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Morphological Iterative Closest Point Algorithm 2) Initialize by settingP, = P, §o = ¢ andk = 0.
. o . 3) a) Compute the closest poinfsi = C/(P;, X).
C. A. Kapoutsis, C. P. Vavoulidis, and I. Pitas b) Compute the registrationdc, dx) = Q(P.Y).

c) Apply the registrationP,; = 7 (P).
d) If (dk—1 — di) < 7, terminate. Else, increase and go

Abstract—This work presents a method for the registration of three- back to Step 3a.

dimensional (3-D) shapes. The method is based on the iterative closest

point (ICP) algorithm and improves it through the use of a 3-D volume . L
containing the shapes to be registered. The Voronoi diagram of the The algorithm guarantees that a local minimum of a mean square

“model” shape points is first constructed in the volume. Then this is used Obj?CtiV? function is found [1]. This minimum depend§ on the initial
for the calculation of the closest point operator. This way a dramatic registration; and may not be the global one. In the typical case, many
decrease of the computational cost is achieved. runs of the algorithm are needed, each one with an appropriately

Index Terms—iterative closest point algorithm, Voronoi tesselation. chosen different initial registration. Finally, the registration vector
that corresponds to the smallest of all local minima is selected.

l. INTRODUCTION B. Morphological Voronoi Tessellation Algorithm

The iterative closest point (ICP) algorithm proposes a solution to aVoronoi tessellation is a classical topic in computational geometry
key registration problem in computer vision [1]: given a “model{13]-{15]. For our purposes, the Voronoi diagram has to be con-
three-dimensional (3-D) shape and a “data” 3-D shape, estim&tgucted in a volume ir£*. Thus, mathematical morphology [2]-[6]
the optimal translation and rotation that register the two shapes Hgthods are used [7], [10]-{12].
minimizing the mean square distance between them. An importantThe basic data structure used by the algorithm is a 3-D integer
application of this algorithm is to register actual data sensed fromAgay representing the volume to be tesselated. Each item in the array
3-D object with an ideal 3-D model. It is also useful in multimodal 3corresponds to a voxel of the volume and contains the index of the
D image registration in medical imaging (e.g., between NMR and cyoronoi region to which the voxel has been assigned. Initially, all
volumes), in the shape equivalence problem as well as in estimatiR)els (i.e., the respective array items) are set to zero except for
the motion between point sets when the correspondences are thgpe that correspond to the seeds of the tesselation, which contain
known. the proper index. At each iteration, every region grows by one voxel

A crucial drawback of the ICP algorithm is the high computationgPward all directions and the newly appended voxels accept the
complexity of the closest point operator. The morphological ICPorrect indices. The growth of each region is supported by a queue,
algorithm solves this problem by using a 3-D array representifguch like the way a queue supports a breadth first traversal of a
a volume in 2% and by constructing the Voronoi diagram of thegraph. Initially, every queue contains only the seed of the respective
model points within this volume, by using the morphological Vorondiegion.
tesselation method. Then, the ICP algorithm is employed, with During this growing process, collisions of neighboring regions

distance calculations substituted by simple array references. occur at voxels that reside close to the region borders. They are
resolved by explicitly calculating the distances from those voxels to

the corresponding seeds.
The algorithm terminates when all queues have got empty. Then,

In the ICP algorithm, a data shage is registered to be in best )| yoxels in the volume have been assigned to a Voronoi region.
alignment with a model shap¥&. Both shapes must be decomposed

first into point sets. LelV,,, V.. be the number of points in the shapes.
ThenP andX are, respectively, th&,-tuple P = (p1, fa, - -+, Pn,)

A. Iterative Closest Point Algorithm

Il. MORPHOLOGICAL ICP ALGORITHM

and theN,.-tuple X = (&, %, ..., Zx, ). The closest point operator The computation of the closest point operator in the ICP algorithm
is denoted byC'. EquationY = C'(P, X) meansY is anN,-tuple is performed by means of the brute force method: for each data point
(§1. 92+, gn,) of points of X, such thatg; is the point of X calculate the distances from it to all model points and select the
closest top;. model point that corresponds to the smallest distance. Clearly, this

The least squares quaternion operation is denote@ fj. Given is an ()(.vaﬂ\’z_r) proced.ure, with Euclidean distance calculations as
P andY’, equation(, dm.) = Q(P,Y) means{ is the registration the elementary operations. \ _
vector that best align® with Y. And d,.., is the point matching ~ Now suppose that a portion of th&” volume that contains both

mean square error in this alignment. Notatifi?) denotesP after ~the model shape and the data shape is available and that it has already
transformation withg. been tesselated with respect to the model shape. Finding the model
The ICP algorithm follows. point closest to a given data point would be a matter of simple
reference: an access to an item of the 3-D array that represents the
volume. Therefore, the complexity of the closest point operator would
decline toO(N,), with the elementary operations now being table
look-ups, which are much faster than Euclidean distance calculations.
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1) ShapesX, P, a tolerancer > 0 and an initial registratios;
are given.
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Fig. 1. Time performance of the classical and morphological ICP algorithmSig. 2.  Minimum number of runs for preferring the morphological ICP
algorithm.

