
Finding Invariants of Distributed Systems:
It’s a Small (Enough) World After All

Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno
Carnegie Mellon University

Abstract
Today’s distributed systems are increasingly complex, leading
to subtle bugs that are difficult to detect with standard testing
methods. Formal verification can provably rule out such bugs,
but historically it has been excessively labor intensive. For
distributed systems, recent work shows that, given a correct
inductive invariant, nearly all other proof work can be auto-
mated; however, the construction of such invariants is still a
difficult manual task.

In this paper, we demonstrate a new methodology for au-
tomating the construction of inductive invariants, given as
input a (formal) description of the distributed system and a
desired safety condition. Our system performs an exhaustive
search within a given space of candidate invariants in order to
find and verify inductive invariants which suffice to prove the
safety condition. Central to our ability to search efficiently is
our algorithm’s ability to learn from counterexamples when-
ever a candidate fails to be invariant, allowing us to check
the remaining candidates more efficiently. We hypothesize
that many distributed systems, even complex ones, may have
concise invariants that make this approach practical, and in
support of this, we show that our system is able to identify
and verify inductive invariants for the Paxos protocol, which
proved too complex for previous work.

1 Introduction
The world increasingly relies on distributed computer systems,
but the correctness and reliability of these systems depend on
the imperfect coverage of testing. To obtain strong guarantees,
developers are starting to turn to formal verification techniques,
both in research [3, 21, 24, 31, 46, 54] and industry [38, 58].
These techniques can, in theory, prove that all possible ex-
ecution traces of the system conform to a high-level safety
specification (e.g., all nodes agree on the next input value, or
no two nodes hold a lock at the same time).

However, verifying the safety of distributed systems can
be extremely labor-intensive, especially when using general-
purpose theorem provers [21, 45, 54]. For example, Haw-
blitzel et al. [21] report that the effort to build and verify two
distributed systems (including their protocols and implementa-
tions) required 3.7 person-years, and their safety proofs (over
19K lines of code) account for ∼40% of the total codebase.

To reduce this cost, some work has developed specialized lan-
guages that either restrict the kinds of systems that can be
encoded [12, 13, 36, 53] (e.g., the protocol must proceed in
synchronous rounds), or restrict the language used to describe
the systems’ properties [42]. In exchange for these restrictions,
much of the safety proof can be dispatched automatically.

In all of these systems, the core of the safety proof requires
identifying system invariants, and even with tools that can
automate all other proof work, finding these invariants still
relies on human labor and ingenuity. Anecdotally, this is a
challenging task even for researchers [34], requiring days for
toy systems and months for complex protocols like Paxos [29].

Ideally, we would automate invariant discovery, but theo-
retical results show that even in languages where checking
an invariant is decidable [42], finding such an invariant is not
decidable [40], meaning that no algorithm can guarantee that
it will find an invariant for arbitrary protocols, even if they are
indeed safe. Hence, we must turn to domain-specific insights
to develop a methodology which can apply to the specific
kinds of distributed systems developed in practice.

Recent approaches have been proposed to automatically in-
fer invariants for distributed systems [27, 34]. For instance, the
I4 [34] system observes that the invariants for some distributed
systems are scale-invariant. Hence they ask the developer to
specify appropriate finite-model parameters and to concretize
some of the protocol variables. I4 then invokes a specialized
model checker [19] that can deduce invariants on finite, fixed-
size instances. It then employs various heuristics to generalize
those invariants to arbitrary instances. Unfortunately, I4 can-
not discover invariants that use existential quantifiers. Further-
more, since the model checker is a black box, the developer
has no recourse when it fails. More recently, Koenig et al. [27]
extend the IC3/PDR algorithm [6, 14] to infer invariants with
existential quantifiers. However, neither they nor I4 can han-
dle complex protocols like Paxos [29], for which the simplest
known safety proofs require many invariants, including some
with existential quantifiers.

To tackle complex protocols like Paxos, we explore an alter-
nate approach based on our “small world” hypothesis: in many
practical systems, the invariants should be relatively concise.
After all, these protocols are designed by humans who have
some (finite) intuition for why the protocol is correct. They
are clearly not beyond human comprehension. If accurate, this

1

hypothesis suggests we are faced with a finite space of possible
invariants, which we can potentially search exhaustively.

Of course, finite is not the same as small. For a protocol
like Paxos, there could be over 100 billion candidate invariants
with just six terms. Even if it only took a millisecond to test
each invariant, a brute force search of the entire space would
require over three computation-years.

Hence, this paper presents the Small World Invariant Search
System (SWISS), our system for automatically proving the
safety of distributed systems by efficiently searching through
the space of succinct invariants. At its core, SWISS learns
from counterexample models obtained from failed invariant
candidates to speed up future invariant checks. SWISS uses an
SMT solver to perform these checks. SWISS also exploits vari-
ous symmetries and parallelism to reduce search time. Further,
for a class of invariants (described formally in §3.4) SWISS is
guaranteed to find an invariant when one exists. SWISS also
supports user-supplied guidance to make the search more effi-
cient. Moreover, unlike prior approaches, even when SWISS
does not produce a safety proof within a given time limit, the
user still benefits from partial invariants that SWISS did find,
as they can use those invariants as a starting point for finding
complete invariants. The net effect is that SWISS is the first
approach that can automatically prove the safety of Paxos, and
it does so in around 4 hours on an 8-core machine. If the user
provides some light guidance (§5.3.3), then the time decreases
to 20 minutes.

We compare SWISS to I4 [34] and Koenig et al. [27] on
a large variety of protocols (§5). None of the approaches
fully dominates the others, neither in protocols solved nor in
runtime. For instance, for protocols that only require invariants
without existential quantifiers, I4 is generally fastest. However,
for some complex distributed protocols with many invariants
that contain existential quantifiers, SWISS outperforms the
other tools, and in particular, it is the first to automatically
prove the safety of Paxos and two variants of Paxos: Multi-
Paxos and Flexible-Paxos [22]. There are still some variants
of Paxos that SWISS cannot fully prove in a reasonable amount
of time. However, even in these cases, SWISS still finds many
partial invariants that may help the user complete the proof.

In summary, our key contributions are as follows.

• We propose and evaluate the Small World Hypothesis:
that many distributed systems we care for can be proven
safe using a sequence of concisely specified invariants.

• We present SWISS, a methodology for automatically prov-
ing the safety of distributed systems by efficiently search-
ing through the space of candidate invariants, guided by
knowledge learned from counterexamples encountered
during the search. We report both our successful and
unsuccessful optimizations.

• To our knowledge, SWISS is the first approach to identify
and verify inductive invariants that prove the safety of
Paxos in an automated fashion.

2 Background
We briefly present background on formalizing and verifying
distributed systems.

2.1 Proving Safety Conditions Via Inductive Invariants

We aim to prove safety conditions. A safety condition is a
desired property that ought to hold true at any point in a sys-
tem’s execution. For an exclusion lock, for example, the safety
condition might be that no two agents hold a lock at the same
time. For a consensus protocol such as Paxos, the condition
would be that no two machines decide on different results.
These safety conditions are in contrast with liveness condi-
tions, which say that the system eventually performs a useful
action. We do not currently consider liveness conditions.

To formalize a distributed system, one must formally de-
scribe the internal state of the participating nodes, the state
of the network (packets in-flight between nodes), the initial
conditions of the system, and the ways the system can evolve.
Following standard practice, we formalize the latter as a se-
quence of atomic actions that update the system state [28].

Given this formal description, our goal then becomes to
prove that the safety condition will hold for any reachable
state in any possible execution of the system. The typical
strategy for such a proof is to find an inductive invariant.
An inductive invariant should (i) hold on all possible initial
states of the system and (ii) continue to hold when the system
transitions to a new state from a state where the invariant held.

If we could prove that the safety condition was inductive,
we would be done; unfortunately, this is rarely the case for non-
trivial systems. Instead, we typically must find an invariant
which is stronger than the safety condition and then show this
invariant is both inductive and implies the safety condition.

2.2 A Running Example: Simple Decentralized Lock

To make the verification process more concrete, we present
a toy example: a Simple Decentralized Lock (SDL) protocol.
SDL supports a single mutual-exclusion lock that is shared
among multiple nodes. A node with the lock can send the lock
to another machine via a message over the network, which, in
this simple example only, does not permit packet duplication.

Figure 1 formally describes the SDL protocol. The state at a
snapshot in time is represented by two relations: message and
lock. The value message(src,dst) indicates a message in the
network from machine src to machine dst, while lock(node)
indicates that node believes it holds the lock.

In the protocol’s initial state (the init lines), the network is
empty, and only one node (start node) holds the lock.

The transitions are written in RML [42], an abstract lan-
guage for describing system transitions. SDL has two transi-
tion actions: send and recv. In send, a node with the lock
can atomically release the lock and send a packet to another
machine. In recv, a node can receive a packet (removing it
from the network) and accept the lock.

The safety condition (Figure 2) we wish to verify for SDL is

2

type node

relation message(src : node,dst : node): bool
relation lock(N : node): bool

init ∀src,dst. ¬message(src,dst)
init ∃startnode : node.

has lock(startnode)
∧ ∀N : node. (N 6= startnode =⇒ ¬ lock(N))

action send(src: node, dst: node) {
require lock(src);
message(src,dst) := true;
lock(src) := f alse;

}
action recv(src: node, dst: node) {

require message(src,dst);
message(src,dst) := f alse;
lock(dst) := true;

}

Figure 1: The Simple Decentralized Lock Protocol

SDL safety condition

∀n1,n2 : node. lock(n1)∧ lock(n2) =⇒ n1 = n2

SDL inductive invariant

(∀n1,n2 : node. lock(n1)∧ lock(n2) =⇒ n1 = n2) ∧
(∀n1,n2,n3 : node. ¬(lock(n1)∧message(n2,n3))) ∧
(∀n1,n2,n3,n4 : node. message(n1,n2)∧message(n3,n4)

=⇒ n1 = n3∧n2 = n4)

Figure 2: Safety Condition and Invariants for the SDL

Figure 3: Two models which demonstrate that the safety
condition (Figure 2) for SDL is not inductive on its own. M
and M′ each have a domain of two nodes, n1 and n2. In M, n2
holds the lock, while a packet is in-flight from n2 to n1. M can
transition to M′ via the recv action. M does not violate the
safety condition, but M′ does (n1 and n2 both hold the lock).

that no two nodes ever hold the lock at the same time. Figure 3
shows that this condition is not inductive. There is a state,
M, which satisfies the safety condition (only one machine
holds the lock) which can transition to a state, M′ (via a recv
on y) which does not satisfy the safety condition (since two
machines hold the lock). Figure 2 shows a stronger predicate
which also rules out the first state. This predicate is both
inductive and (trivially) implies the safety condition; thus, it
completes our safety proof. It states that (i) no two machines

hold the lock, (ii) no machine holds the lock while a message
exists, and (iii) no two messages exist at the same time.

