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Abstract cial physical assumptions and adversarial constraints can

... . shape the problem of key distribution in interesting ways.

We explore the problem of secret-key distribution in pesearchers have explored various physical models to sup-
unidirectionalchannels, those in which a sender transmltspOrt key establishment between pairs of devices, including
mformaﬂqn blindly to a receiver. We consider two ap- gnrica| channels [16,24], distance-bounding [30] based on
proaches_. (1) Key sharing acragmacei.e., via simultane- signal velocity, and physical contact [33]. Such models
ously emitted values that may follow different data pathSyeat 4 variety of adversarial capabilities. For instance,
and (2) Key sharing acrossne, i.e., in temporally stag-  yivacy amplification [3], which strengthens keys using
gered emissions. Our constructions are of general intelsparad sources of noise or quantum phenomena, appeals
est, treating, for instance, the basic problem of construct;, hounds on adversarial data access or storage.
ing highly compact secret .shares. Our main motvating | g paper, we focus on the problem of key distri-
probl_em, however, is pré?‘?“ca?' key management in RFIDyytion between two parties communicating viaigidi-
(Radio-Frequency IDentification) systems. We descrlberectional channel. This special constraint means that one

thhe gpplicgtion of our techniques tr? RF.ID-enabIed SuIOIOIyparty (Alice) acts exclusively as a sender, while the other

chains and a prototype privacy-enhancing system. (Bob) acts exclusively as a receiver. We consider the chal-
lenge of unidirectional key transport when Alice and Bob

1 Introduction ha\_/e no pre-existing relationship, bu_t share a channel W|_th
limited adversarial access. We believe that such special

Key management is a cornerstone of cryptography, buhlnidirectional models have broad appligability, as they re
also its major deployment challenge. Textbook crypto- ect the qatural_broadcast c_har_acterlstlcs qf many m_edla.
graphic protocols often presuppose keys held by a pair 0}'he star_tlng point ar_1d motivation for our investigation,
principals anecdotally dubbed Alice and Bob. From birth, 10ugh, is the specific, real-world problem of key trans-
Alice and Bob are presumed to share a password, a secr@p't in RFID-enabled supply chains.

key, or the public key of some mutually trusted entity.

In practice, the conceptually simple goals of key Organization In Section 2, we give details on the RFID
distribution—even between two parties—are fraught withchallenges motivating our work. We provide an overview
complexity. Disparate naming conventions and require-of our technical contributions in Section 3 and review re-
ments for key revocation and recovery have hobbled manjated work in Section 4. In Section 5, we present what we
public-key infrastructures. Password management reeall secret sharing in spac@ key-distribution system that
mains a widespread challenge thanks to obstacles as vagtipports privacy protection in RFID applications. We also
ied as limited human memory, caps-lock keys, and socialbriefly describe a prototype RFID implementation of se-
engineering attacks such as phishing. cret sharing in space. In Section 6, we preseatet shar-

Ultimately, key distribution must rely on secure chan-ing in time a separate body of techniques applicable to
nels established through pre-existing trust relatiorssbip  RFID access-control and authentication, and also of broad
special physical considerations. For example, browsemnterest for key distribution in unidirectional channélge
software shipped with new computing systems carries theonclude in Section 7 with a brief discussion of future re-
root public keys of a number of certificate authorities. Spe-search directions.



2 Motivation: The RFID Landscape The kill command: The only security function that com-
pletely disables tags is a command knowrkils When
The ratio of terrestrial radio and cellular telephone sys-transmitted by a reader along with a tag-specific kill PIN
tems to the number of humans on earth is approaching32 bits long in Gen2), the kill command causes a tag to
unity, and in the past decade, a completely different kinddisable itself permanently.
of radio device has emerged and is poised to eclipse this The EPC kill function is envisaged as a privacy-
ratio by three orders of magnitude. Rapid advances irenhancing feature for retail environments with item-level
CMOS technology have enabled the production of low-tagging. EPC tags specify the items to which they are af-
costtagsthat are capable of reporting their identity over fixed. Thus a consumer carrying EPC-tagged items would
a wireless link. These tags—usually costing tens of centgn principle be subject to clandestine inventorying atsack
and carrying a few thousand gates of silicon—have littlethat disclose sensitive data about medications, reading ma
if any general-purpose computing power beyond what igerials, luxury goods, and so forth. By deploying the
needed to respond to commands from an interrogator okill function at the point of sale, a retail shop can pro-
reader This asymmetry between interrogators and tagsect against such privacy infringements by disabling tags.
is further amplified by the fact that, in many applications, Additionally, researchers have proposed anti-cloningtec
tags are passive, lacking an on-board source of power; imiques that co-opt the kill and write-access commands in
stead, they harvest power from the electric, magnetic 0EPC to support reader authentication of tags and to protect
electromagnetic field generated by the interrogators. PINs from untrusted readers [15].

Recent developments in passive Radio Frequency IDen- Both locking and killing pose a significant implementa-
tification (RFID) technology and corresponding interna-tion hurdle: They require a solution to tkey-distribution
tional standards [12] have spurred deployment in appliproblem. The initialization of tag-specific kill PINs in
cations ranging from supply-chain and inventory managetags and the secure propagation of these PINs to point-of-
ment of consumer goods, to tracking medical equipmensale devices are formidable operational challenges. Sup-
in hospitals, to counting poker chips on gaming tables. ply chains include entities with widely disparate data-

The heir apparent to the optical barcode, RFID is bejprocessing capabilities. Information transfer across-org
coming a prevalent technology in supply-chain managenizational boundaries, moreover, introduces a host of reg-
ment. Ultimately, manufacturers and retailers envisageulatory and technical burdens. Hence supply-chain estitie
RFID tagging of individual consumédtems Today, tag- commonly lack data-network mechanisms for timely, reli-
ging is most common at the granularity cises which  able, and secure transport of PINs. While it might seem a
contain consumer items, anddllets which carry cases. straightforward matter for Alice (a manufacturer) to share
In this paper, we use the term “case” as the generic ternEPC PINs with Bob (a retailer) through a data network, in
for a discrete collection of goods. practice it is often quite difficult. Indeed, with all of the-i

For supply-chain operations, the predominant RFIDtermediaries through which manufactured goods regularly
standard is one known as the Electronic Product Codgass, Alice may even ship cases without knowing that Bob
(EPC) (in particular, Class-1 Gen-2 EPC, hereafter reis the ultimate receiver.
ferred to as Gen2). EPC tags act effectively as wireless In this paper, we show that RFID-enabled supply chains
barcodes, emitting short strings of information known aspossess unique properties that allow us to:

EPC codes. An EPC code has four basic components: (1)
A header which denotes the EPC version number; (2) A
domain managerwhich typically specifies the manufac-
turer or creator of the item; (3) Aobject class which
specifies the item type, and (4)sarial numbera unique i o
identifier for the item. Thidicense plateapproach asso- network connection, changes to the air interface pro-
ciates an arbitrary amount of metadata with the tagged ob- tocol, or changes to the tag hardware

ject while requiring little memory on the tag itself. The only resource our method requires is memory on
the tag, and we provide a means to trade-off memory usage
against security.

e Provide consumer privacy with respect to unautho-
rized scanning of tagged objects;

e Provide a robust protocol-independent mechanism to
distribute PINs and passwordgthout requiring a

2.1 Security and Key Distribution in Gen2

Two features in the Gen2 standard require secretkeys: 2 2 QObject Hierarchies in RFID-Enabled
Locking and perma-locking: It is possible to lock part Supply Chains

(or all) of the tag’'s memory, either temporarily under a

32-bit password, or permanently with no possibility of un- Our techniques for key distribution in RFID applications
locking and rewriting the memory. While this feature pre- rely in part on the fact that supply chains are hierarchical
vents unauthorized entities from tampering with the con-in nature. To highlight the properties we utilize, we use
tents of tag memory, it does not prevent unauthorized read-igure 1 to trace the path of a single pack of razor-blades
ers from reading the contents. in a consumer’s home back to the manufacturing facility.



e aYa N
<4+——— Physically securedareas —————» <— Open areas ————»
90 cases with 90 cases with 10 cases with Between 72 and Typically less than
72 items each 72 items each 72 items each 144 items 10 items
\ E 0 .
g O
O
1. Factory 2. Distribution 3. De- & Re-Palletization 4. Backroom of 5. Store 6. Individual
Center and transportation retail store shelf consumers
~ VAN J
TIME |

Figure 1: Object hierarchies in RFID-enabled supply chainsThis schematic represents the path taken by an individual pack of
razor blades from the factory to the consumer’s home. Please refer to$22 for details.