To establish the efficiency of this approach, we have to argue on
the following three issues. The above conditions characterize the typical case in 3-D medical

The first one is whether the integer arithmetic introduced by theaging, where high resolution 3-D object representation is required
2% volume affects the validity of the algorithm. The answer, giveand, at the same time, there is the need for an efficient method that
by the experimental results (see Section lIl), is negative. It is thoughatches a sensed 3-D object with a 3-D model which contains many
possible that the same initial registration will lead the morphologicabints and is taken out of a fixed, known in advance data base.
and the classical ICP algorithms to different local minima. Howevelxperiments on such real-world cases have been performed. Their
this is a rather unusual effect and, should adequately many initigsults are in par with those of the simulation study presented in
registrations are tested, it is unlikely to prevent the discovery of tiection Ill.
global minimum.

The second issue regards the memory requirements of the method. I1l. EXPERIMENTAL RESULTS

If w, h andd are the volume dimensions i#”, the method needs |, the experiments described in this section we have used a volume
at least[whdlog, (N: +1)/8] b¥tes of RAM. For the typical case of 100 100x 100 voxels centered at the origin. The number of data
wherew = h = d = 100 and N, = 1000, this is approximately ,gints has been equal to that of model points, namégly= N, = N.

1.2 MBytes, a significant but tolerable requirement. The additiong|ye cases forV have been examinedi — 10. 102, 10°, 10* and

amount of memory needed by the queues that support the growing §f That is, 0.001%, 0.01%, 0.1%, 1%, and 10% of the number of
the regions can be kept relatively low, especially if a dynamic queygyxels in the volume, respectively.
implementation is selected. For each test cas&/ model points have been generated and were
Finally, there is a question on the time needed for the volumgiformly distributed within the volume. The data point set was then
tesselation. According to the experimental measurements, the cQffbduced from the model point set via successive rotations of the
putational complexity of this task is of the ordex( N} ), for some |atter around ther-axis (111°), the y-axis (—37°) and thez-axis
positive constant: which depends on the size of the volume. For—69°). No translation has been employed, because its impact to
example, in the case of the experiments presented in Section iHe experiment is minimal: the first iteration of the algorithm always
where a volume of 106100 x 100 voxels has been used= 0.3. translates the data point set so that its “center of mass” coincides
This can be easily deduced from Fig. 1, where the upper dashed cunith that of the model point set (this is an immediate consequence
practically shows the time spent for the tesselation. Therefoiis, of the definition of the least squares quaternion operafiynCare
equal to the slope of this curve. has been taken so that all points fall within the volume of size
In addition, Fig. 1 proves that the time consumption for the Vorondi00 x 100 x 100. The same was true for all intermediate point
tesselation is so large that renders the morphological ICP algoritis®ts produced by the registration of the initial data point set. The
a poor choice for all one-run cases wheM, < 0.0025whd. classical and the morphological ICP algorithms were tested on a
Nevertheless, it is most likely that Silicon Graphics Indy MIPS R4400 200MHz workstation running

« the ICP algorithm will have to run repeatedly for the same mod)aﬁm_( 53. . .
. : . . . : Fig. 1 displays the results of the time measurements. Both axes
and data shapes (with a different initial registration each time) o . .
. o : . are logarithmic. The continuous line shows the performance of the
till the global minimum is detected; and/or

* many data shapes will have to be matched with the same mo%fSifal I_(;P alglz)rithm. Tze drz]isged oneshrefer tr? the To_rphologi(;:aé
shape. algorit m.'_I' e upper dashed curve shows the total time neede
for the tesselation and the ICP algorithm. The lower dashed curve
In these cases, the tesselation can be performed only once andsthgwvs the computation time for the ICP algorithm only. Notice that
same tesselated volume may be used by all runs of the algorithiasselation time is much larger than the time needed for the ICP
Taking also into consideration that typically. will be greater than part.
0.25% of the total number of volume voxels, we conclude that the We see that, if only one run is needed, the morphological ICP
morphological ICP algorithm is expected to outperform the classicalgorithm is preferable only in cases having many model/data points
one in most practical situations. (N > N* = 2500). For N = 10000, the proposed algorithm is close
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Fig. 3. Progress of the point matching mean square error for the test case
N = 1000.

to three orders of magnitude faster than the classical one. However, if
the tesselated volume is available, the morphological ICP algorithm
is superior in all cases: it is one to three orders of magnitude faster
than the classical algorithm.

For each test case, there is a minimum number of runs over which
the morphological ICP algorithm becomes the best choice. Fig. 2
presents this number for all cases. Wh¥n= 1000, six runs are
enough to make the morphological ICP algorithm outperform its
classical counterpart.

Finally, in order to convince about the insignificant effect of the
integer arithmetic on the validity of the algorithm, we display in Fig. 3
an example of the progress of the point matching mean square error
during the iterations of the algorithm. The two lines almost coincide
with each other. The example is taken from the = 1000 test
case.

IV. CONCLUSION

The morphological ICP algorithm is a strong and fast method for
the registration of actual data sensed from a 3-D object with an ideal
3-D model. It is faster than the classical ICP algorithm, especially
in cases where multiple runs of the algorithm are required and/or a
lot of data/model points are involved. Since these cases are the most
likely to occur, the morphological ICP algorithm is expected to be
much more useful than the classical one.
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