
International Journal of Foundations of Computer Science

c© World Scientific Publishing Company

NON-RECURSIVE TRADE-OFFS FOR TWO-WAY MACHINES

CHRISTOS KAPOUTSIS

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139, USA, cak@mit.edu

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

If the machines of some type a have enough resources to (i) solve problems that no
machine of type b can solve, and (ii) simulate any unary two-way deterministic finite
automaton that has access to a linearly-bounded counter, then typically no recursive
function can upper bound the increase in the size of description when a machine of
type a is replaced by an equivalent machine of type b.

Keywords: Descriptional complexity; Non-recursive trade-offs; Multi-head two-way finite
automata; Multi-counter automata.

1. Introduction

The origins of descriptional complexity of formal machines can be traced back

to [19], when Rabin and Scott showed that every one-way nondeterministic finite

automaton (1nfa) has a deterministic equivalent (1dfa) that is at most exponen-

tially larger. The question whether this exponential blowup in size can be avoided

has been one of the first steps in the general direction of investigating the relative

succinctness of different types of machines as language descriptors.

A similar but also qualitatively distinct situation emerged several years later,

when Stearns [22] studied the relation between one-way deterministic pushdown

automata (1dpas) and 1dfas. Differently from above, he knew that not every 1dpa

has a 1dfa-equivalent. But, similarly as above, he proved that, whenever such

equivalents exist, the smallest among them are at most triple-exponentially larger

than the 1dpa.

This naturally lead to the corresponding question for one-way nondeterministic

pushdown automata (1npas): in the case where a 1npa has 1dfa-equivalents, what

is an upper bound for the size of the smallest among them? The answer was again

qualitatively new, by Meyer and Fischer [13], who showed that every such bound

grows (as a function of the size of the 1npa) faster than any computable function.

Put another way, among the cases where it is possible to convert a 1npa into a

1

1dfa, the trade-off in the size of description is in general non-recursive. Several

refinements of this result followed [23, 20].

In an important development, Hartmanis [4] later explained that the recur-

siveness of the trade-off from a type of machines a to a not-as-powerful type of

machines b typically implies the recognizability (semi-decidability) of the corre-

sponding inadequacy problem: “given a machine of type a, check that it has no

b-equivalents”. This greatly simplified the proofs of [13, 23, 20], while it nicely re-

vealed the connections of the entire discussion to Gödel’s theorem that the addition

of an extra axiom to a formal system typically results in non-recursively shorter

proofs for some of its theorems [5].

Today many refinements of the above results are known and non-recursive trade-

offs have emerged in numerous other comparisons between different types of ma-

chines. Comprehensive surveys can be found in [3, 12].

1.1. This Study

In a remark in [7], Hartmanis and Baker showed that a non-recursive trade-

off can occur even when an optimal algorithm replaces a near-optimal one.a For

example, converting an n2+ǫ-space deterministic Turing machine (dtm) into one

that uses only n2-space involves a non-recursive blowup in the size of description.

In the pattern of [4], they derived this observation from the unrecognizability of

the inadequacy problem from near-optimal to optimal machines (from n2+ǫ-space

to n2-space dtms), which in turn was shown to be a consequence of the fact that

the near-optimal complexity class is strictly larger than the optimal one (some

n2+ǫ-space dtms have no n2-space equivalent).

In the present study we refine that argument. We prove a general theorem that

directly shows the non-recursiveness of the trade-off in numerous conversions be-

tween machines of different power. In loose terms, our theorem states the following:

If two types of machines a and b are such that

(1) some machine of type a has no equivalent machine of type b, and

(2) a machine of type a has enough resources to simulate a unary two-way deter-

ministic finite automaton which has access to a linearly-bounded counter,

then the trade-off from machines of type a to machines of type b is non-recursive.

For example, for the previous remark on space, we argue that, since n2 = o(n2+ǫ),

there exist n2+ǫ-space dtms with no n2-space equivalent, so that condition (1) is

clearly true; that (2) is also true follows from the easy observation that any Ω(lg n)

amount of space suffices for the simulation of a linearly-bounded counter.

The most characteristic applications concern the successive levels of hierarchies

of two-way multipointerb automata. For example, the following trade-offs are non-

aThe reader is referred to [7, 5, 6] for a quite interesting discussion of the implications that this
might have to our search for optimal algorithms.

bBy ‘pointer’ we mean any of the following: a linearly-bounded counter, a blind read-only head
(i.e., a head that cannot distinguish among different input symbols, although it can distinguish
between an input symbol and an end-marker), an ordinary read-only head, a sensing read-only
head (i.e., one that can sense which of the other heads are at the same cell as itself), or a pebble.