Typically, items start off in large collections and pro- locations that are accessible to adversaries. We exp®it th
gressively get whittled down into smaller aggregatesfact that tags share the same space-time context earlier in
as they make their way from the factory to the storethe supply chain, but this history is progressively lost as
shelf [13]. In the example above, razor blades are astagged objects emerge from the supply chain into the front
sembled into a pallet containing 90 cases, each with 72f the retail store and thereon into the consumer’s home.
packs of blades. Assuming the items, cases, and pallet
are tagged, we have a total of 6571 tags on this particf3
ular pallet. The pallet is then transported, possibly with
many other pallets, to a distribution center (DC)._The DCThe challenges of EPC PIN distribution motivate us to
de-palletizes the large pallet and assembles a mixed pallet

: g consider a new approach, thattedinsporting secret keys
with a smaller quantity of cases that has been ordered b% RFID tags thempsr:alveg'his approacrim alloevs a unidirgc-
the store. A typical number of cases from the original pal-

let that make it onto this new pallet is 10 [13]. Assuming tional model of key transport. The sender (Alice) encodes

. o secrets across tags or cases. The receiver (Bob) recov-
ﬁg]ev; p;:fglga%éstﬂgdﬁg’ 73;2{ thfhf.fz]é Or'g;ﬂgi t.z%a:rr]%rs these secrets without communicating with Alice—and,
Waval iy - W P ! otentially, without even knowing her identity.

transported to the store and stored in the backroom. of To support this unidirectional model of key transport,

these 730 tags, typically up to two cases’ worth, or 144\/ve propose protocols for dispersing keys or PINs across

items are laid out on the store shelf for customers. Frorq . ; .
i . : ags by means dfecret sharingWe consider two distinct
this collection, consumers pick up a few packs and pur-

. : ) modes of secret sharing: ($ecret sharing across space
chase them. Therefore, the object hierarchy is as foIIows.and (2)Secret sharing across time
Razor blades6571— 730— 144— 5

Similarly, for DVDs a typical object hierarchy is . o
DVDS 5040— 2520 400—s 24 Secret sharing across space: Alice can share a secret
) keyk across a set of tags= {11,...,Tn} ina case. To do
where the last number represents an estimate of the NUN3,” she transforms into a collection of shares,, ..., S,
bgr of DVDs from a case sold to an individual CONSUMEr. anq stores on tagt;, such thak can only be recovered by
Finally, for pharmaceuticals, we have scanning alh tags in the cases. (We later consider thresh-
Pharmaceuticals7200— 1920— 150— 6 old secret sharing, i.e., schemes such khiran shares suf-
where again the last number represents an estimate of thige for recovery ok.)
maximum number of filled prescriptions from one case in  Such secret sharing across tags permits a new approach
possession of a consumer at the same time. to privacy enforcement for item-level tagging that largely
While these numbers may vary between different typesliminates the need for killing tagSuppose thaty con-
of retailers and use cases, the important point to note isists of the data, e.g., EPC code, associated withitag
that the number of tagged items starts off large and endSuppose that Alice replaces with Ec[m] in all tags,
up being small. Another important insight is that largerwhere E¢x represents symmetric-key encryption under
numbers of tags are typically found in physically secureThen the contentsy of any tag can only be deciphered by
areas, while smaller numbers of tags are found in physicadcanning the full set of tags.

Our Contribution



On receiving a case from Alice, a retailer (Bob) can Secret sharing across time: Suppose thak is not an
recoverk and decrypt the EPC codes in its tagdnce  encryption key, but a write-access key. In that case, the
the items and their associated tags are dispersed by salability to recoverk by scanning a case would enable a
to customers, however, a would-be eavesdropper has nmalefactor with access to a single case at any point in the
practical way to recovek. We assume here that access tosupply chain to modify the data contents of tags. Similarly,
tags is secured in the supply chain, i.e., the pre-sale envsuppose that were a symmetric key used to authenticate
ronment. We illustrate the principle by example. tags. Then simply by scanning a case, an adversary could

_ ) o recover all of the key material required to clone the asso-
Example 1 Alice ships a case containing three bottles ¢jated tags.

of medcie beatng RFID tagh.a and s W GEt2 oy i encon, e consier anther o of scrt s
yoey TS . ing in which a secret kex is distributed not across the
and transforms it info 2 triplet of sharess;, S, &) via tags in a single case, but across multiple cases. Given that

a (3,3)-secret sharing scheme.  Alice writes the Valuecases—much like data packets—depart and arrive at stag-
Vi = (Ex[m],S) to tagT,.

. . . ered times in a supply chain, we refer to this approach as
Bob, a pharmacist, receives Alice’s case. He scans théJ PRy PP

: ecret sharing across time.
three tags, recovens and decrypts the data strings of the g

tags in the cases, enabling him to reag aTHigh street- Example 2 Alice, a manufacturer, is shipping cases of

value drug, 500 mg, 100 count, bottle #8278732," as WeIIRFID-tagged items to Bob. She would like to communi-

asm anq m. Bob dispenses th? first bottlg .to Carol. cate the write-access PINs for the tags in these cases to
Later in the day, a drug thief surreptitiously scans I?ob as securely as possible

Carol's RFID tags as she passes on the street. The thie .
obtains the value v= (Ex[m],Si)—a ciphertext and key Suppose tha't Alice employs trucks that hold up tp ten
ases. She might do as follows. She selects a window,

share that by themselves carry no meaning and therefor&

do not reveal the presence of high-value pharmaceuticals;€-» S€qUence, of eleven casgscfiy,...,Cjr10 desig-
nated for delivery to Bob. She creates a master sacret

As this example illustrates, Bob does not have to perfrom which it is possible to derive the write-access PIN for
form any explicit action to protect his customers’ privacy. any tag within the window of cases. She distribwésto
He does not have to kill or rewrite tags. Secret sharingeleven shares;SS, ..., 51 via an (11,11)-secret sharing
across space enforces privacy implicitly through the physscheme, and writes sharg ® case ¢,q_1. (She might
ical dispersion of tags. Unlike killing, though, secretisha distribute the secret across tags on individual items, or on
ing does not enforce privacy against tracking attacks. Tha case-specific tag.)

valuevl_is itself.a unique identifier _that can serve to cor-  ap adversary that gains access to the contents of a small
relate different instances of scanning of Carol's tags ang|jection of cases, or even an entire truckload, is unable
potentially track Carol herself. This is a basic limitation 4 reconstruct the secrat or to obtain the write-access
of our sc_:heme, but one we con§|der to be of considerably|Ns for the RFID tags. On the other hand, Bob can re-
smaller importance than revelation of tag data contents. constructk once he receives the full sequence of eleven
Of course, it is possible to encodein a case-specific constituent cases.
tag, rather than across items within a case. The advan-
tage of sharing across space is twofold, though: (1) As we Of course, in practice it may be difficult for Alice to
show, it allows for robust secret recovery, i.e., recovdry o identify a priori a window of cases that a legitimate re-
K even in the face of scanning errors or lost data and (2) Iteiver, Bob, will receive in its entirety, particularly iié¢
eliminates the need for an extra tag, i.e., one on each caseases pass through intermediaries. Hence the main thrust
Our main research Challenge in applying secret sharin@f our work here is the development of more flexible se-
across space to RFID is the development of schemes witfret sharing schemes. We propose what we $fdling-
tiny secret shares. While the literature on computationaWindow Information Secret-SharinggWISS) schemes,
secret sharing considers shares of length equal to that gonstructions such that for a sequeigg,, ... of cases,
a secret key, e.g., 128 bits, space constraints on EPC tag®9b need only receive a minimal numblerof cases in
urge even smaller share sizes, e.g., 16 bits. any contiguous window of size in order to reconstruct

In Example 1, the adversary (thief) isderinformed the associated secret keys. SWISS schemes provide key
i.e., lacks the shares needed to recavehnother facet of  confidentiality against adversaries that intercept cases o
our research aims to create situations in which an adver@ Sporadic basis.
sary isoverinformed having too many shares to identify ~ As we explain, it is a straightforward matter to create a
and extract tag keys. In Appendix A, we consider situa-SWISS scheme in which shares are linean,rand thus
tions in which an adversary is overinformed when scan-potentially large in practice. Our contribution is a SWISS
ning retail shelves where the contents and thus RFID tagscheme whose shares are constant in size, i.e., have length
of many cases are mixed together. independent ok andn.



