
From k + 1 to k heads

the descriptive trade-off is non-recursive

Christos Kapoutsis

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

cak@mit.edu

Abstract

We prove that no recursive function can upper bound the increase in the
size of description when a two-way deterministic finite automaton with k + 1
heads is replaced by an equivalent two-way deterministic finite automaton with
k heads. This is true for all k, and remains true if the automata are unary
and/or nondeterministic.

1 Introduction

Let 2dfak stand for ‘two-way deterministic finite automaton with k heads’ and
(2dfak) for the set of languages recognizable by such automata. It is well known
that the sequence

(2dfa1), (2dfa2), . . . , (2dfak), . . .

starts with the regular languages [13, 16], is strictly increasing [10, 11], and even-
tually covers the entire class L of languages decidable by Turing machines (tms) in
logarithmic space [2]. Hence, for any L ∈ L and for k∗ the smallest k for which
L ∈ (2dfak), each one of the following types of machines

2dfak∗, 2dfak∗+1, 2dfak∗+2, . . . , logarithmic-space tm,

suggests a different string to ‘describe’ L: a smallest (description of a) machine of
this type that recognizes L. It is then conceivable that stronger types of machines
may provide more succinct descriptions than weaker types, making it natural to ask
how much more verbose the weaker types can be, in general.

Recently, Kutrib [5] proved that 2dfaks can be both non-recursively more verbose
than logarithmic-space tms and non-recursively more succinct than 2dfa1s. That
is, he showed that no recursive function can upper bound the increase in the size of
description when we replace a minimal (description of a) logarithmic-space Turing
machine with (a description of) an equivalent 2dfak, for any k ≥ 1. Similarly, on
the other end of the hierarchy, the increase in the size of description when a minimal
(description of a) 2dfak is replaced by (a description of) an equivalent 2dfa1 admits
no recursive upper bound, either, for any k ≥ 2.

Kutrib went on to conjecture that the trade-off is non-recursive even when we
change from a minimal 2dfak+1 into an equivalent 2dfak, for all k. In addition, he
posed the question whether the same is true when we restrict our attention to unary
automata of this type —for this case he found huge recursive lower bounds but
refrained from guessing that no recursive upper bound exists, because of the real-
time one-way cellular automata precedent (for these automata, non-recursive trade-
offs for arbitrary languages reduce to recursive trade-offs for unary languages [6]).

We resolve these questions by showing that non-recursive blow-ups are possible
both in the general and in the unary case. Moreover, if we switch our attention to
nondeterministic automata, the blow-ups can still be non-recursive, again both in
the general and in the unary case. Section 2 describes the framework of this study
in more detail and gives an outline of the proof, whose two pieces are presented in
Sections 3 and 5. The discussion focuses on the general deterministic case, which is
the most natural one; when appropriate, a final note in each section addresses the
unary and/or nondeterministic cases.

Related work. The study of the relative succinctness of descriptional systems of
different power seems to have started with Stearns [18], who gave a recursive upper
bound for the size of the smallest deterministic finite automaton (1dfa) that recog-
nizes the language of a given deterministic pushdown automaton (1dpa) whenever
this language is indeed regular. Following this, Meyer and Fischer [7] showed no
such bound exists if we compare 1dfas to context-free grammars —the first proof
of a non-recursive trade-off. Later, Valiant [19] proved the same for the compar-
ison between 1dpas and unambiguous context-free grammars, while Schmidt and
Szymanski [15] repeated this for the comparison between the latter and (general)
context-free grammars. Finally, Hartmanis [3] simplified many of the proofs by
noting the relation of the recursiveness of a trade-off to the recognizability of the
corresponding inadequacy problem (cf. Lemma 2.3); he also proved non-recursive
trade-offs even for comparisons where the nondeterminstic descriptors from above
are accompanied by proofs that their languages are deterministic or unambiguous.
It is this discussion that Kutrib [5] has transferred to multihead finite automata.

For a detailed overview of the subject, along with a comprehensive survey of the
broader field of descriptive complexity, the reader is referred to [1].