2

recursive:c

• from k + 1 to k counters, on linearly-bounded two-way deterministic counter

automata (unary or not) [18],

• from k + 1 to k heads, on two-way multi-head finite automata (deterministic

or not, unary or not) [16, 17, 18],

• from k+1 to k heads, on two-way multi-head pushdown automata (determin-

istic or nondeterministic) [9],

for all k. Sometimes, we can only be as refined as the hierarchy is known to be:

• from k+2 to k registers, on linearly-bounded register machines (deterministic

or nondeterministic) [18],

• from k+2 to k counters, on linearly-bounded two-way nondeterministic coun-

ter automata (unary or not) [18],

for all k. Similarly, the trade-off is non-recursive

• from 3 to 2 heads, on a simpled two-way deterministic finite automaton [1];

it remains non-recursive even when we start from a 2-head two-way deter-

ministic finite automaton, or from a 1-head two-way deterministic pushdown

automaton [1].

Finally, we can even conclude the non-recursiveness of the trade-off, for all k ≥ 2:

• from k + 1 to k work-tape symbols, on tms (deterministic or not) that, on

every input of length n, use no more than lg n work-tape cells [21] (even if the

starting tm has unary input alphabet, but then only for sufficiently large k).

Other conversions between machines of different power can be treated similarly.

Returning to the statement of the theorem above, we warn that it is, in fact,

incomplete. Additional conditions have to be met, concerning a and b, their de-

scriptions, and how ‘size’ is measured. However, in most interesting cases these

conditions are trivially satisfied (in the above examples they are), so that listing

them here would be a distraction. The complete list is contained in the formal

statement of the theorem in Section 3.

1.2. Outline

The next section describes the framework of this study in more detail. Section 3

states and proves the theorem, except for an important lemma, which is proved in

Section 5, after some preparation in Section 4. The discussion is abstract enough

to also cover cases where a or b denote types of language descriptors other than

machines (e.g., regular expressions, grammars). For a more concrete discussion,

see [10]. (There, a special case of the theorem is proved, namely the case concerning

the trade-off from k + 1 to k heads on two-way multi-head finite automata.)

2. Preliminaries

We denote the set of positive integers by N. For n, a ∈ N, we write lga n to

denote ⌊loga n⌋. The set of all finite strings over an alphabet Γ is denoted by Γ ∗.

cIn each case, the reference indicates where Condition (1) of the theorem has been established.
For Condition (2), it is always easy to see that it is also satisfied.

dIn a simple multi-head automaton, every input head after the first one is blind (cf. Footnote b).

3

A (promise) problem over Γ is any pair Π = (Πyes, Πno) where Πyes, Πno

are disjoint subsets of Γ ∗. A tm recognizes Π if it accepts all x ∈ Πyes and

rejects (possibly by looping) all x ∈ Πno. If some tm recognizes Π , we say Π

is recursively enumerable or (Turing-) recognizable. For Π ′ also a problem over

Γ , we write Π ≤ Π ′ and say Π reduces to Π ′ iff there is a tm that, on input

x ∈ Πyes∪Πno, eventually halts with an output y such that x ∈ Πyes =⇒ y ∈ Π ′

yes

and x ∈ Πno =⇒ y ∈ Π ′

no. If some unrecognizable Π reduces to Π ′, then clearly

Π ′ is unrecognizable, as well.

If Πno = Πyes, then Π is also called a language and is adequately described by

Πyes alone. If in addition Πyes contains exactly all sufficiently long strings for some

interpretation 0 ≤ l ≤ ∞ of ‘sufficiently long’, Πyes = {x ∈ Γ ∗ | length(x) ≥ l},

then we say Π obeys a threshold (note that then Πyes is empty iff this threshold is

infinite); a machine that solves Π is similarly said to obey the same threshold.

2.1. Descriptional Systems

A descriptional system over the alphabets Σ and Γ is any set D ⊆ Σ∗ of names

(or descriptors), along with two total functions (·)D and |·|D, mapping every name

d ∈ D to its language (d)D ⊆ Γ ∗ and its size |d|D ∈ N, respectively.

For a standard example, fix a binary encoding of all 1dfas with input alphabet

{a, b, c}, say. This induces the descriptional system over {0, 1} and {a, b, c} that

contains all encoding strings as names and maps each of them to the language

accepted by the corresponding 1dfa (as its language) and to the number of states

in that 1dfa (as its size). (Alternatively, the size of a name could just be its length.)

A system D is decidable if the membership problem for its names is decidable.

That is, if there exists a tm UD that always halts and is such that:

for all d ∈ D and w ∈ Γ ∗: UD(d, w) accepts ⇐⇒ w ∈ (d)D.

Thus, the system of the previous example is clearly decidable, whereas a system

containing binary encodings of tms would be undecidable.