2.3 Formal Notation

To keep our subsequent discussion precise we introduce some
additional notation. Formally, a transition system is a triple
T = (Σ, INIT, T R), where Σ defines the types and relations
representing the state of a system, and INIT and T R are pred-
icates describing the initial state of the system and allowed
transitions of the system, respectively. In our SDL example, Σ

contains the type node and the relations lock and message.
Since T R relates two states, we will use primes to indicate

the new state, e.g., T R := (x′ = x+1) represents a transition
that increments x by one.

A model M represents a single possible state of the system.
It contains an assignment for each variable and each possible
evaluation of the system’s relations. For a predicate P, we
write M |= P if the predicate P evaluates to true on model M.
When P is a predicate over two states, we write (M,M′) |= P,
e.g., we write (M,M′) |= T R if M can transition to M′.

We say that M is reachable if there exists a sequence
M0, . . . ,Mk where M0 |= INIT , Mk =M, and (Mi,Mi+1) |= T R
for all i. A formula S is said to be safe if for all reachable M,
we have M |= S.

We say that I (a formula over Σ) is inductive if we can prove
that INIT =⇒ I and T R∧ I =⇒ I′ (i.e., if I is true and the
system can take a transition to a new state, then I holds there
as well). Here, we use I′ to denote the predicate I evaluated on
the second state. It is clear that any inductive invariant I will
be safe. Therefore, proving that S is safe amounts to finding
an inductive invariant I such that I =⇒ S; equivalently, to
find a formula I such that I∧S is an inductive invariant.

2.4 Decidability of Inductiveness

Given a candidate invariant I, we must prove that (i) INIT =⇒
I, (ii) T R∧ I =⇒ I′, and (iii) I =⇒ S. We call these verifica-
tion conditions. To check that a verification condition P holds
for all possible models, we can show that ¬P is unsatisfiable;
i.e., there is no model M such that M |= ¬P.

Checking the validity of arbitrary first-order logic formulas
is undecidable [52], but prior work [41, 42] shows that many
distributed systems, including multiple variants of Paxos, can
be encoded in RML [42], which can be translated to a re-
stricted class of formulas where satisfiability is decidable. In
particular, the class of effectively propositional (EPR) formu-
las, also known as the BernaysSchönfinkel class, are the class
of formulas that can be written in a form with quantifier prefix
∃∗∀∗ and no function symbols. Satisfiability for this class of
formulas is decidable [33, 43].

By ensuring our verification conditions lie within this class,
we can always either verify the predicate INIT =⇒ I or find
a satisfying instance for INIT ∧¬I. Likewise, we can either
verify the predicate T R∧ I =⇒ I′ or find a pair (M,M′) where
(M,M′) |= T R∧ I ∧¬I′ (e.g., the pair in Figure 3). In either

3

Figure 4: SWISS Overview. The intended workflow for
using SWISS to synthesize an invariant and safety proof. A
rectangle indicates a machine-readable, human-supplied input.
An oval represents a collection of first-order predicates.

case, we obtain a concrete counterexample.
EPR, as stated, is a bit too restrictive; it allows only relations

(not general functions), and it does not allow for invariants
with quantifier alternation. However, EPR can be extended to
include stratified function symbols—functions for which the
edges from input types to output types form no cycles—while
maintaining its decidability. In the same way, we can allow
stratified alternation of universal and existential quantifiers in a
fragment called the extended EPR fragment [41]. To keep our
verification conditions within this class, we must impose some
restrictions on the quantifier alternations which appear in I;
these restrictions are determined by the shape of the protocol
under consideration, in particular, the quantifier alternations
which appear in INIT and T R.

3 Overview: The SWISS Algorithm
SWISS is an algorithm for inferring inductive invariants of
a protocol in order to prove a desired safety condition. The
intended usage of SWISS is shown in Figure 4. First, the
user provides an RML-encoding [42] of the protocol, a de-
sired safety condition, and a specification of the search space
(§4.1.1). SWISS either succeeds with an invariant that proves
the safety condition, or it fails, with only partial invariants gen-
erated. In that case, the user may choose how to continue: they
might try SWISS again with a different search configuration,
or they might continue with other means, e.g., the interactive
invariant-finding tool IVy [42], using the partial invariants as
a starting point.

For example, suppose the user is interested in the SDL
protocol (§2) and wants to prove the lock-exclusitivity safety
condition. They would first encode the SDL protocol into a
machine-readable RML specification (Figure 1). Protocols
are often concise, although in some cases it is challenging to
produce a specification where the inductive invariant will be in
EPR [41]. However, we consider this out of scope for SWISS.

Next, the user would write the exclusitivity condition as a
predicate (Figure 2). They would also choose the space of
predicates to search over (§4.1.1). If the user knows nothing

about the protocol, they would likely choose the most general
option, to generate templates automatically. If SWISS suc-
ceeds, then they will know that the lock-exclusitivity safety
condition is true, and they can use the invariants from SWISS’s
output to validate that SWISS ran correctly.

If SWISS does not succeed, there are a few possible paths.
For example, it might be that SWISS does not complete in
a reasonable amount of time, in which case the user might
choose to restrict the search space. For example, they might
have some idea of what the invariant should look like because
they have worked with similar locking protocols previously.
Alternatively, if SWISS completed quickly but did not succeed,
the user might choose a broader search space.

Finally, they might choose to take the incomplete invariants
generated by SWISS and attempt to complete them through
other means. Even though SWISS did not succeed, the user
could learn useful information about the protocol from these
incomplete invariants.

3.1 High-Level Algorithm

We begin with a high-level overview of our algorithm for find-
ing the inductive invariants needed to prove safety conditions.
Section 4 then explains how we make the algorithm scale to
large search spaces.

SWISS takes as input (i) a transition system T encoded via
RML (§2.2) (ii) a safety condition S, and (iii) a configuration
of the search space (§4.1.1). In this section, we refer to search
spaces with the symbols B and F , which here may be viewed
as arbitrary sets of first-order predicates.

SWISS is designed to exploit our hypothesis that a dis-
tributed system designed by humans will have a concise in-
variant, or a larger invariant composed of concise invariants.
After all, the designer presumably has a finite intuition for
the correctness of their system, either as a whole or as the
conjunction of correct subsystems or subproperties.

Internally, SWISS uses different algorithms to target these
two possible invariant styles. One algorithm, Finisher (§3.2),
tries to directly find one inductive invariant that proves the
safety condition. Hence any invariant it finds will necessar-
ily complete the safety proof. Using the safety condition as
a target helps Finisher search the invariant space efficiently.
However, for complex protocols, searching for the entire sys-
tem invariant in one shot is infeasible; e.g., a human-derived
invariant for Paxos has 10 conjuncts with 34 terms, corre-
sponding to a search space of over 1075 candidate invariants.

Hence, SWISS employs a second algorithm, Breadth (§3.3),
that greedily searches for as many protocol invariants as possi-
ble within a finite space B , without requiring that they directly
prove the safety condition. We run Breadth multiple times so
that invariants may build on each other: once Breadth finds
an invariant P, the next run can then find an invariant Q that is
inductive relative to P, even when Q might not be inductive on
its own. More formally, we say that Q is relatively inductive
with respect to P if INIT =⇒ Q and T R∧P∧Q =⇒ Q′.

4

Algorithm 1: Solve (T ,S,B,F)

invariants←− {};
while true do

newInvariants←− Breadth(T , invariants,B);
if newInvariants imply safety then

return newInvariants
if newInvariants = invariants then

break;

invariants←− newInvariants;
return Finisher(T , invariants,S,F)∪ invariants

The Breadth loop ultimately builds an invariant of the form
P1∧·· ·∧Pn, where each Pi is relatively inductive to P1∧·· ·∧
Pi−1. In practice (§5), without the safety condition guiding
it, Breadth is slower than Finisher, but it can incrementally
construct a larger invariant than Finisher can.

To benefit from the strengths of both Breadth and Finisher,
SWISS’s top-level Solve (Algorithm 1) combines them. It
takes as input a transition system, T , and a desired safety con-
dition S. It also takes in two spaces of candidate invariants, B
and F , for Breadth and Finisher, respectively, to search. In
our implementation, these spaces are defined through a combi-
nation of the protocol description and (potentially) user input
(§4.1). Solve runs Breadth over B until no new invariants
are produced, and then it runs Finisher, if necessary, to find
an additional invariant needed to complete the safety proof.
Section 3.4 summarizes SWISS’s coverage guarantee.

3.2 The Finisher Algorithm

Finisher aims to find a single invariant P which proves a safety
condition S. More formally, it tries to solve:

Task 1 (Conjecture-proving task.) Given a transition sys-
tem T , formulas I1, ..., In, already established (or assumed)
to be invariant, and a conjectured safety condition S, find an
invariant predicate P such that P∧S is inductive relative to
I1∧·· ·∧ In.