2 The framework

We denote the set of positive integers by N. For n, a ∈ N, we write lga n to denote
⌊loga n⌋. The set of all finite strings over an alphabet Γ is denoted by Γ ∗.

A (promise) problem over Γ is any pair Π = (Πyes,Πno) where Πyes, Πno are
disjoint subsets of Γ ∗. A tm recognizes Π if it accepts all x ∈ Πyes and rejects all
x ∈ Πno —possibly by looping. If some tm recognizes Π, we say Π is recursively
enumerable or (Turing-) recognizable. For Π ′ also a problem over Γ , we write Π ≤ Π ′

and say Π reduces to Π ′ iff there is a tm that, on input x ∈ Γ ∗, eventually halts
with an output y such that x ∈ Πyes =⇒ y ∈ Π ′

yes and x ∈ Πno =⇒ y ∈ Π ′

no. If
some unrecognizable Π reduces to Π ′, then Π ′ is also unrecognizable [4, 17].

If Πno = Πyes, then Π is also called a language and is adequately described by
Πyes alone. If in addition Πyes contains exactly all sufficiently long strings for some
interpretation l of ‘sufficiently long’, Πyes = {x ∈ Γ ∗ | length(x) ≥ l}, then we say
Π is a threshold language.

2.1 Multihead automata

A two-way deterministic finite automaton with k heads (a 2dfak) over alphabet
Σ 6= ∅ consists of a finite state control, k read-only heads, and a tape that can
represent the symbols of Σ and the extra endmarking symbols ⊢ and ⊣. An input
x ∈ Σ∗ is presented on the tape surrounded by the endmarkers. The automaton
starts at a designated start state, all heads reading the left endmarker ⊢. At every
step, the k symbols under the heads are read; based on this information and the
current state, the automaton decides what its next state should be, which one head it
should move, and whether to move it left or right; it then simultaneously changes its
state and moves the chosen head accordingly. No head can move past an endmarker
and the automaton cannot sense when two of its heads are on the same tape cell.
The input is accepted if the machine ever reaches a designated final state and halts.
The language of the automaton is exactly the set of strings over Σ that it accepts.
We say the automaton is terminating if it halts on all inputs.

By a multihead two-way deterministic finite automaton (a 2dfa∗), we mean a
2dfak with any number of heads k. A description of such an automaton is any string
that encodes it, under some arbitrary (but fixed) reasonable encoding of 2dfa∗s into
finite strings over some alphabet ∆. The size of such a description z ∈ ∆∗ is the
value size(z), where size:∆∗ → N is some arbitrary (but fixed) computable function
with the property that some terminating tm can, on input k, s ∈ N, produce a list
of descriptions that cover all 2dfaks with a description of size at most s.

We write (z) for the 2dfa∗ encoded by a description z, and (M) for the language
of a 2dfa∗ M ; the set of all descriptions of M (which may not be a singleton) is
denoted by 〈M〉. The collection of the languages of all 2dfaks [all 2dfa∗s] is denoted
by (2dfak) [by (2dfa∗)]. The collection of the descriptions of all 2dfaks [all 2dfa∗s]
is denoted by 〈2dfak〉 [by 〈2dfa∗〉]. Two 2dfa∗s are equivalent if their languages
are identical; two descriptions z, z′ ∈ 〈2dfa∗〉 are equivalent if (z), (z′) are.

The unary and nondeterministic cases. If Σ in the definition of a 2dfak

contains only one symbol, we say the automaton is unary (a 2dfa
u
k). If more than

one next moves are allowed at each step and the input is considered to be accepted
whenever at least one of the resulting computations halts at a final state, we say the
automaton is nondeterministic (a 2nfak; or a 2nfa

u
k, if the alphabet is unary). The

sets of languages (2dfa
u
k), (2nfa∗), etc. and descriptions 〈2dfa

u
k〉, 〈2nfa∗〉, etc. are

defined analogously.

