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Morphological Iterative Closest Point Algorithm

C. A. Kapoutsis, C. P. Vavoulidis, and I. Pitas

Abstract—This work presents a method for the registration of three-
dimensional (3-D) shapes. The method is based on the iterative closest
point (ICP) algorithm and improves it through the use of a 3-D volume
containing the shapes to be registered. The Voronoi diagram of the
“model” shape points is first constructed in the volume. Then this is used
for the calculation of the closest point operator. This way a dramatic
decrease of the computational cost is achieved.

Index Terms—Iterative closest point algorithm, Voronoi tesselation.

I. INTRODUCTION

The iterative closest point (ICP) algorithm proposes a solution to a
key registration problem in computer vision [1]: given a “model”
three-dimensional (3-D) shape and a “data” 3-D shape, estimate
the optimal translation and rotation that register the two shapes by
minimizing the mean square distance between them. An important
application of this algorithm is to register actual data sensed from a
3-D object with an ideal 3-D model. It is also useful in multimodal 3-
D image registration in medical imaging (e.g., between NMR and CT
volumes), in the shape equivalence problem as well as in estimating
the motion between point sets when the correspondences are not
known.

A crucial drawback of the ICP algorithm is the high computational
complexity of the closest point operator. The morphological ICP
algorithm solves this problem by using a 3-D array representing
a volume inZ3 and by constructing the Voronoi diagram of the
model points within this volume, by using the morphological Voronoi
tesselation method. Then, the ICP algorithm is employed, with
distance calculations substituted by simple array references.

A. Iterative Closest Point Algorithm

In the ICP algorithm, a data shapeP is registered to be in best
alignment with a model shapeX. Both shapes must be decomposed
first into point sets. LetNp; Nx be the number of points in the shapes.
ThenP andX are, respectively, theNp-tupleP = (~p1; ~p2; � � � ; ~pN )
and theNx-tupleX = (~x1; ~x2; . . . ; ~xN ). The closest point operator
is denoted byC. EquationY = C(P;X) meansY is anNp-tuple
(~y1; ~y2; � � � ; ~yN ) of points of X, such that~yi is the point ofX
closest to~pi.

The least squares quaternion operation is denoted byQ [1]. Given
P andY , equation(~q; dms) = Q(P; Y ) means~q is the registration
vector that best alignsP with Y . And dms is the point matching
mean square error in this alignment. Notation~q(P ) denotesP after
transformation with~q.

The ICP algorithm follows.

1) ShapesX; P , a tolerance� > 0 and an initial registration~qi
are given.
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2) Initialize by settingP0 = P; ~q0 = ~qi andk = 0.
3) a) Compute the closest points:Yk = C(Pk;X).

b) Compute the registration:(~qk; dk) = Q(P; Yk).
c) Apply the registration:Pk+1 = ~qk(P ).
d) If (dk�1 � dk) < � , terminate. Else, increasek and go

back to Step 3a.

The algorithm guarantees that a local minimum of a mean square
objective function is found [1]. This minimum depends on the initial
registration~qi and may not be the global one. In the typical case, many
runs of the algorithm are needed, each one with an appropriately
chosen different initial registration. Finally, the registration vector
that corresponds to the smallest of all local minima is selected.

B. Morphological Voronoi Tessellation Algorithm

Voronoi tessellation is a classical topic in computational geometry
[13]–[15]. For our purposes, the Voronoi diagram has to be con-
structed in a volume inZ3. Thus, mathematical morphology [2]–[6]
methods are used [7], [10]–[12].

The basic data structure used by the algorithm is a 3-D integer
array representing the volume to be tesselated. Each item in the array
corresponds to a voxel of the volume and contains the index of the
Voronoi region to which the voxel has been assigned. Initially, all
voxels (i.e., the respective array items) are set to zero except for
those that correspond to the seeds of the tesselation, which contain
the proper index. At each iteration, every region grows by one voxel
toward all directions and the newly appended voxels accept the
correct indices. The growth of each region is supported by a queue,
much like the way a queue supports a breadth first traversal of a
graph. Initially, every queue contains only the seed of the respective
region.

During this growing process, collisions of neighboring regions
occur at voxels that reside close to the region borders. They are
resolved by explicitly calculating the distances from those voxels to
the corresponding seeds.

The algorithm terminates when all queues have got empty. Then,
all voxels in the volume have been assigned to a Voronoi region.

