
Deterministic moles cannot solve liveness

Christos Kapoutsis

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

cak@mit.edu

Abstract

We examine the conjecture that one-way nondeterministic finite automata (1nfas)
can be exponentially more succinct than two-way deterministic ones (2dfas). Equiv-
alently, that no polynomial-size family of 2dfas can recognize B, where B is liveness :
a family of languages which is hardest among those recognizable by polynomial-size
families of 1nfas. We focus on moles, a restricted class of automata that includes the
members of the polynomial-size family of 1nfas solving B. We show that, in contrast,
no family of 2dfa moles can solve B, irrespective of size.

1 Introduction

It has been known for a long time [13, 14] that the power of one-way deterministic fi-
nite automata (1dfas) does not increase when they are enhanced with nondeterminism
and/or bidirectionality: be they one-way nondeterministic (1nfas), two-way determinis-
tic (2dfas), or even two-way nondeterministic (2nfas), finite automata still fail against
non-regular problems. However, this describes the situation only from the point of view
of computability. From the complexity perspective, the extra capabilities do increase the
power of 1dfas, in the sense that against the same problems the enhanced automata occa-
sionally manage to stay exponentially smaller [1, 11, 12]. This observation has initiated a
more general and systematic investigation: when we convert a machine of some type into

an equivalent machine of another type, how much ‘larger’ need the new machine be? Even
the small world of regular languages hosts some intriguing instances of this question.

The automata mentioned above define 12 conversions (Fig. 1). For the famous one, we
know every n-state 1nfa can be simulated by a 1dfa that has at most 2n − 1 states [14];
we also know that, for every n, some n-state 1nfas have no equivalent 1dfas with fewer
than 2n −1 states [11]; so, we say that the trade-off from 1nfas to 1dfas is exactly 2n −1.
Similarly, the exact value for each of the remaining trade-offs is known [3, 9]. Except two.

Nondeterminism in two-way finite automata. It is surprising how little we know
about the 2nfa-to-2dfa conversion. Not only do we not know the exact value of the trade-
off, but we cannot even tell if it is polynomial: the best known upper bound is exponential
(by the conversion down to 1dfas, Fig. 1c) and the best known lower bound is quadratic
(by the conversion from just unary 1nfas [5]). It is widely believed that the trade-off is
exponential. In fact, when he first posed the question, Seiferas [16] conjectured the trade-
off is at least 2n − 1 even when the starting 2nfa is only a 1nfa. Put another way, this

1

e = n

[9]

[3]

[9]

[14, 11]

2dfa

2nfa

1nfa

1dfa

c

d

b a

d

e
e e

e e

c =
Pn−1

i=0

Pn−1
j=0

�
n

i

��
n

j

��
2i − 1

�j

a = 2n − 1

b = n
�
nn − (n − 1)n

�
d =

�
2n

n+1

� [9]

Figure 1: The 12 conversions defined by nondeterminism and bidirectionality, and the
known exact trade-offs. Dashed arrows mark the two open problems.

conjecture says that the best general method for going from 1nfas to 2dfas is via 1dfas,
a rather impressive claim. It is this problem that we study. To sum up, the trade-off from
1nfas to 2dfas is conjectured to be 2n − 1, equal to its best known upper bound, and
much greater than the best known lower bound —the quadratic one mentioned above.

Already in [16], Seiferas proved the conjecture under the restriction that the 2dfas are
single-pass (i.e., they halt as soon as they reach an end-marker). Later, Sipser [17] did the
same under the restriction that the 2dfas are sweeping, (i.e., they can switch direction
only on end-markers) —Leung [10] repeated this on a binary alphabet, as opposed to the
exponentially large one of [17]. Lately, Hromkovic and Schnitger [7] showed the conjecture
for 2dfas that are oblivious (i.e., they move identically on all inputs of the same length)
—for a sublinear (in the input length) number of distinct head trajectories, they showed an
exponential lower bound, too. None of these theorems resolves the general conjecture, as
full 2dfas can be exponentially more succinct than each of these restricted variants [16, 17].

Beyond limited bidirectionality, Chrobak [5] disproved the conjecture for unary au-
tomata, showing the trade-off is at most O(n2) —and at least Ω(n2), as above. For the
more general conjecture, on the unary 2nfa-to-2dfa conversion, Geffert, Mereghetti and
Pighizzini [6] have recently shown the trade-off is at most 2Θ(lg2 n).

Finally, variations of the problem have appeared. If we demand that the 2dfa can

correctly simulate the 2nfa no matter what state and input position the latter is started

at (a condition conceptually stronger than ordinary simulation, but always satisfiable [4])

then the trade-off is at least 2lgk n, for any k [8]. If we demand that the 2dfa simulates the
2nfa correctly only on all polynomially long inputs (a condition conceptually weaker than
ordinary simulation) then an exponential lower bound would imply that nondeterminism
is essential in logarithmic-space Turing machines (L 6=NL) [2]. Last, if we allow the starting
2nfa to be a Hennie machine (a more powerful device, but still regular), then converting
to a 2dfa costs exponentially, but only because converting to a 2nfa already does [3].