In order to be able to compare two descriptional systems D and E in terms of

their relative succinctness, we require that they are comparable, in the sense that

(i) they are defined over the same alphabets, and that (ii) their (·) and |·| mappings

agree on all common names,e

for all z ∈ D ∩ E: (z)D = (z)E and |z|D = |z|E,

so that subscripts can be dropped: for all z ∈ D ∪E, (z) and |z| are unambiguous.

For such systems, the comparison of E against D involves two natural notions:

i. For a name e ∈ E, there may or may not exist a name in D that maps to

the same language. In the latter case, we say that D is inadequate for describing

the language of e and, accordingly, we call the associated computational problem,

“given an e ∈ E, check that no d ∈ D maps to (e)”, the inadequacy problem from

eIt is only for simplicity that we require the agreement for |·|; we do not actually need it.

4

E to D. Formally, this is the promise problem I = (Iyes, Ino), with:

Iyes = {e ∈ E | (d) 6= (e), for all d ∈ D},

Ino = {e ∈ E | (d) = (e), for some d ∈ D}.

Notice that e is promised to be in E, so that solving I does not require checking

membership in E (which might be hard, even impossible).

ii. When a name e ∈ E does have equivalent names in D (i.e., names mapping

to (e)), we naturally ask how larger than e the smallest of these D-equivalents are.

The typical way to answer this question is with a function f : N → N that upper

bounds this increase in size, in terms of the size of e. Namely, f is such that

for all s ∈ N and for all e ∈ E of size s: if D contains names that are

equivalent to e, then at least one of these names is of size at most f(s).

We say that f upper bounds the trade-off (for the conversion) from E to D. When a

computable such upper bound exists, we say the trade-off from E to D is recursive.

As first noted by Hartmanis [4], discussions (i), (ii) are not unrelated: unrecog-

nizability of the inadequacy problem typically implies the trade-off is non-recursive.

Lemma 1 (Hartmanis) Suppose D, E are two comparable descriptional systems

over alphabets Σ and Γ , and that the following conditions are met:

(H1) both D and E are decidable,

(H2) for every e ∈ E, we can effectively compute its size |e|, and

(H3) there is a halting tm that, on input s ∈ N, produces a list Z ⊆ Σ∗ such that

(i) the non-D names can be recognized in Z: (Z ∩D, Z ∩D) is recognizable.

(ii) the languages of the D-names in Z cover all and only those languages

over Γ that are supported by a name in D of size at most s:

{(z) | z ∈ Z ∩D} = {(d) | d ∈ D & |d| ≤ s}.

Then, recursiveness of the trade-off from E to D implies the corresponding inade-

quacy problem is recognizable.

Before giving the proof, let us remark how mild conditions (H1)–(H3) are. For most

interesting cases, the first two of them are trivially true and (H3) is satisfied via

the tm that simply lists all names in D that have size ≤ s (so that the problem

of (i) is trivially decidable and the two sets of (ii) trivially identical). Having

(H3) as complicated simply covers some special cases (e.g., comparing general to

unambiguous context-free grammars [5, Example 2]).

Proof. Suppose D, E are as in the statement and f is a computable upper bound

for the trade-off from E to D. To check that a given e ∈ E has no D-equivalents,

we first compute s = f(|e|) (by (H2) and since f is computable) and then run the tm

guaranteed by (H3) on s, to produce a (finite, since the tm is halting) list of names

Z = {z1, z2, . . . , zk}. At this moment, we know (by the selection of f and (H3ii))

we should accept iff every D-name in Z maps to a language different from (e).

Equivalently, we should accept iff: for every z ∈ Z, either z is not a D-name or z

is a D-name and (z), (e) differ at one or more w ∈ Γ ∗.

5

In order to check this, we start simulating, in two parallel threads: [i] the recog-

nizer guaranteed by (H3i) on each of z1, z2, . . . , zk in parallel, and [ii] for all w ∈ Γ ∗:

the machines UE and UD (guaranteed by (H1)) respectively on (e, w) and on each

of (z1, w), (z2, w), . . . , (zk, w). Whenever a z ∈ Z is accepted in thread i, we cross

it off the list; whenever a z ∈ Z is found to disagree with e on some w in thread ii,

it is crossed off the list, as well; if the list ever gets empty, we accept.

Clearly, every string in Z that is not a D-name, will eventually be crossed off,

in thread i; similarly, each D-name that is inequivalent to e will also be eventually

removed, in thread ii; moreover, neither thread can delete a D-name that is equiv-

alent to e. Hence, the list will eventually get empty iff e had no D-equivalent in the

original list Z; which is true iff e has no D-equivalent at all. �

2.2. Multi-Counter Automata

A deterministic automaton with k counters f (dcak) consists of a finite state

control and k counters, each of which can store a nonnegative integer. One of the

counters is distinguished as primary, the rest being referred to as secondary. The

input to the automaton is a nonnegative upper bound n for the primary counter.