Evaluating a candidate invariant P requires checking the

Algorithm 2: Finisher(T ,{I1, . . . , In},S,F)

cexamples←− {};
for P ∈ F do

if ∀cex ∈ cexamples . Passes(P,cex) then
cex←− CheckVCsF(T ,{I1, . . . , In},S,P);
if cex is None then

return P;

else
cexamples←− cexamples∪{cex};

return None

Algorithm 3: Breadth(T ,{I1, . . . , In},S,B)

cexamples←− {};
allInv←− {I1, . . . , In};
indInv←− {I1, . . . , In};
for P ∈ B do

if ∀I ∈ allInv . ¬FastImplies(I,P) then
if ∀cex ∈ cexamples . Passes(P,cex) then

cex←− CheckVCsB(T ,{I1, . . . , In},S,P);
if cex is None then

allInv←− allInv∪{P};
if ¬ Redundant (P, indInv) then

indInv←− indInv∪{P};

else
cexamples←− cexamples∪{cex};

return indInv;

validity of the following verification conditions (VCs):

INIT =⇒ S

INIT =⇒ P

T R∧ I1∧·· ·∧ In∧S∧P =⇒ S′

T R∧ I1∧·· ·∧ In∧S∧P =⇒ P′

Since the INIT =⇒ S condition does not depend on P, we can
check it once in advance of evaluating any candidat invariant.

Since we consider protocols expressed in RML (§2.4),
checking the validity of these VCs is decidable, and in practice,
typically quite efficient with modern SMT solvers. Hence, for
a candidate invariant P, we can run a subroutine CheckVCsF
to determine either that the VCs above hold, or that a finite
counterexample shows they do not. As Algorithm 2 shows,
rather than simply check the VCs above for each candidate
predicate P in F , Finisher accumulates a collection of coun-
terexamples from failed candidates. As we describe in §4.2,
we use these counterexamples to filter subsequent candidates,
as our counterexample check is orders of magnitude faster
than the VC check.

3.3 The Breadth Algorithm

In the Breadth algorithm, our goal is simply to find as many
invariants as possible. More formally, we wish to solve the
following task.
Task 2 (Invariant-finding task.) Given a transition system
T and formulas I1, ..., In, already established (or assumed) to
be invariant, find any invariant predicate P which is inductive
relative to I1∧·· ·∧ In.

The corresponding VCs are as follows.

INIT =⇒ P

T R∧ I1∧·· ·∧ In∧P =⇒ P′

5

Naively, we could start with an algorithm similar to Fin-
isher, but use the VCs above instead of Finisher’s. However,
this would result in a highly inefficient search since as stated,
the invariant-finding task permits many tautological solutions,
such as true or Ii. More generally, if P is any predicate such
that I1 ∧ ·· · ∧ In =⇒ P, then P will be invariant, but we do
not actually learn anything about the protocol by finding P:
P does not rule out any states which were not ruled out by
the Ii. We call such a P a redundant invariant with respect
to I1∧·· ·∧ In. For example, ∀x. f (x)∨g(x) is redundant with
respect to ∀x. f (x). As the number of terms in our search space
increases, the number of redundant invariants increases expo-
nentially. Furthermore, since any redundant invariant is, in
fact, inductive, it will always pass our counterexample filters,
guaranteeing an expensive VC check for each.

We devised two ways to cope with redundant invariants.
First, we maintain a set indInv of non-redundant invariants,
and whenever we find a new invariant, we explicitly check
whether it is redundant with indInv. Second, we also track
allInv, i.e., all invariants we find—including the redundant
ones—and use these to syntactically filter future candidates
by performing quick checks for logical implication using a
subroutine FastImplies(I,P) described in §4.4. These checks
are vastly cheaper than SMT calls.

As described thus far, Breadth works without any knowl-
edge of the safety condition S that we aim to prove about our
system. However, we observe that we will eventually need S
to be an invariant of the system, so we strengthen the second
VC above to assume S is true in the initial state.

T R∧ I1∧·· ·∧ In∧S∧P =⇒ P′

Algorithm 3 brings all of this together. This algorithm finds
exactly the invariants from the space B which are invariant
with respect to the original input invariants. More precisely,
if P ∈ B is invariant with respect to the inputs, then Breadth
will output a set of predicates whose conjunction implies P.

3.4 SWISS Coverage

SWISS is guaranteed to prove a safety condition S as long as
the system invariant conforms to the following form.
Claim 1 Solve(T ,S,B,F) will always succeed at proving
the conjectured safety condition S provided there exist invari-
ants I1, · · · , In such that:

• Ii ∈ B for 1≤ j ≤ n−1.
• In ∈ F .
• I1∧ . . .∧ I j is inductive relative to S for 1≤ j ≤ n−1.
• I1∧ . . .∧ In∧S is inductive.

The claim follows from inspection of Algorithms 1-3 and the
fact that our counterexample and implication filters will never
eliminate a valid invariant.

4 Making Invariant Exploration Scale
While the algorithms described in §3 would theoretically suf-
fice to find invariants, implemented naively they are impracti-

cally slow. Hence, we present crucial steps we take to reduce
the search space (§4.1-§4.4) and optimize the overall process
(§4.5). For the sake of completeness, we also present three
optimizations that our evaluation has shown do not improve
performance in this domain (Appendix A).

4.1 Exploiting User Guidance & Candidate Symmetries

The Finisher and Breadth algorithms each take as input a
space of candidate invariants to explore (§4.1.1). These spaces
often contain many invariants that are identical modulo sym-
metries, so symmetry pruning is critical (§4.1.2).

4.1.1 Defining Candidate Spaces

SWISS searches for invariants based on invariant templates.
Intuitively, a template defines the rough shape of a class of in-
variants (e.g., the number and types of the quantified variables,
and a bound on the formula’s size).

By default, SWISS automatically defines invariant templates
based on the protocol description and the safety condition,
as well as user-supplied upper bounds on the formula size.
SWISS then enumerates all template spaces within these con-
straints, and the search space B or F is defined as the union
of these spaces. Finisher prioritizes these templates in order
of increasing size. Thus, if a small invariant exists, Finisher
will find it without having to search the entire space.

For many protocols, this fully automatic approach suffices
to produce a safety proof. For protocols where this auto-
mated search runs slower than desired, the user can specify
a particular template T , rather than have SWISS enumerate
all templates. As §5.3.3 demonstrates, such user guidance
can dramatically speed up the search process, even if the user
guesses a few incorrect templates before the right one.

More formally, every candidate invariant P that we consider
is a sequence of quantifiers followed by a quantifier-free ex-
pression E. The expression E is a tree of conjunctions and
disjunctions of terms C, expressed over values V , which is
either a name and a type (e.g., x : t), or a function application.

V ::= x : t | f (V1, . . . ,Vn)
C ::= V1 =V2 | ¬C | r(V1, . . . ,Vn)
E ::= C | E1∧·· ·∧En | E1∨·· ·∨En
P ::= E | ∀x : t. P | ∃x : t. P

We specify a set of candidate formulas by a triple (T,k,d).
The template T is simply a formula P with a wild-
card for the quantifier-free expression E. We define
TemplateSpace(T,k,d) to be the set of formulas that match
T when the wildcard is instantiated with any quantifier-free
expression E that has at most k terms and a conjunction-
disjunction tree of depth at most d. For instance, an ex-
pression of the form c1 ∨ c2 ∨ c3 ∨ c4 has depth 1, while
(c1∨ c2)∧ (c3∨ c4) has depth 2.

Hence, a valid candidate space might be defined by,

T = ∀r : round,v : value. ∃q : quorum. ∀n1,n2 : node. ∗
with k = 3, and d = 1, which would contain all invariants with
the quantifiers in T and disjunctions of up to 3 terms. SWISS

6

expects the user to specify the maximum values of k, d, m
(the maximum total number of quantified variables) and q (the
maximum number of existentially quantified variables). The
user must also specify a quantifier nesting order for the types
defined by the protocols: a fixed nesting order is required so
that the resulting verification conditions remain in EPR.

To enumerate the formulas in TemplateSpace(T,k,d), we
first enumerate a set of possible terms, C , and then arrange
them in every possible tree shape. While succinct to describe,
the size of the space grows exponentially, so we take steps to
prune the space as rapidly as possible.

4.1.2 Symmetry-Breaking

As defined above, a candidate space contains many logically
equivalent candidates, such as:

∀r1,r2 : round . leq(r1,r2)∨geq(r1,r2)

∀r1,r2 : round . geq(r1,r2)∨ leq(r1,r2)

∀r1,r2 : round . geq(r2,r1)∨ leq(r2,r1)

all identical up to term reordering and variable renaming.
When enumerating candidate formulas, SWISS aims to only

consider one representative from each class of identical can-
didates. However, checking for such logical equivalence via
SMT calls would be prohibitively expensive. Hence, we use a
sound set of syntactic constraints to break these symmetries
far more efficiently.

Specifically, SWISS assigns an arbitrary ordering to each
possible base term (e.g., leq) and will only produce formulas
where, within any conjunction or disjunction, the terms are in
increasing order. SWISS also produces formulas such that for
any set of quantified variables which are interchangeable (e.g.,
r1 and r2 in the example above), their first appearances are in
increasing order of quantifier nesting index.

These two steps efficiently break symmetries arising from
term ordering and variable permutation. In practice, they
reduce the size of the search space by over two orders of
magnitude (§5).

4.2 Filtering Based on Counterexamples

As explained in §2.4, when a candidate invariant P fails a verifi-
cation condition, we can extract a counterexample, specifically
a concrete model where the condition failed. For example,
if INIT =⇒ P fails to hold, then we can extract a concrete
model M such that M |= INIT ∧¬P; i.e., the initial conditions
hold for M but P does not. Since the initial conditions hold on
M, if any other formula P′ fails to hold for M, then it cannot
be an invariant either. SWISS exploits this observation by re-
membering the models from failed VC checks and using those
models to quickly rule out future candidates.

More technically, we define a counterexample filter (cex) as
a model or a pair of models which demonstrate that a given
candidate P fails to be an inductive invariant. We consider
three types of counterexample filters:

cex ::= True(M) | False(M) | Transition(M,M′)

A candidate P passes a filter cex if one of the following holds.
• cex = True(M) and M |= P; i.e., all valid invariants

should evaluate to true on M.
• cex = False(M) and M |= ¬P.
• cex = Transition(M,M′) and (M,M′) |= P =⇒ P′.

The last is equivalent to: P passes False(M) or True(M′).
We construct counterexample filters based on the model(s)

returned when a candidate P fails a VC check. The specific
type of filter constructed depends on which type of check
fails. Our construction guarantees that (i) P does not pass
the filter cex, and (ii) any formula P′ which does pass the
same verification condition will pass the filter cex. The three
possible constructions are as follows.