Liveness. Soon after Seiferas posed the problem, Sakoda and Sipser [15] suggested a
family of languages B = (Bn)n≥1 which is complete for 1nfa-to-2dfa conversions:

• small 1nfas can solve B: there exists a family N = (Nn)n≥1 of 1nfas such that, for
all n, the automaton Nn has n states and recognizes Bn; and

• if small 2dfas can solve B, then the trade-off grows slowly : if there is a polynomial
p and a family D = (Dn)n≥1 of 2dfas such that, for all n, Dn has ≤ p(n) states and

2

recognizes Bn, then every n-state 1nfa has an equivalent 2dfa with ≤ p(n) states.
Therefore, the trade-off is super-polynomial iff small 2dfas cannot solve B.

The nth member Bn of B is defined over the alphabet Σn of all directed 2-column
graphs with n nodes per column and only rightward arrows (Fig. 2a). An m-long string
over Σn is naturally viewed as a directed (m + 1)-column graph (Fig. 2b) in which, for

simplicity, the direction of arrows is omitted (Fig. 2c). The string is in Bn iff the graph
contains a path from its 0th to its mth column. We then say the string is live, so Bn is
the property of liveness. A dead string is one that is not live.

Moles. How does Nn work? At every step, each thread ‘remembers’ one of the ‘live’
(i.e., reachable from the far left) nodes of the current column; on reading the next symbol,
the thread finds what arrows depart from that node, chooses one nondeterministically, and
follows it. Note that, although the entire next symbol is read, only part of its information
is used: the thread ‘sees’ only the arrows leaving the node it is focused on and ignores the
rest of the symbol. Put another way, in the ‘network of tunnels’ defined by the input, Nn

behaves like a nondeterministic robot that reads only the index of its current node and the
tunnels departing from it. Intuitively, Nn is an n-state one-way nondeterministic mole.

Formally, a 2nfa over Σn is any function δ that, for some sets Q of states and {⊢,⊣}
of end-markers, totally maps Q× (Σn ∪ {⊢,⊣}) to the powerset of Q× {l, r}. A focus is
any pair of index and side φ = (i, s) ∈ [n] × {l, r}; we write s for the side opposite to s
and φ for the focus (i, s). The φth node of a string x ∈ Σ∗

n is the ith node of its leftmost
(resp., rightmost) column, if s = l (if s = r). The φth component of x is the connected
component of its φth node in the implied undirected graph. By x↾φ we denote the unique
string that has the length of x, all edges of the φth component of x, and no other edges.

Definition 1. An assignment of foci for δ is any mapping ϕ : Q→ [n]×{l, r} such that,
for every two states p, q ∈ Q, symbol a ∈ Σn, and side s ∈ {l, r}:

i. δ(p, a) = δ(p, a↾ϕ(p)), and
ii. δ(p, a) ∋ (q, s) =⇒ (∃i ∈ [n])

(

ϕ(q) = (i, s) & a↾ϕ(p) = a↾(i, s)
)

.
We say ϕ(p) is the focus of p. If an assignment of foci for δ exists, then δ is a mole.

So, δ is a mole if there is a way ϕ to assign a focus to each state so that, when at state
p with ϕ(p) = (ip, sp), δ behaves like a mole located at the ϕ(p)th node of the current
symbol, facing sp: (i) it ‘sees’ only the component of that node, and (ii) it ‘moves’ only to
nodes in the same component.1 Clearly, Nn satisfies this definition.

Our approach. What happens to the size of Nn if we replace nondeterminism with
bidirectionality? Can small two-way deterministic moles solve liveness? Is it possible that,

after all, small 2dfas can solve liveness and the algorithm that achieves this is nothing

more than a clever exploration of the graph implied by the input?

We give a strong negative answer: for all n ≥ 5, no two-way deterministic mole can
recognize Bn —no matter how many states it has. Hence, the following holds:

1For example, when s = r condition (ii) says: If p on a moves right into q, then in the new position q
must focus on the left column [ϕ(q) = (·, l)] (the column shared with the previous position). Moreover,
if in this column q focuses on the ith node [ϕ(q) = (i, l)], then in the previous position this same node
(now the ith node of the right column) must belong to the same component as the node focused on by p
[a ↾ϕ(p) = a ↾ (i,r)]. Note that this implies that every state can only be reached from the side of its focus.

3

Theorem. No family of deterministic moles can solve liveness.

More generally, we view this study as a first step in a qualitatively new direction: in-
stead of studying 2dfas of restricted bidirectionality (single-pass, sweeping, oblivious) but
unrestricted information (the automata use all current symbol information), we examine
2dfas of unrestricted bidirectionality but of restricted information.

2 Preliminaries

By [n] we denote the set {1, 2, . . . , n}. If α is a pair of objects, then α0 and α1 are its first
and second components. For A and B sets, |A| denotes size and A⊖B denotes symmetric
difference. To refer to a symbol from Σn we list its arrows in brackets: e.g., the rightmost
symbol in Fig. 2(a) is [12,14,25,44] and [] is the empty symbol. For x ∈ Σ∗

n, we write
|x| for the length of x and Vx := {(i, j) | i ∈ [n] & 0 ≤ j ≤ |x|} for its set of nodes. The
left-degree of v = (i, j) ∈ Vx is the number of its neighbors on column j − 1, or 0 if j = 0;
similarly for right-degree. If y ∈ Σ∗

n, too, then x ∪ y is the max(|x|, |y|)-long string that
has all edges of x, all edges of y, and no other.