The machine starts at a designated start state with all its counters set to 0. At every

step, based on its current state, the automaton decides which counter it should act

upon and whether it should decrease it or increase it. Then the action is attempted.

An attempt to decrease fails iff the counter already contains 0; an attempt to in-

crease fails iff the counter is the primary one and it already contains n; an attempt

to increase a secondary counter never fails. A failed attempt leaves the counter con-

tents intact; a successful attempt updates the counter contents accordingly. Based

on its current state and on whether the attempt succeeded or not, the automaton

selects a new state and moves to it. The input is accepted if the machine ever enters

a designated final state, and the language of the machine is exactly the set of inputs

that it accepts. If, for all n, the behavior of the automaton guarantees no secondary

counter ever grows larger than n, we say the automaton is (linearly) bounded.

We will be interested in a special version of the emptiness problem for multi-

counter automata. One way to introduce it is to start with the emptiness problem

for tms (“given a description of a tm, check that its language is empty”), which is

well known to be unrecognizable [8], and to consider some ‘simplifications’ to it:

• What happens if, instead of a full-fledged tm, the machine we are given is

‘simpler’? Say, a multi-counter automaton? Or just a dca2? Clearly, checking

emptiness becomes ‘simpler’, too. Does it also become recognizable?

• What if, in addition, the given dca2 is promised to be bounded? And ter-

minating, too? And to also obey a threshold? As the promise gets stronger,

checking emptiness again becomes ‘simpler’. But does it become recognizable?

fIn this definition the reader will recognize the unary version of the two-way (k − 1)-counter

machines of [2, 18] or of other automata from elsewhere; they all describe the natural notion of a
unary two-way deterministic finite automaton that has additional access to k − 1 counters. The
present model is a bit simpler, in the sense that the input is directly taken to be the upper bound
for one of the counters, saving us the redundant (in the unary case) notion of an input tape. (Note
that this definition differs from that of [10], where the upper bound is applied to all counters.)

6

So, the problem we want to define is: “given a description of a dca2 that is promised

to be bounded and terminating and to obey a threshold, check that its language is

empty.” In formal dialect, E = (Eyes, Eno), where

Eyes = {z ∈ 〈dca
′

2〉 | (z) = ∅} and Eno = {z ∈ 〈dca
′

2〉 | (z) 6= ∅},

〈dca
′

2〉 stands for the set of descriptions (under a fixed encoding) of all terminating,

bounded dca2s that obey a threshold, and (z) denotes the language of the machine

described by z. Interestingly, although not surprisingly, even for such a weak au-

tomaton and under such a strong promise, emptiness remains unrecognizable:g

Lemma 2 E is unrecognizable.

We use this fact in the next section, but defer proving it until Section 5. In between,

Section 4 discusses the capabilities of multi-counter automata.

3. The Main Theorem

We are now ready to state and prove the main theorem.

Theorem 1 Suppose D, E are two comparable descriptional systems that satisfy

conditions (H1)–(H3) of Lemma 1. If they also satisfy the following:

(C1) there exists a name e0 ∈ E that has no equivalent in D,

(C2) given a description z of a terminating, bounded dca2 that obeys a threshold,

we can effectively construct a name ez ∈ E such that

(ez) = (e0) ∪ {w ∈ Γ ∗ | length(w) ∈ (z)}, (1)

(C3) every co-finite language has a name in D that maps to it,

then the trade-off from E to D is non-recursive.

Before proving the theorem, we discuss how mild conditions (C1)–(C3) really are.

Since every co-finite language is regular, (C3) is trivially satisfied whenever the

names in D describe machines that have some kind of finite state control.

The second condition essentially says that the machines described by E have

enough resources to simulate a bounded dca2. Because then, from a given z, we

can always construct the description ez of the E-machine that does the following:

on input w ∈ Γ ∗: first simulate on length(w) the dca2 described by z; if

this accepts, then halt and accept; otherwise, simulate on w the machine

described by e0 and accept, reject, or loop accordingly.

and which obviously satisfies (1) (note the importance of the promise that z de-

scribes a dca2 that never rejects by looping). Given how weak bounded dca2s are,

most two-way machines with non-regular capabilities will easily meet (C2).

The important condition is (C1), which requires that the machines described

by D are not as powerful as those described by E; in other words, a separation is

needed between the complexity classes that correspond to the two systems.

gNote that clearly E ∈ Π1 and that the proof of Lemma 2 will show E is Π1-complete. We also
remark that, under no promise and after non-trivially modifying the definition of dca2s, E is the
emptiness problem for 2-register machines, which is well known to be Π1-complete [14].

7

Proof. We essentially repeat Hartmanis’ argument from [5, Example 4] (see

also [11, Theorem 7]). Suppose D, E are as in the statement of the theorem.