• A failed verification condition of the form A =⇒ P
yields a model M such that M |= A∧¬P, so we produce
a counterexample filter True(M). In other words, P does
not evaluate to true on M; but any valid invariant should.

• A failed verification condition of the form A∧P =⇒ B′

yields models M and M′ such that (M,M′) |= A∧P∧¬B′,
which gives a counterexample filter False(M) (since the
model represents a state M that P failed to reject and that
all valid invariants ought to reject).

• A failed verification condition of the form A∧P =⇒ P′

yields models M and M′ such that (M,M′) |= A∧P∧¬P′,
which gives a counterexample filter Transition(M,M′).

Essentially, these counterexample filters allow us to learn
from each type of failed induction check.
Efficient Implementation. Counterexample filtering is only
useful if we can apply our filters faster than executing the
original VC checks. Hence, whenever we add a new model
M to our set of counterexample filters, we precompute the
evaluation of each term c ∈ C on M. C is the set of base
terms (§4.1.1) produced for every possible instantiation of the
quantifier variables in the template T within the model M. The
evaluations are saved in a bitstring, so when we encounter
a new candidate Q, the evaluation of Q on M is computed
quickly with bitwise operations. As a result, counterexample
filters are orders of magnitude faster than VC checks (§5).

4.3 Checking Verification Conditions

We encode our verification conditions into SMT formulas in
a manner similar to prior work [42]. The encoding ensures
that it is decidable to evaluate the validity of the formulas.
Our encoding conforms to the standardized smtlib2 format,
although for better performance, our implementation includes
the SMT solver as a library so that it can directly invoke its
API rather than communicating via files.

In practice, we find that thanks to the community’s large
effort invested in optimizing SMT solvers, our validity queries
are not just decidable, but rapidly decidable, typically in tens
of milliseconds. However, our initial experiments found occa-
sional outliers that consumed minutes, or more. Since a SWISS
run may perform thousands of SMT calls, these outliers be-
come an issue. After some iteration, we settled on a routine

7

where we retry a problem instance with a different SMT solver
if our first attempt exceeds a given time limit (§5.1). If the
SMT instance continues to time out, we skip the invariant
in question. While not a perfect solution, we found that this
routine satisfactorily avoids stalling SWISS’s execution.

4.4 Filtering Redundant Invariants

Since the Breadth algorithm searches rather indiscriminately
for any possible invariant, it can easily waste time on redun-
dant invariants, i.e., invariants already implied by previously
established invariants.

To efficiently prune many such redundant invariants, SWISS
includes a rapid FastImplies filter to see if an existing in-
variant Q already implies a candidate P. For correctness,
FastImplies(Q,P) can return true only when Q =⇒ P. Our
implementation of FastImplies(Q,P) always detects the case
where Q and P can be written as,

Q = ∀∗∃∗ . . . (a1∨·· ·∨a j)

P = ∀∗∃∗ . . . (b1∨·· ·∨bk)

where a1, . . . ,a j is a subsequence of b1, . . . ,bk up to variable
renaming. This condition certainly ensures that Q =⇒ P,
meaning P is redundant if Q is already known to be invariant.
Our implementation also has limited support for substituting
universally-quantified variables for existential ones.
Efficient Implementation. To implement this filter effi-
ciently, we store a set of sequences representing known invari-
ants and query if any sequence in this set is a subsequence of
a candidate sequence. We use a trie [10] for efficient queries.

4.5 Additional Optimizations

4.5.1 Minimizing Models

When extracting a counterexample from a failed VC check,
we can either take the first model produced by the SMT solver,
whatever it may be, or we can try to make the model as small
as possible. Smaller models are faster to evaluate with our
filters, but come at the cost of additional SMT queries.

In our minimal-models optimization, we always attempt to
find a minimal model that satisfies a given SMT query, i.e., a
model where there is no other satisfying model with a smaller
domain. To bound the cost of the SMT queries made to check
minimality, we apply an aggressive time limit to each query.

This is an essential optimization for complex protocols;
without it, SWISS takes significantly longer (§5.3.5).

4.5.2 Parallelism

Since our algorithm is based on exhaustive search, we expect
it to be parallelizable. To parallelize across n threads we do
the following: for each run of either the Breadth or Finisher
algorithm, we split the space (B or F) into n parts, each
randomly permuted. The random permutation attempts to
ensure that each thread has a roughly equal amount of work.
We then run our algorithm on each partition independently
and combine the results. In the future, we plan to explore a

more complex approach in which the threads communicate
at a finer granularity, e.g., sharing counterexample filters and
invariants as they are discovered.

4.6 Failed Optimizations

In the interest of full disclosure, and to save others unnecessary
work, in Appendix A we briefly summarize three optimizations
we implemented and evaluated, only to find that they provide
little benefit or actively hurt performance.

5 Evaluation
Our evaluation seeks to answer two key questions:

• How does SWISS compare to prior work (§5.2)?
• How effective are SWISS’s various optimizations (§5.3)?

5.1 Experimental Setup and Implementation Details

Benchmark Suite. To evaluate SWISS, we apply it to a test
suite of well-established protocols from three sources: (i) the
I4 benchmarks [34], (ii) the benchmarks from Koenig et al.’s
work on first-order-logic separators [27] (henceforth, FOL),
and (iii) six Paxos variants developed by Padon et al. [41].
Setup. All experiments are conducted on 8-core machines
with Intel i9-9900K CPU processors at 3.60GHz, with 125GB
of memory, running Ubuntu 19.10, and using a timeout of
6 hours. Unless specified, we run SWISS with 8 threads us-
ing automatic template generation (§4.1.1) and the following
optimizations from §4: (i) symmetry breaking, (ii) cex filter-
ing, (iii) hybrid SMT solvers, (iv) filtering redundant invari-
ants, (v) model minimization, and (vi) parallelism. For tem-
plate auto-generation, by default we use parameters (d,k,q,m)
(§4.1.1) of (1,3,1,5) for Breadth and (2,6,1,6) for Finisher,

However, these choices were not ideal for all benchmarks.
In particular, if we found that a benchmark completed in under
six hours without proving the safety condition, we enlarged
the F space by increasing k, and then increasing q. On the
other hand, if a benchmark timed out after six hours without
completing the breadth phase, we made the B space smaller
by decreasing its parameters. See §5.2.1.
Implementation. We implement SWISS in approximately
14,000 lines of C++ code. To check the verification con-
ditions, we use the Z3 SMT solver [11] version 4.8.8 with
default settings. If Z3 times out after 45 seconds, then we
use the CVC4 [2] SMT solver version 1.8-prerelease with
the --finite-model-find option, an option tuned for
finding finite models [44]. We found that for some satisfiable
instances, Z3 would often take a very long time to return a
model, whereas CVC4, with this specific option, was much
more efficient. When applying model minimization, we set a
time limit of 45 seconds; if the time limit is reached, we use
the current partially minimized model.

5.2 Top-Level Protocol Results

Table 1 summarizes the results of running SWISS on our bench-
mark suite. It also compares SWISS’s performance with that
of the two most closely related systems (see §6 for details),

8

Source Benchmark ∃? I4 [34] FOL [27] SWISS Partial tB tF nB mn mn−1

§2.2 sdl 10 s. 7 s. 5 s. 2 s. 2 s. 2 5 2

[34]

ring-election 3 s. 16 s. 11 s. 11 s. - 3 3 3
learning-switch-ternary 8 s. 195 s. 195 s. - 2 3 3
lock-server-sync 0.1 s. 1 s. 0.2 s. 0.2 s. - 1 2
two-phase-commit 2 s. 15 s. 6 s. 6 s. - 1 3 3
chain 17 s. (6 / 7) 7 4
chord 506 s. 7 s. (7 / 10) 6 4
distributed-lock 131 s. (1 / 4) 12 12

[27]

toy-consensus-forall 4 s. 3 s. 3 s. - 2 3 3
consensus-forall 1047 s. 29 s. 29 s. - 3 3 3
consensus-wo-decide 23 s. 18 s. 18 s. - 3 3 3
learning-switch-quad 959 s. 223 s. 736 s. 2 4 4
lock-server-async 0.4 s. 2 s. 3684 s. 1 s. 3682 s. 1 8
sharded-kv 1.0 s. 7 s. 4024 s. 2 s. 4021 s. 2 8 2
ticket 60 s. (5 / 9) 6 6
toy-consensus-epr X 22 s. 2 s. 2 s. - 2 3 3
consensus-epr X 377 s. 20 s. 20 s. - 3 3 3
client-server-ae X 303 s. 3 s. 2 s. 0.5 s. 2 3
client-server-db-ae X 2739 s. 24 s. 21 s. 2 s. 4 3 3
sharded-kv-no-lost-keys X 1 s. 0.9 s. 0.9 s. - 1 2
hybrid-reliable-broadcast X 791 s. (1 / 7) 7 6

[41]

paxos X 15950 s. 803 s. 15146 s. 3 6 3
flexible-paxos X 18232 s. 239 s. 17993 s. 3 6 3
multi-paxos X (6 / 11) 6 4
multi-paxos∗ X 984 s. 589 s. 395 s. 3 6 4
fast-paxos X (8 / 12) 8 8
stoppable-paxos X (6 / 14) 6 6
vertical-paxos X (14 / 17) 16 6

Table 1: Comparison with Prior Work. ∃? indicates that the human-written invariant uses an existential. The time for SWISS
is broken down into the time for Breadth (tB) and Finisher (tF), with the latter omitted when synthesis succeeds during the
Breadth phase. nB denotes number of iterations of Breadth. Each SWISS result is the median of five runs. For benchmarks
where SWISS times out after 6 hours, we report its partial success (§5.2.2) instead of time. Shaded boxes indicate the system did
not produce any invariants. In the multi-paxos* benchmark, the user provides a correct template for SWISS as guidance. The
columns mn and mn−1, discussed in §5.3.4, summarize stats related to the sizes of invariants.

namely the I4 [34] and FOL [27] tools. Below, we first discuss
the comparative results, followed by SWISS-specific analysis.

