

Don’t Talk to Zombies:

Mitigating DDoS Attacks via Attestation

Bryan Parno, Zongwei Zhou, Adrian Perrig

June 23, 2009

CMU‐CyLab‐09‐009

CyLab

Carnegie Mellon University

Pittsburgh, PA 15213

Don’t Talk to Zombies:
Mitigating DDoS Attacks via Attestation

Bryan Parno, Zongwei Zhou, Adrian Perrig
Carnegie Mellon University

ABSTRACT
Distributed Denial-of-Service (DDoS) attacks typically orig-
inate from exploited endhosts controlled by a remote attacker.
Current network-based DDoS defenses can only filter out
malicious traffic based on the traffic’s inherent properties;
they cannot filter based on properties of the endhost that gen-
erated the traffic. We observe that the identity of the code
that has generated a packet offers powerful predicates for
filtering, and we develop a secure, general architecture, As-
sayer, for in-network filtering based on endhost properties.

Our proposed Assayer architecture leverages hardware-
based attestation mechanisms to enable legitimate endhosts
to embed secure proofs of code identity in packets. Re-
ceivers can specify traffic policies, which are enforced by
on-path prioritizers. We design Assayer to achieve scalabil-
ity, efficiency, and incremental deployability.

We implement and evaluate a basic Assayer prototype and
find that the perceived application overhead, felt only during
periods of significant network congestion, is less than 12%.
Our simulations indicate that our architecture, even when de-
ployed only at the victim’s ISP, provides excellent protection
against a botnet of 100,000 attacking hosts.

1. INTRODUCTION
Distributed Denial-of-Service (DDoS) attacks are an un-

fortunate reality on the Internet. Few of these attacks are
launched by wealthy attackers who physically possess mil-
lions of machines. Instead, a typical attacker exploits soft-
ware vulnerabilities in remote hosts, creating a “botnet” of
tens or hundreds of thousands of machines [15,24].

Previous proposals to combat DDoS attacks typically treat
endhosts as black boxes [19,27,33–35]; i.e., they attempt to
distinguish between attack traffic and legitimate traffic based
solely on the traffic’s inherent characteristics. Developing
heuristics to make this distinction is difficult, and attackers
respond by improving their bots’ mimicry of real users [21].
Thus, the best the network can hope to do today is to offer
equal service to all endhosts [27, 33], regardless of whether
the endhost is acting legitimately or as part of a botnet.

To avoid the arms race in network-based DDoS-defense
systems, we intend to provide the network with the pow-
erful ability to identify, on a per-packet basis, the code on
the endhost that generated or approved the packet. By en-
abling receivers to specify desirable properties a sender’s
code should provide, we enable the network to perform fine-
grained receiver-controlled packet filtering.

Our primary contribution is the design and implementa-
tion of Assayer, a general architecture that allows a traffic
recipient (e.g., a web server) to scalably filter traffic within
the network based on properties of the sender. Thus, rather
than ask adversaries to set an “evil” bit [5], Assayer enables
legitimate hosts to set an unforgeable “good” bit that indi-
cates to the network that the sender possesses some property
desirable to the receiver. By prioritizing these packets, net-
work elements ensure that during DDoS attacks, legitimate
traffic will be more likely to reach the server. For example,
a software-update server might give priority to traffic from
the corresponding update agent, rather than a known attack
script. From the client’s perspective, the client proves that
it possesses a server-approved property in exchange for ele-
vated service from the network and server.

Assayer is agnostic to the policies receivers choose to em-
ploy. We leave it to each receiver to define what what prop-
erties a “good” sender should possess, and we provide the
technical mechanisms to enforce these policies. While a re-
ceiver could insist on a specific, full-blown software stack,
we show that it is much simpler, more secure, and more prof-
itable for the receiver to ask senders to use small code mod-
ules that provide basic safety properties, such as limitingthe
rate or number of packets a particular client will generate.

To securely convey the identity of the sender’s code to
the receiver, we leverage attestation mechanisms offered by
trusted computing hardware in commodity platforms. To
circumvent Assayer’s trusted computing mechanisms, an at-
tacker must perform a local hardware attack on endhosts,
making remotely-controlled bots far less useful for network
attacks. Many commercial vendors already ship TPM-enabled
platforms [14] (e.g., for use with Microsoft’s Bitlocker),and
Intel’s upcoming chipsets are likely to integrate TPM func-
tionality [16]. As we show in this paper, verifying attesta-
tions in the network would be too expensive. To achieve
the properties mentioned above, we break up the attestation
process; a distributed set ofverifierhosts check sender attes-
tations and issue tokens that on-pathprioritizer devices can
check efficiently.

Assayer is designed to be incrementally deployable; it
provides significant properties even if only the victim’s ISP
deploys verifier and prioritizer nodes. Also, Assayer does
not drop legacy packets unless network congestion occurs.
Obviously, packet dropping during congestion happens even
without Assayer; Assayer simply allows the network and the
receiver to bias packet dropping to preserve packets that are
more likely to be desirable to the receiver.

1

While Assayer could take many forms, we consider an in-
stantiation to defend against DDoS attacks and have imple-
mented a set of prototype components (including three pos-
sible sender configurations) to gain insight into the various
performance bottlenecks. We also design, implement and
evaluate symmetric and asymmetric authentication systems
to show how various trade-offs can provide better perfor-
mance or stronger guarantees. Our evaluation indicates that
with judicious configuration, the overhead from Assayer is
minimal, despite the strong properties it provides.

2. TRUSTED COMPUTING BACKGROUND
Many commodity computers sold today come equipped

with a Trusted Platform Module (TPM) chip [31]. Over 200
million TPMs have already been deployed [14], and Intel
plans to include an integrated TPM in future chipsets [16].
The TPM is passive; it does not actively monitor the plat-
form nor can it actively prevent software from running. In-
stead, it is designed to summarize the software state of a plat-
form in a series of Platform Configuration Registers (PCRs)
that form an append-only record and cannot be reset without
rebooting the platform. The TPM can be used to digitally
sign these values for a third party via anattestation, or it can
bind secrets to a software configuration viasealed storage.
Measurement.When the platform first boots, platform hard-
ware takes a measurement (a SHA-1 hash) of the BIOS and
records the measurement in a PCR. The BIOS is then re-
sponsible for measuring the next piece of software (e.g., the
bootloader) and any associated data files. The BIOS records
the measurement in a PCR before executing the software.
As long as each subsequent piece of software performs these
steps (measure, record, execute), the TPM serves as an ac-
curate repository of measurements of code executed on the
platform [29]. While initial work assumed that the TPM
would be used to attest to an entire software stack, subse-
quent work has demonstrated that it can be used to attest to
a tiny piece of security-sensitive software [23].
Attestation. To securely convey measurements to an exter-
nal verifier, the TPM creates attestations. Given a verifier-
supplied nonce, the TPM will use a private key that is never
accessible outside the TPM to generate a TPMQuote by
computing a digital signature over the nonce and the con-
tents of the PCRs. The nonce ensures the verifier that the
attestation is fresh and not from a previous boot cycle.

To ensure the attestation comes from a real hardware TPM
(rather than a software emulation), the TPM comes with an
endorsement keypair{KEK,K−1

EK} and an endorsement cer-
tificate for the public key from the platform’s manufacturer
declaring thatKEK does indeed belong to a real TPM.
User Privacy. To preserve the user’s privacy, the TPM does
not sign attestations withK−1

EK. Instead, the TPM generates
a public key pair{KAIK ,K−1

AIK} called an Attestation Identity
Key (AIK) pair. UsingK−1

EK and the endorsement certificate,
the TPM convinces a Privacy Certificate Authority [12] (Pri-
vacy CA) thatKAIK belongs to a legitimate TPM and thus

obtains a certificate for the public AIK. The TPM then uses
K−1

AIK to sign attestations. By using multiple AIKs, the client
can preserve her privacy, as long as she trusts the Privacy
CA not to collude with the services she visits. The latest
TPM specification [31] includes a provision for using group
signatures to generate attestations, but as of yet, we are not
aware of any TPMs that implement this functionality.
Sealed Storage.Finally, the TPM can bind data to a partic-
ular platform configuration using a technique called sealed
storage. Essentially, software can request that the TPM seal
a blob of binary data to a particular set of PCR values. In the
future, the TPM will only unseal the data if the current val-
ues in the PCRs match the values specified during the seal
operation. Thus, if the platform boots different software,the
new software will be unable to access previously sealed data.
Late Launch. Recent CPUs from AMD and Intel support a
new instruction that performs a late launch operation, which
takes a region of code as an argument. During a late launch,
the CPU atomically resets its state, enables hardware protec-
tions, measures the code region, records the measurement
in the TPM, records the fact that a late launch took place,
and finally begins to execute the code region. This allows a
TPM-equipped platform to attest to less software, since any
software executed before the late launch operation can be
securely excluded from the attestation [18,23].

3. PROBLEM DEFINITION
Even during a DDoS attack, a legitimate client should ob-

tain service with high probability after a short time delay.
We do not attempt to solve congestion problems created by
too many legitimate clients visiting the server.