4 Related Work code, permitting a tradeoff between share size and secu-
rity [25]. Blakley and Meadows propose a class of ramp

Since its invention in 1979 by Shamir [32] and indepen-secret sharing schemes [5] which define two thresholds.

dently by Blakley [4], secret sharing has played a foun-Givent shares, it is easy to reconstruct the secret. Less

dational role in cryptography. However, our work differs thant’ shares reveals no information about the secret, and

from previous work in two key aspects: the privacy goalgiven some number of shargssuch that’ <y < t, the

we adopt and the size of the shares employed. information gained about the secret is proportionaﬁé.

The majority of secret sharing literature evaluates the-arger “ramps” provide weaker security but allow a reduc-
privacy of a secret-sharing scheme from an informationion in share size. In both of these proposals, the size of
theoretic perspective, seeking to create efficient schemebe shares is dependent on the size of the secret.
for various access structures. In this regime, a perfect By moving to the CSS realm, Krawczyk introduces a
secret-sharing (PSS) scheme is one in which an adversagcheme with “short” shares with lengths independent of
learns no information about the secret in an information-the secret’s size [20]. A cryptographic key is shared using
theoretic sense (i.e., even if the adversary has unboundedPSS scheme, while the secret is encrypted using the key.
computational resources). Shamir's scheme [32] qualifieThe resulting ciphertext is shared using an information-
as a PSS scheme. Statistical secret-sharing (SSS) scheméispersal algorithm, e.g., Rabin’s IDA [27]. A share then
such as Blakley’s [4], allow a small amount of information consists of a cryptographic portion and a ciphertext por-
leakage, in the information-theoretic sense. tion. The cryptographic portion is at least as long as a

A narrower literature concerns complexity (or com- cryptographic secret key plus a hash function image (thus,
putational) theoretic secret-sharing (CSS), in which pri-in practice, at least 384 bits). We use a similar mechanism
vacy depends on computational bounds on an adveito make the size of our shares independent of the secret,
sary. Krawczyk first introduced the notion of a CSS butin lieu of PSS and IDA schemes, we employ error cor-
scheme [20], and Bellare and Rogaway later refined an#&ecting codes to reduce share sizes and add robustness.
formalized it [2]. Work in this area has focused on pri- We are aware of no investigation, however, of the partic-
vacy based oall-or-nothingindistinguishability. In other  ular problem of creating shares smaller than the short ones
words, in Krawczyk’s construction, an adversary eitherintroduced by Krawczyk, i.e,, shares potentiadlyorter
has no information about the secret or she has completdan a cryptographic secret key (perhaps 16 bits in length).
information about it. In this work, we introduce construc- Here, we characterize such sharesag
tions that accommodaigradatedkey information. This The omission from the literature of CSS schemes with
allows us to consider schemes in which the leakage of sdiny shares appears to have two underlying causes. First,
cret information is proportional to and thus grogimdu-  short shares are compact enough for many applications.
ally with the number of revealed shares. Second, the literature is solidly anchored in PSS. Even

The other dimension in which this work differs from CSS schemes, such as that of Krawczyk, typically rely on
previous work is the length of the shares involved. It isPSS as a primitive to share out cryptographic keys.
well known that in any natural PSS scheme, the size of
every participant’s share must be at least that of the s

cret itself [10, 18]. For specific access structures, steong gest using secret sharing to conceal an RFID tag’s infor-

lower-bounds hfave bgen shown [9]. mation from adversaries with time-limited access to the
Any scheme in which shares are shorter than the secr%g [21]. The tag's information is split using Shamir's

is necessarily imperfect. Ogata and Kurosawa [26] giVe;cheme [32], and the tag periodically emits a share. A
information-theoretic lower bounds on share sizes in suchas4er that probes the tag over the course of several min-
schemes. At a high level, they show that a share musjtes will receive enough shares to reconstruct the tag’s in-
have length equal to at least that of the “gap” in knowl- {5ymation, while a casual attacker who only obtains a few
edge between sets of shares outside the permitted accesgissions cannot reconstruct any tag information. Our
structures ang the secret itself. More formally, SUPPOS§chemes, in contrast, spread shares across multiple tags
that a secret — D is selected at random from distribution and consider sliding time windows with evolving secrets,
D. Let X denote a random variable farand§ one for  rather than a single fixed secret.
S, i.e., thei'" share generated by a natural secret-sharing In other work, Langheinrich and Marti propose using
scheme. Ifl" represents the set of access structures thaghamir's scheme to distribute an item’s ID over hundreds
are allowed to recover the secret, then it is the case thajf RFID tags integrated into the item’s material [22]. They
H(S) > mingrH(X|{S}iey), whereH (A|B) denotes the  aim to enforce privacy by requiring a reader to access mul-
entropy ofA conditional orB. tiple tags. In contrast, we look to dispersion, rather than
In terms of concrete proposals, in the information-aggregation, of tags, as a privacy-enforcing mechanism.
theoretic literature, McEliece and Sarwate note thaitWe also reduce the size of each share to well below the
Shamir's scheme can be generalized as a Reed-Solomaize of standard Shamir shares.

eSecret-sharing in RFID: Langheinrich and Marti sug-



5 Secret Sharing Across Space attacker that can corrupt up @/2 players or erase the
shares oD — 1 players—or some combination of the two,

Sharing a secret (e.g., a cryptographic key) across space ifepending on the specific ECC. (In some cases, correction

an RFID application imposes severe limitations on the sizéyeyond the minimum distance is possible [28].)

of each share. As discussed in Section 4, previous schemes

typically require 128 bits or more for each share, wherea .

with RFID tags, we would like shares of 16 bits or Iess.%'2 Problem Definition

Hence in this section we provide a generic robust secrefyformally, the adversary may attack either the privacy or

sharing scheme that we refer to as a Tiny Secret Sharingye ropustness of the scheme or both. A privacy attacker

(TSS) scheme. We define our scheme in a general promeﬁhempts to recover the secretgiven some number of

framework based on adversarial games, describe a protQnares. To break robustness, the adversary aims to cor-

type implementation, and suggest parameters appropriaigpt shares such th&ecover fails to outputx. We define

for real-world deployment. these security goals formally below and conclude with a
definition of a TSS scheme.

5.1 Preliminaries

Secret Sharing. We adhere closely to the notation >> Privacy

and definitions of Bellare and Rogaway [2]. Am  We consider two subtypes of privacy attackersuader-

party secret-sharing schenie a pair of algorithmd1 = informed adversary and anverinformedadversary. An
(Share, Recover) that operates over a message spdce underinformed adversary can corrupt a limited number of
where: players, while an overinformed adversary can obtaimall

e Share is a probabilistic algorithm that takes input ~ Shares, but also receives a number of additional “shares”
that she cannot distinguish from the correct shares. Due to
lack of space, we relegate details on overinformed adver-
saries to Appendix A. (Briefly, an overinformed adversary
sees shares from multiple cases simultaneously, and can-

* Recover is a 2eteranistic algorithm that takes in- 4t feasibly extract secrets due to the hardness of decoding
putSe ({0,1}* J )", where< represents a share given many “chaff” shares.)
that has been erased (or is otherwise unavailable).