2.2 Decreasing the number of heads

It is known [10, 11] that 2dfak+1s are more powerful than 2dfaks, in the sense that

(2dfak) $ (2dfak+1), (1)

for all k. This suggests two natural discussions.
i. Since (2dfak) ⊆ (2dfak+1), an L ∈ (2dfak) can be ‘described’ not only by

descriptions of 2dfaks that recognize it, but also by descriptions of 2dfak+1s. Con-
ceivably, the minimal descriptions of the former type are larger than the minimal
descriptions of the latter type, in which case to change from a minimal 2dfak+1

description of L to a 2dfak description of L is to trade an increase in the size of the
description for a decrease in the number of heads. It is then natural to ask for an
upper bound for this increase.

2.1 Definition. If fk : N→ N is such that

for all s ∈ N and all z ∈ 〈2dfak+1〉 of size at most s: if z has an equivalent
z′ ∈ 〈2dfak〉, then it has one of size at most fk(s),

then we say that fk is an upper bound for the increase in the size of description
when a 2dfak+1 is replaced by an equivalent 2dfak.

So, if fk is such an upper bound and M is a 2dfak+1 that has equivalent 2dfaks,
at least one of these has a small enough description: no larger than fk(s), where s

is the size of any description of M . To define such an fk is, of course, very easy;
what is questionable is whether we can define one that is also recursive. If this is not
possible, we say that the (descriptive) trade-off from k+1 to k heads is non-recursive
(for 2dfa∗s), or that 2dfak+1s can be non-recursively more succinct than 2dfaks.

ii. Since (2dfak) 6= (2dfak+1), a 2dfak+1 may or may not have an equiva-
lent 2dfak, so that it is natural to consider the associated computational problem:
“Given a description of a 2dfak+1 M , is it true that M has no equivalent 2dfak?”

2.2 Definition. Hk =
{
z ∈ 〈2dfak+1〉 | ¬

(
∃z′ ∈ 〈2dfak〉

)(
z, z′ are equivalent

)}
.

In a more intuitive dialect, Hk is the problem: “Given a 2dfak+1 M , is it true that
M can’t perform the same task with only k of its heads?” We are interested in
the question whether this problem is recognizable, in which case we say that the
inadequacy of k heads is recognizable (for 2dfak+1s).

As first noted in [3], discussions (i) and (ii) are not unrelated (see also [5]).

2.3 Lemma. If the trade-off from k +1 to k heads is recursive, then the inadequacy
of k heads is recognizable.

The unary and nondeterministic cases. That k + 1 heads are better than k

has also been established for the case where the automata are unary and/or nonde-
terministic [11, 12]. That is, similarly to (1), we also have

(2dfa
u
k) $ (2dfa

u
k+1), (2nfak) $ (2nfak+1), (2nfa

u
k) $ (2nfa

u
k+1),

for all k. As a result, for each one of the three types of machines we can repeat the
preceding discussions, asking again (i) whether the trade-off from k + 1 to k heads
is recursive, and (ii) whether the inadequacy of k heads is recognizable. Lemma 2.3
can then be shown anew (with the same proof).

2.3 Proof outline

Fix any k ≥ 1. Our goal is to prove that 2dfak+1s can be non-recursively more
succinct than 2dfaks. By Lemma 2.3, it is enough to show that Hk is unrecognizable.
We do this by a reduction from the complement of the halting problem

HALTING ≤ Hk,

where HALTING = {z ∈ {0, 1}∗ | z encodes a tm that loops on z} is known to be
unrecognizable [4, 17]. What we actually show is two separate reductions:

HALTING ≤ E ≤ Hk, (2)

where E is the promise problem: “Given a description of a terminating 2dfa
u
2 whose

language is either empty or threshold, check that it is empty.” In formal dialect,
E = (Eyes,Eno), where

Eyes = {z ∈ 〈2dfa
u
2〉 | (z) is terminating and ((z)) = ∅},

Eno = {z ∈ 〈2dfa
u
2〉 | (z) is terminating and ((z)) is a threshold language}.