3.1 Assayer Goals
We aim to design an architecture to allow servers to spec-

ify preferred endhost properties that can be efficiently veri-
fied on a per-packet basiswithin the network, before conges-
tion can occur. Such a scheme requires key properties.
Unforgeable.Malicious endhosts or network elements should
be unable to claim benign properties they do not possess.
Stateless-In-Network Processing.To ensure the scalability
of our new prioritizing middleboxes, we aim to avoid keep-
ing per-host or per-flow state on these middleboxes. If per-
flow state becomes feasible, we can use it to cache authenti-
cation information currently carried in packets.
Privacy preserving. We aim to leak no more user infor-
mation than is already leaked in present systems. In other
words, we do not aim to protect the privacy of a user who
visits a website and enters personal information.
Incrementally Deployable. While we believe that Assayer
would be useful in future networks, we strive for a system
that can bring immediate benefit to those who deploy it.
Efficient. To be adopted, Assayer must not unduly degrade
client-server network performance. Furthermore, to prevent
DDoS attacks on Assayer’s components, they must be capa-
ble of acting efficiently.

2

3.2 Assumptions
We assume that our trusted software and hardware compo-

nents behave correctly. To increase the accuracy of this as-
sumption, we aim to minimize the size and complexity of our
trusted components, since software vulnerabilities are corre-
lated with code size [26], and smaller code is amenable to
formal analysis. We assume the verifiers and clients can per-
form hardware-based attestations; in this work, we focus on
TCG-based attestations, since TPMs are becoming ubiqui-
tous in commodity PCs [14]. We also assume that networked
devices can be loosely time synchronized (e.g., within 10
seconds); this is readily achievable [25]. Finally, we make
the standard TCG assumption [31] that TPM-based protec-
tions can only be violated with local, sophisticated hardware
attacks. We assume remote attackers cannot induce users to
perform physical attacks on their own hardware.

4. THE ASSAYER ARCHITECTURE
Below, we first give an overview of how Assayer’s compo-

nents interact. We then discuss the high-level design of each
component (Section 4.2), followed by the concrete protocol
details (Section 4.3). We also show how the protocol can be
implemented using symmetric cryptographic primitives for
high efficiency, or asymmetric primitives for additional se-
curity properties. Finally, in Section 4.4, we show how to
preserve user privacy while maintaining a server’s abilityto
revoke misbehaving clients.

4.1 Overview
Ideally, to convey endhost properties to the network, we

would simply have the client include an attestation of its
“good” properties in each packet it sends. Forwarding nodes
in the network could check these attestations and give pri-
ority to packets with valid proofs. Unfortunately, checking
attestations is time consuming, and requires interaction with
the client (recall Section 2 – the verifier must send the client
a nonce to ensure the attestation’s “freshness”). Similarly, if
the server is prone to DDoS attacks, it will not have the extra
capacity to perform these verifications. Indeed, if the server
is subject to a network-level DDoS, legitimate packets may
never reach the server in the first place.

To address these issues, Assayer lets the server delegate
the task of verifying clients to one or more distributedveri-
fiers(Figure 1) operated by or trusted by the server’s opera-
tor. The server has the complex job of serving application-
specific content, and thus is difficult to protect from DDoS
attacks, whereas the verifiers, as we show in Section 4.2.2,
are much easier to protect. To ensure the integrity of these
verifiers, the server requires each verifier to periodicallyprove
its correctness via an attestation. The server then responds
by provisioning the verifier with a limited-duration verifier
token that is bound to the verifier’s platform and code. The
server also provides the verifier with a server-specific policy
defining properties of “good” clients and assigning relative
priorities to those properties.

Veri�er

Server
Client

1. Attestation
2. Veri�er Token

3. A
tte

statio
n

4. Sender Token

5. Packet

Auth(Packet)

6. Packet

Auth(Packet)

{Setup

{Use

Figure 1: System Components.Periodically (e.g., once a week), each

verifier generates an attestation for the server. The serverchecks that the

verifier is using approved software and issues a Verifier Token. The token

allows the Verifier to issue Sender Tokens after it has verified a client’s

attestation. The client can use the Sender Token to authorize its packets.

The Prioritizer verifies the client’s authorization and grants the client’s

traffic priority over other traffic destined to the same server.

Periodically, a Assayer-enabled client attests to the veri-
fier that it adheres to a server-defined “good” property. If
the attestation is correct, the verifier uses its verifier token
to issue a sender token. The token’s validity is bound to
the client’s platform such that it only remains valid while
the platform remains in a “good” state. Its validity is also
bounded in time based on server policy, but we expect typ-
ical durations might be on the order of a day or a week.
During that time, client may use the sender token to au-
thorize all of the packets it sends to the server, or it may
use authorized packets only in response to network conges-
tion. These packets can be efficiently checked by on-path,
server-deployedprioritizer middleboxes, which give autho-
rized packets elevated priority as they travel to the server.
This approach provides generic, network-level verification
of server-defined client properties.

4.2 Assayer Components
Below, we present the high-level design of each Assayer

component, saving the protocol details for Section 4.3.

4.2.1 Clients

At its core, Assayer uses a hardware-basedattestationfrom
the client to securely describe the client’s software to thever-
ifier. Sealed storagebinds the client’s token to the attested
software state. Any change in the client’s security-critical
software configuration will make the sender token inacces-
sible.

Traditionally, software attestations have included every
piece of code executed since boot [29]. However, this ap-
proach is undesirable for numerous reasons. It is not scal-
able, since the verifier is forced to track the versions and con-
figurations of hundreds of pieces of software. It also offers
dubious security, since it is difficult to determine all of the
possible security interactions between these executables. Fi-
nally, this approach reveals considerable information about
the client’s platform, harming user privacy.

3

Instead, we propose to have the client attest to only two
items: (1) the presence of a module that acts as a reference
monitor for authorized packets, and (2) adequate protections
(i.e., secrecy and execution integrity) for that module. Un-
trusted code can submit a packet to a module in order to
obtain a limited validity (e.g., valid for 10 seconds) autho-
rization for that packet.

The Assayer approach offers multiple advantages. The
client attests to a much smaller set of software (potentially
fewer than 1,000 lines of code – see Section 6). Smaller code
generally contains fewer bugs and is more amendable to for-
mal analysis [26]. It is also easier to standardize on a hand-
ful of reference monitors than to standardize on a handful
of complete software stacks. Generic modules allow clients
a much wider selection of software; conversely, they allow
servers to support a more extensive clientele.

Assayer’s modular approach also makes it easy for a client
to communicate with multiple servers without having to re-
boot or otherwise reconfigure its software. As long as the
servers agree that the client’s module protection meets (or
exceeds) their requirements, each server can require a sep-
arate module. For example, one server can require a mod-
ule that limits the number of authorized packets generated,
while another server can require a module that only autho-
rizes packets containing HTTP requests.

Below, we describe protection options and generic, mod-
ular approaches for obtaining useful client properties.

Module Protection.
For the modules described below to provide secure informa-
tion about the client, they must be protected from untrusted
code. Furthermore, the client must convince the verifier that
these protections are in place.

Fortunately, these protections are relatively easy to pro-
vide, since the modules have little interaction with other soft-
ware on the system. For example, the modules do not need
to maintain exclusive control over the client’s network card,
since they provide a positive effect (improve the client’s pack-
ets’ priority in the network) on outgoing packets. Thus, un-
trusted code simply provides the module with the contents
of outgoing packets. If the module decides to authorize a
packet, it returns the appropriate authorization data. If un-
trusted code does not invoke the module, outgoing packets
simply will not contain authorization tokens, and hence will
not receive priority.

Thus, to provide the required module protection, servers
may utilize the isolation provided by an operating system,
by a hypervisor, or by the hardware itself. Ultimately, it is
up to the server to decide (and inform the verifier) what level
of protection it desires. For example, some servers may de-
cide that as long as the modules execute within the user’s
kernel, they will be sufficiently protected from attacks. Al-
ternately, the server may insist that the client use a virtual
machine monitor (VMM), with client applications running
in one VM, and the module running in a separate VM.

Client Modules.
In theory, a client module can base its packet authorizations
on almost any arbitrary endhost property. For example, the
module might issue an authorization if a packet was gen-
erated by a program run by a specific user known to the
server, or if it does not contain “sensitive” data. The module
can also convey additional properties about the program that
generated the packets. For instance, by applying control-
flow enforcement techniques [10], the module can guarantee
that outgoing packets originated from a program that never
deviated from its expected control flow.

Nonetheless, to combat DDoS attacks, we believe the fol-
lowing two client modules offer a useful combination of pro-
tection and simplicity. Each module can be standardized and
integrated into endhost software (e.g., as a standard OS com-
ponent). They are also parameterizable, so each server can
customize the guarantees it expects. These values can be
provided to the client when it contacts the verifier.
A Limiter Module. A limiter imposes a simple, coarse-
grained rate-limit on authorized packets. Its interface ac-
cepts a packet and returns an authorization token or a rejec-
tion. For example, the limiter might be guaranteed to autho-
rize a limited number of packets or to authorize packets at a
limited rate. The exact policy can be specified by the verifier
at the same time it checks to see that an appropriate Lim-
iter is in place. The authorization contains a unique nonce
and a timestamp that allows prioritizers to perform duplicate
detection (see Section 4.3 for details). While offering only
a simple level of protection, the Limiter suffices to mitigate
many network-level DDoS attacks.
An Attributor Module. An Attributor tracks the origin of
packets and only authorizes packets that originate from ap-
proved code sources. The definition of approved sources is
specified by the server’s policy and enforced at the verifier.
The verifier must also ensure that the attributor can accu-
rately and securely perform the attribution.

For example, the server might prefer to entrust the attri-
bution task to a Virtual Machine Monitor (VMM), e.g., Xen
or VMware. The VMM would authorize packets originating
from an approved virtual machine, while the user could run
arbitrary programs in a second VM. The client would then
attest to the verifier that it had installed an approved VMM
capable of enforcing this attribution policy. The attestation
would only include the VMM and its policy (and not all ap-
plications in the user’s VM), since the VMM is trusted to
maintain its isolation from applications.

