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Abstract 
This  paper describes a method f o r  the accurate and 

computationally e f ic ient  registration of 3- D shapes. 
The  method is based o n  the iterative closest point 
(ICP) algorithm and improves it by dramatically de- 
creasing the computational cost of the algorithm’s 
mos t  inef ic ient  step, namely the implementation of 
the closest point operator. The  decrease is  achieved 
with the help of a 3-D volume containing the points 
t o  be registered. Prior to  the implementation of the 
I C P  algorithm, the Voronoi diagram of the “model” 
points is  constructed in the volume, by means of the 
morphological Voronoi tesselation method with respect 
t o  the Euclidean distance metric.  T h e  use of the tes-  
selated volume renders the calculation of the closest 
point operator extremely fast  and speeds up  the ICP 
algorithm tremendously. 

1 Introduction 
The ICP algorithm proposes a solution to a key reg- 

istration problem in computer vision: given a “model” 
3-D shape and a “data” 3-D shape, estimate the op- 
timal translation and rotation that register the two 
shapes by minimizing the mean square distance be- 
tween them. An important application of this algo- 
rithm is to register actual data sensed from a 3-D 
object with an ideal 3-D model. It is also useful in 
multimodal 3-D image registration in medical imag- 
ing (e.g. between NMR and CT volumes), in the shape 
equivalence problem as well as in estimating the mo- 
tion between point sets where the correspondences are 
not known. 

A crucial drawback of the algorithm is the high 
computational complexity of the closest point oper- 
ator. The morphological ICP algorithm solves this 
problem by using a 3-D array representing a volume 
in Z 3  and by constructing the Voronoi diagram of the 
model points within this volume, by using the mor- 
phological Voronoi tesselation method. Then, the ICP 
algorithm is employed, with distance calculations sub- 
stituted by simple array references. 

The ICP algorithm is described in detail in [l]. 

Algorithms from Mathematical Morphology can be 
found in [2]-[6]. A region growing Voronoi tessela- 
tion method with respect to non-Euclidean distance 
metrics is described in [7]-[9], while [lo]-[12] propose 
ways to incorporate the Euclidean distance metric into 
it. Algorithms for the analytical construction of the 
Voronoi diagram of a set of points are given in [13]- 

1.1 The Iterative Closest Point Algo- 

In the ICP algorithm, a data shape P is registered 
to be in best alignment with a model shape X .  Both 
shapes must be decomposed first into point sets, if 
they are not already in this form. The number of 3-D 
points in the data shape will be denoted Np and the 
number of points in the model shape will be denoted 
N,.  Thus, shapes P and X are respectively the Np- 
tuple P =  pi,&,...,$^^) and the N,-tuple X = 

The closest point operator is denoted by C. 
Equation Y = C ( P , X )  means Y is an N,-tuple 
(&,&,. . . ,G jvP)  of points of X ,  such that gi is the 
point of X closest to j&. 

Given P and Y ,  the registration vector a t h a t  best 
aligns P with Y is given by the least squares quater- 
nion operation [l] (g,dm,) = Q ( P , Y ) ,  where d,, is 
the point matching mean square error. Notation <(P) 
denotes P after transformation with ;. 
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The ICP algorithm follows: 

1. Shapes X ,  P ,  a tolerance r > 0 and an initial 
registration 4 are given. 

2. Initialize by setting PO = P,  go = 4 and k = 0. 

3. (a) Compute closest points: Y k  = C ( P k , X ) .  

(b) Compute registration: (&, d k )  = Q(P,Yh). 

(c) Apply registration: Pk+l = &(P) .  
(d) If the change (dk-1 - dk) in mean square 

error is less than T, terminate. Else, increase 
k and go back to Step 3a. 
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If a dimensionless threshold is desired, we can re- 
place r with r d m ,  where the square root of the 
trace of the covariance of the model shape indicates 
the rough size of the shape. 

The algorithm guarantees that a local minimum of 
a mean square objective function [l] is Eound. This 
minimum depends on the initial registration @ and 
may not be the global one. In the typical case, many 
runs of the algorithm are needed, each one with an 
appropriately chosen different initial registration. Fi- 
nally, the registration vector that corresponds to the 
smallest of all local minima is selected. 

1.2 The Morphological Voronoi Tessella- 

Voronoi tessellation is a classical topic in compu- 
tational geometry. For the purpose of improving the 
ICP algorithm, the Voronoi diagram has to be con- 
structed in a volume in Z 3 .  Furthermore, the seeds 
of the tesselation of this volume must be the points 
&,&,. . . , .", of the model shape X .  