We fix n:=5 and a deterministic mole M : Q× (Σ5∪{⊢,⊣}) → P(Q×{l, r}). So, M is
a 2nfa that takes values of size ≤ 1 and respects Definition 1 via some assignment of foci,
say ϕ. We write compq(x) for the computation we see when M is started at state q on the
leftmost symbol of x, if ϕ(q)1 = l; or the rightmost one, if ϕ(q)1 = r. If 0 ≤ j ≤ |x|, then
compq,j(x) is what we see when M is started ‘on the jth column of x’: i.e., on the j+ 1st
symbol, if ϕ(q)1 = l; or the jth symbol, if ϕ(q)1 = r. Set-theoretically, a computation
is a sequence of pairs (qt, it), where qt is the state and it the index of the current input
symbol after t steps, for t ≥ 0.

Our goal is to construct two strings over Σ5, a live and a dead one, on which M decides
identically. This will prove M fails against B5 —no matter how large it is.

Dilemmas. Suppose T ⊆ Σ∗
5 is non-empty and ‘infinitely extensible to the right’, namely

(∀x ∈ T)(∃y)(|y| 6= 0 & xy ∈ T). For example, Σ∗
5 and B5 are such sets.

Then, for x ∈ T , we consider the following experiment: For each q ∈ Q with ϕ(q)1 = l,
we check whether compq(x) hits right (i.e., falls off the right end of x) or not (i.e., hangs,
loops, or hits left). In the first case we set ax,q = 1, otherwise we set ax,q = 0. The
outcome of the experiment is the vector ax = (ax,q)q.

Now, when we right-extend x into xy ∈ T , how do the vectors ax, axy compare?
Clearly, all 0s in ax stay 0s in axy; but some 1s may become 0s; overall, ax ≥ axy where
“≥” denotes the natural component-wise order. Then, what if we further right-extend x

into xyy′ ∈ T ? And then into xyy′y′′ ∈ T ? As x is infinitely right-extensible in T but the
outcome can decrease only finitely often, we know that from some point on the outcome
will stop changing. This motivates the following.

A lr-dilemma over T is any x ∈ T such that, for all xy ∈ T and all q ∈ Q with
ϕ(q)1 = l: compq(xy) hits right iff compq(x) does. The argument above shows that
lr-dilemmas exist over any infinitely right-extensible set. Similarly, rl-dilemmas can be
defined and exist for every set which is infinitely left-extensible.

In [16], dilemmas are called “blocking strings”. Both names reveal the usage: Assume
x is an lr-dilemma over T and the 2dfa computes on wxy, where xy ∈ T . While inside

4

x, the automaton faces a ‘dilemma’: either it will stay forever inside wx, never crossing
the wx-y boundary; or it will cross it but then never visit w again. So, x ‘blocks’ the
computation from returning to w after having seen y.

Paths. A path is any x ∈ Σ∗
5 with exactly |x| edges that form 1 live path. If this connects

the (i, l)th node to the (i′, r)th one and visits only nodes with indices from I ⊆ [5], for
some I ∋ i, i′, then we say x is an i-I-i′ path (Fig. 2d).

The behavior of M on an i-I-i path x is the mapping fx : Q→ Q⊥ encoding all possible
entry-exit pairs of states defined by the computations of M on x:

fx(q) :=

{

p if ϕ(q)0 = i and compq(x) hits left or right into p,

⊥ if ϕ(q)0 = i and compq(x) hangs or loops, or ϕ(q)0 6= i.

So, if fx(q) 6= ⊥, the computation compq(x) exits the input, off its left or right end and
into state p = fx(q); and if then ϕ(p) = (i, s) is p’s focus, the exit side is s.

A generic path. Pick an i-I-i path x. Collecting the states into which all lr-crossings of
x can end, and then repeating for all rl-crossings, we get the two sets of states:

Qlr(x) := {fx(q) | q ∈ Q & ϕ(q) = ϕ(fx(q)) = (i, l)},

Qrl(x) := {fx(q) | q ∈ Q & ϕ(q) = ϕ(fx(q)) = (i, r)}.

If y is also an i-I-i path, extending x to xy cannot increase the number of distinct states
producible by lr-crossings; also, every state producible by an lr-crossing of xy is pro-
ducible by an lr-crossing of y. Similar facts hold for rl-crossings:

|Qlr(x)| ≥ |Qlr(xy)| and |Qrl(xy)| ≤ |Qrl(y)| (1)

Qlr(y) ⊇ Qlr(xy) Qrl(xy) ⊆ Qrl(x) (2)

Using (1), (2) and reasoning as in the previous section, we conclude some i-I-i path ϑ

admits no extension that exhibits sets of smaller size, i.e., for all i-I-i paths x, y:

|Qlr(ϑ)| = |Qlr(ϑy)| and |Qrl(xϑ)| = |Qrl(ϑ)|. (3)

For the remainder, we fix i := 2, I := {1, 2} and such a ϑ for these i, I; we then let

κ := |ϑ|, L := Qrl(ϑ), R := Qlr(ϑ), and µ := max(|L|!, |R|!)

denote its length, the sets of states producible by crossing it, and the least common
multiple of the sizes of the corresponding permutation groups. It is not hard to verify
(by (3)) that ϑ is both an lr- and an rl-dilemma over the set of i-I-i paths.