Attributors are likely to be more complex that Limiters,
but they offer much more detailed and nuanced information.
Rather than simply limit the flow of packets to a fixed rate,
they can guarantee that packets are generated by a particular
trusted application. This can, for example, allow Intrusion
Detection Systems (IDSs) to perform more accurate profil-
ing, since the traffic from a host is already identified as com-
ing from a specific application (e.g., Firefox 3.0.1) rather
than simply a class of applications (e.g., a web client).

4

In addition, much of the information needed for attribut-
ing packets may already be present in the protection mech-
anisms needed to isolate these modules. For example, if the
modules are implemented as kernel modules, then the server
already trusts the kernel to protect the modules, and hence
it can also trust it to provide attribution data without signifi-
cantly increasing the trusted computing base.

4.2.2 Verifiers

Verifiers are responsible for checking that clients possess
server-specified properties and issuing sender tokens. The
primary challenge in designing verifiers is to ensure that they
do not become a DDoS vulnerability. Fortunately, this is
much easier than it is for servers. Servers must constantly
serve proprietary, potentially difficult to replicate content us-
ing complex software stacks. In contrast, the verifiers per-
form a single, generic task using a tiny software stack, mak-
ing them easy to replicate. Since clients only obtain sender
tokens infrequently, an occasional outage among a few veri-
fiers can be tolerated. A DDoS attacker would need to flood
many verifiers over an extended time (e.g., a week) to pre-
vent clients from obtaining tokens.

To enhance verification robustness, we envision the server
employing numerous verifier machines distributed around
the Internet. Some servers might choose to contract with
various ISPs to host simple server-administered verifier ma-
chines (as many web content firms do today). Others might
outsource verification to a third party, such as Akamai. To
reduce costs, a coalition of associated organizations, such a
group of universities might create a federation of verifiers.
Each organization would host a single verifier that would act
as a verifier for all of organizations in the federation.

In each of these scenarios, the verifier operates outside of
the server’s direct administrative domain, so we can again
use attestation to improve security. Periodically (e.g., once
a week), the server can request an attestation from the veri-
fier. Assuming the attestation is correct, the server can issue
a limited-duration verifier token bound to the correct verifier
software configuration. The server also provides the veri-
fier with the server’s policy file, specifying the properties
the verifier should expect from clients, and the relative pri-
orities those properties should be given by the prioritizers.
The limited duration of verifier tokens bounds the length of
the revocation list that must be maintained to track misbe-
having verifiers.

Any distributed and well-provisioned set of servers could
enable clients to locate the verifiers for a given server. While
a content distribution network is a viable choice, we pro-
pose a simpler, DNS-based approach to ease adoption. Ini-
tially, each domain can configure a well-known subdomain
to point to the appropriate verifiers. For example, the DNS
record forcompany.com would include a pointer to a ver-
ifier domain name, e.g.,verifier.company.com. That
domain name would then resolve to a distributed set of IP
addresses representing the server’s verifier machines. While

the DNS servers may themselves become victims of DDoS
attacks, the relatively static listing of verifier machinesis still
much easier to replicate and serve than an arbitrary server’s
content. Furthermore, if Assayer becomes ubiquitous, the
global top-level domain (gTLD) servers could be extended
to store a verifier record (in addition to the standard name
server record) for each domain. The gTLD servers are al-
ready well-provisioned, since a successful attack on them
would make many services unavailable.

4.2.3 Prioritizers

To combat network-level DDoS attacks, we need to pri-
oritize approved packets as early as possible, before they
reach the server’s bottleneck. The prioritizers must also be
able to verify packet authorizations efficiently to preventthe
prioritizers themselves from becoming bottlenecks. Finally,
the prioritizers must suppress duplicated authorized packets.
Section 7 shows that prioritizers can perform all of these du-
ties at reasonable speeds.

We envision prioritizer deployment occurring in phases
(Figure 2), dictated by the server operator’s needs and busi-
ness relationships. Initially, to combat application-level at-
tacks, the server’ operator may simply deploy a single pri-
oritizer in front of (or as a part of) the server. However, to
combat network-level attacks, the server’s operator may con-
tract with its ISP to deploy prioritizers at the ISP’s ingress
links. Similar arrangements could be made with other orga-
nizations around the network, depending on the business re-
lationships available. In the long run, prioritizers will likely
become standardized, shared infrastructure that is deployed
ubiquitously. However, as we show in Section 7.4, partial
deployment can provide significant protection from attacks.

To avoid hurting flows destined to other servers, prior-
itizers give preference to server-approved packetsrelative
to other packets destined to that same server. This could
be implemented via per-destination fair-queueing, with the
Assayer-enabled server’s queue configured to give priority
to approved packets.

To enable prioritizers to perform duplicate detection, the
authorization modules on the client include a unique nonce
and a timestamp in each packet authorization. These autho-
rizations only remain valid for a limited duration (e.g., less
than 10 seconds), so each prioritizer maintains a limited du-
ration Bloom filter to check for duplicates. Section 5 shows
how this approach defeats replay attacks.

4.2.4 Server

The server must arrange for the appropriate deployment of
verifiers and prioritizers. It must also periodically verify the
correctness of its verifiers and issue fresh verifier tokens.If
it detects that a verifier is misbehaving, the server can refuse
to renew its token. In Section 4.3, we also describe addi-
tional provisions to allow the server to actively revoke rogue
verifiers. Finally, the server is responsible for conveyingits
policy preferences to the verifier. This policy describes the

5

Servert

ISPInternet

Figure 2: Prioritizer Deployment. Initially, a server is likely to deploy

a single prioritizer (P1) on its access link. For a fee, an ISPmay decide

to deploy prioritizers (P2-P4) at its access links. The server may also be

able to leverage prioritizers scattered around the Internet (P5-P7) if it has

business relations with these entities.

client configurations the server prefers, as well as the relative
priorities these configurations should receive.

4.3 Protocol Details
Below, we enumerate desirable properties for the autho-

rization scheme used to delegate verifying power to verifiers,
as well as that used by clients to authorize their outbound
packets. We then describe a scheme based on asymmetric
cryptographic operations that achieves all of these proper-
ties. Since asymmetric primitives often prove inefficient,we
show how to modify the protocols to use efficient symmetric
cryptography, though at the cost of two properties. Hybrid
approaches of these two schemes are possible, but we focus
on these two to explore the extremes of the design space. In
Section 7, we quantify the performance trade-offs entailed.

4.3.1 Desirable Properties

1. Limited Token Validity. Verifier Tokens are only valid
for a limited time period and are accessible only to
valid verifier software. Sender Tokens are only valid
for a limited time period and are accessible only to
valid client software.

2. Verifier Accountability. Verifiers should be held ac-
countable for the clients they approve. Thus one ver-
ifier should not be able to generate tokens that appear
to originate from another verifier.

3. Scalability in Prioritizer Count. The verifier’s work,
as well as the size of the Sender Token, should be in-
dependent of the number of prioritizers.

4. Topology Independence.Neither the verifier nor the
sender should need to know which prioritizer(s) will
see the client’s packets. As Figure 2 illustrates, there
may be more than one prioritizer on the path to the
server, and the number may change over time. Thus,
the sender’s token must be valid at any prioritizer. We
feel the benefits of this approach outweigh the poten-
tial for an adversary to use a single sender token on

V KnowsKS
V Launches softwareCodeV . CodeV recorded in PCRs.

CodeV Generates{KV ,K−1
V }. SealsK−1

V to CodeV .
V ExtendsKV into a PCR.

S→V Attestation request and a random noncen
V→ S KV , TPM Quote =PCRs,SignK−1

AIK
(PCRs||n), CAIK

S Check cert, sig, n,PCRsrepresentCodeV andKV
S→V Policy, SignK−1

S
(Policy)

S
∗
→ Pi KV , SignK−1

S
(KV)

Table 1: Verifier Attestation. V is the verifier, S the server,Pi the

prioritizers, andCAIK is a certificate for the verifier’s AIK. Section 2 has

additional background on attestation.

C Launches softwareCodeC. CodeC recorded in PCRs.
CodeC Generates{KC,K−1

C }. SealsK−1
C to CodeC.

C ExtendsKC into a PCR.
C→V Token request
V→C Attestation request and a random noncen
C→V Kc, TPM Quote =PCRs,SignK−1

AIK
(PCRs||n), CAIK

V Check cert, sig, n,PCRsrepresentCodeC andKC
V→C TokenC =

[

IDV ,KC, prio, time,H(CAIK),
SignK−1

V
(V||KC||prio||time||H(CAIK))

]

Table 2: Client Attestation. C is the client,CodeC is a module from

Section 4.2.1 combined with appropriate protections,V is the verifier,prio

is the client configuration’s priority (as specified by the server), time is a

timestamp, andH is a cryptographic hash function.

C→CodeC Packet contentsp.
CodeC Verifies p satisfies module’s requirements.
CodeC Generates a random noncem.

CodeC→C AuthC = (m, time,SignK−1
C

(p||m||time))
C→ S p,TokenC,AuthC

Table 3: Packet Authorization. C is the client,CodeC is a module from

Section 4.2.1 combined with appropriate protections, andS is the server.

The client sends the packet to the server, but it will be processed along the

way by one or more prioritizers.

multiple disparate paths to the server. Such duplicated
packets will be detected when the paths converge.

5. Prioritizer Independence. A prioritizer should not be
able to generate Sender Tokens that will be accepted at
other prioritizers. This prevents one rogue prioritizer
from subverting other prioritizers.