In the following, let TN, = { 1 , 2 , .  . . , N E } .  For all 
i E TN,, V ( i )  will denote the Voronoi region of point 
xi. And, for any point 4", 

t ion Algorithm 

M ( 0  = (6' I (a' - 43 E ({-I, 0, +q3 - {u), 0,O)))) 

will be the neighborhood of b in  Z 3 .  
The algorithm is based on Mathematical Morphol- 

ogy methods. The basic data structure weld is a 3-D 
integer array representing the volume to be tesselated. 
Each item in the array corresponds to a voxel of the 
volume and contains the index of the Voronoi region to 
which the voxel has been assigned. Initially, all voxels 
(i.e. the respective array items) are set to zero (mean- 
ing that they have not been assigned to any Voronoi 
region yet), except for those that correspond to the 
seeds of the tesselation, which contain the proper in- 
dex. Then, the algorithm begins to iterate. At each 
iteration, every region grows by 1 voxel towards all 
directions and the newly appended voxels isccept the 
correct indices. 

The growth of each region is supported by a queue, 
much like the way a queue supports a breadth first 
traversal of a graph: Initially, the queue contains only 
one item, the seed of the region. Immediately before 
the k-th iteration, it contains all points that belong 
to the region and are a distance of k - 1 away from 
the seed. During the Ic-th iteration, the points are 
progressively removed and replaced by those that also 
belong to the region and their distance from the seed 
is k. We say that the contents of the queue constitute 
the propagation front  of the region. 

During this growing process, collisions of neighbor- 
ing regions occur at voxels that reside close to the 
region borders. They are resolved by explicitly cal- 
culating the distances from those voxels to the corre- 
sponding seeds. 

The algorithm terminates when all queues have got 
empty. Then, all voxels in the volume have been as- 
signed to a Voronoi region. 

The pseudocode of the algorithm follows: 

1. ThesetofseedsX = (?I,&, ..., ZN,) anda3-D 
array d, representing a portion D of the Z 3  vol- 
ume that contains all the seeds, are given. 

2. An array of queues Q = (QI, Q2,. . . , QN,) is cre- 
ated. For all i E TN,, Qi supports the growing of 
the Voronoi region V(i ) .  

3. Initialize the volume: 

0 for all f E  D - X :  d[qil t 0, and 
0 for all i E TN, : d[Zi] t i , 

and the queues: 

0 for all i E TN, : Qi t (&) . 

4. Till all queues get empty, let i scan TN, cyclically. 
For all points $currently in Qi: 

(a) for every f '  E M ( $  that is not yet assigned 

i. if f '  has been assigned to no region yet 
(d[q"] = 0), assign it to V( i )  (d[a ' ]  t i) 
and append it to Qi. 

ii. else, ? '  has been assigned to V ( j )  
(d[f'] = j ) ,  for some j E TN, - {i}. 
So, if dist(q",Zi) < dist(f',Zj), assign 
d' to V ( i )  (d[q"] t i), remove it from 
Qj, if there, and call correct(f ' , i) .  

to V( i )  (d[f'] # i) : 

(b) remove q'from Qi. 

Due to the nature of the region growing mechanism, 
it is possible that the first region to "reach" a voxel will 
not necessarily be the correct one. Step 4(a)ii of the 
above algorithm detects and corrects such erroneous 
voxel assignments. Function correct does even more: 
it searches in the neighborhood of the corrected voxel 
for more misassigned voxels and applies the proper 
corrections. Its pseudocode follows: 

1. The coordinates of the corrected voxel are given in 
parameter 4". The index of the region to which it 
has been assigned is given in parameter a .  Model 
shape X ,  volume d and array Q are also visible. 
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2. A queue QO is created and initialized to hold only a'. That is, QO t (a'). 
3.  Repeat until Qo gets empty. 

Let Fbe  the first element in Qo. 

(a) for each 7" E M ( 3  that has been assigned 
to V( j )  (d [ r " ]  = j ) ,  for some j E TN, - (i}: 

if dist(F',&) < dist(F',Zj), then 
assign r" to V ( i )  (d[F"] t i) and 
append it to Qo. 

(b) if at least one neighbor of r' has not been 
assigned to a Voronoi region yet, append r' 
to Qi. 

(c) remove F from Qo. 

2 The Morphological ICP Algorithm 
The computation of the closest point operator in 

the ICP algorithm is performed by means of the brute 
force method: for each data point calculate the dis- 
tances from it to all model points and select the 
model point that corresponds to the smallest distance. 
Clearly, this is an O ( N p N x )  procedure, with Euclidean 
distance calculations as the elementary operations. 

Now suppose that a portion of the Z 3  volume that 
contains both the model shape and the data shape is 
available and that it has already been tesselated with 
respect to the model shape. Finding the model point 
closest to a given data point would be a matter of sim- 
ple reference: an access to an item of the 3-D array 
that represents the volume. Therefore, the complexity 
of the closest point operator would decline to O ( N p ) ,  
with the elementary operations now being table look- 
ups, which are much faster than Euclidean distance 
calculations. 

This is exactly the novel approach of the morpho- 
logical ICP algorithm, compared to the classical ICP 
algorithm. Provided that the proper portion of the Z 3  
is selected, the algorithm first tesselates the volume 
using the morphological Voronoi tesselation method, 
then employs the ICP algorithm using the efficient ver- 
sion of the closest point operator implementation. 

To establish the efficiency of this approach, we have 
to argue on three issues. 