Since (H1)–(H3) are satisfied, Lemma 1 implies that we only need to prove that the

inadequacy problem I from E to D is unrecognizable. By Lemma 2, we just need

to reduce E to it:

E ≤ I.

Given a z ∈ 〈dca
′

2〉, we simply construct the name ez ∈ E guaranteed by condi-

tions (C1) and (C2), so that

(ez) = (e0) ∪ {w ∈ Γ ∗ | length(w) ∈ (z)}.

If z ∈ Eyes, then the language of z is empty, so that (ez) = (e0) and ez has no

D-equivalent (because e0 does not); hence ez ∈ Iyes. On the other hand, if z ∈ Eno,

then the language of z contains all sufficiently large w ∈ Γ ∗, so that (ez) is co-finite

and has D-equivalents (by (C3)); hence ez ∈ Ino. This concludes the proof.h �

4. Programming Counters

In order to present the capabilities of multi-counter automata, we introduce

some ‘program’ notation. First, the two atomic operations, the attempt to decrease

a counter X and the attempt to increase it, are denoted respectively by

X
f
←− X − 1 and X

f
←− X + 1,

where, in each case, flag f is set to true iff the attempt succeeds. Then, the com-

pound operation of setting X to 0, denoted by X ←− 0, can be described by

repeat X
f
←− X − 1 until ¬f. (2)

If a second counter Y is present, we can transfer the contents of Y into X : we set

X to 0, then repeatedly decrease Y and increase X until Y is 0. We denote this by

(X, Y)
f
←− (Y, 0),

and describe it by a line similar to (2). Note that, if X is the primary counter and

Y > n, then one of the attempts to increase X will fail; in that case, we restore

the original value of Y returning X to 0, and set flag f to false. So, X ’s original

contents are always lost, but this never happens to the original contents of Y .

Changing how fast X increases as Y decreases, we can multiply/divide Y into

X by any constant a ∈ N. We denote these operations by

(X, Y)
f
←− (aY, 0) and (X, Y)

f,r
←−

(⌊
Y
a

⌋
, 0

)
,

hNote the slightly stronger fact: I remains unrecognizable even under the promise that the
given e ∈ E either has no D-equivalent or its language is co-finite. In addition, the promise that
the given dca

′

2 obeys a threshold can be slightly relaxed: we only need to know that its language
is either empty or co-finite.

8

where, in the second operation, we also find the remainder and return it in r. As

before, if X is the primary counter and aY > n (respectively, ⌊Y/a⌋ > n) then

one of the attempts to increase X will fail; we then restore the original value of Y

returning X to 0, and set flag f to false.

At a higher level, we can attempt to multiply Y by a constant a (into Y) using X

as an auxiliary counter and making sure Y changes only if the operation succeeds:i

(X, Y)
f
←− (aY, 0); if f then (Y, X)

t
←− (X, 0).

Division (with remainder) can be done similarly. We denote the two operations by

Y
f,X
←− aY and Y

f,r,X
←−

⌊
Y
a

⌋
. (3)

Now, if X is primary, we can set Y to the largest power of a that can fit in n:

X ←− 0; X
f
←− X + 1;

if f then {Y ←− 0; Y
t
←− Y + 1; repeat Y

g,X
←− aY until ¬g}

(4)

(note that this fails iff n = 0). We denote (4) by (remember that lga n = ⌊loga n⌋):

Y
f,X
←− alg

a
n.

If a third counter Z is present, we can modify (4) to also count (in Z) the number

of iterations performed. This gives us a way to calculate lga n (failing iff n = 0):

Z
f,X,Y
←− lga n.

In another variation, we can modify the multiplication in (3) so that the success of

the operation depends on the contents of X (as opposed to its upper bound n):

Y
f,X,Z
←− aY,

meaning that, using Z as auxiliary and without affecting X : if aY ≤ X , then Y is

set to aY ; otherwise, Y is unaffected.j Then, the following variant of (4)

X
f
←− X − 1; if f then {X

t
←− X + 1;

Y ←− 0; Y
t
←− Y + 1; repeat Y

g,X,Z
←− aY until ¬g}

implements the attempt to set Y to the largest power of a that is at most X , using

Z as auxiliary and leaving X unaffected (failing iff X is 0). We denote this one by

Y
f,Z
←− alg

a
X .

iNote the use of t in the place of a flag, indicating that the action is guaranteed to succeed.
jTo implement this, we first set Z to 0. Then, we repeatedly decrease Y , increase Z, and

decrease X by a. If X becomes 0 before Y , then aY > X and the operation should fail: we restore
the original values of Y and X by repeatedly decreasing Z, increasing Y , and increasing X by a,
until Z becomes 0. Otherwise, aY ≤ X and the operation will succeed: we copy the correct value
to Y and restore the value of X by repeatedly decreasing Z and increasing each of Y , X by a,
until Z becomes 0. Note that if originally Y, Z ≤ X, then at no point during the operation does

any of the counters assume a value greater than the original value of X.