6. Client and Prioritizer Accountability. The server
should be able to distinguish between traffic generated
by a malicious client and that generated by a malicious
prioritizer. Otherwise, a rogue prioritizer can imper-
sonate a sender.

4.3.2 Protocol Specifications

Below, we describe each interaction shown in Figure 1.
Verifier Attestation. Before giving a verifier the power to
prioritize client packets, the server must ascertain that the
verifier is in a correct, trusted state (Table 1). It does so
via an attestation (see Section 2 for details on attestation).

6

Algorithm 1 Processing of packet p at the prioritizer.

1: if p containsTokenC,AuthC then
2: (IDV ,KC, prio, time,H,SigV)← TokenC
3: Verify SigV usingKV .
4: Usetimeto check thatTokenC has not expired.
5: (m, timestamp,SigC)← AuthC
6: Verify SigC usingKC.
7: Check thattimestamp∈ now± ε.
8: Check that pair(KC,m) is unique in last 2ε time intervals.
9: Insert(KC,m) into Bloom Filter.

10: if All verifications succeedthen
11: p receives priorityprio
12: else
13: Dropp
14: else
15: p receives normal priority

The attestation convinces the server that the verifier is run-
ning trusted code, that only the trusted code has access to
the verifier’s private key, and that the private key in ques-
tion is freshly generated. Since the verifier token’s validity
is limited, the server periodically rechecks the verifier’scor-
rectness by rerunning the attestation protocol.

To prepare for an attestation, the verifier launches trusted
verifier code. This code is measured by the platform, and
the measurement is stored in the TPM’s Platform Configu-
ration Registers (PCRs). In practice (see Section 6), we use
a late launch operation to measure and execute a minimal
kernel and the code necessary to implement the verifier. The
verifier code generates a new public/private keypair and uses
the TPM to seal the private key to the current software con-
figuration. Thus, any change in the verifier’s software will
make the private key inaccessible. Finally, the verifier code
records a measurement of its new public key in a PCR.

When the server requests an attestation from the verifier,
it provides the verifier with a fresh nonce. The verifier uses
the TPM to generate aquote– essentially a signature over
the nonce and the state of the TPM. The verifier replies to
the server with its new public key, the quote, and a certificate
proving the quote originated with a real TPM. Assuming all
of these items verify correctly, the server provides the veri-
fier with its signed policy file. Rather than give the verifier
an explicit token, the server informs its prioritizers thatthe
verifier’s new public key should be accepted when prioritiz-
ing packets. Since the prioritizer is run by (or acts on behalf
of) the server, it can be configured with the server’s public
key, and thus verify the authenticity of such updates.
Client Attestation. A similar process takes place when a
client requests a sender token from a verifier (Table 2). Trusted
code on the client generates a keypair and attests to the veri-
fier that the private key is bound to the trusted software and
was generated recently. If the client’s attestation verifies cor-
rectly, the server checks to see that the client’s trusted soft-
ware is acceptable, based on the server-provided policy. Ifit
is, the verifier returns a token consisting of the verifier’s ID,
the client’s public key, the server-assigned priority, a times-
tamp, and the verifier’s signature.

Packet Authorization. To authorize a packet, untrusted code
on the client asks the trusted module to produce an autho-
rization (Table 3). The untrusted code passes the packet’s
contents to the trusted code module. The code module ver-
ifies that the packet satisfies the module’s property. For ex-
ample, a limiter module checks that it has not already sent
too many packets. Finally, the module produces an autho-
rization that consists of a unique nonce, a timestamp, and the
client’s signature. Untrusted code can then add the client’s
token and authorization to the packet and send it to the server.
Packet Prioritization. Prioritizers along an approved packet’s
path process such packets using Algorithm 1. The prioritizer
uses the verifier’s ID to lookup the corresponding public key
provided by the server. It uses the key to verify the au-
thenticity and freshness of the client’s token. The prioritizer
may optionally decide to cache these results to speed future
processing. It then checks the authenticity, freshness, and
uniqueness of the packet’s authorization. It stores a record
of the packet’s nonce for a short time (e.g., 4 seconds) to
prevent duplication and gives the packet the specified prior-
ity if it passes all verification checks. However, if a packet’s
verification checks fail, the prioritizer drops the packet.Le-
gitimately generated packets will only fail to verify if an on-
path adversary modifies the packets. Such an adversary can
also drop or alter the packets, so dropping the packets does
not increase the adversary’s ability to harm the sender.

4.3.3 A Symmetric Alternative

As we show in Section 5, the protocols shown above pos-
sess all of the properties described in Section 4.3.1. Unfor-
tunately, they require the client to compute a public-key sig-
nature for each packet sent and the prioritizer to verify two
public-key signatures per packet. The challenge is to im-
prove the efficiency of the scheme while retaining as many
of the properties from Section 4.3.1 as possible. Below, we
show how to alter the protocols to use more efficient sym-
metric primitives.
Verifier Attestation. The last step of the protocol shown
in Table 1 is the only one that changes. Instead of sending
the verifier’s public key to all of the prioritizers, the server
generates a new symmetric keyKVP. The server encrypts
the key using the verifier’s newly generated public key and
sends the verifier the resulting ciphertext (EncryptKV

(KVP)).
Since the corresponding private key is sealed to the verifier’s
trusted code, the server guarantees that only the trusted code
can obtain the symmetric key. The server also encrypts the
key and sends it to each of the prioritizers.
Client Attestation. The protocol shown in Table 2 remains
the same, except for one minor change and one major change.
First, when the client sends its token request, it includes a
randomly chosen client identifierIDC. The biggest differ-
ence is in the token returned by the verifier.

To compute the new token, the verifier first computes a
symmetric key that the client will use to authorize packets:

KCP = PRFKVP(V||IDC||prio||time), (1)

7

wherePRF is a secure pseudo-random function. The verifier
then sends the client:EncryptKC

(KCP), Token= (V, IDC,
prio, time). Again, the attestation convinces the verifier that
K−1

C is bound to trusted code, so it knows that only trusted
code can obtainKCP. Furthermore, without knowingKVP,
no one can produceKCP.
Packet Authorization. Packet authorization is the same as
before, except that instead of producing a signature over the
packet contents, the code module produces a Message Au-
thentication Code (MAC) usingKCP, an operation that is or-
ders of magnitude faster.
Packet Prioritization. The packet prioritization algorithm
remains similar. Instead of checking the verifier’s signa-
ture, the prioritizer regeneratesKCP using Equation 1 and
its knowledge ofKVP. Instead of verifying the client’s sig-
nature on the packet, the prioritizer usesKCP to verify the
MAC. As a result, instead of verifying two public key signa-
tures, the prioritizer calculates one PRF application and one
MAC, operations that are three orders of magnitude faster.

This scheme achieves the first four properties listed in
Section 4.3.1, but it does not provide properties 5 and 6.
Since each verifier shares a single symmetric key with all
prioritizers, a rogue prioritizer can convince other prioritiz-
ers to elevate traffic incorrectly. We could prevent this attack
by having the server establish a unique key for each verifier-
prioritizer pair, but this would violate another property.Ei-
ther the verifier would have to MAC the packet using all of
the keys it shares with the prioritizers (violating the fourth
property), or the verifier would have to guess which priori-
tizers would see the client’s packet, violating our topology
independence property.

Similarly, since the client and the prioritizer share a sym-
metric key, the server cannot distinguish between malicious
prioritizers and malicious clients. Nonetheless, since the
server’s operator directly or indirectly controls the prioritiz-
ers, such risks should be acceptable to many servers, given
the dramatic performance benefits offered by the symmetric
scheme.

4.4 User Privacy and Client Revocation
To encourage adoption, Assayer must preserve user pri-

vacy, while still limiting clients to one identity per machine
and allowing the server to revoke misbehaving clients. As-
sayer achieves this using structured AIK certificates.

Recall from Section 2 that TPM-equipped clients sign at-
testations using randomly generated attestation identitykeys
(AIKs). A Privacy CA issues a limited-duration certificate
that vouches for the binding between an AIK and the origi-
nal TPM Endorsement Key (EK). With Assayer, clients ob-
tain AIK certificates that specify that the AIK is intended
for communicating with a specific server. Using a different
AIK for each server prevents the servers from tracking the
client across sites. However, similar to a DNS lookup, this
approach allows the Privacy CA to learn thatsomeclient
intends to visit a particular server. Fortunately, since the

EK contains no user-specific information, the Privacy CA
only learns that some TPM-enabled machine intends to visit
a particular server.

To preserve user privacy across sessions with a single server,
the client can generate a new AIK and request a new certifi-
cate from the Privacy CA. However, we require Privacy CAs
to only simultaneously issue one AIK certificate per server
per TPM EK. Thus, a client could obtain a 1-day certificate
for an AIK, but it could not obtain another certificate for the
same server until the first certificate expires. This prevents
a client from generating multiplesimultaneousidentities for
communicating with a particular server.

Since each client token contains a hash of the client’s AIK
certificate, if the server decides a client is misbehaving, it
can provide the hash to the Privacy CA and request that the
Privacy CA cease providing AIK certificates to the EK as-
sociated with that particular AIK. Similarly, the server can
instruct its verifiers and prioritizers to cease accepting attes-
tations and packets from that AIK.

5. POTENTIAL ATTACKS
In this section, we analyze potential attacks and show how

Assayer’s design defends against them.