5.2.1 Comparative Results

We analyze our protocol results by bucketing them into coarse-
grained categories. Note that I4 can only generate invariants
containing universal quantifiers, and hence cannot succeed for
benchmarks that require existentially quantified invariants.
Paxos Variants. Unlike prior work, SWISS automatically
finds all of the invariants for Paxos and Flexible Paxos, which
were previously painstakingly constructed by hand [41]. Fur-
thermore, it succeeds at Multi-Paxos if the user provides the
correct templates; however, when we attempted to use the
automatically-enumerated templates, we found that Breadth
does not complete in time. All three protocols require Finisher
to find an invariant with six terms and an existential.

Unfortunately, neither I4, FOL, nor SWISS can prove the
safety of Fast Paxos [30], Stoppable Paxos [35], or Vertical

Paxos [32]. Among the known, handwritten invariants, Fast
Paxos and Vertical Paxos each have two 8-term invariants;
Stoppable Paxos has three 6-term invariants. SWISS cannot
currently synthesize invariants this large—indeed, as it stands,
it would need several orders of magnitude more compute
time to handle even a single 8-term invariant—and we did
not observe it finding equivalent, smaller invariants for these
protocols. However, Table 1 shows that SWISS is at least
able to synthesize partial invariants equivalent to many of the
handwritten ones (discussed in more detail below — §5.2.2).

Finally, we note one interesting occurrence during our pre-
liminary testing: we initially found that SWISS succeeded on
Fast Paxos far too quickly and with invariants that looked at a
glance to be far too strong. This allowed us to identify a typo
in the spec which caused an action to never be enabled.
Mutual-Exclusion Protocols. Protocols such as sdl,
distributed-lock, lock-server-sync, lock-server-async, and
sharded-kv have safety conditions asserting mutual-exclusion

9

properties, such as those of locks. The invariants for these pro-
tocols tend to be large conjuncts of smaller, mutually inductive
invariants. SWISS struggles with these, since it is forced to
discover the entire collection at once, as none are inductive
individually. For some, Finisher succeeds by inferring all of
these mutually inductive invariants as a single large invariant.
For sharded-kv and lock-server-async, we needed to increase
the maximum value of k from our default configuration. For
distributed-lock, the invariant was simply too large for SWISS
to find. FOL was also unable to solve this benchmark, al-
though I4 solves it quite handily, as it was able to infer the
mutually inductive invariants on a small finite instance of the
problem. Finally, for sharded-kv-no-lost-keys we needed to
use q = 2 to allow more existentials.
Learning Switch. We have two different benchmarks called
“learning-switch,” one from I4 and one from FOL. We found
that unlike I4 and FOL, SWISS succeeds on learning-switch-
quad quite handily. In learning-switch-ternary, we found that
Breadth takes far too long in the default configuration, due in
part to a large number of redundant invariants not filtered by
our FastImplies test and thus requiring SMT calls to identify
as redundant. We reduced the size of B by configuring q =
0 (i.e., searching for universal invariants only) for this one
benchmark, allowing SWISS to also be able to complete it
efficiently.

5.2.2 SWISS-Specific Analysis

Invariants. In some cases, SWISS uncovered invariants that
were simpler than the ones written by the original researchers.
For instance, for the ring-election protocol, SWISS’s Breadth
algorithm identifies three 3-term invariants (9 terms total)
similar to the ones from prior work [42]; however, if we run
Finisher on its own rather than the full SWISS algorithm, then
it instead generates a single 5-term inductive invariant. For
the Paxos protocol, we initially expected that the Breadth
algorithm would need to run with k = 5; however, we found
that SWISS succeeded even with Breadth at k = 3. This shows
that mechanized search can find simpler invariants that may
be missed by trained researchers.
Partial Progress. When an execution of SWISS exceeds its
time limit, it still generates many invariants which may be
useful. To measure how successful this “partial progress” is,
we computed how many of the handwritten invariants SWISS
finds. More precisely, we count how many of these invariants
are logical implications of SWISS’s invariants. These results
are shown in Table 1. Notice that in many cases, SWISS finds
a majority of the invariants; e.g., for our largest benchmark,
Vertical Paxos, SWISS finds 79%. Furthermore, for the chain
benchmark, which has two safety conditions (one for lineariz-
ability and one for atomicity), SWISS solves the latter.

We do not report any partially solved invariants for the other
tools in our comparison. For one, the IC3 approach does not
immediately allow extraction of any inductive invariants; a
partially-completed IC3 execution would provide a different

kind of information: constraints on the possible states of a
system after a finite number of transitions. In the case of I4, we
did not find any case where it constructed a nontrivial inductive
invariant for any benchmark where it did not succeed.

5.3 Understanding SWISS

To better understand SWISS, we evaluate the effectiveness of
our various design choices.

5.3.1 The Utility of Combining Breadth and Finisher

In §3, we argue that Breadth and Finisher target different
kinds of invariants and hence are more effective when used
together. To validate this claim, we re-ran SWISS on our
benchmark suite, first using only Breadth, and then using
only Finisher. In both cases, we limited their execution time
to that taken by the full SWISS algorithm.

Compared to the 19 benchmarks solved by the full SWISS
algorithm, the Breadth algorithm alone solves only 10, while
Finisher alone solves only 7.

5.3.2 Execution Times of Breadth Versus Finisher

In Table 1, Breadth is fairly quick, always less than 15 min-
utes, compared to Finisher which can vary from quite quick
(a few seconds) to several hours. In fact, this is not an accident
and follows directly from the fact that the space B is chosen
to be small, whereas Finisher is designed to keep going until
it finds a solution or times out. Thus, the runtime of Finisher
depends on how large that solution turns out to be.

5.3.3 Impact of User Guidance

While SWISS is designed to automatically search through the
space of invariant templates, users can provide more specific
guidance via one or more templates. For example, for Paxos,
considering the Finisher portion, the user might suggest a
template like (1) or (2) in Table 2. Compared to searching
the automatically generated space of templates, this guidance
cuts the search space by 75% and as a result, completes in 20
minutes, a 13.4× speedup.

Of course, the user may erroneously suggest a template not
containing any useful invariant. To evaluate the impact of such
a mistake, we ran SWISS on a template (3) of comparable size
to the “correct” templates, as well as some which are much
smaller (4-6). The results suggest the user can afford to make
some incorrect guesses and still outperform the full auto mode.

Finally, template (7) is the largest template generated auto-
matically with our default configuration. It takes significantly
longer, indicating the importance of exploring templates in
increasing size order when using auto mode.

5.3.4 Is it a Small World?

Our Small World Hypothesis holds that many of the protocols
we care about can be solved using a sequence of invariants
I1, . . . , In, which are individually concise. We analyze this
hypothesis by measuring the size of the invariants in each of
our benchmark protocols. This, in turn, helps us understand

10

Template Inv? Size Time (s)

1 ∀r1,r2 : round,v1,v2 : value,q1 : quorum. ∃n1 : node. ∗ X 232,460,599,445 2036
2 ∀r1,r2 : round,v1,v2 : value. ∃q1 : quorum. ∀n1 : node. ∗ X 232,460,599,445 4072

3 ∀r1,r2 : round,v1,v2 : value,q1 : quorum. ∀n1 : node. ∗ 232,460,599,445 3547
4 ∀r1 : round,v1,v2,v3 : value. ∃n1 : node. ∗ 26,863,311,982 408
5 ∀r1 : round,v1 : value,n1,n2,n3,n4 : node. ∗ 76,397,976,796 1015
6 ∀r1,r2 : round,v1 : value,q1,q2 : quorum. ∃n1 : node. ∗ 39,834,946,595 557
7 ∀r1,r2 : round,v1,v2 : value,n1,n2 : node. ∗ 2,621,795,213,086 47231

Table 2: User-Provided Templates. Experiments running Finisher on Paxos with the given template as input. Each experiment
starts with many invariants provided as input, simulating the scenario that Breadth has already completed. The ‘Inv?’ column
indicates whether the template contains an invariant that proves the safety condition. Time is given in seconds. Each experiment
is run to completion, exploring the entire space, even if an invariant is found.

which protocols SWISS will likely succeed at by the degree to
which they meet the Small World Hypothesis.

For a given protocol, we examine an invariant I = I1∧·· ·∧
In which proves the desired safety condition, chosen so that
I1∧ . . .∧ I j is inductive relative to the safety condition (as in
Claim 1). The mn column in Table 1 gives the maximum size
of any invariant out of I1, . . . , In. Here, the “size” of a predicate
is measured as its number of terms.

We do not claim that our numbers are the minimal possible—
we simply use the smallest out of any I that we know of. These
may be from invariants synthesized by SWISS itself; in other
cases, we use human-determined invariants.

We can see that 25 out of our 27 benchmarks have mn ≤ 8,
and 22 of them have even fewer. There were two excep-
tions, distributed-lock (mn = 12) and vertical-paxos (mn = 16).
These two invariants are much bigger than any single invariant
we have seen SWISS synthesize.

However, it may be worth noting that these larger invariants
are conjuncts of smaller, mutually inductive invariants. For
example, the 16-term invariant of vertical-paxos is actually the
conjunct of two 8-term invariants (although these invariants
are still on the larger side). Thus, these protocols would score
much better on a weaker Small World Hypothesis, one where
mutual invariants were counted separately. Other approaches
may be able to take advantage of this.

To more fully understand SWISS’s behavior, we also mea-
sure mn−1, the maximum number of terms among I1, . . . , In−1.
This statistic is interesting here because for SWISS to succeed
in its current form, these n−1 invariants must be in B .

To rough approximation, we see that SWISS can succeed
approximately when mn ≤ 6 and mn−1 ≤ 3. In some cases,
SWISS does go beyond: some benchmarks succeed with up to
mn = 8, and SWISS can solve multi-paxos (where mn−1 = 4)
if the search space is restricted in other ways.

5.3.5 Impact of Filtering

Table 3 shows the impact of each of our filtering stages on
Paxos. Counterexample filtering drastically decreases the
number of candidates which require an SMT call (i.e., those
remaining after FastImplies). However, a vast number of

candidates (the “Symmetries” column) must be processed by
a counterexample-filter. How fast is such filtering?