The next section discusses the second of the two reductions in (2), which is eas-
ier. The first reduction is established in Section 5 and makes use of multicounter
automata, as introduced in Section 4.

The unary and nondeterministic cases. Lemma 2.3 again suggests that we
need only prove the inadequacy of k heads is unrecognizable, for each one of the
three types of automata. We do this with the same two reductions of (2). Only the
second one needs to be modified.

3 The second reduction

Our goal in this section is to find an algorithm that, on input a description z of a
terminating 2dfa

u
2 M whose language is guaranteed to be either empty or threshold,

produces a description z′ of a 2dfak+1 M ′ such that

(M) = ∅ =⇒ M ′ has no equivalent 2dfak,

(M) is a threshold language =⇒ M ′ has equivalent 2dfaks.
(3)

Following the idea of [5, Theorem 7], we will need an arbitrary 2dfak+1 that has no
equivalent 2dfak. So, fix D to be such a 2dfak+1 and zD to be a description of it;
also let Σ be D’s input alphabet.

Our algorithm is simple. It uses z and zD to construct a description z′ for the
2dfak+1 M ′ that, on input x ∈ Σ∗, follows the instructions:

1. Simulate M on x; if M accepts, accept; otherwise, go to Step 2.
2. Simulate D on x (and accept, reject, or loop accordingly).

Note that in the first simulation M ′ treats all symbols of Σ the same. Also, this
simulation is possible, since k + 1 ≥ 2. Moreover, when M rejects, M ′ can move to
Step 2, since M never rejects by looping. Overall, M ′ is well-defined.

As for the language of M ′, it is easy to see that: when (M) = ∅, then (M ′) is
just (D); when (M) is a threshold language with threshold l, then

(M ′) = {x ∈ (D) | length(x) < l} ∪ {x ∈ Σ∗ | length(x) ≥ l},

which is cofinite, and hence regular. In total,

(M) = ∅ ⇒ (M ′) = (D) & (M) is threshold⇒ (M ′) is regular, (4)

which implies (3), by the selection of D and the inclusion of regular languages in
(2dfa1) ⊆ (2dfak). Hence, our algorithm can safely output z′.

The unary and nondeterministic cases. By appropriately changing the selec-
tion of zD, the same algorithm establishes that E ≤ Hk, even when Hk stands for
the inadequacy of k heads for 2dfa

u
k+1s [2nfak+1s, 2nfa

u
k+1s]. More specifically,

we now select zD to be a description of a 2dfa
u
k+1 [2nfak+1, 2nfa

u
k+1] D that has

no equivalent 2dfa
u
k [2nfak, 2nfa

u
k]. Then, M ′ is a well-defined automaton of the

same type as D (note that M ′ has enough resources to simulate each of M , D) that
satisfies (4), and hence the version of (3) for 2dfa

u
ks [2nfaks, 2nfa

u
ks].

4 Multicounter automata

A deterministic automaton with k (bounded) counters1 (dcak) consists of a finite
state control and k counters, each of which can store a nonnegative integer. The
input to the automaton is a nonnegative upper bound n for its counters. The
automaton starts at a designated start state with all its counters set to 0. At every
step, based on its current state, the automaton decides which counter it should act
upon and whether it should decrease it or increase it. Then the action is attempted.
An attempt to decrease fails iff the counter already contains 0; an attempt to increase
fails iff the counter already contains n. A failed attempt leaves the counter contents
intact; a successful attempt updates the counter contents accordingly. Based on
its current state and on whether the attempt succeeded or not, the automaton
selects a new state and moves to it. The input is accepted if the machine ever
enters a designated final state. The language of the automaton is exactly the set of
nonnegative integers that it accepts. By a deterministic multicounter automaton (a
dca∗) we mean a dcak with any number of counters k.

The new automata are just another, more convenient way to look at 2dfa
u
∗
s.

4.1 Lemma. Every 2dfa
u
k M has a dcak M ′ such that (M ′) = {n+1 | 0n ∈ (M)}.

Conversely, every dcak M has a 2dfa
u
k M ′ with (M ′) = {0n−1 | n ∈ (M) & n 6= 0}.