5.1 Exploited Endhosts
Code Replacement.An attacker may exploit code on re-
mote, legitimate client machines. If the attacker replacesthe
trusted code with malware, the TPM will refuse to unseal the
client’s private key, and hence the malware cannot produce
authorized packets. Without physical access to the client’s
machine, the attacker cannot violate these hardware-based
guarantees.
Code Exploits.An adversary that finds an exploit in trusted
code can violate Assayer’s security, potentially sending un-
limited approved packets from exploited endhosts. This sup-
ports our argument that servers should trust small code mod-
ules instead of large software stacks. Exploits of untrusted
code are less problematic. The server trusts the attested
client code to protect the client code module, and it trusts
the code module to accurately perform its duties (whether
they be limiting packet authorizations, or attributing pack-
ets to a particular piece of code). Thus, the trusted module
will continue to function, regardless of how the adversary
exploits the untrusted code.
Flooding Attacks. Since an attacker cannot subvert the au-
thorized packet guarantees, she might instead choose to use
an exploited machine to simply flood the server with legacy
packets; however, the impact of these packets floods will
be mitigated, since all authorized packets will have priority
over these legacy packets (Section 7.4 illustrates this). As
we explained in Section 4.2.2, the verifiers are designed to
withstand DDoS attacks, so flooding them will be unproduc-
tive. Finally, since prioritizers check packets at line speed,
flooding the prioritizers (with missing, invalid, or even valid
authorizations) will not hurt legitimate traffic throughput.

8

Authorized Packet Duplication. Since the trusted code
does not maintain exclusive control of the network inter-
face, the exploit code could ask the trusted module to au-
thorize a packet and then repeatedly send the same packet,
either along the same network path or across diverse network
paths. Because each authorized packet contains a unique
nonce, duplicate packets on the same path will be dropped
at the first prioritizer. Similarly, duplicates sent down differ-
ent paths will be dropped as soon as the paths converge at
a prioritizer. Duplicates are more likely to cause congestion
close to the victim (since those links tend to be smaller), but
paths also tend to converge close to the victim, minimizing
the advantage of sending duplicate packets. Thus, a dupli-
cated packet can only be used to attack a particular link once.

5.2 Malicious Endhosts
Beyond the attacks discussed above, an attacker can po-

tentially use hardware-based attacks to subvert the trusted
hardware on machines she physically controls. For exam-
ple, the adversary could physically attack the TPM in her
machine and extract its private keys. This would allow her
to create a fake attestation, essentially convincing the verifier
that the adversary’s machine is running trusted code, when
it is not.

However, the adversary can only extractN TPM keys,
whereN is the number of machines in her physical posses-
sion. This limits the attacker toN unique identities. Con-
tacting multiple verifiers does not help, since sender identi-
ties are tracked based on their AIKs, not their sender tokens.
As discussed in Section 4.4, at any moment, each TPM key
corresponds to exactly one AIK for a given server. Further-
more, to obtain a sender token from the verifier, the attacker
must commit to a specific server-approved property. If the
attacker’s traffic violates the property, it can be detected, and
the attacker’s TPM key will be revoked. For example, if the
attacker claims to have a limiter module that only permits
X packets to be sent, and the server detects that the attacker
has sent more thanX packets, then the server knows that
the client is misbehaving and will revoke its TPM key (see
Section 4.4). This key can only be replaced by purchasing a
new TPM-equipped machine, making this an expensive and
unsustainable attack.

5.3 Rogue Verifiers
A rogue verifier can authorize arbitrary prioritization of

arbitrary traffic. However, the verifier’s relatively simple
task makes its code small and easy to analyze. The attes-
tation protocol shown in Table 1 guarantees that the server
only approves verifiers running the correct code. Since veri-
fiers are owned by the server’s operator or by someone with
whom the operator has a contractual relationship, local hard-
ware exploits should not be a concern.

Furthermore, since verifiers cannot imitate each other (even
in the symmetric authentication scheme), a server that de-
tects unusual or incorrect traffic coming from clients ap-

Hardware

Linux

Module

App

1

App

2

Hardware

ModuleXen

Windows

VM

App

1

App

2

Linux

VM

Fire-

-fox

Hardware

Linux

App

1

App

2

MiniVisor

Module

Figure 3: Client Configuration. Three client configurations we im-

plemented, based on Linux, Xen, and MiniVisor. Shading indicates the

components that must be trusted.

proved by a verifier can revoke that verifier. Revocation can
be performed by refusing to renew the verifier’s token, or by
actively informing the prioritizers that they should discard
the rogue verifier’s public key.

5.4 Rogue Prioritizers
A rogue prioritizer can discard prioritized packets, or give

priority to attack traffic. However, since it sits on the path
from the client to the server, a rogue prioritizer can already
drop or alter packets arbitrarily. In the asymmetric scheme
(Section 4.3.2), a rogue prioritizer cannot convince correct
prioritizers to elevate attack traffic, since it cannot generate
correct verifier signatures necessary for the sender tokens.
Similarly, a rogue prioritizer cannot frame a client, sinceit
cannot sign packets using the client’s private key. The sym-
metric scheme trades off these properties in favor of greater
efficiency. Fortunately, since the prioritizers are directly ad-
ministered by the server’s operator and perform a relatively
simple task, rogue prioritizers should be rare.

6. IMPLEMENTATION
To evaluate the effectiveness and performance of Assayer,

we have developed a basic prototype system. Because these
are prototypes, they give rough upper-bounds on Assayer’s
performance impact, but considerable room for optimiza-
tion remains. We implemented three types of client con-
figurations that provide increasing levels of protection for
the client modules. The clients create attestations that our
checked by our verifier prototype. Finally, we have imple-
mented a basic prioritizer using the Click router [20]. We
present our performance results in Section 7, as well as our
Internet-scale simulations.

6.1 Client Modules
We evaluated a number of possible client configurations

that offer varying degrees of module protection (see Fig-
ure 3). We implemented one client that uses Linux to pro-
tect the client module, one that uses the Xen Virtual Ma-
chine Monitor (VMM) [4], and one that uses a tiny hyper-
visor called MiniVisor that we developed using hardware-
virtualization support. We also evaluated using the Flicker

9

architecture [23] to protect the client module, but we found
that it increased packet transmission time by 1-2 orders of
magnitude, and hence we decided it is not yet practical for
performance critical applications. Our three client imple-
mentations allow the server to choose between a TCB of mil-
lions (Linux), thousands (Xen), or hundreds (MiniVisor) of
lines of code. MiniVisor is a particularly attractive choice,
since (as we show in Section 7), it offers excellent perfor-
mance while adding only 841 lines of code to the TCB.

With all three systems, we employ a late launch operation
(recall Section 2) to simplify client attestations by removing
the early boot code (e.g., the BIOS and bootloader) from
the set of trusted code. Thus, our attestations consist of the
protection layer (Linux, Xen, or MiniVisor), a client module,
and the fact that the protection layer is configured to properly
isolate the module.

All three systems implement both the asymmetric and the
symmetric protocols described in Section 4.3, to allow us to
evaluate the performance trade-offs between the two. Since
both schemes add bytes to outgoing packets, they could po-
tentially cause considerable packet fragmentation. To pre-
vent this, we reduce the MTU on the interface facing un-
trusted code by the same number of bytes that our module
adds. Of course, untrusted code can increase the MTU, but
that will merely hurt performance, not security.

All three systems use Linux’s TUN/TAP interface1 to re-
route outbound packets to a user-space program. The user-
space program hands the packet contents to a trusted mod-
ule that decides whether or not to authorize the packet and
then routes the packet back to the physical interface. This
configuration simplified development, but is it less than opti-
mal from a performance standpoint, since packets are passed
across the user-kernel space divide multiple times. Inter-
cepting packets inside of a network driver or kernel module
would improve our performance.

In Linux, our code module restricts the rate of packets sent
to a particular destination IP address by refusing to authorize
packets any faster than the specified rate. In our Xen config-
uration, the client runs two VMs. One VM runs Windows,
and the user can install arbitrary programs in that VM. The
second VM runs Firefox on top of a minimal Linux installa-
tion. We implement an attributor module that only approves
outbound packets from the Linux VM.

With MiniVisor, we implement a simple limiter module
that will only approve a fixed number of packets. When
MiniVisor is late launched, it uses shadow page tables to iso-
late its own private memory area and then boots the Linux
kernel. Untrusted code running on Linux can request an au-
thorization by invoking MiniVisor’s single hypercall. MiniVi-
sor hands the packet contents to the module, which checks
that it has not exceed its approval limit, approves the packet
provided, and then increments its count of approved pack-
ets. MiniVisor then returns to the untrusted code, providing
it with the packet authorization data.

1http://vtun.sourceforge.net/tun/

Unused(10)m(2) T(2)

Sig(50)

VID(1) CID(6)Len(2) Hash(12) T,P(2)

m(2)MAC(20) T(2) Unused(8)

Token

Auth

Asymmetric Symmetric
Len(2) Hash(12) Sig(50)

VID(1)

KeyC (41)

T,P(2) Unused(20)

Figure 4: Packet Layout. Byte-level layout for sender tokens and

packet authorizations. The two are shown separately for clarity, but in

practice, would be packed together.T is a timestamp,P is the packet’s

priority, and m is a randomly-chosen nonce.