The first one is whether the integer arithmetic in- 
troduced by the Z 3  volume affects the validity of the 
algorithm. The answer, given by the experimental re- 
sults (see Section 3 ) ,  is negative. It is though possible 
that the same initial registration will lead the morpho- 
logical and the classical ICP algorithms to different 
local minima. However, this is a rather unusual effect 
and, should adequately many initial registrations are 

tested, it is unlikely to prevent the discovery of the 
global minimum. 

The second issue regards the memory requirements 
of the method. If w, h and d are the volume dimen- 
sions in Z 3 ,  the method needs at least [whdlog,(N, -t 
l)/Sl bytes of RAM. For the typical case where w = 
h = d = 100 and N,  = 1000, this is approximately 1.2 
MBytes, a significant but tolerable requirement. The 
additional amount of memory needed by the queues 
that support the growing of the regions can be kept 
relatively low, especially if a dynamic queue imple- 
mentation is selected. 

Finally, there is a question on the time needed 
for the volume tesselation. Indeed, this is a signifi- 
cantly time consuming procedure that, according to 
the experimental measurements, renders the morpho- 
logical ICP algorithm a poor choice for all one-run 
cases where N,  < 0.001whd. Nevertheless, it is most 
likely that 

the ICP algorithm will have to run repeatedly for 
the same model and data shapes (with a differ- 
ent initial registration each time) till the global 
minimum is detected, and/or 

e many data shapes will have to be matched with 
the same model shape. 

In these cases the tesselation can be performed only 
once and the same tesselated volume may be used by 
all runs of the algorithm. Taking also into consider- 
ation that typically N, will be greater than 0.1% of 
the total number of volume voxels, we conclude that 
the morphological ICP algorithm is expected to out- 
perform the classical one in most practical situations. 

3 Experimental Results 
In the experiments described in this section we have 

used a volume of 100 x 100 x 100 voxels centered at 
the origin. The number of data points has been equal 
to that of model points, namely N p  = N, = N. Five 
cases for N have been examined: N = 10, lo2, lo3, lo4 
and lo5. That is, O.OOl%, O.Ol%, O . l % ,  1% and 10% 
of the number of voxels in the volume, respectively. 

For each test case, N model points have been gen- 
erated and were uniformly distributed within the vol- 
ume. The data point set was then produced from the 
model point set via successive rotations of the latter 
around the z-axis (lll'), the y-axis (-37") and the z- 
axis (-69"). No translation has been employed. Care 
has been taken so that all points fall within the vol- 
ume of size 100 x 100 x 100. The same was true for 
all intermediate point sets produced by the registra- 
tion of the initial data point set. The classical and the 
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morphological ICP algorithms were tested on a Sili- 
con Graphics Indy MIPS R4400 200MHz workstation 
running IRIX 5.3 . 

I 
classical ICP algorithm +- 

morphological ICP algodthm -+- 
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.... ,... .... 
o,oo, .... .’. 

10 1 wo lW00 100000 100 
number of pcinls (N) 

Figure 1: Time performance of the classical and mor- 
phological ICP algorithms. 

Fig. 1 displays the results of the timi, = measure- 
ments. Both axes are logarithmic. The continuous 
line shows the performance of the classical ICP algo- 
rithm. The dashed ones refer to the morphological 
ICP algorithm. The upper dashed curve shows the 
total time needed for the tesselation and the ICP al- 
gorithm. The lower dashed curve shows the compu- 
tation time for the ICP algorithm only. Notice that 
tesselation time is much larger than the time needed 
for the ICP part. 

We see that, if only one run is needed, thie morpho- 
logical ICP algorithm is preferable only in cases having 
many model/data points ( N  > 1000). For N = 10000, 
the proposed algorithm is close to 3 orders of magni- 
tude faster than the classical one. However, if the 
tesselated volume is available, the morphological ICP 
algorithm is superior in all cases: it is 1 to ;3 orders of 
magnitude faster than the classical algorithm. 

For each test case there is a minimum inumber of 
runs over which the morphological ICP algorithm be- 
comes the best choice. Fig. 2 presents this number 
for all cases. When N = 1000, 6 runs are enough to 
make the morphological ICP algorithm outperform its 
classical counterpart. 

Finally, in order to convince about the insignifi- 
cant effect of the integer arithmetic on the validity 
of the algorithm, we display in Fig. 3 an example of 
the progress of the point matching mean square error 
during the iterations of the algorithm. The two lines 
almost coincide with each other. The example is taken 
from the N = 1000 test case. 

1000000 

Figure 2: Minimum number of runs for preferring the 
morphological ICP algorithm. 
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Figure 3: Progress of the point matching mean square 
error for the test  case N = 1000. 

4 Conclusions 
The morphological ICP algorithm is a strong and 

fast method for the registration of actual data sensed 
from a 3-D object with an ideal 3-D model. It is 
faster than the classical ICP algorithm, especially in 
cases where multiple runs of the algorithm are required 
and/or a lot of data/model points are involved. Since 
these cases are the most likely to occur, the morpho- 
logical ICP algorithm is expected to be much more 
useful than the classical one. 
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