Baseline Sym. Cex filters FastImpl Inv.
B 820 ·106 3 ·106 911,275 2,250 801
F 99 ·1012 232 ·109 155 155 5

Table 3: Winnowing the Paxos Search Space. Number of
candidate predicates that remain after a given SWISS feature is
applied. Runs are with a single thread over a single template.

To evaluate filtering efficiency, we measure the total time
spent on filtering versus SMT inductivity checks in a Paxos
benchmark. We find that Finisher (using Template (1) of Ta-
ble 2) performs 155 inductivity checks via SMT. The average
SMT call takes 96.5 ms, with a median of 7 ms and a 95th per-
centile of 55 ms. In contrast, filtering a single candidate takes
74 nanoseconds on average. Notably, both measures are im-
portant characteristics of SWISS, as some workloads are domi-
nated by filtering and others by SMT calls (Appendix B.2).

5.3.6 Additional Analysis

See Appendix B for further analysis of SWISS’s performance,
e.g., the impact of optimizations, parallelism, and SMT calls.

6 Related Work
6.1 Verifying Distributed Systems

The research community has long recognized the challenges
of designing correct distributed systems. Manually written
proofs [25, 31] and model checking [23, 26, 56] increase as-
surance, but struggle with practical distributed systems [4].

Recent work applies general-purpose software-verification
tools to the verification of distributed systems [21, 46, 55].
These tools offer flexibility at the price of substantial human
effort. For example, verifying Raft required over 50,000 lines
of Coq proof for the protocol and its 520-line implementa-
tion [55], and Hawblitzel et al. used 12,000 lines of proof for
the safety and liveness proofs of their Paxos protocol [21].

These human costs motivate the search for domain-specific
languages (DSLs) and tools that reduce proof effort by re-

11

stricting the class of encodable systems [12, 13, 36, 53]. For
example, tools based on the heard-of model [12, 13, 36] need
a run-time system to bridge the gap between an asynchronous
network and the synchronous semantics assumed by the verifi-
cation tool, which can lead to performance bottlenecks. Simi-
larly, pretend synchrony [53] precludes classic optimizations,
e.g., request batching in Paxos implementations.

All the works above, even the DSLs, rely on the developer
to intuit invariants, which can be hard even for experienced
researchers [34]. Recent work tries to reduce this cost via a re-
stricted logic (EPR – §2.4) which makes invariant checking de-
cidable; i.e., given a correct invariant, no further human work
is needed. Even within EPR, finding the invariant remains un-
decidable [40], so Padon et al.’s IVy tool [42] interactively aids
the developer: IVy iteratively checks if a candidate invariant is
inductive. If not, IVy presents a concrete counterexample, and
the developer strengthens the candidate to eliminate it. This
repeats until she derives an inductive invariant.

In contrast, Ma et al.’s I4 tool [34] aims to be fully auto-
matic. I4 first runs a custom model checker [19] on an artifi-
cially small example of the protocol (e.g., with two nodes) to
produce an invariant for the small system. I4 then attempts
to generalize the invariant to the unbounded setting. When it
succeeds, I4 requires no human intervention. In practice, Ma
et al. report manually specifying concrete bounds for all of
their benchmarks (to avoid exhaustive parameter searches) and
concretizations of certain variables for several benchmarks.
Ultimately, I4 is limited by the abilities of its model checker,
which does not support existential quantifiers (which §5.2
shows rules out a wide swath of protocols), and is unable to
scale to more complex protocols like Paxos. In such cases, the
developer is left with little recourse. However, I4 is frequently
faster than SWISS and able to synthesize larger invariants for
protocols where universally quantified invariants exist.

In recent work, Koenig et al. (FOL) [27] develop an algo-
rithm capable of synthesizing invariants containing existentials.
Their algorithm relies on the IC3/PDR algorithm [6, 14] for
constructing invariants incrementally. Like SWISS, it itera-
tively produces counterexamples, but it uses those counterex-
amples as constraints in a SAT encoding of predicates to be
synthesized. SWISS verifies protocols, like Paxos, that FOL
does not and verifies some faster than FOL. The reverse is also
true, suggesting some complementarity of the approaches.

6.2 General-Purpose Invariant Synthesis

Extensive research [7–9, 15, 17, 18, 20, 37, 39, 49, 57] stud-
ies loop-invariant inference for proving program correctness,
but this remains challenging. Most approaches are limited
to single-loop programs; only a few handle multiple loops
or existential invariants. Approaches include abstract inter-
pretation [8], interpolation [37], IC3 [16, 17], templates and
constraint solvers [20], counterexample-guided invariant gen-
eration (CEGIR) [18, 39, 47], trace analysis [9, 15], and ma-
chine learning [48, 49, 57].

More closely related work uses templates [7, 20] to restrict
the search to invariants of a given shape. In contrast to these
approaches, we automatically construct a large set of tem-
plates and search for invariants of larger sizes. CEGIR ap-
proaches [18, 39, 47] use enumeration and exploit the fact
that guessing a candidate and checking if it is invariant is eas-
ier than inferring a loop invariant directly from code. They
often employ dynamic analyses to infer candidates from exe-
cution traces and use a verifier to check invariant validity. The
idea of learning from counterexamples has also been applied
to program synthesis in the form of counterexample-guided
inductive synthesis (CEGIS) [51], where the synthesizer gener-
ates a candidate program and the verifier uses the failed cases
to prune the search space. SWISS’s approach is inspired by
techniques from search-based program synthesis [1] and the
CEGIS framework. Although CEGIS is a general framework,
it cannot be used as a black-box since it requires a custom syn-
thesizer, verifier, and learner for each domain. SWISS differs
from prior approaches in how it uses the counterexamples to
prune the search space (§4.2) and how it applies a CEGIS-style
approach to infer more complex invariants than prior work.

Program sketching [50] allows a programmer to sketch a
program, i.e., write a program with “holes.” A synthesizer fills
the holes such that a specification is satisfied. In SWISS, the
user can similarly provide templates to restrict the search, but
even if such a template is not provided, SWISS can automati-
cally generate a set of templates and search all of them.

7 Conclusions and Future Work
We explore the hypothesis that the safety of most distributed
systems can be proven via relatively small invariants (or con-
junctions thereof), using our system SWISS, which incorpo-
rates novel optimizations to efficiently search the space of
candidate invariants. We find that in many cases our hypothe-
sis holds, and SWISS is able to automatically prove their safety,
including several, such as Paxos, beyond the reach of prior
work. Our results leave open the question of inferring large,
mutually inductive invariants. They also illustrate that SWISS
and its most recent predecessors often have complementary
coverage of the benchmarks. Exploring ways to combine the
strengths of each is an intriguing direction for future work.

8 Acknowledgements
We thank Jay Lorch, Jon Howell, the NSDI reviewers, and
our shepherd, Siddhartha Sen, for useful paper feedback. We
also thank Jean Yang and Mickaël Laurent for many helpful
conversations and early explorations. We thank the Pittsburgh
Supercomputing Center for providing computation resources.

This work was funded in part by the Alfred P. Sloan Foun-
dation, a Google Faculty Fellowship, the NSF/VMware Part-
nership on Software Defined Infrastructure as a Foundation
for Clean-Slate Computing Security (SDI-CSCS) program
under Award No. CNS-1700521, and the NSF under grant
CCF-2015445.

12

References
[1] ALUR, R., SINGH, R., FISMAN, D., AND SOLAR-

LEZAMA, A. Search-based program synthesis. Commun.
ACM 61, 12 (2018), 84–93.

[2] BARRETT, C., CONWAY, C. L., DETERS, M.,
HADAREAN, L., JOVANOVI’C, D., KING, T.,
REYNOLDS, A., AND TINELLI, C. CVC4. In Proceed-
ings of the International Conference on Computer Aided
Verification (CAV), G. Gopalakrishnan and S. Qadeer,
Eds., vol. 6806 of Lecture Notes in Computer Science,
Springer, pp. 171–177.

[3] BOLOSKY, W. J., DOUCEUR, J. R., AND HOWELL, J.
The Farsite project: A retrospective. SIGOPS Oper. Syst.
Rev. 41, 2 (Apr. 2007), 1726.

[4] BOLOSKY, W. J., DOUCEUR, J. R., AND HOWELL,
J. The Farsite project: a retrospective. ACM SIGOPS
Operating Systems Review 41 (2) (April 2007).

[5] BORNHOLT, J., AND TORLAK, E. Synthesizing memory
models from framework sketches and litmus tests. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI) (2017).

[6] BRADLEY, A. R. SAT-based model checking without
unrolling. In Proceedings of Verification, Model Check-
ing, and Abstract Interpretation (VMCAI) (2011).

[7] COLÓN, M., SANKARANARAYANAN, S., AND SIPMA,
H. Linear invariant generation using non-linear con-
straint solving. In Proceedings of the International Con-
ference on Computer Aided Verification (CAV) (2003),
W. A. H. Jr. and F. Somenzi, Eds., vol. 2725 of Lecture
Notes in Computer Science, Springer, pp. 420–432.

[8] COUSOT, P., AND HALBWACHS, N. Automatic discov-
ery of linear restraints among variables of a program.
In Proceedings on the ACM Symposium on Principles
of Programming Languages (POPL) (1978), A. V. Aho,
S. N. Zilles, and T. G. Szymanski, Eds., ACM Press,
pp. 84–96.

[9] DANESE, A., PICCOLBONI, L., AND PRAVADELLI, G.
A parallelizable approach for mining likely invariants.
In Proceedings of the 10th International Conference
on Hardware/Software Codesign and System Synthesis
(2015), CODES ’15, IEEE Press, p. 193201.

[10] DE LA BRIANDAIS, R. File searching using variable
length keys. In Papers Presented at the the March 3-5,
1959, Western Joint Computer Conference (New York,
NY, USA, 1959), IRE-AIEE-ACM 59 (Western), Asso-
ciation for Computing Machinery, p. 295298.

[11] DE MOURA, L., AND BJØRNER, N. Z3: An efficient
SMT solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS) (2008), Springer, pp. 337–340.