The outputRecover(S) € X{J L, where_L is a dis- i .
tinguished value indicating a recovery failure. Underinformed Attacks. Here, we consider an attacker

) o who obtains a limited number of legitimate shares (recall
_ In our security de.f|n|t|0ns, we assume an honest deale‘ExampIe 1). In this setting, Bellare and Rogaway define
i.e., correct execution oBhare (although the adversary p,yacy based on a notion of indistinguishability. Given
may choose the secret that is shared). an n-party secret-sharing schent, X), they define the
oraclecorrupt(S,i) as a function that returr$. (“Corrup-
Adversaries. While secret sharing literature tradition- tion” in this setting—corresponding to compromise of a
ally defines goals with respect to access structures, wehare-holding player—results in disclosure, not change, of
predicate our definitions below on a cla@®f probabilis-  a share.) Then the Bellare and Rogaway notion of privacy
tic adversarial algorithms. We define the security of a TSSs defined based on the experiment shown in Figure 2(a)
scheme in terms of a particular clags We can reconcile In the experiment, the adversary is asked to choose two
our adversarial model with the traditional access-stmectu values to be shared. The experiment selects one of the se-
view by restricting4 to only adversaries that respect a crets at random and generates a set of shares. The adver-
particular access structure. For example, we might consary can then corrupt (or see the value of) individual shares
sider only adversaries that compromise fewer tthéggit- and must eventually produce a guess as to which secret
imate shares for sonk was shared. The corruptions and the guess may be based
on state generated during the “choose” phase. Using this

Error Correcting Codes. Our construction utilizes an expgr{:ment, Bellare and Rogaway defiis advantage as
n

error-correcting code (ECC), a generalization of secrefAdvy [I‘I,X]QZPr [Expij\‘d[l‘l,X] =1 -1
sharing that we formally define as a pair of algorithms
M€ = (Share®®, Recover®®®). An (N,K,D)q-ECC oper-

ates over an alphabét of size |Z| = Q. Share®*® maps

K — 3N such that the minimum Hamming distance in We desire our scheme to allow a legitimate user to re-
symbols between (valid) output vectorslis For such cover the original secret, even if the adversary tampers
a function Share®®, there is a corresponding function with some of the shares. To model a scheme'’s resilience
Recover®“ that recovers a message successfully given ao such an attack, we define a robustness experiment. In

X and outputs the-vectorS & Share(x), where§ €
{0,1}*. On invalid inputX’¢ X, Share outputs am-
vector of the special (“undefined”) symbal

5.2.2 Robustness



ExperimenExpx M, X]
X — A(“choose”);
S& Share(x);
S — Acomupt(S) (“corrupt”);

X' — Recover({§}cs U{S}ize);
output ‘1" if x # X, else ‘0’

ExperimentExpd[M, X]
(X0,X1) < A(“choose’;
bR {0,1}; sk Share(xp);
b/ — Acorupt(S)) (“corrupt”);
output ‘1'if b=/, else ‘0’

a) Privacy Experiment
@ yEXp (b) Robustness Experiment

Figure 2:TSS Experiments.These experiments capture our notion of privacy and robustness sdigmes.

our robustness experimerfhare is invoked on a secret 1
x of the adversary’s choosing. The adversary then cor- :
rupts a number of players andplaces their share val- X .
.

1

1

1

ues Again, the adversary is allowed to maintain state
between the “choose” and the “corrupt” phases. The ad-
versary is successful Recover fails to recoverx given

the corrupted and uncorrupted shares as input. This ex-
periment is much like that for robustness in Bellare and
Rogaway, though their definition additionally includes the
technical requirement that the adversary identify an un-

R
K —
1
1
1
corrupted playerj. This is not necessary for our pur- :%
1
1
55X st |

K Encr
pt
| Hash |—=—x|EpcoyE

poses. We define the robustness experiment as shown in
Figure 2(b), lettingS represent the indices of the shares
corrupted by the adversary. We define the advantage of \\ ===
asAdVIE[M, X] 2 Pr[Expec[M, X] = 1]. > </
It is also useful to consider a modified experiment
Exprec-or-detectihat outputs ‘1’ ifx # X' andx’ #.L, else

‘0. In other words,A is successful if it causes a recovery
failure thatRecover does not detectThis is a weaker re-

Figure 3:Secret Sharing with Tiny Shares.Schematic of our
TSS construction in a toy example with n=3. It can be used to

. distribute a ke, or optionally a secret x of arbitrary size. When
rec
quirement, of course, than that representetEbp , but k and x are provided at the s time, the t rror-correcting

an importa}nt condition not explqred by Bellare' and RO-.qdes may be coalesced into a single one.
gaway. Given the above experiments, we define a TSS
scheme as follows.

stitutes good cryptographic hygiene (and is used in our
5.2.3 TSS Definition proofs) in the sense that it rendersdistinguishable even

in the face of partial compromise & We use the kex
Definition 1 A (k,n)-TSS scheme is a paffl1,X), such  to perform authenticated encryptionfind then use an
that distributes n shares of a secre&xX, of whichany (N K, D)-error correcting code (ECC) to share béthnd
set of k correct shares suffices to recover x. The SeCUrity Ghe Ciphertexk"“We focus in this paper on the basic con-
the scheme is characterized by an adversary cfassd  stryction that assigns a single symbol to each share. Thus
the tuple:(qu, €u, o, & ), where an underinformed attacker \ve assumék = k. More general constructions are possi-
A € 4 making g corrupt queries ha#\dvii®(M,X] <ey;  ple, but omitted from this paper. A recipient with enough
likewise, the pair(qr, &) applies to robustness attackers. shares can apply the ECC decoding algorithm to recover
(An extended definition can include overinformed attack4nd the ciphertext, and then usg to derive the kex nec-
ers as well; see Appendix A.) essary to authenticate and decryptn some applications
(e.g., transporting the master key used to derive RFID Kkill
codes), we may only want to distribute a key. In that case,
we can us& as the desired key, and eliminate the portion
Figure 3 illustrates a high-level schematic of our TSSOf the schematic shown in the dashed box.
scheme. TheShare' S algorithm accepts as input an  Our construction assumes that the hash function be-
arbitrarily-sized secrex. It then generates a large ran- haves as a random oracle [1], and for large secrets, we
dom pre-keyk. We apply a hash to reduceto the size  assume the use of an authenticated encryption mode, such
of a cryptographic kex. The hash function also con- as OCB [29].

5.3 Our Construction



Below, we state our claims for the security of this con-the reader and executing a Gen2 write command. In prac-

struction. We defer the proofs to Appendix B. tice, this operation would be carried out when the case,
Claim 1 Given our construction above, an underin- pallet, or item tag is initially encoded _in the supply c_hain.
formed attacker’s advantage is boundedspysuch that Note FhatEK as used here includes Ciphertext-Stealing as
described above.
AdvI[M, X] < g, < 1/Q< %, For theRecover algorithm, we simply unwoun8hare.