Behavior in the context of ϑ. Pick any i-I-i path x and consider the i-I-i path ϑxϑ. Any
q ∈ R is produced by some lr-crossing of ϑ; this crossing can be viewed as the prefix of
a computation on ϑxϑ that starts on the 0th column and first crosses the ϑ-xϑ boundary
into q; since ϑ is an lr-dilemma, this computation hits right, into some state; by (2), this
state belongs to R. Overall, the function gx : R→ R with

gx(q) = the state which compq,|ϑ|(ϑxϑ) hits right into,

5

is well-defined, and (by (3)) permutes R. Similarly, the function hx : L→ L

hx(q) = the state which compq,|ϑx|(ϑxϑ) hits left into,

is a well-defined permutation of L. The pair (gx, hx) fully describes the behavior of M ‘in
the context of ϑ’: for x, y two i-I-i paths, (gx, hx) = (gy, hy) ⇒ fϑxϑ = fϑyϑ. Moreover,
if x contains a copy of ϑ, namely x = y1ϑy2 for i-I-i paths y1 and y2, then its pair is a
composition of the pairs for y1, y2: (gy1ϑy2 , hy1ϑy2) = (gy1 ◦ gy2 , hy2 ◦hy1). This generalizes
to any number of copies of ϑ. In particular, for the string x = y(k) = y(ϑy)k−1 of k
ϑ-separated copies of y, we have (gy(k) , hy(k)) =

(

(gy)
k, (hy)

k
)

.

Fooling the mole. Now, for every length l ≥ 1, we can collect into a set Ωl all behaviors
that M can exhibit in the context of ϑ on l-long i-I-i paths:

Ωl = {(gx, hx) | x is an i-I-i path and |x| = l}.

Then every behavior that is exhibited on some l-long path is also exhibited on some path
of length l+ 2µ(l+ κ), namely Ωl ⊆ Ωl+2µ(l+κ). Because, for every l-long i-I-i path x, the

string x(2µ+1) = x(µ)ϑxϑx(µ) is also an i-I-i path, has length (2µ+1)l+2µκ = l+2µ(l+κ)
and, by the selection of µ, causes behavior (g2µ+1

x , h
2µ+1
x) = (gx, hx). For the remainder,

we fix λ to be any l at which Ωl achieves maximum size and also fix Λ := 2µ(λ + κ).
Then Ωλ ⊆ Ωλ+Λ and also Ωλ+Λ can get no larger, so

Ωλ = Ωλ+Λ.

Hence, when between two copies of ϑ, any i-I-i path of either length (λ or λ+ Λ) can be

replaced by some path of the other length without M noticing the trick.

Three special paths. For d ≥ 0, we say that y is d-disjoint on x if in x ∪ ([]dy) the
edges of x and y meet at no vertex (Fig. 3a). We will construct three i-I-i paths, π, ̺, σ,
that look indistinguishable to M and satisfy certain disjointness relationships.

We start with ̺. We set ̺ := ϑ ˆ̺ϑ, where ˆ̺ is a (λ+Λ)-long i-I-i path that guarantees
̺ is Λ-disjoint on itself. Constructing it is easy: we pick i′ := 1 and paths

η := any i-I-i′ path of length λ,
ϑ′ := the i′-I-i′ path of length κ that is 0-disjoint on ϑ,
ι := any i′-I-i′ path of length Λ− (2κ + λ), and
η′ := the i′-I-i path of length λ that is 0-disjoint on η.

Then, setting ˆ̺ := ηϑ′ιϑ′η′ we see this is indeed an i-I-i path of length λ+Λ; and shifting
̺ = ϑ ˆ̺ϑ = ϑηϑ′ιϑ′η′ϑ on a copy of itself by Λ = |ϑηϑ′ι| causes only its prefix ϑηϑ′ to
overlap with the mirroring suffix ϑ′η′ϑ, so that no vertex is shared.

We continue with π. Since ˆ̺ is of length λ + Λ, the behavior (g, h) := (g ˆ̺, h ˆ̺) of M
on ˆ̺ in the context of ϑ is in Ωλ+Λ, and therefore in Ωλ. Hence, there exists a λ-long
i-I-i path π̂ on which M exhibits the same behavior, (gπ̂, hπ̂) = (g, h). We set π := ϑπ̂ϑ.
Clearly, fπ = fϑπ̂ϑ = fϑ ˆ̺ϑ = f̺ and M cannot distinguish π from ̺.

We conclude with σ. First, we pick an i-I-i path ̺′ that is as long as ˆ̺ and shares no
vertex with π when the two paths are ‘centered’2 on top of each other: namely, |̺′| = λ+Λ

2By ‘centering’ the two paths on top of each other we mean shifting one on top of the other so that their
‘centers of mass’ coincide. Since ̺′ is longer than π by |̺′|− |π| = | ˆ̺|− |ϑπ̂ϑ| = (λ+Λ)− (λ+2κ) = Λ−2κ,
this in turn means shifting π on top of ̺′ by d = (|̺′| − |π|)/2 = Λ

2
− κ.