1In this definition the reader will probably almost recognize the bounded counting automata

of [14], the two-way counter automata and the register machines of [12], or other automata from
elsewhere. The present model is nicely simpler, in the sense that the input is directly taken to be
the upper bound for the counters, saving us the redundant (in this case) notion of an input tape or
an input register.

In order to facilitate the description of the behavior of dca∗s, we introduce some
‘program’ notation. First, the two atomic operations, the attempt to decrease a
counter X and the attempt to increase it, are denoted respectively by

X
f
←− X − 1 and X

f
←− X + 1,

where, in each case, flag f is set to true iff the attempt succeeds. Then, the compound
operation of setting X to 0, denoted by X ←− 0, can be described by the line

repeat X
f
←− X − 1 until ¬f. (5)

If a second counter Y is present, we can transfer the contents of Y into X: we set
X to 0, then repeatedly decrease Y and increase X until Y is 0. We denote this by

(X,Y)←− (Y, 0),

and describe it by a line similar to (5). Changing how fast X increases as Y decreases,
we can multiply/divide Y into X by any constant a. We denote these operations by

(X,Y)
f
←− (aY, 0) and (X,Y)

r
←−

(⌊
Y
a

⌋
, 0

)
.

For the first one, note that aY > n implies one of the attempts to increase X will
fail; in that case, we restore the original value of Y returning X to 0, and set flag f

to false. In the second operation, we also find the remainder and return it in r.
At a higher level, we can attempt to multiply Y by a constant a (into Y) using

X as an auxiliary counter and making sure Y changes only if the operation succeeds:

(X,Y)
f
←− (aY, 0); if f then (Y,X)←− (X, 0).

Division (with remainder) can be done similarly. We denote the two operations by

Y
f,X
←− aY and Y

r,X
←−

⌊
Y
a

⌋
. (6)

Now, we can set Y to the largest power of a that can fit in n:

Y ←− 0; Y
f
←− Y + 1; if f then repeat Y

g,X
←− aY until ¬g (7)

(note that this fails iff n = 0). We denote (7) by (remember that lga n = ⌊loga n⌋):

Y
f,X
←− alga n.

If a third counter Z is present, we can modify (7) to also count (in Z) the number of
iterations performed. This gives us a way to try to calculate lga n (failing iff n = 0):

Z
f,X,Y
←− lga n.

In another variation, we can modify the multiplication in (6) so that the success of
the operation depends on the contents of Z (as opposed to n). We write this as

Y
f,X,Z
←− aY,

meaning that, using X as auxiliary and without affecting Z: if aY ≤ Z, then Y is
set to aY ; otherwise, Y is unaffected.2 Then, the following variant of (7)

Z
f
←− Z − 1; if f then {Z

t

←− Z + 1; repeat Y
g,X,Z
←− aY until ¬g}

implements the attempt to set Y to the largest power of a that is at most Z, using
X as auxiliary and leaving Z unaffected (failing iff Z is 0).3 We denote this one by

Y
f,X
←− alga Z .

It is important to note that during this operation no counter ever assumes a value
greater than the original value of Z (cf. Footnote 2).

Hopefully, the reader is convinced of the quite significant capabilities of dca∗s
that have 2 or more counters. We will be using these capabilities in the next section.

5 The first reduction

In this section, our goal is to find an algorithm that, on input a decription z of a
tm M produces a description z′ of a terminating 2dfa

u
2 M ′ such that

M loops on input z =⇒ (M ′) = ∅,

M halts on input z =⇒ (M ′) is a threshold language.
(8)

We will be calling a machine (tm, dca∗, or 2dfa
u
∗
) good if it is terminating and its

language satisfies (8) when it replaces (M ′). For example, (z′) should be good.
On its way to z′, our algorithm will construct descriptions of three other ma-

chines, in this order: a description zA of a tm A, a description zB of a dca3 B, and
a description zC of a dca2 C. In the sequence M , A, B, C, M ′, each machine after
M will be defined in terms of the previous one and will be good. The reader will
probably recognize in our constructions the ideas of [20] and [8] (also found in [9, 4]).