As shown in Figure 4, the reader sees encrypted tag IDs
Claim 2 Against an attacker who makes aorrupt  with concatenated shares. As long as the reader sees more
queries, if ¢ < D/2, i.e., q¢ < [(D—1)/2|, then than 15 tagsRecover running on the PC outputs the tag
AdvrN,X] = 0 =¢, and if ¢ < D -1, then IDs successfully.
Adv;fcff’f*deted[n,x} —0. In an ECC, a codeword consists of amleredsequence
L . of symbols. Because there is no fixed reading order for
Thus, our construction is a (k,n)-TSS scheme with se- . imol tation. h ' tdgdler in-
curity tuple(qu, 1/Q%%. | (D — 1)/2],0). tags in our implementation, however, it mus
variant That is, since shares are not distributed among
Remark 1 With an appropriate choice of an ECC, we can players with fixed identities, as in our robustness exper-
generalize the construction above. For example, using ament, we must explicitly associate an index with each
systematic version of Reed-Solomon as the BG@ll be  share (effectively assigning a player index to each tag).
encoded in the initial code symbols. We then apply a hashrhus, the symbol on a tag must be accompanied by an
function (SHA-256 with truncation) to those code symbolsndex specifying its codeword position. Rather than speci-
to derivek. If we choose Q= 2/ (and do not release fying this index explicitly, and thereby using an additibna
S), then Shar€“C becomes a robust PSS scheme, as inig bits of storage, we derive it implicitly based on the en-
Krawczyk's scheme [20]. If we choose=Q2", then we  crypted tag ID. In particular, we hash the ID using SHA-
have the scheme described above. Intermediate choices 266, and interpret the last 16 bits as the index; of course,
Q trade increased share size for increased security. we must do thisbeforesharing the encryption key. This
optimization potentially introduces a new problem: Two
5.4 Implementation Sketch and Real World  (or more) tags within a case may have ciphertexts that hash
At to the same index. A sulfficiently large index size can min-
Parameterization imize this problem. (By the Birthday Parado®F(216)
We implemented g15,20)-TSS scheme using a Thing- accommodates roughly 256 tags without many collisions.)
Magic Mercury5 reader and commercially-available Alien As a further optimization, we can dedicate a few additional
Squiggle Gen2 tags. A schematic view of the setup isits of storage to disambiguating collisions that do occur.
shown in Figure 4. Use of @15,20)-TSS scheme means Finally, if there are still too many collisions, we can sim-
that of the 20 available tags, we need to read at least 1ply choose a new random pre-k&and compute a new
tags successfully to recover the key and decrypt tag dataet of shares.
We work over the fieldGF(216), so a share (codeword In general, the first step in parameterizing the TSS
symbol) is 16 bits. Th&hare algorithm was then imple- scheme for real-world usage is to determine the total num-
mented as follows. We chose a secret keyf length 128-  ber of tagsn and the key-recovery threshdkd As noted
bits; we obtainedk by choosing a random 240-bit value earlier (section 2.2), these numbers can vary widely be-
K, hashing it with SHA-256, and then taking the first half tween use cases. Today, pallets typically carry from 1 to
of the output. We then encodedinto 20 16-bit sym- 200 tags each. In a typical distribution center setting, an
bols with a(20, 15) Reed-Solomon ECC using the built-in RFID reader could, depending on pallet composition, fail
Reed-Solomon encoder in Matlab’s Communication Tool-to read as many as 2—-3% (i.e., 4-6) of the tags in a 200-
box. This resulted in 20 16-bit shares, one for each tag. item pallet, and it may pick up as many as 3-sifhytags
Given that we were using 96-bit tags, we had 80 bitsfrom a pallet in an adjacent dock door. This means that
left over for the tag ID. This particular parametrization re we can see up to 6 erasures, and up to 10 errors in read-
quires a cipher with an 80-bit block size. We achieve thising. These numbers are borne out by one the authors’ (RP)
by using the Blowfish block cipher [31], which has a block long experience in supply chain RFID deployments. Thus
size of 64 bits, with Ciphertext-Stealing [11] to expand thethe choice of a (200, 170)-Reed Solomon code (the min-
block size to 80 bits. Integrity protection at the indivitlua imum distanceD = N — K + 1 is typically omitted from
tag ID level is provided by the Gen2 protocol. Reed-Solomon parameterization), which can correct up
Each tag IDm;,1 <i < 20, was then replaced 5 [m] to 15 errors or 30 erasures, would provide sufficient er-
and concatenated with a sharekofas generated above). ror correction for real-world deployments. As discussed
This combined 96-bit string was written into the tag us-in Section 2.2, individual consumers typically have fewer
ing the same setup (Figure 4). Because all Gen2 RFIDhan 40 tags from the same case, so we could alternatively
readers can also wirelessly write to tags, this operation ishoose a (200, 40)-Reed Solomon code to maintain pri-
accomplished by bring each tag into the antenna field offacy and provide additional robustness to read errors.
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Figure 4: Schematic of implementation setu®0 TSS-encoded RFID tags, at far right, are prepared uSingre as described in
the text. They are read by a ThingMagic Mercury5 reader and the eteyiDs are passed over the network to a Matlab program
running Recover on a computer. The computer first recovers the Reed-Solomomwteshsecret key and then decrypts the tags. The
two boxes below the schematic depict what the reader sees and theadwemtiypted tag IDs. In practic&Recover would be ported

to run directly on the reader. Given the capabilities of current RFID readdirect implementation on the reader is straightforward.

Lastly, we remark on the choice of the field size. As the p(5)
field size is the main determinant of the extra tag mem- ' '
ory consumed by our scheme, smaller fields mean smaller oooo |. my= .| Lo e
memory requirements. Larger field sizes reduce the num- L k |
ber of index collisions, which is useful both to ensure good | n |
decoding rates and to enforce security against an overin- : n :
formed adversary (Appendix A). In applications where n

only the underinformed attacker must be considered, we .
can potentially reduce the space on each tag to a single biEigure 5:In this example, if the adversary holds a Setf k=3

for sufficiently largek and an appropriate ECC scheme. shares (shown as shaded boxes), then we deftBjeas the union
of all (three) windows of B= 6 shares containing the original k
shares. We require that the adversary be unable to recover keys

for periods outside 0p(S). The figure assumes= 0. If A =1,

thenp(S) would include two additional shares: one before and

Thus far, we have considered sharing schemes for on@ne after the sep(S) currently shown.

shipment. However, a distributor may wish to increase o ]

security by leveraging the fact that a legitimate recipient2SSume that within any window of elements, only a le-
should receive more shipments than an attacker can a@litimate recipient receives at leasof the shares in that
cess (recall Example 2 from Section 3). In this sectionWindow, and given those shares, the recipient should be
we explore a class of schemes that uses such informatiofP!€ to recover the corresponding keys. An adversary re-
disparities across sliding time windows. In the future, weC€iving fewer shares should learn nothing about the keys.
will investigate schemes leveraging the entropy of the en- More formally, a SWISS scheme is defined as a pair of
tire history of interactions between a sender and recipien@lgorithmsf = (Share, Recover), where:

e Share(k,n,T) is a probabilistic algorithm that takes as
input a threshold for recoverability, a window size
n, and a security parameter It outputs two “infi-
nite” vectorsk andS, wherek; € {0,1}" is the key
for periodi, and§ is the share for period On in-
valid input, Share outputs the special symbal.

Recover is a deterministic algorithm that takes as in-
putS C W; whereW, defines a sequence nfshares
starting at timej such thaiV; = {S : j <i < j+n},
and|S| > k. The output ofRecover(S) is a set of
keysK = {k; : § € S} for the shares provided i§

or |, a special value indicating a recovery failure.

6 Secret Sharing Across Time

6.1 Defining SWISS: Sliding-Window Infor-
mation Secret Sharing

In the schemes below, we assume a sender periodically
emits a shar&. For RFID purposes, we may suppose the
sender is a manufacturer who periodically ships out con- e
tainers of RFID-labeled items. Each share may optionally
be further shared out amongst the RFID tags in the con-
tainer as described in Section 5. Each period also has an
associated kex;. Thus, we have a sequence of shares
S=1{%,S,...} that expands indefinitely over time. We



In our security definitions, we again assume an honesf\,€), where (as explained above) k shares are sufficient
dealer, i.e., correct execution 8hare. Below, we give to reveal\ “nearby” keys for time periods not contained
formal definitions for our privacy and recoverability re- in a window of n shares, antidv'f9-S"s§] < e.

quirements. Thus, an ideal SWISS scheme would havee) =
(0,0) with minimal .

Privacy. To define privacy, we require that the adversary

cannot obtain the key for any share she does not possess. .

If the adversary hold)s/ fewer%clhaqshares, she shoulg not Sé'z A Family of SWISS Schemes

learn any keys. We deal with the case in which the advertn our SWISS construction, we want to ensure that the

sary holds more thakshares as follows. . secret for a case is only available given possession of that
Define the set of shares held by the adversari@ d®t  case. To achieve this property, we make the keyor

P(S) be the set of all shares that lie inawindow of size  casei a function of both a window key and a secret value

A for which the adversary has recovered at ldasiares.  associated with the case (or its RFID tag).