6

and π is (Λ
2 −κ)-disjoint on ̺′.3 The behavior (g′, h′) := (g̺′ , h̺′) ofM on ̺′ is in Ωλ+Λ, and

hence in Ωλ. So, some λ-long i-I-i path π′ forces the same behavior, (gπ′ , hπ′) = (g′, h′).
Now consider the i-I-i path σ̂ := (π′)(µ)ϑ̺′ϑ(π′)(µ−1)ϑπ̂, containing 2µ + 1 ϑ-separated
i-I-i paths, all copies of π′ except the middle and rightmost ones, which copy ̺′ and π̂.
This forces the behavior

(

(gπ′)µg̺′(gπ′)µ−1gπ̂, hπ̂(hπ′)µ−1h̺′(hπ′)µ
)

=
(

(g′)2µg, h(h′)2µ
)

= (g, h),

where we used the selection of µ. Overall, σ̂ is (λ+2Λ)-long and forces the same behavior
as ˆ̺, π̂. We set σ := ϑσ̂ϑ and verify that fσ = f̺ = fπ, so M cannot distinguish among
σ, ̺, π. Also, σ symmetrically extends ̺′ in both directions by

|ϑ(π′)(µ)ϑ| = |ϑ(π′)(µ−1)ϑπ̂ϑ| = κ+
(

(µ− 1)κ+ µλ
)

+ κ = Λ
2 + κ,

so ‘centering’ π on σ causes no common nodes: π is Λ-disjoint on σ.

Mazes. A path is a special case of a more general object: a maze. Intuitively, this is
any string on which some nodes have been selected as entry/exit points (Fig. 3b). More
formally, let V 0

x ⊆ Vx consist of every node of the string x that has exactly one of its two
degrees equal to 0 (and hence is eligible to serve as a gate for ‘entering’ or ‘exiting’ the
graph of x). Then a maze on x is any pair (x,X) where X ⊆ V 0

x . For example, in these
terms, any i-I-i′ path x is the maze

(

x, {(i, 0), (i′ , |x|)}
)

.
Computing on a maze generalizes computing on a path. For χ = (x,X) a maze,

u = (i, j) ∈ X a gate with 0-degree side s, and q a state with ϕ(q) = (i, s), the computation
compq,u(χ) of M on χ from q and u is4 what we get when M is started at q and the jth
column and run until (if ever) it ‘exits the maze’. Here, ‘exits the maze’ means it hits left
or right, or ‘exits a gate’; in turn, the mole ‘exits’ gate (i, j) with 0-degree side s iff it is
at a state q with ϕ(q) = (i, s) and on the j-th column.

Composition. To compose two mazes means to draw their strings on top of each other and
then discard all coinciding gates (Fig. 3c). More carefully, χ = (x,X) and ψ = (y, Y) are
composable iff |x| = |y| (so that Vx = Vy = V) and their graphs ‘touch’ each other only at
gates and only appropriately: every v ∈ V

• either has both its degrees equal to 0 in at least one of x, y,
• or is a gate in both mazes with a different 0-degree side in each of them.

If χ, ψ are composable, then their composition is the pair χ ◦ ψ = (x ∪ y,X ⊖ Y).
Clearly, the composition is a maze. Moreover, in each symbol of x ∪ y, every non-

empty connected component comes entirely from exactly one of x, y. Hence, when M

reads a symbol, its next step depends on exactly one of x, y: the one that contains the
component currently holdingM ’s focus. More generally, for w ∈ X⊖Y , every computation
c = compq,w(χ ◦ ψ) can be ‘broken’ into a list of ‘subcomputations’ c1, c2, . . . , called
fragments of c, such that: every odd-indexed fragment is a computation on χ (wlog, say
w ∈ X \ Y); every even-indexed fragment is a computation on ψ; either all fragments are
finite, and then the list is infinite iff c is, or not, in which case the list is finite and the

3Finding ̺′ is trivial: simply take the unique i′-I-i′ path that is as long as π and 0-disjoint on it, then
extend by Λ

2
− κ in both directions into any i-I-i path.

4Note that comp applied on mazes has different argument types from comp applied on strings.

7

(d)

11

3

4

5

2

1 30 2

(c)(a) (b)

Figure 2: (a) Three symbols in Σ5. (b) The string they define. (c) The same string,
simplified and indexed. (d) A 5-long 1-{1, 2}-2 path.

(β)

(γ)

(α)

(δ)

(ǫ)

Λ − 1 Λ − 1 Λ − 1 Λ − 1 |π| − 1

̺

(ζ)

(η)

(ς)

̺

π

̺

σ

π

σ

u u′ ul v′

l
vlu′

l
ur v′

r
vru′

r
v′v

(ϑ)

u u′ v′v

Figure 3: (a) in each of α, β, γ: a 29-long string which is 6-disjoint on itself (see ǫ). (b) in
each of α, β, γ: a maze; its gates marked with circles. (c) in γ: the composition of the
mazes of α and β. (d) in α, β, γ: examples of τ2, τ1, τ , respectively, for a schematic case
Λ = 6, |π| = 4, and a schematic ̺. (e) in δ: a schematic of τ4; in ǫ: a (|τ | + Λ)-long
snippet of the union of a τ i with a Λ-shifted copy of itself. (f) in ζ: a schematic of χ′,
focusing on the snippets around the leftmost, i1th distinguished, i2th distinguished, and
rightmost (pairs of) copies of τ . (g) in η: a schematic of ψ′, for the same snippets. (h) in
ϑ: a schematic of the composition ω′ = χ′ ◦ ψ′, for the same snippets; in ǫ, ς: a more
detailed view of how σ and π connect the two disjoint graphs of x′ when they replace two
copies of ̺.