The first machine. A is a tm with one tape, infinite in both directions; the tape
alphabet is {⊔, 0, 1, 0̇, 1̇}, while the input alphabet is {0}. On input 0n, A starts
with tape contents

· · · ⊔ ⊔ ⊔ 000 · · · 00
︸ ︷︷ ︸

n times

⊔ ⊔ ⊔ · · ·

and its head reading the leftmost 0 (or a ⊔, if n = 0). It then computes:

1. For all x ∈ {0, 1}n, from 0n up to 1n:
— if x encodes a halting computation history of M on z, accept.

2. Reject.

2To implement this, we repeatedly decrease Y , increase X, and decrease Z by a. If Z becomes 0

before Y , then aY > Z and the operation should fail: we restore the original values of Y and Z

by repeatedly decreasing X, increasing Y , and increasing Z by a, until X becomes 0. Otherwise,
aY ≤ Z and the operation will succeed: we copy the correct value to Y and restore the value of Z

by repeatedly decreasing X and increasing each of Y , Z by a, until X becomes 0. Note that none

of the counters ever assumes a value greater than the original value of Z.
3Note the use of t in the place of a flag, indicating that the action is guaranteed to succeed.

The check inside the loop presupposes some fixed reasonable encoding of sequences
of configurations of M into binary strings, with the additional property: if w en-
codes a computation history, then every string of the form w0∗ encodes the same
history. Note that, using the extra dotted symbols, A can easily perform this check
without ever writing a non-blank symbol on a ⊔, or a ⊔ on a non-blank symbol.
As a consequence, throughout its computation on 0n, A keeps exactly n non-blank
symbols on its tape (occupying the same n cells as the symbols of the input). This
will prove useful in the next section.

The second machine. B is a dca3 that, on input n ≥ 30, simulates the behavior
of A on input 0lg5 lg30 n; on input n < 30, B just rejects.4

To explain B’s behavior, let L, R, J be its three counters. J is auxiliary, used
for performing operations on L and R, while L and R together encode tape configu-
rations of A. To see the encoding, consider the following example of a configuration:

· · · l4 l3 l2 l1 l0 r0 r1 r2 r3 r4 r5 r6 · · ·

· · · ⊔ ⊔ × × × × × × × × ⊔ ⊔ · · ·

↑

(here × stands for any non-blank symbol, ↑ shows the head position). Mapping
symbols ⊔, 1̇, 0̇, 1 and 0 to numbers 0, 1, 2, 3 and 4, respectively, we get each tape
cell map to a digit of the 5-ary numbering system. Then, the head position splits
the tape into two portions, which define the integers

l =

∞∑

i=0

li · 5
i and r =

∞∑

r=0

ri · 5
i

(note that the cell under the head contributes to r; also, the sums are finite exactly
because ⊔ maps to 0). These two values are kept in L and R, respectively.

More specifically, on input n, B starts with a two-part initialization. First, it
computes lg30 n into J , leaving 0s in L and R (this is if n ≥ 1; if n = 0, it rejects):

L
f,R,J
←− lg30 n; if ¬f then reject else (J,L)←− (L, 0),

Then, it computes into R the value 5m−1, where m = lg5 lg30 n, leaving 0 in L (this
is only if J ≥ 1, that is if n ≥ 30; otherwise, n < 30 and B rejects):

R
f,L
←− 5lg5 J ; if ¬f then reject else {R

t

←− R− 1; L←− 0}.

This completes the initialization, with L = 0 and R = 5m − 1, or in 5-ary:

L = 0 and R = 4 4 4 · · · 4
︸ ︷︷ ︸

m times

.

Hence L and R correctly represent the starting tape configuration of A on input 0m:

4The strange length lg5 lg30 n of the input of A’s simulated computation is chosen as a function
of n that is (i) computable by a dca3 and (ii) increasing, but also (iii) small enough. Goodness of
B bases on (ii), while (iii) facilitates the simulation performed by C in the next section.