[12] DRĂŹGOI, C., HENZINGER, T. A., VEITH, H., WID-
DER, J., AND ZUFFEREY, D. A logic-based framework
for verifying consensus algorithms. In Proceedings of
Computer Aided Verification (CAV) (2014).

[13] DRĂŹGOI, C., HENZINGER, T. A., AND ZUFFEREY,
D. PSync: A partially synchronous language for fault-
tolerant distributed algorithms. In ACM Symposium on
Principles of Programming Languages (POPL) (2016).

[14] EÉN, N., MISHCHENKO, A., AND BRAYTON, R. Ef-
ficient implementation of property directed reachability.
In Proceedings of the Conference on Formal Methods in
Computer-Aided Design (FMCAD) (2011).

[15] ERNST, M. D., PERKINS, J. H., GUO, P. J., MCCA-
MANT, S., PACHECO, C., TSCHANTZ, M. S., AND
XIAO, C. The daikon system for dynamic detection of
likely invariants. Sci. Comput. Program. 69, 13 (Dec.
2007), 3545.

[16] EZUDHEEN, P., NEIDER, D., D’SOUZA, D., GARG,
P., AND MADHUSUDAN, P. Horn-ICE learning for syn-
thesizing invariants and contracts. Proc. ACM Program.
Lang. 2, OOPSLA (2018), 131:1–131:25.

[17] GARG, P., LÖDING, C., MADHUSUDAN, P., AND NEI-
DER, D. ICE: A robust framework for learning invari-
ants. In Proceedings of the International Conference on
Computer Aided Verification (CAV) (2014), A. Biere and
R. Bloem, Eds., vol. 8559 of Lecture Notes in Computer
Science, Springer, pp. 69–87.

[18] GARG, P., NEIDER, D., MADHUSUDAN, P., AND
ROTH, D. Learning invariants using decision trees and
implication counterexamples. In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL) (2016), R. Bodı́k and
R. Majumdar, Eds., ACM, pp. 499–512.

[19] GOEL, A., AND SAKALLAH, K. A. Model checking of
verilog RTL using IC3 with syntax-guided abstraction.
In Proceedings of the NASA Formal Methods Sympo-
sium (NFM) (2019), J. M. Badger and K. Y. Rozier,
Eds., vol. 11460 of Lecture Notes in Computer Science,
Springer, pp. 166–185.

[20] GUPTA, A., AND RYBALCHENKO, A. InvGen: An
efficient invariant generator. In Proceedings of the In-
ternational Conference on Computer Aided Verification
(CAV) (2009), A. Bouajjani and O. Maler, Eds., vol. 5643
of Lecture Notes in Computer Science, Springer, pp. 634–
640.

13

[21] HAWBLITZEL, C., HOWELL, J., KAPRITSOS, M.,
LORCH, J. R., PARNO, B., ROBERTS, M. L., SETTY,
S., AND ZILL, B. IronFleet: Proving safety and liveness
of practical distributed systems. Commun. ACM 60, 7
(June 2017), 8392.

[22] HOWARD, H., MALKHI, D., AND SPIEGELMAN, A.
Flexible Paxos: Quorum intersection revisited, 2016.

[23] JONES, E. Model checking a Paxos imple-
mentation. http://www.evanjones.ca/
model-checking-paxos.html, 2009.

[24] JOSHI, R., LAMPORT, L., MATTHEWS, J., TASIRAN,
S., TUTTLE, M., AND YU, Y. Checking cache-
coherence protocols with TLA+. Journal of Formal
Methods in System Design 22 (March 2003), 125–131.

[25] KELLOMÄKI, P. An annotated specification of the con-
sensus protocol of Paxos using superposition in PVS.
Tech. Rep. 36, Tampere University of Technology, 2004.

[26] KILLIAN, C. E., ANDERSON, J. W., BRAUD, R.,
JHALA, R., AND VAHDAT, A. M. Mace: Language
support for building distributed systems. In Proceed-
ings of the ACM Conference on Programming Language
Design and Implementation (PLDI) (2007).

[27] KOENIG, J. R., PADON, O., IMMERMAN, N., AND
AIKEN, A. First-order quantified separators. In Proceed-
ings of the ACM SIGPLAN International Conference
on Programming Language Design and Implementation
(PLDI) (2020), A. F. Donaldson and E. Torlak, Eds.,
ACM, pp. 703–717.

[28] LAMPORT, L. The temporal logic of actions. ACM
Transactions on Programming Languages and Systems
16, 3 (May 1994).

[29] LAMPORT, L. The part-time parliament. ACM Trans.
Comput. Syst. 16, 2 (May 1998), 133169.

[30] LAMPORT, L. Fast Paxos. Distributed Computing 19
(October 2006), 79–103.

[31] LAMPORT, L. Byzantizing Paxos by refinement. In Pro-
ceedings of the International Conference on Distributed
Computing (DISC) (2011).

[32] LAMPORT, L., MALKHI, D., AND ZHOU, L. Vertical
paxos and primary-backup replication. In Proceedings
of the ACM Symposium on Principles of Distributed
Computing (PODC) (2009), S. Tirthapura and L. Alvisi,
Eds., ACM, pp. 312–313.

[33] LEWIS, H. R. Complexity results for classes of quan-
tificational formulas. J. Comput. Syst. Sci. 21 (1980),
317–353.

[34] MA, H., GOEL, A., JEANNIN, J., KAPRITSOS, M.,
KASIKCI, B., AND SAKALLAH, K. A. I4: incremen-
tal inference of inductive invariants for verification of
distributed protocols. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles, (SOSP) (2019),
T. Brecht and C. Williamson, Eds., ACM, pp. 370–384.

[35] MALKHI, D., LAMPORT, L., AND ZHOU, L. Stoppable
Paxos. Tech. Rep. MSR-TR-2008-192, April 2008.

[36] MARIC, O., SPRENGER, C., AND BASIN, D. A. Cutoff
bounds for consensus algorithms. In Proceedings of
Computer Aided Verification (CAV) (2017).

[37] MCMILLAN, K. L. Quantified invariant generation
using an interpolating saturation prover. In Proceedings
of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS)
(2008), C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963
of Lecture Notes in Computer Science, Springer, pp. 413–
427.

[38] NEWCOMBE, C., RATH, T., ZHANG, F., MUNTEANU,
B., BROOKER, M., AND DEARDEUFF, M. How Ama-
zon web services uses formal methods. Commun. ACM
58, 4 (Mar. 2015), 6673.

[39] NGUYEN, T., ANTONOPOULOS, T., RUEF, A., AND
HICKS, M. Counterexample-guided approach to finding
numerical invariants. In Proceedings of the Joint Meeting
on Foundations of Software Engineering (FSE) (2017),
E. Bodden, W. Schäfer, A. van Deursen, and A. Zisman,
Eds., ACM, pp. 605–615.

[40] PADON, O., IMMERMAN, N., SHOHAM, S., KARBY-
SHEV, A., AND SAGIV, M. Decidability of inferring
inductive invariants. SIGPLAN Not. 51, 1 (Jan. 2016),
217231.

[41] PADON, O., LOSA, G., SAGIV, M., AND SHOHAM, S.
Paxos made EPR: Decidable reasoning about distributed
protocols. Proc. ACM Program. Lang. 1, OOPSLA (Oct.
2017).

[42] PADON, O., MCMILLAN, K. L., PANDA, A., SAGIV,
M., AND SHOHAM, S. Ivy: Safety verification by in-
teractive generalization. In Proceedings of the ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI) (2016), Association for
Computing Machinery, p. 614630.

[43] PISKAC, R., DE MOURA, L., AND BJRNER, N. Decid-
ing effectively propositional logic with equality. Tech.
Rep. MSR-TR-2008-181, December 2008.

[44] REYNOLDS, A., TINELLI, C., GOEL, A., AND KRSTIC,
S. Finite model finding in SMT. In Proceedings of the In-
ternational Conference on Computer Aided Verification
(CAV) (2013), Springer, pp. 640–655.

14

http://www.evanjones.ca/model-checking-paxos.html
http://www.evanjones.ca/model-checking-paxos.html

[45] SCHIPER, N., RAHLI, V., RENESSE, R. V., BICKFORD,
M., AND CONSTABLE, R. L. Developing correctly
replicated databases using formal tools. In Proceedings
of the Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN) (2014), IEEE
Computer Society, p. 395406.

[46] SCHIPER, N., RAHLI, V., VAN RENESSE, R., BICK-
FORD, M., AND CONSTABLE, R. Developing correctly
replicated databases using formal tools. In Proceedings
of the IEEE/IFIP Conference on Dependable Systems
and Networks (DSN) (June 2014).

[47] SHARMA, R., GUPTA, S., HARIHARAN, B., AIKEN,
A., LIANG, P., AND NORI, A. V. A data driven ap-
proach for algebraic loop invariants. In Proceedings of
the European Symposium on Programming Languages
and Systems (ESOP) (2013), M. Felleisen and P. Gardner,
Eds., vol. 7792 of Lecture Notes in Computer Science,
Springer, pp. 574–592.

[48] SI, X., DAI, H., RAGHOTHAMAN, M., NAIK, M., AND
SONG, L. Learning loop invariants for program verifi-
cation. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada (2018), S. Bengio, H. M. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds., pp. 7762–7773.

[49] SI, X., NAIK, A., DAI, H., NAIK, M., AND SONG,
L. Code2Inv: A deep learning framework for program
verification. In Proceedings of the International Confer-
ence on Computer Aided Verification (CAV) (2020), S. K.
Lahiri and C. Wang, Eds., vol. 12225 of Lecture Notes
in Computer Science, Springer, pp. 151–164.

[50] SOLAR-LEZAMA, A. Program sketching. Int. J. Softw.
Tools Technol. Transf. 15, 5-6 (2013), 475–495.

[51] SOLAR-LEZAMA, A., TANCAU, L., BODÍK, R., SE-
SHIA, S. A., AND SARASWAT, V. A. Combinatorial
sketching for finite programs. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS) (2006), J. P. Shen and M. Martonosi, Eds., ACM,
pp. 404–415.

[52] TRAKHTENBROT, B. The impossibility of an algorithm
for the decidability problem on finite classes. In Pro-
ceedings of the USSR Academy of Sciences (1950).

