriate edges from the corresponding subgraph to create
the subgraphs of the new stacks.
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So, both proofs describe the same thing but with different names. What
mathematical or logical criterion could decide that one of them makes the
other irrelevant without also deciding the converse? It does not seem that
the last suggestion by van Fraassen can be of any help in our setting, so that
all criteria are blind for the comparison that we consider. More strongly, it
seems that it is the kind of the suggested criteria that makes them fail to
distinguish between the two proofs.

But our intuition did distinguish between them, so there is a difference.
In Section 2.6 we said that the better proof has been more successful in
the selection of the central concept around which it organizes its argument;
that, somehow, the heights of the boxes seem to be right there on the table,
whereas the adjacency matrix is on the side. To make the mental shift from
a configuration of the boxes to their heights is almost effortless, whereas to
make the corresponding mental shift from a configuration to its adjacency
graph is an easy but definitely non-immediate step. In a sense, Proof 2B
does make 2C irrelevant, but not mathematically or logically; simply as
in “if we can think about this right on the table, why bother moving the
discussion to the side?” In other words, Proof 2B is faster.

We can describe this a little more precisely. First, we are comparing proofs
that can be given as answers to Question 2, therefore proofs that have passed
the Rd test. So, each proof establishes an analogy with the physical world,
a mapping of the participating concepts to concepts related to past physical
experience. Then, in view of the preceding remarks, the critical question
becomes: how easy is this mapping? How fast can my mind perform the
implied mental shift? How fast can my mind compute this reduction from
new to past experience? The easier the reduction, the better the proof.

One can probably recognize here certain standard key concepts from the
theory of computation [5]. However, it is important to note that the sug-
gested criterion is clearly extra-logical, extra-mathematical. It is not one
that can be decided by looking at the proof alone. The reader of the proof
is as important. What reductions are easy to compute depends on who the
reader is and what his past physical experience has been.

3.5. Summing up. So let us recap. Among all questions in Section 2, we
distinguished Question 2 as a request for explaining the theorem rather than
the discovery of the proof. We saw that in the theory of why-questions this
special nature of Question 2 is modeled via a relevance relation that is a
restriction of the one which allows all mathematically rigorous proofs.

Elaborating on the difference, we suggested that a proof is explanatory if
and only if it establishes a single analogy with the physical world which alone
can lead us throughout the entire argument. That is, although every proof
inevitably consists of sub-arguments that base on analogies of this kind, only
sometimes do these analogies compose nicely into a single one that can be
followed throughout the proof. It is then that we have an explanation.

We also noticed that even between explanations our intuition may dis-
tinguish one as better than the other. We suggested that this is due to the
difference in the hardness of computing the corresponding single analogy:
the faster this can be done, the better the explanation.
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4. Conclusion

Sometimes I have a cool idea about how to prove a theorem. I work hard
for days and, happily, it works! The proof is nice, and I carefully write it
down, making sure I have not missed anything. After I finally draw the little
box marking the end of it, I lie back in my chair half-satisfied half-annoyed,
my pencil rolling in my fingers: “Ok, it’s true. But why?”

Sometimes a student wants me to go over the solution to a discrete math
homework problem. I repeat the proof on the board thinking it out from
scratch, so that she sees no magic is involved, only the natural next steps
of an educated mind like hers. When I am done, her reaction is “Oh, ok”
and then silence. I can feel the tension, so I say “But you can also think of
it like this” and go on to give another, explanatory proof. Her eyes spark,
“Oooh, I see”, and starts re-describing the solution in her own words.

My essay has been about this “But why is it true?” or “Oh, ok—vs—
Oooh, I see” phenomenon that every working mathematician, in research or
in teaching, is aware of and has many stories to tell about. My main goal
has been to illustrate it with a couple of simple examples that readers with
no extensive mathematical background can follow —it definitely happens in
more complicated math, too, but not necessarily more often. I also tried to
build around this phenomenon a story that makes some sense, by using van
Fraassen’s theory for scientific explanation.

There is no doubt that the phenomenon is real —people bump on it every
day. In addition, I believe its fit into the theory of scientific explanation is
meaningful and interesting. I am also pretty confident about the general
direction of the story that I have tried to tell, namely the role of fast reduc-
tions that map concepts down to past physical experience. Still, the details
of my analysis are less likely to be correct, and it would be interesting to
see examples where they fail.

Beyond this point, there are questions one may want to ask. For example:
What is the value of explanatory proofs in mathematics? Sure, they may

make us feel that we understand, which is good. But do they also help us
prove more theorems? It seems tempting to jump to a positive answer, but it
is probably wiser not to unconditionally conclude so. At least in some cases,
an explanatory proof seems to be little help in making further progress.

Is there always an explanatory proof? That is, can every proof be con-
verted into an explanatory one? Again, it is tempting to answer positively.
But can we? Similarly to the fact that most interesting formal systems al-
low for true propositions that have no proof, maybe it is also true that most
interesting systems of experience allow for proofs that have no explanatory
counterparts. Given our grounding of explanatory power to past physical
experience, the unconditional existence of explanatory proofs would declare
the mind potentially close to all mathematical problems. Both the view of
the brain as the product of evolution and the evidence from mathematical
practice seem to be against such a position. If this is so, what does it imply
for doing mathematics, both research and teaching?

Are there general techniques to develop explanatory proofs? Even if not
all proofs have explanations, many do. Are there general strategies for
discovering these explanations? Namely, the same way that induction and
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algebra help us find proofs for the theorems that have them, are there tools
for discovering explanations for the proofs that have them?
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