9

It is important to note that, if originally Y, Z ≤ X, then during this operation no

counter ever assumes a value greater than the original value of X (cf. Footnote j).

5. Proof of Lemma 2

We now prove that E is unrecognizable. We do this by a reduction from the

complement of the halting problem, which is known to be unrecognizable [8]:

HALTING ≤ E,

where HALTING = {z ∈ {0, 1}∗ | z encodes a tm that loops on z}. That is, we give

an algorithm that, on input a description z of a tm M produces a description z′ of

a terminating, bounded, threshold-obeying dca2 M ′, such that

M loops on z =⇒ (z′) = ∅ and M halts on z =⇒ (z′) 6= ∅. (5)

In describing this algorithm, we will be calling a machine (tm or dcak) good, if it is

terminating, bounded (for dcaks), obeys a threshold, and its language satisfies (5)

when it replaces (z′). Thus, for example, M ′ will be good.

On its way to z′, the algorithm will construct descriptions of two other machines:

a description zA of a tm A, and a description zB of a dca3 B. In the sequence M ,

A, B, M ′ each machine after M will be defined in terms of the previous one and

will be good. Our constructions use the ideas of [24] and [14] (also found in [15, 8]).

The first machine. A is a tm with one tape, infinite in both directions; the tape

alphabet is {⊔, 0, 1,0̇, 1̇}, while the input alphabet is {0}. On input 0n, A starts

with tape contents

· · · ⊔ ⊔ ⊔ 000 · · · 00
︸ ︷︷ ︸

n times

⊔ ⊔ ⊔ · · ·

and its head on the ⊔ next to the leftmost 0 (or any ⊔, if n = 0). It then computes:

1. For all w ∈ {0, 1}n, from 0n up to 1n:

— if w encodes a halting computation history of M on z, accept.

2. Reject.

The check inside the loop presupposes some fixed reasonable encoding of sequences

of configurations of M into binary strings, with the additional property: if w encodes

a computation history, then every string of the form w0∗ encodes the same history.

Note that, using the extra dotted symbols, A can easily perform this check

without ever writing a non-blank symbol on a ⊔, or a ⊔ on a non-blank symbol;

and without ever visiting any ⊔ that lies beyond the two that originally delimit

the input. As a consequence, throughout its computation on 0n, A keeps exactly

n non-blank symbols on its tape (occupying the same n cells as the symbols of the

input). Also note that, by the selection of the encoding scheme for M ’s computation

histories, if A accepts an input 0n, it necessarily accepts all longer inputs as well.

The second machine. B is a dca3 that, on input n ≥ 30, simulates the behavior of

A on input 0lg
5
lg

30
n; on input n < 30, B just rejects.

10

To explain B’s behavior, let J , L, R be its three counters. J is primary and helps

performing operations on L and R, while L and R together encode tape configura-

tions of A. To see the encoding, consider the following example of a configuration:

· · · l4 l3 l2 l1 l0 h r0 r1 r2 r3 r4 r5 · · ·
· · · ⊔ ⊔ × × × × × × × × ⊔ ⊔ · · ·

↑

(here × stands for any non-blank symbol, ↑ shows the head position). Mapping

symbols ⊔, 1̇, 0̇, 1 and 0 to numbers 0, 1, 2, 3 and 4, respectively,k we get each tape

cell map to a digit of the 5-ary numbering system. Then, the head position splits

the tape into three portions, which define the integers

l =

∞∑

i=0

li · 5
i and h and r =

∞∑

r=0

ri · 5
i

(note that the two sums are finite exactly because ⊔ maps to 0). The values l and

r are kept in L and R, while h is kept in a register H in B’s finite memory.

More specifically, on input n, B starts with a two-part initialization. First, it

computes lg30 n into J , leaving 0s in L and R (this is if n ≥ 1; if n = 0, B rejects):

R
f,J,L
←− lg30 n; if ¬f then reject else {(J, R)

t
←− (R, 0); L←− 0}.

Then, it computes into R the value 5m − 1, where m = lg5 lg30 n, leaving 0s in L

and H (this is only if J ≥ 1, that is if n ≥ 30; otherwise, n < 30 and B rejects):

R
f,L
←− 5lg

5
J ; if ¬f then reject else {R

t
←− R− 1; L←− 0; H ←− 0}.

This completes the initialization, with L = H = 0 and R = 5m − 1, or in 5-ary:

L = 0 and H = 0 and R = 4 4 4 · · · 4
︸ ︷︷ ︸

m times

.