8

only infinite fragment is the last one; c1 starts at q and w, every other fragment starts at
the state and gate where the previous one finishes, and the last fragment (if it exists and
is finite) finishes identically to c.

3 The argument

A maze of questions. We start (Fig. 3d) with the two strings τ1 = []3Λ̺[] and

τ2 = [33]
Λ−1

[32][22]
Λ−1

[23][33]
Λ−1

[32,34][45][55]
Λ−1

[54][44]
|π|−1

[23,43],

which are equally long and each is Λ-disjoint on itself (recall the selection of ̺). Also, in
τ := τ1∪ τ2 their graphs ‘touch’ only at the endpoints of ̺, so τ is Λ-disjoint on itself, too.
Which implies τ i is also Λ-disjoint on itself, for all i ≥ 1 (Fig. 3e).

Let T := {τ i | i ≥ 1} be the set of all powers of τ , select τl and τr as lr- and a
rl-dilemmas over T , respectively, and fix m = 2|Q| + 1. The live string z = τlτ

mτr is also
a power of τ and in it we think of the m ‘middle’ copies of τ as distinguished.

Now consider the maze ω = (z, Z) = (z, {u, v}), where u = (3, 0) and v = (3, |z|) are
the two natural gates to the graph of z, and the |Q| computations compq,w(ω) that we
get as we vary q ∈ Q and pick w = u when ϕ(q)1 = l, and w = v otherwise. Disregard
every computation that is infinite (i.e., loops) or is finite but non-crossing (i.e., hangs; or
starts and ends on the same gate), keep only those that are finite and crossing (i.e., start
and end in different gates), and let k ≤ |Q| be their number.

Fix d to be one of these k computations and (wlog) assume it starts at u and ends at v
(do a similar analysis for rl-crossings). Then d visits all m distinguished copies of τ and
we want to describe its behavior on each of them. So, fix an 1 ≤ i ≤ m.

If we ‘rip off’ ̺ from the ith distinguished copy of τ and then add the two endpoints
ui, vi of the path as new gates, we construct a new maze,

χi =
(

(τlτ
i−1) τ2 (τm−iτr), {u, v, ui, vi}

)

.

By the ‘complementary’ operation, where we rip off everything except the particular copy
of ̺, we can construct the ‘complementary’ maze,

ψi =
(

([]|τlτ
i−1|) []3Λ̺[] ([]|τ

m−iτr|), {ui, vi}
)

.

Sure enough, ω = χi ◦ ψi, and d is a finite computation on this composition. Hence, we
can break it into its finitely many, finite fragments d1, d2, . . . , dν . We know every even(-
indexed) fragment is a computation on ψi; we call it crossing if its starting and ending
gates differ. We care about the parity of the number of such fragments:

bi,d = 0 ⇐⇒ d exhibits an even number of crossing even fragments,

i.e., the bit bi,d is 0 iff throughout d the copy of ̺ in the ith distinguished copy of τ is
‘fully crossed’ an even number of times.

Intuitively, as the mole develops d, each distinguished copy of τ poses the question:
“odd or even?” The mole answers with the parity of the number of times that it fully
crosses ̺ in that copy in either direction. The bits bi,d record these answers.

Organizing these m × k bits into m k-long vectors bi = (bi,d)d, for i = 1, . . . ,m, we
see that there are more vectors than values for them: 2k ≤ 2|Q| < 2|Q| + 1 = m. Hence,
bi1 = bi2 for some 1 ≤ i1 < i2 ≤ m. Which means that, in each crossing finite computation,
the answer to the i1th question equals the answer to the i2th one.

9

A labyrinth. We return to ω = (z, {u, v}), simultaneously rip off ̺ from the i1th and
i2th distinguished copies of τ (as above), and name the four natural new gates ul, vl
(endpoints of ̺ in i1th copy) and ur, vr (endpoints of ̺ in i2th copy) to get

χ = (x,X) =
(

(τlτ
i1−1) τ2 (τ i2−i1−1) τ2 (τm−i2τr), {u, v, ul, vl, ur, vr}

)

.

As above, the ‘complementary’ maze (rip off everything except the two ̺’s) is

ψ = (y, Y) =
(

(· · ·) []3Λ̺[] (· · ·) []3Λ̺[] (· · ·), {ul, vl, ur, vr}
)

,

where ellipses stand for appropriately many []s. We obviously have ω = χ ◦ ψ.
Note that x is Λ-disjoint on itself (because z is). So, in the union x′ = x ∪ ([]Λx) of

x with a Λ-shifted copy of itself, the two graphs do not ‘touch’ each other. (Fig. 3f.) So,
letting χ′ = (x′,X ′) where X ′ = X ∪{u′, v′, u′l, v

′
l, u

′
r, v

′
r} contains all gates of χ plus their

counterparts in the shifted copy, we know every computation on χ′ visits and depends on
exactly one of the two disjoint graphs.