II. M ORPHOLOGICAL ICP ALGORITHM

The computation of the closest point operator in the ICP algorithm
is performed by means of the brute force method: for each data point
calculate the distances from it to all model points and select the
model point that corresponds to the smallest distance. Clearly, this
is anO(NpNx) procedure, with Euclidean distance calculations as
the elementary operations.

Now suppose that a portion of theZ3 volume that contains both
the model shape and the data shape is available and that it has already
been tesselated with respect to the model shape. Finding the model
point closest to a given data point would be a matter of simple
reference: an access to an item of the 3-D array that represents the
volume. Therefore, the complexity of the closest point operator would
decline toO(Np), with the elementary operations now being table
look-ups, which are much faster than Euclidean distance calculations.

This is exactly the novel approach of the morphological ICP
algorithm, compared to the classical ICP algorithm. Provided that
the proper portion of theZ3 is selected, the algorithm first tesselates
the volume using the morphological Voronoi tesselation method, then
employs the ICP algorithm using the efficient version of the closest
point operator implementation.
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Fig. 1. Time performance of the classical and morphological ICP algorithms.

To establish the efficiency of this approach, we have to argue on
the following three issues.

The first one is whether the integer arithmetic introduced by the
Z3 volume affects the validity of the algorithm. The answer, given
by the experimental results (see Section III), is negative. It is though
possible that the same initial registration will lead the morphological
and the classical ICP algorithms to different local minima. However,
this is a rather unusual effect and, should adequately many initial
registrations are tested, it is unlikely to prevent the discovery of the
global minimum.

The second issue regards the memory requirements of the method.
If w; h andd are the volume dimensions inZ3, the method needs
at leastdwhd log

2
(Nx + 1)=8e bytes of RAM. For the typical case

wherew = h = d = 100 andNx = 1000, this is approximately
1.2 MBytes, a significant but tolerable requirement. The additional
amount of memory needed by the queues that support the growing of
the regions can be kept relatively low, especially if a dynamic queue
implementation is selected.

Finally, there is a question on the time needed for the volume
tesselation. According to the experimental measurements, the com-
putational complexity of this task is of the orderO(Na

x ), for some
positive constanta which depends on the size of the volume. For
example, in the case of the experiments presented in Section III,
where a volume of 100�100� 100 voxels has been used,a = 0:3.
This can be easily deduced from Fig. 1, where the upper dashed curve
practically shows the time spent for the tesselation. Therefore,a is
equal to the slope of this curve.

In addition, Fig. 1 proves that the time consumption for the Voronoi
tesselation is so large that renders the morphological ICP algorithm
a poor choice for all one-run cases whereNx < 0:0025whd.
Nevertheless, it is most likely that

• the ICP algorithm will have to run repeatedly for the same model
and data shapes (with a different initial registration each time)
till the global minimum is detected; and/or

• many data shapes will have to be matched with the same model
shape.

In these cases, the tesselation can be performed only once and the
same tesselated volume may be used by all runs of the algorithm.
Taking also into consideration that typicallyNx will be greater than
0.25% of the total number of volume voxels, we conclude that the
morphological ICP algorithm is expected to outperform the classical
one in most practical situations.

Fig. 2. Minimum number of runs for preferring the morphological ICP
algorithm.

The above conditions characterize the typical case in 3-D medical
imaging, where high resolution 3-D object representation is required
and, at the same time, there is the need for an efficient method that
matches a sensed 3-D object with a 3-D model which contains many
points and is taken out of a fixed, known in advance data base.
Experiments on such real-world cases have been performed. Their
results are in par with those of the simulation study presented in
Section III.

III. EXPERIMENTAL RESULTS

In the experiments described in this section we have used a volume
of 100� 100� 100 voxels centered at the origin. The number of data
points has been equal to that of model points, namelyNp = Nx = N .
Five cases forN have been examined:N = 10; 102; 103; 104 and
105. That is, 0.001%, 0.01%, 0.1%, 1%, and 10% of the number of
voxels in the volume, respectively.

For each test case,N model points have been generated and were
uniformly distributed within the volume. The data point set was then
produced from the model point set via successive rotations of the
latter around thex-axis (111�), the y-axis (�37�) and thez-axis
(�69�). No translation has been employed, because its impact to
the experiment is minimal: the first iteration of the algorithm always
translates the data point set so that its “center of mass” coincides
with that of the model point set (this is an immediate consequence
of the definition of the least squares quaternion operationQ). Care
has been taken so that all points fall within the volume of size
100 � 100 � 100. The same was true for all intermediate point
sets produced by the registration of the initial data point set. The
classical and the morphological ICP algorithms were tested on a
Silicon Graphics Indy MIPS R4400 200MHz workstation running
IRIX 5.3.