Hence L, H , R correctly represent A’s starting tape configuration on input 0m:

· · · l1 l0 h r0 r1 r2 · · · rm−1 rm rm+1 · · ·
· · · ⊔ ⊔ ⊔ 0 0 0 · · · 0 ⊔ ⊔ · · ·

↑

(since symbol 0 maps to 4) and B is ready to start a faithful simulation of A’s steps.

The automaton remembers in its finite memory the current state of A as well

as the code of the currently read symbol (in H). If s is the code of the new symbol

to be written on the tape, B computes

L
t,J
←− 5L; repeat s times: L

t
←− L + 1; R

t,r0,J
←−

⌊
R
5

⌋
; H ←− r0

to simulate writing this symbol and moving to the right; it computes

R
t,J
←− 5R; repeat s times: R

t
←− R + 1; L

t,l0,J
←−

⌊
L
5

⌋
; H ←− l0

to simulate writing this symbol and moving to the left.

kAny mapping that maps symbol ⊔ to code 0 and symbol 0 to code 4 will do.

11

It is important to note the range of the values assumed by the counters. By

the design of its main operation, the second part of the initialization phase never

assigns to a counter a value greater than the original value of J , which is lg30 n.

Then, in the simulation phase, the behavior of A (the tape starts with m 0s and

always contains exactly m non-blank symbols) and the selection of the symbol codes

(0 gets the largest code) are such that the initial value 5m − 1 of R upper bounds

all possible values that may appear in B’s counters. One consequence of this is that

all operations in the previous paragraph are guaranteed to be successful (hence

the t reminder). Another consequence is that, since 5m − 1 < lg30 n, the entire

computation of B after the first part of its initialization phase keeps all values of

all counters at or below lg30 n. This will prove crucial in the next section.

The final machine. M ′ is a dca2 that simulates the behavior of B. If U , V are

its two counters, then U is primary and helps performing operations on V , while

V encodes the contents of the counters of B: whenever J , L, R, contain j, l, r

respectively, V contains 2j3l5r.

The automaton starts by computing into V the product 30t = 2t3t5t, where

t = lg30 n (this is only if n ≥ 1; if n = 0, M ′ rejects, exactly as B would do):

V
f,U
←− 30lg

30
n; if ¬f then reject.

It then removes all 3s and 5s from this product,l so that V becomes 2lg
30

n3050,

which correctly encodes the values of the counters of B right after the first part of

its initialization phase. Now M ′ starts a faithful simulation of the steps of B.

The current state of B is stored in M ′’s memory. When B tries to decrease J ,

J
f
←− J − 1,

M ′ divides V by 2; if there is no remainder, the division simulated a successful

decrement; otherwise, the simulated attempt failed and M ′ restores V ’s initial value:

V
t,r,U
←−

⌊
V
2

⌋
; if r = 0 then f ←− true else

{f ←− false; V
t,U
←− 2V ; repeat r times: V

t
←− V + 1}.

The attempts to decrease L or R are handled similarly, with 3 or 5 instead of 2.

Attempts of B to increase its counters are of course simulated by appropriate

multiplications of V . The only subtlety involves failure during increment attempts:

how does the simulation make sure that an attempt of B to increase a counter fails

iff the corresponding attempt of M ′ to multiply V fails?m The crucial observation

lTo remove all 3s, M ′ divides V by 3 repeatedly (V
t,r,U
←−

�
V
3

�
), until a non-zero remainder r

is returned, which implies there were no 3s in V before the last division. Then the correction

V
t,U
←− 3V ; repeat r times: V

t
←− V + 1

undoes the damage caused by the last division. A similar computation removes all 5s.
mNote that this condition is necessary for a successful simulation but is not met in some obvious

way. In B the upper bound for J is always the same (B’s input), whereas in M ′ the upper bound
for its representation is the base 2 logarithm of a value that depends (on M ′’s input and) on the
values of the other two counters. Similarly, in B counter L is unrestricted, whereas in M ′ its
representation is bounded by a value that depends on the other two counters; similarly for R.

12

(from last section) is that, since we are after the first part of B’s initialization

phase, no counter of B ever assumes a value greater than t = lg30 n. This imme-

diately implies that, after the initialization phase of M ′, no counter of M ′ ever

assumes a value greater than 2t3t5t. Now, since t < n and 2t3t5t ≤ n, we conclude

that both (i) all increment attempts of B are successful, and (ii) all corresponding

multiplication attempts of M ′ are successful, too. Hence, the equivalence above is

satisfied, in a trivial way. Put another way, when M ′ multiplies V to simulate a

counter increment in B, it knows in advance the increment is a successful one and

the multiplication will not fail. Overall, B’s atomic operation

J
t
←− J + 1 is simulated by V

t,U
←− 2V,

and similarly for L and R.