Similarly, y is Λ-disjoint on itself (because ̺ is), the union y∪([]Λy) contains two pairs
of disjoint copies of ̺, and Y ′ = Y ∪ {u′l, v

′
l, u

′
r, v

′
r} contains their endpoints. Now view

each pair of copies of ̺ as a copy of ̺∪([]Λ̺), replace it with a copy of ˜̺ = σ∪([]Λπ), call
the new string y′, and set ψ′ = (y′, Y ′). (Fig. 3g.) Crucially, the substitution (i) preserves

the lengths of strings: |y′| = |y ∪ ([]Λy)|, because

| ˜̺| = |σ ∪ ([]Λπ)| = |σ| = 2k + l + 2Λ = |̺| + Λ = |̺ ∪ ([]Λ̺)|;

(ii) preserves the number and disjointness of paths: since π is Λ-disjoint on σ, we know
˜̺ also contains two disjoint paths; and (iii) preserves the set of endpoints of paths: e.g.,
on the copy of ˜̺ on the left, σ and π have endpoints ul, v

′
l and u′l, vl. Note that every

computation on ψ′ visits and depends on exactly one of the paths.
Clearly, the graphs of x′ and y′ ‘touch’ each other only at the gates in Y ′, so χ′, ψ′

compose, into ω′ = (z′, Z ′) = χ′ ◦ ψ′ = (x′ ∪ y′, {u, v, u′, v′}). (Fig. 3h.) Note that u, u′

are on the far left; v, v′ are on the far right; and the paths of y′ connect the two graphs
of x′: the mole can switch graphs only if it fully crosses one of the paths.

The hidden exit. Consider the computation c′ on the dead input z′[]. This is what
we see when M is started on the string ⊢ z′[]⊣ at its start state and on ⊢. Since the
first symbol of z′ is [33], any attempt of the mole to depart from ⊢ in a state of index
other than 3 is followed by a step back to ⊢. Disregarding these attempts and noting that
the mole can never move past [], we see c′ consists of one or more computations of the
form compq,0(z

′[]) with ϕ(q) = (3, l). Assume (wlog) that c′ consists of exactly one such
computation (for more, do a similar analysis).

So, c′ = compq,0(z
′[]) where ϕ(q) = (3, l). As a mole, every time M visits the 0-

degree side of the nodes u′, v, v′, it changes direction to return into the graph of z′. Call
every such visit a turn and break c′ into segments c′1, c

′
2, . . . so that successive segments are

joined at a turn: the later segment starts at the state and node following the last state and
node of the earlier one. Clearly, each segment is a computation on ω′; c′1 = compq,u(ω′)
but later segments start at a gate in {v, u′, v′}; and either all segments are finite, in which
case their list is finite iff c′ is, or not, in which case the list is finite and only the last
segment is infinite.

10

Our goal is to prove that c′ never visits the 0-degree side of v′; intuitively, that the

labyrinth implied by z′ hides the gate v′ from the mole. This will immediately imply the
failure of M : on the live input z′[33] the mole will compute exactly as on the dead input
z[], as it will never visit the 0-degree side of v′ to note the difference.

To reach our goal, it is sufficient to show that no segment ends in v′. This, in turn,
is a corollary of the following: (i) c′1 starts at u, (ii) a finite segment that starts at u and
does not hang necessarily ends on either u or v, and (iii) a finite segment that starts at
v and does not hang necessarily ends on either u or v. We show (ii); (iii) is similar and
(i) is known.

The final argument. Let d′ be a non-hanging finite segment of c′ that starts at u. As
a finite computation on ω′ = χ′ ◦ ψ′, it can be broken into finitely many, finite fragments
d′1, d

′
2, . . . , d

′
ν , where odd(-indexed) fragments compute on χ′ and even(-indexed) ones com-

pute on ψ′. By previous remarks, every odd fragment visits and depends on exactly one
of the two graphs (unshifted and shifted) inside x′; and every even fragment visits and
depends on exactly one of the four paths in y′. Calling an even fragment crossing if its
start and final gates differ, we see that two successive odd fragments visit different graphs
in x′ iff the even fragment between them is crossing. Generalizing, and since d′ starts on u,
each odd fragment visits the shifted graph in x′ iff the number of crossing even fragments

that precede it is odd.
Towards a contradiction, assume d′ does not end in u or v. Then it ends in either

u′ or v′. Hence, d′ν is an odd segment that visits the shifted graph in x′. Which implies
the total number of crossing even fragments (before d′ν , and so throughout d′) is odd. In
particular, even fragments exist and d′1 necessarily ends in a gate in Y .

Now let ζ : X ′ → X be the function that maps every gate in X ′ to its unprimed version
in X; e.g., ζ(ul) = ζ(u′l) = ul. We extend ζ to the fragments d′1, d

′
2, . . . , d

′
ν .