We require the adversary to be unable to recover the key |deally, the window key for a window af cases should
for any element irp(S), the complement op(S). Since  pe recoverable if and only if the receiver possesdses

k shares allow the adversary to recover all of the keys inmore cases within that window. A v SWISS scheme
a window of sizen, the value ofA indicates the amount \yoy|d simply generate a key for every possible window of
of informationk shares “leak” about keys not contained gjzen and share each key usinglan) scheme. But a case

within a window ofn shares. Figure 5 illustrates these yould then need a share for every window covering it, and

requirements. _ _ hence the per-case share size would grow linearly with the
More formally, we can define privacy based on the fol- gjze ) of each window.
lowing experiment: Instead, we aim to bring the share size down to a small

constant independent &fandn. We use two techniques
for this goal. First, we allow some sloppiness in our access
structure. Our access structure (in our main construction)
depends on superwindows of siza that each overlap

EXperimentEXpi/Qcstisg“_I ]
(SK) & Share(k,n,1);
i « A(“choose”);

kKRE (0,13 b & (0,1}, with the previous superwindow hy(see Figure 6); each

b/ — Acrmpt(S) (b, kR k;), “corrupt”); superwindow secret is shared usingke2n) scheme. Ac-

if i & p(S) ori ¢ Sthen cess to a window secret requires recovery of the secrets for
output ‘1'if b = b, else ‘0’; either one of its two corresponding superwindows. Any

else output '0’; shares in a sequence of sizéll into some superwindow

of size 2, and therefore allow recovery of the superwin-
where (0,x,y) = (xy) and (1,xy) = (y,x). Essen- qdow secret. The “sloppiness” is this: Recovery of shares
_tlally, the advers.ary is asked to choose a time perioqn ne window allows for recovery of secrets in nearby
i. After corrupting some number of shares, the ad'windows.

versary must distinguish between the key 'for periad Given the superwindow scheme described above, we
and a randomly se_:lected kgy. We consider the ad'could encrypt the secref for each caseé under each of
versary successful if the period chosen does not corr

Gts corresponding superwindow secrefsando’. How-

spond to a share held by the adversary, or if the PCaver, using a second technique based on bilinear maps, we

rlold "t?s ou]ESK:]e the SE%(]S) lrgjduced b,y th de adt\/ersqryfh can derive a common secret directly from either of the two
selection of shares. e adversary's advantage is eéhperwindow secrets or .

AdviR? W3] = 2Pr [EXPRd SN) = 1} -1 Below, we first explain the assumptions necessary for
our schemes. Then we present our main SWISS construc-

. . ) tion (Section 6.2.2) and show how to generalize it to a
Recoverability. We require that any se&8 C W with  \ijer range of parameters (Section 6.2.3).
|S| > k shares suffices to recover the keys associated with

each share in the set, namély; : S € S}. We define re- .
coverability for a legitimate recipient in the erasure mpde 6.2.1  Assumptions

in other words, shares may be lost but not corrupted. WEur family of SWISS schemes uses bilinear pairing to re-

uce storage costs. In the full version of this paper, we

escribe a variant of our SWISS construction based on the
more standard RSA assumption. Unfortunately, that ver-

Definition 2 We define gk,n)-SWISS scheme as a pair sion does not generalize efficiently to large window sizes

of algorithmsI1 as defined above whefhare produces in the same way as does the bilinear map scheme, and
shares of size p. The security is characterized by the paihence we focus on the latter.

can convert our SWISS schemes to a corruption mode
by replacing our use of PSS schemes with robust PS
schemes, such as Krawczyk’s [20].



We give some very brief preliminaries on bilinear maps, A
referring the reader to [7] for details. L& be a mul- OO0OOOOOO0On0n e
tiplicative cyclic group of prime ordep under a bilinear ol _n_
operator’as defined in Boneh-Franklin [7]. Thus we have Wik Wi X ,
2nf T 1

é:E x E — E' for asecond group’. The bilinear operator
éhas the property thatG,H < E, &(G?,H”) = &(G,H)?, . _ _
it is also non-degenerate, meaning thabifs a generator  Figure 6: Each superwindow ofn shares (in the example
of E, thene(G, G) # 1. shown here, &= 3) ove_rlaps with the previous _superwmdow by n
Our work relies on the hardness of a slightly modified shares. Each superwindow\\s a(k, ZT‘> sharing of the super-
Bilinear Diffie-Hellman Exponent (BDHE) problem [6,8]. window secret,. Each time period is covered by two super-

i indows. For example, the share labeled A is covered by super-
Specifically, letg andy be random generators Bf anda wincow xamp IS cov Yy sup

- ’ windows W and W,. As a result the key for that periady can
be a random element A, Our (¢,L)-BDHE problemis e recovered from either superwindow secwetor an,.

defined as:
Giveng,y,g(“f) fori=12,...0—L(+1,..20
andy@) fori=1,2,...L—1 consists of two sub-sharéq‘”,qwl)n), one foray, and
computee(g, y)(a‘). one forg,, 1)n. We also augment the share with a random

- R T i ing ti
In the original framing of the/-BDHE problem [6, 8], noncer; — {0,1}'. Thus, the share emitted during time

PP _ (afn DN
only y (rather than additionak powers ofy) is assumed Periodiis S = (s"s".r). .
to be known. We assume that> 2, since the(¢,1)- Because any time peridds covered _by two superwin-
BDHE problem simply degenerates to th8DHE prob-  dOWS (SaWin andW.,1)n), we would like the key; to
lem. Loosely speaking, the, L)-BDHE assumption ifE be recoverable from the superwindow secret of either one

says that no efficient algorithm can solve tiieL)-BDHE  (Since we do not know a priori in which superwindow the
problem inE with non-negligible probability. recipient will havek shares). Like many problems in com-

We can apply the “master” theorem of Boneh et Puter science, we can solve this by adding another layer of

al. [6] to bound the difficulty of(¢,L)-BDHE in a indirection. Lety.ze E, a € Zy, and let(Po,P1) = (y,y°)
generic group. In their terminology, we hawe —  Pe @ public key. Let each of the superwindow secrets be

Ly, Y2, .y 1, xR XA, Q= (1) and defined so that, = Z'. We define a series of window
f = x'y. This implies that an attackek with advan-  Secrets,w, ..., SO that

tage 12 in solving the decision(¢,L)-BDHE problem

in a generic bilinear groufEe must take time at least Wi = &(PL,0um) = &(Po, 044 1)n) = &Y, 2)

Q (v p/(40) *26)- E.g., if we assume the distributor 4 js. knowingay, allows a recipient to derivey, and
sends one billion windows (or less), then solving the dey,, ;).

cision (¢,L)-BDHE problem in a generic bilinear grolp Finally, we define each ke; based on the window it
of size 192 bits takes time at lea$P20f course, a lower belongs to, as well as the random nongdistributed with
bound in a generic group does not imply a lower bound inshareS, ask; = h(r;, wxn), whereh: {0,1}* — {0,1}7 is

altl

any specific group. a hash function modeled as a random oracle [1].
In the next section, we show how to generalize this con-
6.2.2 Our Main SWISS Construction struction to decreask at the cost of increasing the size

. ) _of each share. We can define an adversary for this more
In Section 6.2.3, we present a fully generic overlapp|nggenera| scheme as follows:

EWIS.S scheme, but first, to simplify the exposition, we Definition 3 We define ar{/,L,q)-adversary A as an at-
escribe a single member of the family (see Figure 6). . ind—swis .
This example provides(, n)-SWISS scheme with= 3t tacker_who aCh'e"?S aRdv y ) W < z_idvantage N
and security parametef&n — k,£). our privacy exper}ment (defined in Section 6.1)., whgre
: : : - I is an instantiation of our generic SWISS family with
Starting at time 0, the sender defines a series of s:uqJ - ; h h
perwindowsWp, Wh, Wan, ..., Wi, each of size & Thus, =L —1 (for L > 2) that produces at mos2 s ares.
each superwindow consists of two windows of sizevith The adversary makes at mpst q _ra_n_dom oracle queries.
one window overlapping a window from the previous su- N Append|x C,we use this definition to demons.trate th'e'
perwindow, and one window overlapping a window from Security qf the genera}hzed scheme_ (and hence this specific
the subsequent superwindow. Each superwindgwde- instantiation) by proving the following theorem:
fines a(k,2n) perfect secret sharing (PSS) of the super-Theorem 1 For any polynomial-time(¢, L, q)-adversary
window secrety,. Since each time peridds covered by A with Adv',&‘d*SW'SS: gand ¢/ > L > 2 there is a
two superwindows, each comprising its own secret sharpolynomial-time adversary’Ahat solves thé/, L)-BDHE
ing scheme, the shai® distributed in each time period problem with probabilitye —277)/q¢ — 1/2".