· · · l1 l0 r0 r1 r2 · · · rm−1 rm rm+1 · · ·

· · · ⊔ ⊔ 0 0 0 · · · 0 ⊔ ⊔ · · ·

↑

(since symbol 0 maps to 4) and B is ready to start a faithful simulation of A’s steps.
The automaton remembers the current state of A in its finite memory. To find

the code r0 of the symbol read by the head of A, it computes:

R
r0,J
←−

⌊
R
5

⌋
.

Then, if s is the code of the symbol to be written on the tape, it computes

L
t,J
←− 5L; repeat s times: L

t

←− L + 1

to simulate writing this symbol and moving to the right; it computes

R
t,J
←− 5R; repeat s times: R

t

←− R + 1;

L
l0,J
←−

⌊
L
5

⌋
; R

t,J
←− 5R; repeat l0 times: R

t

←− R + 1

to simulate writing this symbol and moving to the left.5

It is important to note the range of the values assumed by the counters. By
the design of its main operation, the second part of the initialization phase never
assigns to a counter a value greater than the original value of J , which is lg30 n.
Then, in the simulation phase, the behavior of A (the tape starts with m 0’s and
always contains exactly m non-blank symbols) and the selection of the symbol codes
(0 gets the largest code) are such that the initial value 5m − 1 of R upper bounds
all possible values that may appear in B’s counters. One consequence of this is that
all increments and multiplications in the previous paragraph are guaranteed to be
successful (hence the t reminder). Another consequence is that, since 5m−1 < lg30 n,
the entire computation of B after the first part of its initialization phase keeps all
values of all counters at or below lg30 n. This will prove crucial in the next section.

The third machine. C is a dca2 that simulates the behavior of B. If U , V are its
two counters, then V is auxiliary for performing operations on U , while U encodes
the contents of the counters of B: whenever L, R, J contain l, r, j respectively, U

contains 2l3r5j .
The automaton starts by computing into U the product 30t = 2t3t5t, where

t = lg30 n (this is only if n ≥ 1; if n = 0, C rejects, exactly as B would do):

U
f,V
←− 30lg30 n; if ¬f then reject.

It then removes all 2’s and 3’s from this product,6 so that U becomes 20305lg30 n,

5Some extra care is necessary when L = 0 or R = 0, in which case the read head is at the
leftmost or rightmost input symbol. We omit the details.

6To remove all 2’s, C divides U by 2 repeatedly (U
r,V
←−

�
U

2

�
), until a non-zero remainder r is

returned, which implies there were no 2’s in U before the last division. Then the correction

U
t,V
←− 2U ; U

t

←− U + 1

undoes the damage caused by the last division. A similar computation removes all 3’s.

which correctly encodes the values of the counters of B right after the first part of
its initialization phase. Now C starts a faithful simulation of the steps of B.

The current state of B is stored in C’s memory. When B attempts to decrease J ,

J
f
←− J − 1,

C divides U by 5; if there is no remainder, the division simulated a successful
decrement; otherwise, the simulated attempt failed and C restores U ’s initial value:

U
r,V
←−

⌊
U
5

⌋
; if r = 0 then f ←− true else

{f ←− false; U
t,V
←− 5U ; repeat r times: U

t

←− U + 1}.

The attempts to decrease L or R are handled similarly, with 2 or 3 instead of 5.
Attempts of B to increase its counters are simulated by appropriate multiplica-

tions of U . The only subtlety involves failure during increment attempts: how does
the simulation make sure that an attempt of B to increase a counter fails iff the
corresponding attempt of C to multiply U fails?7 The crucial observation (from last
section) is that, since we are after the first part of B’s initialization phase, every
such attempt of B is successful and produces a value at or below t. Hence, the value
of U at any point is at most 2t3t5t, its original value. Therefore, when C multiplies
U to simulate a counter increment, it knows in advance the multiplication cannot
fail. Overall, B’s atomic operation

J
t

←− J + 1 is simulated by U
t,V
←− 5U,

and similarly for L and R.