[53] V. GLEISSENTHALL, K., KICI, R. G., BAKST, A., STE-
FAN, D., AND JHALA, R. Pretend synchrony: Syn-
chronous verification of asynchronous distributed pro-
grams. In ACM Symposium on Principles of Program-
ming Languages (POPL) (2019).

[54] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TAT-
LOCK, Z., WANG, X., ERNST, M. D., AND ANDER-
SON, T. Verdi: A framework for implementing and
formally verifying distributed systems. SIGPLAN Not.
50, 6 (June 2015), 357368.

[55] WOOS, D., WILCOX, J. R., ANTON, S., TATLOCK,
Z., ERNST, M. D., AND ANDERSON, T. Planning for
change in a formal verification of the raft consensus
protocol. In ACM Conference on Certified Programs and
Proofs (CPP) (Jan. 2016).

[56] YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN,
H., YANG, M., LONG, F., ZHANG, L., AND ZHOU,
L. MODIST: Transparent model checking of unmodi-
fied distributed systems. In Proceedings of the USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI) (April 2009).

[57] YAO, J., RYAN, G., WONG, J., JANA, S., AND GU, R.
Learning nonlinear loop invariants with gated continuous
logic networks. In Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (New York, NY, USA, 2020), PLDI
2020, Association for Computing Machinery, p. 106120.

[58] YU, Y. Using formal specifications to monitor and guide
simulation: Verifying the cache coherence engine of
the Alpha 21364 microprocessor. In Proceedings of the
IEEE International Workshop on Microprocessor Test
and Verification (MTV) (2002), Institute of Electrical and
Electronics Engineers, Inc.

15

A Failed Optimizations
In the interest of full disclosure, and to save others unnec-
essary work, we briefly summarize three optimizations we
implemented and evaluated, only to find that they provide
little benefit or actively hurt performance.

A.1 Formula Synthesis

SWISS’s current implementation explicitly enumerates and
evaluates candidate invariants. Initially, however, we adopted
a strategy from a prior system, MemSynth [5], which synthe-
sizes memory models from a small collection of examples.
Instead of explicitly enumerating formulas, MemSynth en-
codes the desired shape of candidate formulas as constraints
on its SMT queries. In our context, this means creating an
SMT query that says, “Find a formula that satisfies this tem-
plate and complies with our accumulated counterexamples.”

However, our early experiments showed that synthesizing
the formula via a solver was considerably slower than our com-
bination of a custom enumerator and counterexample filters.

A.2 Bounded Model Checking

Prior work on finding invariants for distributed systems [42],
found some benefit from using bounded model checking to
try to quickly rule out candidate invariants. In our context,
this means checking not just the condition INIT =⇒ P, but
whether there are any violations of P in states reachable after
taking a fixed number of steps from an initial state. If such a
violation existed on a model M, we can use the counterexample
filter True(M). Likewise, to build False filters, we consider
states a fixed number of steps away from violating safety.

The hypothesis for this optimization is that it would produce
more and “higher quality” filters to rule out future candidates.
To pay off, these savings must offset the cost of the additional
SMT calls that compute the bounded model checks. Sadly, this
optimization rarely boosts performance significantly (§5.3.5).

A.3 Aggressively Accumulating Invariants

As it executes, Breadth finds predicates that are invariant with
respect to the input invariants I1, . . . , In; these new invariants
are fed into the next iteration of Breadth. This suggests an
obvious improvement: treat newly found invariants as input in-
variants immediately in order to uncover even more invariants
than the ones Breadth is guaranteed to find, leading to fewer
total loops. We call this variation BreadthAccumulative.

However, this variant introduces several complications.
Most critically, it interferes with the FastImplies optimization.
For example, suppose we process predicates f ,g,h1, . . . ,hn
in order and (i) g is invariant; (ii) f is invariant with
respect to g; and (iii) FastImplies(f ,hi) holds for all i.
BreadthAccumulative, would pass over f (not invariant),
then find and add g, causing all hi to become invariant.
Since the hi are not filtered out by the FastImplies check,
BreadthAccumulative’s aggressive addition of the hi causes
the number of invariants to explode. In contrast, Breadth

Figure 5: Optimization Impact. We evaluate our model-
minimization and bounded-model-checking optimizations. To
save time, these experiments use pre-specified templates rather
than template auto-generation. Note the log scale of the y-axis.

would only add g at the end; then in the next call to Breadth,
f would be added to allInv, excluding the hi via FastImplies.

To prevent BreadthAccumulative from adding such spuri-
ous invariants, we added a strengthening step, where the first
hi found would be strengthened to f . However, strengthening
comes at a cost, and in the end, we found the BreadthAccu-
mulative optimization to be unhelpful (Figure B.2).

B Additional Evaluation
In this section, we provide some additional measurements of
the impact of SWISS’s design decisions.

B.1 Impact of Optimizations

Model Minimization. To evaluate the effectiveness of model
minimization (§A.2), we measure several benchmarks with
and without it (Figure 5). While it adds some overhead for
simple protocols, it helps significantly for more complex pro-
tocols; in the best case, we found that it improved the Flexible-
Paxos experiment by 1.6×.
Bounded Model Checking. For our BMC variant (§A.2), we
again ran several experiments with and without it (Figure 5).
However, the results show that the cost of the required SMT
calls was not sufficiently offset by gains from “higher quality”
filters. Hence we disable it in SWISS’s default configuration.

B.2 Impact of Parallelism

To evaluate our parallelism strategy (§4.5.2), we measure run-
times with varying numbers of threads, studying Breadth and
Finisher independently. For each run, we break down the
running time of the longest-running thread in each iteration to
see which components of the algorithm parallelize well. We
run our experiments on the Paxos protocol.

For the purposes of this experiment, unlike in standard runs,
we do not terminate the Finisher algorithm when it finds an
invariant which proves the safety condition; instead, we let
it search the entire search space F . This removes variance

16

Figure 6: Parallelism. We measure time while vary-
ing the number of threads for Finisher, Breadth and
BreadthAccumulative (§A.3) on Paxos. The top row shows
the overall time, with Breadth broken down by iterations.
Breadth terminates when the last (top) iteration fails to find
any invariant, so it takes one less iteration than shown to
find all invariants Breadth can find. In the bottom row, the
runtimes are broken down into (i) filtering candidates with
counterexamples, (ii) computing counterexamples of non-
invariants, and (iii) processing candidates that are invariant.

from the random ordering of the search space, leading to more
controlled experimental data.

Our results are shown in Figure 6. Finisher’s runtime is
dominated by enumerating and filtering, which splits fairly
evenly across threads. Overall, SWISS on a single template is
2.0× faster with 2 threads than with 1 thread, and it is 8.6×
faster with 8 threads than with 1.

Breadth, meanwhile, does not parallelize as well, since its
runtime is dominated by time spent constructing counterexam-
ple filters via SMT calls, which is essentially a fixed cost per
thread. At best, we saw a speedup of 1.7× with 8 threads.

We also evaluated BreadthAccumulative (§A.3) while
varying the number of threads (Figure 6). Our hypothesis
that BreadthAccumulative would require fewer iterations
was confirmed: each run required only one iteration to find
all invariants in B (plus one iteration to confirm no further
invariants exist). By contrast, Breadth requires two iterations
(plus one) on the same benchmark. However, BreadthAccu-
mulative still performs worse than Breadth due its other costs
(e.g., strengthening – §A.3).

B.3 Hard SMT instances

As described in §4.3, SMT queries are often rapid, but there are
occasional outliers that slow down execution. To measure how
problematic these outliers are, we measured the prevalence of
hard instances, defined as any instance exceeding forty-five
seconds and triggering our retry strategy. In particular, we
measured the fraction of total computation time spent on these

hard instances.
Among all protocols that SWISS was able to solve, this frac-

tion was greatest for the paxos benchmark, which spent 10.2%
of its computation time on hard instances, which accounted
for 0.17% of its SMT instances.

However, among all protocols that SWISS was not able
to solve, this fraction was greatest for the fast-paxos bench-
mark, which spent 98.7% of its computation time on hard
instances, which accounted for 3.7% of its SMT instances. We
currently do not have a good understanding of what makes this
protocol’s SMT instances difficult for SMT solvers, but the
numbers suggest that improvement to SWISS’s SMT strategy
could make it much faster on harder protocols.

17

	1 Introduction
	2 Background
	2.1 Proving Safety Conditions Via Inductive Invariants
	2.2 A Running Example: Simple Decentralized Lock
	2.3 Formal Notation
	2.4 Decidability of Inductiveness

	3 Overview: The Swiss Algorithm
	3.1 High-Level Algorithm
	3.2 The Finisher Algorithm
	3.3 The Breadth Algorithm
	3.4 Swiss Coverage

	4 Making Invariant Exploration Scale
	4.1 Exploiting User Guidance & Candidate Symmetries
	4.1.1 Defining Candidate Spaces
	4.1.2 Symmetry-Breaking

	4.2 Filtering Based on Counterexamples
	4.3 Checking Verification Conditions
	4.4 Filtering Redundant Invariants
	4.5 Additional Optimizations
	4.5.1 Minimizing Models
	4.5.2 Parallelism

	4.6 Failed Optimizations

	5 Evaluation
	5.1 Experimental Setup and Implementation Details
	5.2 Top-Level Protocol Results
	5.2.1 Comparative Results
	5.2.2 Swiss-Specific Analysis

	5.3 Understanding Swiss
	5.3.1 The Utility of Combining Breadth and Finisher
	5.3.2 Execution Times of Breadth Versus Finisher
	5.3.3 Impact of User Guidance
	5.3.4 Is it a Small World?
	5.3.5 Impact of Filtering
	5.3.6 Additional Analysis

	6 Related Work
	6.1 Verifying Distributed Systems
	6.2 General-Purpose Invariant Synthesis

	7 Conclusions and Future Work
	8 Acknowledgements
	A Failed Optimizations
	A.1 Formula Synthesis
	A.2 Bounded Model Checking
	A.3 Aggressively Accumulating Invariants

	B Additional Evaluation
	B.1 Impact of Optimizations
	B.2 Impact of Parallelism
	B.3 Hard SMT instances