Fig. 1 displays the results of the time measurements. Both axes
are logarithmic. The continuous line shows the performance of the
classical ICP algorithm. The dashed ones refer to the morphological
ICP algorithm. The upper dashed curve shows the total time needed
for the tesselation and the ICP algorithm. The lower dashed curve
shows the computation time for the ICP algorithm only. Notice that
tesselation time is much larger than the time needed for the ICP
part.

We see that, if only one run is needed, the morphological ICP
algorithm is preferable only in cases having many model/data points
(N > N� � 2500). ForN = 10000, the proposed algorithm is close
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Fig. 3. Progress of the point matching mean square error for the test case
N = 1000.

to three orders of magnitude faster than the classical one. However, if
the tesselated volume is available, the morphological ICP algorithm
is superior in all cases: it is one to three orders of magnitude faster
than the classical algorithm.

For each test case, there is a minimum number of runs over which
the morphological ICP algorithm becomes the best choice. Fig. 2
presents this number for all cases. WhenN = 1000, six runs are
enough to make the morphological ICP algorithm outperform its
classical counterpart.

Finally, in order to convince about the insignificant effect of the
integer arithmetic on the validity of the algorithm, we display in Fig. 3
an example of the progress of the point matching mean square error
during the iterations of the algorithm. The two lines almost coincide
with each other. The example is taken from theN = 1000 test
case.

IV. CONCLUSION

The morphological ICP algorithm is a strong and fast method for
the registration of actual data sensed from a 3-D object with an ideal
3-D model. It is faster than the classical ICP algorithm, especially
in cases where multiple runs of the algorithm are required and/or a
lot of data/model points are involved. Since these cases are the most
likely to occur, the morphological ICP algorithm is expected to be
much more useful than the classical one.

REFERENCES

[1] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp. 239–256,
1992.

[2] I. Pitas and A. N. Venetsanopoulos,Nonlinear Digital Filters: Principles
and Applications. Boston, MA: Kluwer, 1990.

[3] I. Pitas, Digital Image Processing Algorithms. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[4] R. M. Haralick and L. G. Shapiro,Computer and Robot Vision. Read-
ing, MA: Addison-Wesley, 1992.

[5] J. Serra,Image Analysis and Mathematical Morphology. New York:
Academic, 1982.

[6] L. Vincent, “Graphs and mathematical morphology,”Signal Process.,
vol. 16, pp. 365–388, 1989.

[7] I. Pitas, “Performance analysis and parallel implementation of Voronoi
tessellation algorithms based on mathematical morphology,” inAd-
vances in Digital and Computational Geometry, R. Klette, A. Rosenfeld,

and F. Sloboda, Eds. Berlin, Germany: Springer-Verlag, 1998, pp.
227–254.

[8] G. Borgefors, “Distance transformations in digital images,”Comput.
Vis., Graph., Image Process., vol. 34, pp. 344–371, 1986.

[9] J. E. Mazille, “Mathematical morphology and convolutions,”J. Mi-
croscopy, vol. 156, pp. 3–13, 1989.

[10] C. Kotropoulos, I. Pitas, and A. Maglara, “Voronoi tessellation and
Delaunay triangulation using Euclidean disk growing inZ2,” in Proc.
Int. Conf. Acoustics, Speech, Signal Processing, 1993.

[11] F. Y.-C. Shin and O. R. Mitchell, “A mathematical morphology ap-
proach to Euclidean distance transformation,”IEEE Trans. Image Pro-
cessing, vol. 1, pp. 197–204, Apr. 1992.

[12] Q. Z. Ye, “The signed Euclidean distance transform and its applications,”
in Proc. 9th Int. Conf. Pattern Recognition, 1988, pp. 495–499.

[13] F. P. Preparata and M. I. Shamos,Computational Geometry. Berlin,
Germany: Springer-Verlag, 1985.

[14] G. T. Toussaint, “Pattern recognition and geometrical complexity,” in
Proc. 5th Int. Conf. Pattern Recognition, 1980, pp. 1324–1347.

[15] D. T. Lee, “Two dimensional voronoi diagram in theLp-metric,” J.
ACM, vol. 27, pp. 604–618, 1980.

[16] B. J. H. Verwer, P. W. Verbeek, and S. T. Dekker, “An efficient uniform
cost algorithm applied to distance tranforms,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 11, pp. 425–429, Apr. 1989.