The final machine. M ′ is a 2dfa
u
2 that, on input n, simulates C on input n + 1

mimicking the counter operations by head moves (cf. Lemma 4.1).

This concludes the definitions of all four machines of our reduction. It should be
clear that A, B, and C are all good, so that M ′ is good, as well. Moreover, a
description z′ of M ′ can clearly be computed out of the description z of M .

6 Conclusion

We have proved that one extra head allows non-recursively greater succinctness in
describing languages of L by multihead automata, be they deterministic or nonde-
terministic, unary or not. It is straightforward to draw similar conclusions for other
types of (pebble or counter) automata of comparable power.

7Note that this condition is necessary for a successful simulation but is not met in some obvious
way. In B all three counters have the same upper bound (B’s input), whereas in C their represen-
tations have different upper bounds: the base 2, base 3, and base 5 logarithms of the upper bound
for U (C’s input).

References

[1] Jonathan Goldstine, Martin Kappes, Chandra M. R. Kintala, Hing Leung, An-
dreas Malcher, and Detlef Wotschke. Descriptional complexity of machines with
limited resources. Journal of Universal Computer Science, 8(2):193–234, 2002.

[2] Juris Hartmanis. On non-determinancy in simple computing devices. Acta
Informatica, 1:336–344, 1972.

[3] Juris Hartmanis. On the succinctness of different representations of languages.
In International Colloquium on Automata, Languages, and Programming, vol-
ume 71 of Lecture Notes in Computer Science, pages 282–288, 1979.

[4] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation. Addison-Wesley, Reading, MA, 1979.

[5] Martin Kutrib. On the descriptional power of heads, counters, and pebbles.
In Proceedings of the 5th Workshop on the Descriptional Complexity of Formal
Systems, pages 138–149, Budapest, 2003. MTA SZTAKI.

[6] Andreas Malcher. Descriptional complexity of cellular automata and decidabil-
ity questions. Journal of Automata, Languages and Combinatorics, 7(4):549–
560, 2002.

[7] Albert R. Meyer and Michael J. Fischer. Economy of description by automata,
grammars, and formal systems. In Proceedings of the 12th Annual Symposium
on Switching and Automata Theory, pages 188–191, 1971.

[8] Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other
topics in theory of Turing machines. Annals of Mathematics, 74(3):437–455,
November 1961.

[9] Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall,
Englewood Cliffs, NJ, 1967.

[10] Burkhard Monien. Transformational methods and their application to com-
plexity problems. Acta Informatica, 6:95–108, 1976.

[11] Burkhard Monien. Corrigenda: Transformational methods and their application
to complexity problems. Acta Informatica, 8:383–384, 1977.

[12] Burkhard Monien. Two-way multihead automata over a one-letter alphabet.
RAIRO Informatique Théorique/Theoretical Informatics, 14(1):67–82, 1980.

[13] Michael O. Rabin and Dana Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3:114–125, April 1959.

[14] Robert W. Ritchie and Frederick N. Springsteel. Language recognition by mark-
ing automata. Information and Control, 20:313–330, 1972.

[15] Erik M. Schmidt and Thomas G. Szymanski. Succinctness of descriptions of
unambiguous context-free languages. SIAM Journal of Computing, 6(3):547–
553, 1977.

[16] John C. Shepherdson. The reduction of two-way automata to one-way au-
tomata. IBM Journal of Research and Development, 3:198–200, April 1959.

[17] Michael Sipser. Introduction to the theory of computation. PWS Publishing
Company, Boston, MA, 1996.

[18] Richard E. Stearns. A regularity test for pushdown machines. Information and
Control, 11:323–340, 1967.

[19] Leslie G. Valiant. A note on the succinctness of descriptions of deterministic
languages. Information and Control, 32:139–145, 1976.

[20] Hao Wang. A variant of Turing’s theory of computing machines. Journal of
the ACM, 4(1):63–92, January 1957.