Essentially the theorem states that given an adversary wh&.2.4 Real World Instantiation

achieves a non-negligible advantage in our privacy experi-

ment, we can construct an attacker who violategthie)- ~ To make our SWISS construction more concrete, we sug-

BDHE assumption. We also demonstrate that this congest sample parameters for real world deployments. Sup-

struction satisfies our recoverability requirement. pose the sender needs to ship one million or fewer shares.
We divide those shares into 10,000 windows of 100 shares

Remark 2 As described, our SWISS construction uses ggch, giving ug = 5,000,n = 100. A legitimate recipi-

PSS scheme to create superwindow shares. Thus, thg will receive at leask = 20 shares in any window. If

construction tolerates erasures but not errors. Howeverye yse the scheme from Section 6.2.2, thér- 1 and

we could readily replace the PSS scheme with a robusf — @ 1 — 2, Finally, if we uset = 128 bit keys, then

scheme, such as our TSS scheme from Section 5, whighe share for each period will be 3- 384 bits in size. In

would both decrease the size of the individual shares andontrast, the rige scheme described earier in this section
add error tolerance to the SWISS construction. would requirent = 12,800 bits per share.

We described both our SWISS scheme and theena
scheme using PSS as a component. If we replace the PSS
scheme with our TSS scheme from Section 5, then we

The above scheme can be generalized to allow decreasé@ve a share size of 16 bits. In our scheme, we still need
values of\ at the cost of increased storage (see Figure 7)2 random nonce of at least 60 bits, but that yields shares
Specifically, for any value o¥ < n, we can create ¢,n)  Of size 216+ 60 = 92 bits, just small enough to fit on
SWISS scheme with = (W+2)T and security parameters an EPC tag. In_ contrast, theima scheme would require
(1+ %)n—k,s). n-16= 1,600 bits.

Essentially, we divide each superwinddgWinto W + 1
windows of sizeg;. The superwindows fornik, ij)”)
sharing schemes of the superwindow secrets, and each sii- Conclusions and Future Work

perwindow overlaps the previous superwindowbwvin-

dows. Thus, any given window is covered Wy 1 SUPer-  \ye have described two approaches to secret sharing in
windows, and the window secret can be recovered from,,igirectional channels: secret-sharing across space and
any of the superwindow secrets, using the same elliptiGg ret_sharing across time. As we have shown, secret-
curve pairings technique as before. In oth%r words, Wepharing across space is a tool of practical promise for

define a public keyPo,Pi,...,Py) = (x,x%,...,x%"), and @  privacy protection in real-world RFID-enabled supply

6.2.3 A Generic SWISS Family

window secrety, is defined as: chains. Our SWISS scheme for secret-sharing across time
can, similarly, help address the challenges of RFID tag and

wn = &Py, 0m)=&Py_1,0041)n) = - reader authentication. An open problem of particular in-

_ é(Poﬁ(/,w)n) —8(x, z)”““. terest in our SWISS construction, however, is elimination

of its reliance the non-standafd,L)-BDHE problem in
our fully generic overlapping SWISS scheme. We also
plan to investigate extended SWISS schemes that leverage

dow. The window then is covered By-+ 1 superwindows the entire history of interaction between a sender and re-

allowing the adversary to recover secrets fdt2 1 win- ceiver, rather than S'm'?'y awindow O_f r_ece_nt history.

dows, or(2W+1){ = 2n+ { secrets. These secrets can More broadly, we believe that a holistic view of the spe-

be at most a superwindom‘ﬁ&ln) away from thek secrets cial operational requirements of RFID tags and the highly

held by the adversary, So= “in—k= (1+ &)n—k. If constrained resources of tags can give rise to important
1 JU= g = R= p)=5

k= 1 then f thamy + 1 ind i tai new cryptographic problems. Our future work will aim
> g, then fewer thanw + 1 superwindows will contain 4 cajiprate cryptographic tools like those presented here
k shares, and hendewill be even smaller.

to RFID supply-chain infrastructure as it evolves and its

In our example scheme from Section 6.22= 1, S0 gpecial operational demands come into clearer focus.
each superwindow formedk, 2n) secret-sharing scheme,

but we could also us® = 2, with each superwindow con-

sisting of 3 windows of] shares, and the superwindow as

a whole constituting &k, 3n) sharing of the superwindow 8 Acknowledgements

secret (see Figure 7(a)). This would produce a smaller

value ofA = %n— k, but at the cost of larger shares: eachThe authors would like to thank Burt Kaliski, Jonathan
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To determine\, we consider the worst case, in whikk<
&, and the adversary®k shares fall within a single win-
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(a) A SWISS scheme with¥ = 2,n= 4. Each superwin- (b) A SWISS scheme with¥ = 3,n= 6. Each superwindow shown is a
dow is a(k,3n/2) sharing of the superwindow secret. (k,4n/3) sharing of the superwindow secret.

Figure 7: Additional SWISS examplesWe can create additional SWISS schemes by increasing the numbeidofusiper super-
window while decreasing the number of shares in each window. As weasethe number of windowsgdecreases, but the number
of shares that must be held in each time period increases.
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Advi,’gd/[l'l,X,a,B]éPr [Expfd'[l‘l,x,a,ﬁ] = 1} .

X« AomurtCo)(H “corrupt”);
output ‘1’ if X € (Xq,...,Xq), €lse ‘0’

A Overinformed Adversaries We can characterize the overinformed adversary’s task

. . in terms of thepolynomial reconstruction (PR)roblem,
In the body of the paper, we discuss the notion of an un; e decoding of a Reed-Solomon codeword in the presence
derinformed adversary, one that has an insufficient set otfh 9 P

shares to reconstruct a secret key. We also briefly conc-)f errors (see [19] for detailed discussion).

sider anoverinformedadversary., one that possesses a set Gjyen an underlyingN, K )-Reed-Solmon code, and a
of shares sufficient to reconstruct one or more secret keyget oft symbols, of which{ are corrupted, the classical
but has too many shares to feasibly determine such keypeterson-Berlekamp-Massey (PBM) algorithm [23] suc-
We can design our system such that an adversary is ovegessfully decodes a set of symbold if ¢ > (t+K)/2
informed in settings where the adversary is forced to scafor, equivalentlyZ < (t —K)/2. A more powerful decod-
the contents of not one, bmtultiplecases simultaneously. jng scheme is that of Guruswami and Sudan (GS) [14],
Consider, for example, an attacker who periodically\hich successfully decodes for-Z > /KN in any field
scans a store shelf, hoping to accumulate enough shargg cardinality at most®. It is conjectured that decoding
to recover the associated key. The adversary’s reader Mayeyond the error bound represented by GS is infeasible in

receive responses from items that arrived in multiple in-3 general sense and thus that GS offers a likely bound on
dependent cases. In this situation, we would like it to behe hardness of the PR problem.

hard for the adversary to recover any case secret from the
full set of secrets, even if a subset of the adversary’s share That said, there are different formulations of the PR
would suffice to reconstruct the secret. We can appeal tproblem and little work on the concrete hardness of the
the fact that when shares from multiple cases are mixegroblem. Schemes that achieve unconditional security,
together, the large set of shares can make it hard to decodeg., [17] do not offer attractive parameterization ranges
any individual secret. for our purposes. Choosing credible and practical hard-
To help render an attacker overinformed, we can delibness assumptions for an overinformed adversary in our
erately introduce “chaff” among the shar§sin a case. scheme is an open problem.



A.1 Parameterization of Our RFID Secret- B Proofs of Security for Our Tiny Secret
Sharing Scheme Sharing (TSS) Scheme

We give a brief characterization of what we believe toB.1 Proof of Privacy

be secure and feasible parameterizations of our scheme.

These parameterizations permit PBM decoding for the leSince many of our applications only require the distribu-
gitimate reading of a single RFID-tagged case and at thé¢ion of a secret key, we first define a simplified experiment
same time exceed the GS bound for security against oveto measure the indistinguishability f Note that for this
informed adversaries. We emphasize, however, that furexperiment, we excise the portion of our scheme in the
ther research is needed for firm determination of the secudotted box in Figure 3. Effectively, we share out a null
rity of our scheme in a concrete sense. secretx, and writeShare() to indicate this fact. The proof

Suppose that a case contaiNstags, of whichZ are of privacy for secrets of arbitrary size then follows in a

chaff. PBM decoding for a scanned case is always possgtraightforward manner. _
ble when the number of corruptions (or erasures) of valid e define a key indistinguishability experiment as:
symbolseis such thalN — (e+ ) > (N+K)/2.