As a final remark, we note the immediate by-product of our last argument: Since

V clearly never exceeds n during the initialization phase of M ′ and it also never

exceeds n during the simulation of B, it follows that M ′ is bounded.

This concludes the definitions of all three machines in our reduction. It should be

clear that M ′ is good and that a description z′ of it can be computed out of z.

6. Conclusion

Using old ideas [24, 14], we showed the unrecognizability of the emptiness prob-

lem for dca2s that are promised to be bounded, always terminate, and obey a

threshold. We then combined this with the idea of [7] to show that, if machines a

have the resources to simulate dca2s of the particular kind and can also solve

problems that machines b cannot, then typically the trade-off from a to b is non-

recursive. Applying the theorem, we derived such trade-offs in many conversions.

We do not know if the emptiness problem of Section 2.2 remains unrecognizable

even when the underlying machine is a 2-register automaton [14] (that is, a dca2

that starts with n in its primary counter and where increments of that counter never

fail). If it is, then our main theorem can be made slightly stronger.

Acknowledgments

I would like to thank Oscar Ibarra and Albert Meyer for discussions that revealed

the generality behind the argument of [10].

References

1. P. Ďurǐs and Z. Galil, “Fooling a two-way automaton or one pushdown store is better
than one counter for two-way machines,” Theoret. Comput. Sci. 21 (1982) 39–53.

2. M. J. Fischer, A. R. Meyer, and A. L. Rosenberg, “Counter machines and counter
languages,” Mathematical Syst. Theory 3 (1968) 265–283.

3. J. Goldstine, M. Kappes, C. M. R. Kintala, H. Leung, A. Malcher, and D. Wotschke,
“Descriptional complexity of machines with limited resources,” J. UCS 8 (2002)
193–234.

13

4. J. Hartmanis, “On the succinctness of different representations of languages,” SIAM

J. Comput. 9 (1980) 114–120.

5. J. Hartmanis, “On Gödel speed-up and succinctness of language representations,”
Theoret. Comput. Sci. 26 (1983) 335–342.

6. J. Hartmanis, “On the importance of being Π2-hard,” Bull. Eur. Assoc. Theor.

Comput. Sci. EATCS 37 (1989) 117–127.

7. J. Hartmanis and T. P. Baker, “Relative succinctness of representations of languages
and separation of complexity classes,” Proc. International Symposium on Mathemat-

ical Foundations of Computer Science, 1979, pp. 70–88.

8. J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and

computation (Addison-Wesley, Reading, MA, 1979).

9. O. H. Ibarra, “On two-way multihead automata,” J. Comput. System Sci. 7 (1973)
28–36.

10. C. Kapoutsis, “From k+1 to k heads the descriptive trade-off is non-recursive,” Proc.

Workshop on the Descriptional Complexity of Formal Systems, 2004, pp. 213–224.

11. M. Kutrib, “On the descriptional power of heads, counters, and pebbles,” Proc.

Workshop on the Descriptional Complexity of Formal Systems, 2003, pp. 138–149.

12. M. Kutrib, “The phenomenon of non-recursive trade-offs,” Proc. Workshop on the

Descriptional Complexity of Formal Systems, 2004, pp. 83–97.

13. A. R. Meyer and M. J. Fischer, “Economy of description by automata, grammars,
and formal systems,” Proc. Symposium on Switching and Automata Theory, 1971,
pp. 188–191.

14. M. L. Minsky, “Recursive unsolvability of Post’s problem of “tag” and other topics
in theory of Turing machines,” Ann. of Math. 74 (1961) 437–455.

15. M. L. Minsky, Computation: finite and infinite machines (Prentice-Hall, Englewood
Cliffs, NJ, 1967).

16. B. Monien, “Transformational methods and their application to complexity prob-
lems,” Acta Inform. 6 (1976) 95–108.

17. B. Monien, “Corrigenda: Transformational methods and their application to com-
plexity problems,” Acta Inform. 8 (1977) 383–384.

18. B. Monien, “Two-way multihead automata over a one-letter alphabet,” Theor. In-

form. Appl. 14 (1980) 67–82.

19. M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM

Journal of Research and Development 3 (1959) 114–125.

20. E. M. Schmidt and T. G. Szymanski, “Succinctness of descriptions of unambiguous
context-free languages,” SIAM J. Comput. 6 (1977) 547–553.

21. J. I. Seiferas, “Relating refined space complexity classes,” J. Comput. System Sci.

14 (1977) 100–129.

22. R. E. Stearns, “A regularity test for pushdown machines,” Inform. and Comput. 11

(1967) 323–340.

23. L. G. Valiant, “A note on the succinctness of descriptions of deterministic lan-
guages,” Inform. and Comput. 32 (1976) 139–145.

24. H. Wang, “A variant of Turing’s theory of computing machines,” J. ACM 4 (1957)
63–92.

14