◦ If d′i is an odd fragment (hence, a computation on exactly one of the two graphs
in χ′) starting at state p on gate w and ending at state ṗ on gate ẇ, we let di = ζ(d′i) be
the computation on (the unique graph of) χ that starts at p on ζ(w) and ends at ṗ on
ζ(ẇ). Clearly, di exists. In particular, d1 = ζ(d′1) starts at ζ(u) = u and (by the remark
above) ends in a gate in ζ(Y) = Y .

◦ If d′i is an even fragment (hence, a computation on exactly one of the four paths in
ψ′) starting at p on w and ending at ṗ on ẇ, we let di = ζ(d′i) be the computation on (one
of the two copies of ̺ in) ψ that starts at p on ζ(w) and ends at ṗ on ζ(ẇ). This time di

exists because ̺ is indistinguishable from each of σ and π.
We review the list d1, d2, . . . , dν : d1 starts on ζ(u) = u; for 1 ≤ i < ν, di ends at

the state and gate where di+1 starts; dν ends on ζ(u′) = u or ζ(v′) = v; and every even
fragment di is crossing (on the path of ψ that it visits) iff d′i is (on the path of ψ′ that it
visits). Hence, concatenation builds a computation d on χ ◦ψ = ω, that starts on u, ends
on u or v, and contains an odd number of crossing even fragments.

But is this possible?
If d ends in u, then it never moves beyond τl (if it did, it would traverse the lr-

dilemma and get ‘blocked’ away from u). In particular, d1 never reaches a gate in Y . But
(by previous remark) this is where it is supposed to end. Contradiction.

If d ends in v, then it is a crossing finite computation on ω. As ω equals each of the
compositions χ◦ψ, χi1 ◦ψi1 , and χi2 ◦ψi2 , we know d can be fragmented in three different

11

ways. Clearly, every even fragment with respect to either χi1 ◦ ψi1 or χi2 ◦ ψi2 is also an
even fragment with respect to χ ◦ ψ, and vice versa; and is crossing or not (on the copy
of ̺ that it visits) irrespective of which composition we look at it through. So, letting ξ,
ξ1, ξ2 be the numbers of crossing even fragments with respect to the three compositions,
we know ξ = ξ1 + ξ2 and (as established above) ξ is odd. Yet, by the selection of i1 and
i2, the parities of ξ1, ξ2 are respectively bi1,d, bi2,d and hence equal (as bi1 = bi2), so that
ξ should be even. Contradiction.

Acknowledgement. Many thanks to Michael Sipser for the hints and the encourage-
ment throughout our countless discussions about this intriguing but so beautiful problem.

References

[1] Bruce H. Barnes. A two-way automaton with fewer states than any equivalent one-way
automaton. IEEE Transactions on Computers, C-20(4):474–475, 1971.

[2] Piotr Berman and Andrzej Lingas. On complexity of regular languages in terms of finite
automata. Report 304, Institute of Computer Science, Polish Academy of Sciences, Warsaw,
1977.

[3] Jean-Camille Birget. Two-way automata and length-preserving homomorphisms. Report 109,
Department of Computer Science, University of Nebraska, 1990.

[4] Jean-Camille Birget. Positional simulation of two-way automata: proof of a conjecture of
R. Kannan and generalizations. Journal of Computer and System Sciences, 45:154–179, 1992.

[5] Marek Chrobak. Finite automata and unary languages. Theoretical Computer Science, 47:149–
158, 1986.

[6] Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Converting two-way nondeter-
ministic unary automata into simpler automata. Theoretical Computer Science, 295:189–203,
2003.

[7] Juraj Hromkovič and Georg Schnitger. Nondeterminism versus determinism for two-way
finite automata: generalizations of Sipser’s separation. In Proceedings of the International

Colloquium on Automata, Languages, and Programming, pages 439–451, 2003.
[8] Ravi Kannan. Alternation and the power of nondeterminism. In Proceedings of the Symposium

on the Theory of Computing, pages 344–346, 1983.
[9] Christos Kapoutsis. Removing bidirectionality from finite automata. In preparation.

[10] Hing Leung. Tight lower bounds on the size of sweeping automata. Journal of Computer and

System Sciences, 63(3):384–393, 2001.
[11] Albert R. Meyer and Michael J. Fischer. Economy of description by automata, grammars,

and formal systems. In Proceedings of the Symposium on Switching and Automata Theory,
pages 188–191, 1971.

[12] Frank R. Moore. On the bounds for state-set size in the proofs of equivalence between deter-
ministic, nondeterministic, and two-way finite automata. IEEE Transactions on Computers,
20(10):1211–1214, 1971.

[13] Michael O. Rabin. Two-way finite automata. In Proceedings of the Summer Institute of

Symbolic Logic, pages 366–369, Cornell, 1957.
[14] Michael O. Rabin and Dana Scott. Remarks on finite automata. In Proceedings of the Summer

Institute of Symbolic Logic, pages 106–112, Cornell, 1957.
[15] William J. Sakoda and Michael Sipser. Nondeterminism and the size of two-way finite au-

tomata. In Proceedings of the Symposium on the Theory of Computing, pages 275–286, 1978.
[16] Joel I. Seiferas. Manuscript communicated to M. Sipser. October 1973.
[17] Michael Sipser. Lower bounds on the size of sweeping automata. Journal of Computer and

System Sciences, 21(2):195–202, 1980.

12