6.2 Client Verification
All of the client modules described above must be able to

create an attestation that can be checked by a verifier. Thus,
we developed generic client software to produce the attesta-
tions, as well as a verifier server program to check the attes-
tations and produce client tokens. Together, they implement
the protocol shown in Table 2. Since the code that allows the
server to check verifier attestations (Table 1) is very similar
(and less performance sensitive), we describe and evaluate
only the client attestation and verification implementations.
Client Attestations. Before it can create an attestation, our
client code first generates an AIK and obtains an AIK cer-
tificate from a Privacy CA [12]. To create an attestation, the
client contacts the verifier and requests a nonce. Given the
verifier’s nonce, the client invokes a TPMQuote operation.
It sends the verifier the public key created by its code mod-
ule, the contents of the PCRs, the list of the code described
by the PCRs, the TPM’s signature and the AIK certificate.
The verifier checks the validity of the certificate, verifies the
TPM’s signature, checks that the nonce value is the same one
it sent, and finally checks to make sure the PCR values re-
flect server-approved software. Assuming these checks pass,
it returns an appropriate sender token.
Verifier Implementation. Our verifier prototype is imple-
mented as a simple user-space server program. The imple-
mentation is based on a Unix/Linux preforked server library
(spprocpool)2, and the client and the verifier communicate
using UDP. The verifier pre-forks several worker processes
and waits for client connections. When it receives a con-
nection, the verifier passes this connection to an idle worker
process. The worker process chooses a random nonce for the
client and verifies the resulting attestation. A more sophis-
ticated server architecture would undoubtedly improve our
system’s performance, but this simple prototype gives us an
upper-bound on a verifier’s potential performance.

6.3 Packet Authorization
As discussed in Section 4.3, we can generate tokens using

either asymmetric or symmetric cryptographic primitives.
We implemented both systems to evaluate their relative per-
formance. Figure 4 illustrates the low-level layout of the
tokens and authorizations for each scheme.
2http://code.google.com/p/spprocpool/

10

With both schemes, we add the token and the authoriza-
tion to the packet payload itself, and then adjust the appro-
priate header fields (length, checksum, etc.). This provides
compatibility with legacy network devices. The server must
strip this information out before handing the packet contents
to its applications, but this was quite simple to implement.

With the asymmetric scheme, we use elliptic curve cryp-
tography to minimize the size of the client’s public key, since
it is included in the client’s sender token and hence requires
space in every packet. We use the secp160k1 curve, which
provides approximately 80 bits of cryptographic strength.
This should provide more than enough strength for the short
lifetime (e.g., a day or a week) of client keys. The verifier
uses the elliptic curve version of the digital signature algo-
rithm (ECDSA) to sign the client’s token, and the client also
uses ECDSA to sign the contents of authorized packets. In
sum, the client’s token requires 108 bytes, and the client’s
authorization requires 54 bytes.

With the symmetric scheme, if we use a 160-bit key with
SHA1-HMAC (which remains secure, despite recent colli-
sion attacks on SHA1), then the client’s token only requires
23 bytes, and the authorization requires 24 bytes.

6.4 Prioritizer
We implement the prioritizer on top of the Click router [20].

We designed a custom Click element that examines all pack-
ets destined for a particular destination IP address. If a packet
contains a Assayer flag in the header, we check the token and
the authorization data, following Algorithm 1. If all checks
succeed, the packet is added to a priority queue.

With the asymmetric scheme, the prioritizer needs to ver-
ify both the verifier’s ECDSA signature in the client’s token
and the client’s ECDSA signature in the packet authoriza-
tion. With the symmetric scheme, the prioritizer needs to
verify the client’s SHA1-HMAC in the packet authorization.

To detect duplicate packets, we use a Bloom Filter [6]. We
only insert a packet into the Bloom Filter after verifying the
sender token and the packet authorization. The Bloom Filter
ensures that a valid packet is unique in a given time periodt
with a bounded false positive probabilityγ.

To illustrate this, suppose that the prioritizer has a 1Gbps
inbound link, and the time periodt is 1 second. In the worst
case, the prioritizer would receiven packets/sec, wheren
is the link’s capacity divided by the minimum packet size,
and all of these packets carry correct tokens and valid packet
nonces. In the asymmetric scheme, the minimum TCP packet
size is 214 bytes, son = 584,112 packets/second. As for
symmetric scheme, the minimum TCP packet size is 99 bytes,
son = 1,262,626 packets/second. If we usek different hash
functions, andn different packets are added into a Bloom
Filter of m bits, thenγ is approximately(1− e

−kn
m)k [7].

Because the optimalk value is mln2
n , γ can be estimated as

(0.6185)
m
n . Thus, to limit the false positive probability to

less than 1
106 per packet, we need a 2MB Bloom Filter with

20 hash functions.

If we use public hash functions in our Bloom Filter, an
adversary could use carefully chosen inputs to pollute the
Bloom Filter, i.e., use a few specially-crafted packets to set
nearly all the bits in the Bloom Filter to 1. This attack would
dramatically increase the false positive rate and break the
duplicate detection. Thus, we use a pseudorandom func-
tion (AES) with a secret key known only to the prioritizer
to randomize the input to the Bloom Filter before applying
the hash functions. Without compromising the prioritizer’s
secret key, attackers cannot pollute the Bloom Filter with
chosen input.

7. EVALUATION
To identify potential performance bottlenecks in the As-

sayer architecture, we evaluated the performance of each
prototype component and compared our two authentication
schemes. We also developed an Internet-scale simulator to
evaluate how Assayer performs against large botnets.

We find that, as expected, the symmetric scheme outper-
forms the asymmetric scheme by 1–2 orders of magnitude.
Using the symmetric scheme, all three client configurations
perform close to the native configurations, with network over-
heads ranging from 0-11%. Our verifier can sustain about
3300 verifications/second, and the prioritizer can validate
Assayer traffic with only a 9.3% decrease in throughput. Fi-
nally, our simulations indicate that even sparse deployments
(e.g., at the victim’s ISP) of Assayer offer strong protection
during large-scale attacks.

In our experiments, our clients and verifier run on Dell
Optiplex 755s, each equipped with a 3 GHz Intel Core2 Duo
and 2 GB of RAM. The prioritizer has one 2.4 GHz Intel(R)
Pentium(R) 4 with 512 MB of memory. All hosts are con-
nected via 100 Mbps links.

7.1 Client Verification
We measure the time it takes a single client to generate

an attestation and obtain a sender token from a verifier. We
also evaluate how many simultaneous clients our verifier can
support.

7.1.1 Client Latency

Since clients request new sender tokens infrequently (e.g.,
once a day, or once a week), the latency of the request is un-
likely to be noticed during normal operation. Nonetheless,
for completeness, we measured this time using our prototype
client and verifier and found that the client takes an average
of 795.3 ms to obtain a sender token. The primary bottle-
neck for the operation is the time it takes the client to obtain
a quote from its TPM, since the quote requires the calcula-
tion of a 2048-bit RSA signature on a resource-impoverished
TPM processor. On our STMicroelectronics TPM, the quote
takes 793.4 ms and constitutes 99.7% of the attestation time.
The verifier only spends a total of 1.75 ms processing the
client’s request using the symmetric scheme and 3.58 ms us-
ing the asymmetric scheme.

11

7.1.2 Verifier Throughput

To test the throughput of the verifier, we developed a min-
imal client program that requests a nonce and responds with
a pre-generated attestation as soon as the verifier responds.
The client also employs a simple timeout-based retransmis-
sion protocol. We launchX clients per second and measure
the time it takes each client to receive its sender token. In our
tests, each of our 50 test machines simulates 20-500 clients.

In 10 trials, we found that a single verifier using the sym-
metric scheme can serve a burst of up to 5700 clients with-
out any UDP retransmission, and can sustain an average rate
of approximately 3300 clients/second. With the asymmetric
scheme, a verifier can serve 3800 clients in a burst, and can
sustain about 1600 clients/second. This implies that our sim-
ple, unoptimized verifier prototype could, in a day, serve ap-
proximately 285 million clients with the symmetric scheme
and 138 million clients with the asymmetric scheme.

7.2 Client Packet Authorization
With Assayer, clients must compute a signature or MAC

for each packet they choose to authorize. While some clients
may choose to authorize all outbound packets, we expect
most clients will only authorize packets when they notice
network degradation. Authorizing packets adds computa-
tional latency and reduces bandwidth, since each packet car-
ries fewer bytes of application data. To quantify these ef-
fects, we experiment with multiple client configurations.

Microbenchmarks indicate that the symmetric scheme adds
an average of 12.4µs to the user-space packet handling rou-
tines (i.e., not including the time to route the packet to and
from user-space), whereas the asymmetric scheme adds an
average of 676.5µs of per-packet latency. For both schemes,
computing the authorization accounts for most of the time:
the MAC requires an average of 8µs, while the elliptic curve
signature requires 671µs.

For macrobenchmarks, we first ping a local host (Ping L),
as well as a host across the country (Ping R). This quanti-
fies the computational latency, since each ping only uses a
single packet and bandwidth is not an issue. We then fetch
a static web page (8 KB) (Req L/R) and download a large
(5 MB) file from a local web server and from a web server
across the country (Down L/R). These tests indicate the per-
formance impact a user would experience during an average
web session. These tests require our client module to autho-
rize the initial TCP handshake packets, the web request, and
the outbound acknowledgements. To quantify the impact of
Assayer’s bandwidth reduction, we also measure the time to
upload a large (5 MB) file (Up L/R). This test also signif-
icantly increases the number of packets the client module
must authorize.

We performed the above experiments using both the asym-
metric and the symmetric schemes described in Section 4.3
for all three configurations. Since the relationship between
the asymmetric and symmetric schemes was similar across
configurations, we present only the comparative results for

the Linux configuration (Table 5). All results are the aver-
age of 20 trials and include the standard deviations. These
results confirm our suspicion that the symmetric scheme of-
fers significantly better performance than the asymmetric
scheme. The asymmetric scheme adds less than 12% over-
head, even in the worst-case tests that involve uploading a
large file. In many cases, the difference between the sym-
metric scheme and native Linux is statistically insignificant.
The asymmetric scheme, on the other hand, adds significant
overhead, though the effects are mitigated for remote hosts,
since round-trip times occupy a large portion of the test. We
could reduce the overhead by selecting a scheme that allows
more efficient signing, but this would increase the burden on
the prioritizers.