ExperimenExp/id—*[M, X]

Example 3 Suppose that K= 8, N = 200, and { = 86. (K%, ) & Share(); (K%, S & Share();
Then it is possible to recover the secret associated with a Wl (0,1}

case for e< 10, and thus up to a 5% corruption of tag R ;orru;)t(Sb Y0 o N
symbols. b —A (K9, kt, “corrupt”);

output ‘1'if b=1b', else ‘0’
Suppose that an adversary reads symbols associated

with g cases and attempts to recover the sexi@$soci- In this experiment, the adversary receives two se-
ated with a particular case. We can establish a lower boundret keys generated by our sharing algorithm, as
on the hardness of this problem by rendering the problemwvell as the shares corresponding to one of the
easier for the adversary. In particular, let us assume thadteys and must determine to which key they corre-
the adversary has access to an oracle that identifies valspond. We define the advantage of adversAnas
shares asspciated with tq_e 1 untargeted cases (but doe_s AdViAnd—K[n’X] Lopy [Expmd—K[n,X] = 1} 1
not otherwise reveal which shares correspond to which ] .
case). Then the adversary can reduce the problem of re- FOr @ generic ECC, if the adversary makes at nupst
coveringx to a decoding problem with — Z valid shares ~ COrfupt queries, then h_er total amount of |nformat|o_n is
andq chaff shares, and thus= N + (q— 1) shares in uppgr-bounded b@qU. Since we model the hash function
total. The GS bound implies that recoverysofs hard if ~ @pplied to pre-key as a random oracle, the adversary’s
N—Z < KN+ (q—1)0). advantage in distinguishing® andk! is bounded above

by Adv',&‘d‘K[l'LX] < 1/QX%. Assuming an encryption
algorithm in which key indistinguishability implies ciphe
. _text indistinguishability (e.g., in an ideal cipher model)
Then the problem of recovering a target case secret X ignis hound then translates to the more general sharing of
hard under the GS bound1fi4 < /848+ 688y, and thus arbitrary secret. Thus, we hakelvild[M, X] < &, <

forg>18. 1/Q<%._ This yields Claim 1 from Section 5.3.

Example 4 Suppose that K= 8, N = 200 and { = 86.

A stronger bound is possible assuming that valid sym-
bols, i.e., secret-bearing data, in untargeted cases m
be regarded as chaff. This gives us a slightly unortho?g'2 Proof of Robustness
dox problem distribution in which a problem instance
hasq embedded, secret polynomials. In this case, how
ever, the GS bound implies that recoveryxois hard if
N —{ < +/gKN. With an appropriate parameter choice
we can obtain strong concrete results.

With a generic lineafN,K,D)-ECC, it is possible to re-
cover a message from a codeword with fewer tbd@ er-
rors. Thus, as long as the adversary does not cobypt
'sharesg, = 0. Similarly, such a code can recover from

D — 1 erasures; and can also detect upte 1 errors. As
discussed in Appendix A, we can deliberately introdgce
Example 5 Suppose that K= 100, N = 200, and{ =40 chaff shares into the ECC to confound the overinformed
(giving a 5% correction buffer in the single-case setting,adversary. This would change are security parameters
as above). Then the problem of recovering a target casguch that ifg, < D/2—¢, thenAdvx°[M,X] =0=¢, and
secret x is hard under the GS boundLB0 < ,/2000@, if g <D—-1-1¢, thenAdfo*Of*detw[n,X] — 0. This
and thus for g> 2. yields Claim 2 from Section 5.3.



C Proofs of Security and Recoverability for  for the superwindows correspondingg®’ ", ..., g(@")
our SWISS Scheme are chosen at random (since we do not know the appro-
priate values). However, the definition pfprecludes the
We prove that our generic family of SWISS schemes fromadversary from recovering these superwindow secrets, and
Section 6.2.3 meets our privacy and recoverability requirehence, she cannot determine that these values do not con-
ments. Since our main construction from Section 6.2.2 idorm to the expected structure. Nonetheless, because we
a specific instantiation (with = 1), its security follows choose the superwindow secrets at random, we cannot pro-
from the security of the generic family of schemes. vide the adversary with the correct valueigf In other
words, from our perspective, the value gfprovided to
. the adversary is a random value. At some point, the ad-
C.1  Proof of Privacy versary will queryh(r;,wxn), but since we cannot recog-
To demonstrate that our generic family of SWISS scheme8ize wxn, we will not know that we should retunq. For-
achieves our privacy requirement, we prove Theorem Zunately, by the time the adversary makes this query, we
based on the adversary specified in Def. 3. Recall that ourave already extracted the necessary information, namely
generic family of SWISS schemes is parameterizetdpy  @Wkn, SO that even if the adversary quits upon determining a
one less than the number of overlapping superwindows. discrepancy, we will still succeed.
Proof of Theorem 1: Suppose we are given dn,L)- . ) )
BDHE instance comprising<°") fori=12,...L—1and Probability of_ Success Our guessj for the superwin-
the sequencd’ — g@ fori—1.2.. (—L (+1 .. 2. d(_)w from Wh_lchA selects_ a challenge key is correct
d g e ) v with probability > 1/¢. Sinceh has a range of0,1}'
We construct a SWISS-scheme simulator based on a8ndA has are advantage, it is clear under the random or-
(¢,L,q)-adversanA as follows. acle assumption oh that A inputs wj, with probability
> e— 27" If Ahas queriedh with wj, in the course of the
Simulator Construction. First, we construct an ap- simulation, then the probability that we output the correct
propriate L;zlljblic key by letting(Po,Pi,....R 1) = Wi = é(g,y)<°‘é) is just 1/q.
(V,¥*,...,¥* 7). Then, we select a randoine {1,...,¢}. The only other way the adversary can succeed is by re-
This index is our guess as to the superwindow in whichcovering a key for a share she does not hold. However,
the adversary will select a challenge key. If we letwithout the share, the adversary has no knowledgeg. of

g= g/(d“), then U’ contains the subsequenté = The random oracle assumptiontoguarantees that the ad-
a a2 al-L qitl al versary succeeds in guessikgwith probability less than

g 7g 7"'7g )g 7"'7g . T .
We use this subsequent# as the set of underly- 1/2". Our theorem bound follows.

ing superwindow keys in the procedure described in
Section 6.2.2, with each superwindow representing aC.2 Proof of Recoverability

k, ¥+1n) sharing ofg!®). For the superwindows corre- o .
(k=) aj_gm)g - P A legitimate receiver (one who recovers at lelashares

sponding tog! e g (which are unknown), we ot of some window\’ of n shares) can determine the
simply share a random value. This procedure creates a sghy corresponding to each share. Observe that given the
Sof shares. IA queriescorrupt(S;i), we respond Witls.  gyerlapping superwindow construction, the windit/is

To respond to hash queries, we keep alfsif previous  gntirely contained within at least one superwinddi.
queries. Thus, wheA invokesh(y,z) for the first time,  Thys k elements fromW’ suffice to reconstruct the su-
we choose a random values {0,1}" and add(y,zv)  perwindow secret,, which can be used to calculate the
to the internal list?’. If A has previously invoketh on  window secretso, W(r41)ns -+ We+w)n- EACh window is
(y,2), then we return the corresponding valuevofrom  of lengthn/W, and hence these two window secrets cover
V. This creates a perfect implementation of the randomall (W + 1)n/W elements in superwindoW,. Using the

oracle contract. random nonce; in each shar&, the legitimate receiver
WhenA terminates, we ignore its output, choose a ran-can calculate; by hashingr; with the appropriate win-
dom hash responsg, z,v) & v and returre dow secret.

Simulator Correctness. From the SWISS adversary’s

point of view, the construction above accurately simulates
theind-swissExperiment. Our replies to the hash queries
perfectly instantiate a random oracle, so they offer the ad-
versary no information with which to distinguish a real

experiment from a simulation. Our construction deviates
from the true protocol in one important respect: the keys