Table 4 presents our results for the symmetric scheme our
various clients. All results are the average of 20 trials and
include the standard deviations. As discussed above, the
Linux-based client performs quite well. MiniVisor also per-
forms very well, thanks in large part to the hardware support
for virtualization that makes context switches extremely fast
(approximately 0.5µs). Both the Linux-based client and the
MiniVisor-based client are virtually equivalent to nativeon
several tests and add less than 12% overhead in the worst
cases. Xen added surprisingly little overhead to our tests
(compared with Linux), and the Xen-based client also per-
formed quite well, with overheads ranging from 0-8%. Its
percentage increase is smaller due to Xen’s slightly slower
performance than native Linux.

7.3 Prioritizer Throughput
In order to evaluate the prioritizer’s throughput, we use

the Netperf [1] tools running on a client machine to saturate
the prioritizer’s inbound link with authorized packets. Inall
tests, we launch the Netperf TCPSTREAM test using 512-
byte packets, which is close to the average packet size of the
Internet [30].

In our experiments (Table 5), we found that a user-level
basic Click router, which simply forwards all packets, could
sustain a throughput of approximately 124 Mbps. A user-
level prioritizer implementing our symmetric authorization
scheme has about 87 Mbps throughput, while a prioritizer
using the asymmetric scheme can only sustain approximately
2 Mbps. As expected, the symmetric scheme is orders of
magnitude faster than the asymmetric scheme.

By implementing the prioritizer as a Click kernel module,
we improve the performance of the prioritizer using the sym-
metric scheme to about 154 Mbps, while the performance of
a kernel-level basic Click router is approximately 225 Mbps.
The prioritizer using the symmetric scheme performs two
major operations: verifying packet authorization and detect-
ing duplicate packets (see Section 4.3.3). Eliminating the
duplicate detection operation only slightly improves the pri-
oritizer’s throughput (up to 169 Mbps), which indicates that
verifying the packet authorization is the significant perfor-
mance bottleneck.

12

Unmodified Assayer Linux Assayer Linux
Linux Symmetric Asymmetric

Ping L 0.817± 0.32 0.814± 0.08 (-0.4%) 2.040± 0.30 (+149.7%)
Ping R 11.91 ± 1.90 12.86 ± 2.88 (+8.1%) 14.07 ± 3.96 (+18.2%)
Req L 3.129± 0.03 3.351± 0.58 (+7.1%) 10.74 ± 4.50 (+243.3%)
Req R 45.83 ± 12.3 45.91 ± 17.9 (+0.2%) 52.53 ± 12.8 (+14.6%)
Down L 1339. ± 348. 1347. ±142.(+0.6%) 2643. ±111.(+97.4%)
Down R 5874. ±1000. 5954. ±525.(+1.4%) 6613. ±720.(+12.6%)
Up L 706.5 ± 61.4 786.5 ±206.(+11.3%) 5194. ±178.(+635.2%)
Up R 3040. ± 568. 3375. ±657.(+11.0%) 6423. ±950.(+111.3%)

0.1 1 10
Time (s)

0

20

40

60

80

100

%
 S

uc
ce

ss
fu

l R
eq

ue
st

Full Deployment
ISP Deployment
No Deployment

Figure 5: Client Authorization: Symmetric Vs. Asymmetric. L represents a local request, and R

represents a remote request. All times are shown in milliseconds rounded to four significant figures.

Values in parentheses represent the change versus the native configuration.

Figure 6: Simulations. Time for 1,000

senders to contact the server in the presence

of 100,000 attackers. Note that the X-axis is

on a logarithmic scale.

Native Linux Assayer Linux Assayer MiniVisor Native Xen Assayer Xen
Ping L 0.817±0.32 0.814±0.08 (-0.4%) 0.811±0.13 (-0.1%) 0.816±0.07 0.838±0.07 (+7.6%)
Ping R 11.91 ±1.90 12.86 ±2.88 (+8.1%) 11.99 ±3.24 (+0.1%) 12.00 ±2.97 11.73 ±2.27 (-2.2%)
Req L 3.129±0.03 3.351±0.58 (+7.1%) 3.48 ±0.26 (+11.3%) 3.984±0.16 4.027±0.18 (+1.1%)
Req R 45.83 ±12.3 45.91 ±17.9 (+0.2%) 44.07 ±6.93 (-0.4%) 45.00 ±10.2 45.71 ±14.0 (+1.6%)
Down L 1339. ±348 1347. ±142 (+0.6%) 1427. ±382 (+6.6%) 1319.0 ±185 1348.0 ±314 (+2.2%)
Down R 5874. ±1000 5954. ±525 (+1.4%) 5884. ±990 (+0.2%) 5900.0 ±1210 5871.0 ±711 (-0.5%)
Up L 706.5 ±61.4 786.5 ±206 (+11.3%) 777.4 ±153 (+10.0%) 711.1 ±64.6 715.5 ±58.4 (+0.6%)
Up R 3040. ±568 3375. ±657 (+11.0%) 3078. ±1001 (+0.1%) 3130.0 ±393 3254.0 ±561 (+3.4%)

Table 4: Client Authorizations (Symmetric). L represents a local request, and R represents a remote request. All times are shown in milliseconds

rounded to four significant figures. Values in parentheses represent the percentage change versus the native configuration.

To confirm this, we modify our packet authorization im-
plementation to use UMAC [22] instead of SHA1-HMAC.
UMAC is much faster than SHA1-HMAC if the key has
been set up, but with Assayer, a key is generated from the
client’s token and set up for every packet. This would make
UMAC slower than SHA1-HMAC. To improve UMAC per-
formance, we implement a key cache mechanism that only
generates and sets up a UMAC key for the first packet of
every network flow, since all of the packets in a network
flow will have the same token. Measurements indicate that
the average Internet flow consists of approximately 20 pack-
ets [30]. Using this measurement as a rough estimate of our
key cache’s effectiveness, our prioritizer’s performanceim-
proves to 204 Mbps. This represents a 9.3% performance
loss relative to a kernel-level basic Click router. As a result,
it seems plausible that a prioritizer could check authoriza-
tions at near line rates.

7.4 Internet-Scale Simulation
Finally, to evaluate Assayer’s effectiveness against large

botnets, we developed an Internet-scale simulator. The sim-
ulation’s topology was developed from the CAIDA Skitter
probes of router-level topology [8]. The Skitter map forms a
rooted tree at the trace source and spans out to over 174,000
endpoints scattered largely uniformly around the Internet.
We make the trace source the victim of the DDoS attack and
then randomly select 1,000 endpoints to represent legitimate

Perf (Mbps) % of Click
Basic Click (user) 124 -
Sym Prio (user) 87 70.1%
Asym Prio (user) 2 1.7%
Basic Click (kernel) 225 -
Sym Prio (kernel) 154 68.4%
Sym Prio (kernel, no dup) 169 75.1%
Sym Prio (kernel, UMAC) 204 90.7%

Table 5: Packet Prioritization Performance. “User” and “kernel”

denote user-level and kernel-level mode. “Sym” and “asym” denote the

symmetric scheme and the asymmetric scheme. “Basic Click” is the ba-

sic click router which simply forwards each packet. “no dup” means no

duplicate detection operations are performed.

senders and 100,000 endpoints to represent attackers. We
assume that legitimate senders have obtained sender tokens,
whereas the attackers simply flood (since flooding with au-
thorized tokens will result in the revocation of the attacker’s
keys – see Section 4.4).

Since the Skitter map does not include bandwidth mea-
surements, we use a simple bandwidth model in which end-
host uplinks have one tenth the capacity of the victim’s net-
work connection, while the rest of the links have ten times
that capacity. Thus, each endhost has a small uplink that con-
nects it to a well-provisioned core that narrows down when
it reaches the victim. To make these values concrete, senders

13

have 10 Mbps connections, the victim has a 100 Mbps link,
and the links in the middle of the network operate at 1 Gbps.

In our experiments, legitimate senders make one connec-
tion request every 10 ms, while attackers flood the victim
with requests at their maximum uplink capacity. Attackers
start sending until the network is saturated (so that legiti-
mate senders face the full brunt of the DDoS attack), and
then measure how long it takes legitimate senders to contact
the server.

We run our simulations with no Assayer deployment, with
Assayer prioritizers deployed at the victim’s ISP, and with
ubiquitous (full) Assayer deployment. Figure 6 shows the
amount of time it takes legitimate senders to contact the
server. With no deployment, less than 6% of legitimate clients
can contact the server, even after 10 seconds. With a full de-
ployment of Assayer, most clients contact the server within
one RTT, which is unsurprising given that legitimate traffic
enjoys priority over the attack traffic throughout the network.
However, even with partial deployment at only the victim’s
ISP, we see that more than 68% legitimate clients succeed
in less than a second, and 95% succeed within 10 seconds,
even in the face of a DDoS attack by 100,000 endhosts.

8. DISCUSSION

8.1 Defeating Additional Network Attacks
We have focused on DDoS attacks, but Assayer can po-

tentially help address other network-based attacks. For ex-
ample, in an enterprise environment, a client module could
authorize packets that are not tainted with sensitive data,al-
lowing firewalls to easily filter outbound traffic. Developing
such a client module is challenging, but Assayer provides a
generic mechanism to convey such a module’s information
to the network.

Other attacks, such as spam and click-fraud, also rely on
automated endhosts behaving badly. Using a client module
that detects human activity (via keyboard or mouse events)
or the presence of approved software (such a particular unal-
tered email client or web browser) would allow mail servers
to give preference to emails that are less likely to be spam,
and advertisers to reward sites for clicks more likely to orig-
inate from humans.

8.2 Legacy and Mobile Devices
While many modern commodity computers are equipped

with a TPM [14], a large number of older computers are not
so equipped. One approach would be to have ISPs attest to
properties that they impose on outbound client packets. For
example, an ISP could attest to code on one or more proxies
that would prevent the ISPs customers from sending traffic
to a particular server at more thanX packets/second. After
obtaining a sender token, the ISP could authorize traffic to
the server on behalf of all of its clients. As long asX is set
to a reasonable rate, legitimate legacy clients will not notice
a difference, and the server will still be protected.

A similar proxy-based approach would work for mobile
devices. There are also specifications for TPMs adapted to
the mobile domain [32], as well as a few phones that already
contain a TPM [9].

9. RELATED WORK
Closely Related Work. Kandula et al. propose the use
of CAPTCHAs to distinguish human-driven web requests
from bot-driven requests [17]. Unfortunately, CAPTCHAs
are difficult to bind to the specific client request, and they
can be outsourced to other humans, whereas Assayer binds
sender tokens to the client’s platform.

Gummadi et al. propose the Not-A-Bot system [13] that
tries to distinguish human traffic from bot traffic. They attest
to a small client module that tags outgoing packets generated
within one second of a keystroke or mouse click. Through
trace-driven experiments, the authors show that the system
can significantly reduce malicious traffic. However, the sys-
tem only considers application-level attacks, i.e., the net-
work is assumed to be uncongested. Thus, the server is re-
sponsible for verifying client attestations, which is lessprac-
tical for combatting network-level DDoS attacks.

Both of these systems work well for human-driven applica-
tion-specific scenarios, but it is difficult to adapt them to ser-
vices that are not primarily human-driven. For example, As-
sayer could protect DNS, NTP, transaction processing, net-
work backup, or software update servers, while neither of
the above systems cover these cases.

Finally, Ramachandran et al. propose imbuing packets with
the provenance of the hosts and applications that generated
them [28]. Unfortunately, these packet markings are not se-
cured, so the system must assume that the entire network
is trusted and that all hosts have deployed the system in a
tamper-proof fashion. By using commodity trusted hard-
ware, Assayer circumvents these assumptions and can op-
erate in networks with hostile elements, with partial deploy-
ment, and under attack by malicious software on the hosts.

We note that the last two systems could be implemented
securely and efficiently as client modules within Assayer, if
those particular properties prove to be desirable to servers.
Conveying Host Information to the Network. Feng and
Schluessler propose, at a high-level, using Intel’s ActiveMan-
agement Technology to provide information on the machine’s
state to network elements by introspecting on the main CPU’s
activities [11]. Unlike Assayer, they do not focus on con-
veying this information efficiently, nor do they provide a full
system design and implementation.

Baek and Smith describe an architecture for prioritizing
traffic from privileged applications [3]. Clients use trusted
hardware to attest to the execution of an SELinux kernel
equipped with a module that attaches Diffserv labels to out-
bound packets based on an administrator’s network policy.
This system can be viewed as one possible instantiation of
Assayer; however, Assayer does not require SELinux or Diff-
serv, nor does it require universal deployment.

14

DDoS Prevention.Numerous systems have been proposed
to fight DDoS. Because they act solely at the network level,
without any reliable host-based information, resource-based
systems, such as Portcullis [27] or Speak-up [33], can (prov-
ably) achieve fairness amongst endhosts, but they cannot
prioritize packets more likely to originate from trustworthy
hosts. Similarly, packet capability systems, such as SIFF [34]
and TVA [35] assume that the endhost can somehow deter-
mine whether a host can be trusted based solely on its pack-
ets. This becomes increasingly difficult as adversaries adapt
to mimic legitimate hosts.

The recently proposed AIP architecture [2] assigns hosts
IP addresses based on a hash of their public key. This pro-
vides a convenient mechanism to securely determine that
statements signed by a private key “speak for” a particular IP
address. Such a technique is orthogonal to Assayer, though
it could potentially simplify the process by which a client
learns about a server’s policy. The AIP authors also pro-
pose equipping clients with “smart” network cards that will
obey signed shut-off requests from servers. This functional-
ity, could easily be instantiated as a Assayer client module.

10. CONCLUSION
Treating endhosts as black boxes limits the effectiveness

of DDoS countermeasures. Using hardware-based attesta-
tion to allow legitimate hosts to attest to their benign nature
opens the black box and greatly mitigates the effects of bot-
nets, since remotely exploited machines can no longer effec-
tively send attack traffic. As a result, both the network and
the application server can spend resources on packets more
likely to originate from legitimate sources. Our implemen-
tation suggests that Assayer can be implemented in an effi-
cient manner and even partial deployments can be effective
against botnets of 100,000 hosts.

11. REFERENCES
[1] Netperf.http://www.netperf.org.
[2] D. G. Andersen, H. Balakrishnan, N. Feamster,

T. Koponen, D. Moon, and S. Shenker. Accountable
Internet Protocol (AIP). InACM SIGCOMM, 2008.

[3] K.-H. Baek and S. Smith. Preventing theft of quality
of service on open platforms. InThe Workshop on
Security and QoS in Communication Networks, 2005.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. InSOSP, 2003.

[5] S. M. Bellovin. The security flag in the IPv4 header,
RFC 3514, April 1st, 2003.

[6] B. Bloom. Space/time trade-offs in hash coding with
allowable errors.Communications of the ACM,
13(7):422–426, 1970.

[7] A. Broder and M. Mitzenmacher. Network
applications of Bloom filters: A survey. InInternet
Mathematics, 2002.

[8] CAIDA. Skitter. http://www.caida.org/
tools/measurement/skitter/.

[9] J. Durand. DRM, TPM in the mobile domain.
Presentation from the DRM Workshop I, Oct. 2002.

[10] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software guards for system
address spaces. InSOSP, Nov. 2006.

[11] W. Feng and T. Schluessler. The case for network
witnesses. InProceedings of the Workshop on Secure
Network Protocols (NPSec), 2008.

[12] H. Finney. PrivacyCA.http://privacyca.com.
[13] R. Gummadi, H. Balakrishnan, P. Maniatis, and

S. Ratnasamy. Not-a-bot: Improving service
availability in the face of botnet attacks.NSDI, 2009.

[14] T. Hardjono and G. Kazmierczak. Overview of the
TPM key management standard. TCG Presentations:
https://www.trustedcomputinggroup.
org/news/, Sept. 2008.

[15] T. Holz, M. Steiner, F. Dahl, E. Biersack, and
F. Freiling. Measurements and mitigation of
peer-to-peer-based botnets. InUSENIX LEET, 2008.

[16] Intel Corporation. Intel I/O controller hub 9 (ICH9)
family datasheet, Aug. 2008.

[17] S. Kandula, D. Katabi, M. Jacob, and A. Berger.
Botz-4-sale: Surviving organized DDoS attacks that
mimic flash crowds. InNSDI, 2005.

[18] B. Kauer. OSLO: Improving the security of Trusted
Computing. InUSENIX Security Symposium, 2007.

[19] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS:
Secure overlay services. InACM SIGCOMM, 2002.

[20] E. Kohler.The Click modular router. PhD thesis, MIT,
Nov. 2000.

[21] O. Kolesnikov and W. Lee. Advanced polymorphic
worms: Evading IDS by blending in with normal
traffic. TR GIT-CC-05-09, Georgia Tech, 2005.

[22] E. T. Krovetz. UMAC: Message authentication code
using universal hashing. RFC 4418, Mar. 2006.

[23] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for
TCB minimization. InEuroSys, 2008.

[24] E. Messmer. Downadup/conflicker worm: When will
the next shoe fall? Network World, Jan. 2009.

[25] D. Mills, A. Thyagarajan, and B. Huffman. Internet
timekeeping around the globe. InPrecision Time and
Time Interval Applications and Planning, 1997.

[26] S. C. Misra and V. C. Bhavsar. Relationships between
selected software measures and latent bug-density. In
CCSIA, Jan. 2003.

[27] B. Parno et al. Portcullis: Protecting connection setup
from denial-of-capability attacks.SIGCOMM, 2007.

[28] A. Ramachandran, K. Bhandankar, M. B. Tariq, and
N. Feamster. Packets with provenance. Technical
Report GT-CS-08-02, Georgia Tech, 2008.

[29] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and implementation of a TCG-based integrity
measurement architecture. InProceedings of the
USENIX Security Symposium, 2004.

15

[30] K. Thompson, G. J. Miller, and R. Wilder. Wide-area
Internet traffic patterns and characteristics.IEEE
Network, 11:10–23, 1997.

[31] Trusted Computing Group. Trusted platform module
main specification. Version 1.2, Revision 103, 2007.

[32] Trusted Computing Group. TCG mobile trusted
module specification. Version 1.0, Revision 6, 2008.

[33] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger,
and S. Shenker. DDoS defense by offense. InACM
SIGCOMM, 2006.

[34] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless
internet flow filter to mitigate DDoS flooding attacks.
In IEEE Symposium on Security and Privacy, 2004.

[35] X. Yang, D. Wetherall, and T. Anderson. A
DoS-limiting network architecture.SIGCOMM, 2005.

16

