
USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 199

Shroud: Ensuring Private Access to Large-Scale Data in the Data Center
Jacob R. Lorch, Bryan Parno, James Mickens Mariana Raykova∗ Joshua Schiffman

Microsoft Research IBM Research AMD
Abstract

Recent events have shown online service providers
the perils of possessing private information about users.
Encrypting data mitigates but does not eliminate this
threat: the pattern of data accesses still reveals informa-
tion. Thus, we present Shroud, a general storage system
that hides data access patterns from the servers running
it, protecting user privacy. Shroud functions as a virtual
disk with a new privacy guarantee: the user can look up a
block without revealing the block’s address. Such a vir-
tual disk can be used for many purposes, including map
lookup, microblog search, and social networking.

Shroud aggressively targets hiding accesses among
hundreds of terabytes of data. We achieve our goals by
adapting oblivious RAM algorithms to enable large-scale
parallelization. Specifically, we show, via new tech-
niques such as oblivious aggregation, how to securely
use many inexpensive secure coprocessors acting in par-
allel to improve request latency. Our evaluation com-
bines large-scale emulation with an implementation on
secure coprocessors and suggests that these adaptations
bring private data access closer to practicality.

1 Introduction
Using systems like GFS [1] and Haystack [2], com-

panies store petabytes of sensitive user data, including
emails, photos, and social networking activity. Early
cloud stores optimized for the traditional metrics for dis-
tributed file systems: performance, availability, and scal-
ability. However, information privacy has become in-
creasingly important. Mutually distrusting users expect
the cloud provider to prevent unauthorized cross-user
data access. However, users may also distrust the cloud
provider itself. For example, unscrupulous employees
of the provider may try to inspect user data for criminal
purposes [3]. Even if the provider is honest, its treasure
trove of private data is alluring to hackers, who can lever-
age stolen data for political or financial gain [4].

Applications like the Persona social network [5] op-
erate solely on encrypted user data, preventing the ser-
vice provider from directly inspecting sensitive informa-
tion. However, even if data is encrypted, user access
patterns can leak important information [6–8]. For ex-
ample, a malicious observer can use access patterns to
correlate two users’ activities, e.g., to discover friend-
ships in a social network or to tell whether users are

∗Supported by NSF Grant No. 1017660

geographically close. Even visiting the service via an
anonymous proxy [9] does not obviate this threat, since
the attacker may have auxiliary information. For exam-
ple, if he knows where the victim lives, he can observe
when map tiles in that location are fetched, then correlate
subsequent accesses to learn the victim’s work address.
Even without data access, an observer can see how of-
ten each item is accessed, then use statistical inference
to deduce the contents of encrypted items. For instance,
one study identified over 80% of encrypted email queries
based on access pattern alone [6].

We thus introduce Shroud, a cloud-based storage sub-
strate that hides user access patterns from the servers that
store user data. Shroud implements a distributed block
interface [10] that allows clients to read and write to ad-
dresses 1 to N, where N is large, e.g., 235. Shroud’s block
interface is oblivious—storage servers cannot learn: the
plaintext of user data, the addresses requested, nor rela-
tionships between requested addresses. Shroud’s block
interface is directly usable by services, like maps, that
require simple, one-to-one bindings between names and
objects, e.g., from geographic coordinates to map tiles.
Services with richer semantics can layer complex data
structures atop Shroud, as ext3 and NTFS do atop a phys-
ical disk’s block interface.

To hide user access patterns, Shroud leverages obliv-
ious RAM (ORAM) algorithms [11–19]. Prior ORAM
algorithms cannot satisfy the performance and scalabil-
ity demands of cloud applications: these algorithms han-
dle thousands instead of trillions of items, and they offer
access latencies of minutes or hours. In contrast, we set
aggressive goals: on modern hardware, Shroud targets
low-latency access times for storage of tens of billions of
10KB blocks. For this, Shroud uses several techniques.

First, Shroud uses many secure coprocessors acting in
parallel as client proxies in the data center. Clients estab-
lish secure connections with the proxies, which return the
small results of expensive message exchanges between
the proxies and cloud servers.

Second, using a novel intra-data-center communica-
tion protocol, oblivious aggregation, Shroud implements
a distributed, parallel ORAM algorithm that remains se-
cure even when the adversary controls the network that
connects the proxies and servers.

Finally, Shroud includes novel techniques for defend-
ing against malicious servers (§5.3) and coprocessor fail-
ures (§5.4), both practical realities that are often ignored
or glossed over in the theoretical literature.

200 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Unlike nearly all other ORAM work, we implement
our algorithms on real, secure hardware and run at large
scale. Implementation reveals critical bottlenecks not ap-
parent in previous big-O analysis or simulations, such as
the I/O bottleneck of modern secure hardware (§4.2).

In summary, Shroud is the first practical system for
oblivious data access at data-center scales.

2 Background and Related Work
We briefly survey prior work on cloud file systems,

ORAM, and private information retrieval (PIR). For de-
tails on PIR and ORAM, we defer to surveys [19, 20].

2.1 Cloud File Systems

There are a variety of enterprise-scale systems for stor-
ing and analyzing large amounts of data [1, 2, 21–25].
These systems emphasize massive scalability, high avail-
ability, and robustness to multiple server-side failures,
and they are generally designed to scale using cheap
commodity hardware.

Cloud storage systems export a variety of interfaces to
clients. For example, FDS [22] is a simple, fast blob store
that requires clients to implement richer semantics like
locking schemes. S3 [24] defines a key-value interface.
HDFS [23], Cosmos [21], and GPFS [25] export a hier-
archical namespace, but only the latter is fully POSIX-
compliant. Shroud’s simple block-level API is closer in
spirit to low-level interfaces like those of FDS and S3.
However, prior work like Petal [10] demonstrates that
many useful services can be built atop a distributed block
abstraction. Note that none of the systems above pro-
vides oblivious data access.

2.2 Private Information Retrieval (PIR)

Traditional PIR. In a private information retrieval (PIR)
protocol [26], a user retrieves block i from a database
of N items held by a server, without the server learning
i. Sion et al. [27] argue that in practical settings, exist-
ing PIR schemes will never be more efficient than the
trivial PIR scheme of downloading the entire database.
However, they evaluate number-theoretic solutions; tech-
niques based on other assumptions, e.g., lattice-based
linear algebra schemes [28], can outperform the triv-
ial PIR scheme [29]. Nonetheless, Olumofin and Gold-
berg’s results [29] indicate that even these schemes re-
quire over 25 minutes to access one block from a 28GB
database over a home network connection, suggesting
single-server PIR is not yet ready for the massive (ter-
abyte or petabyte) data sets and sub-second requirements
of the data center (§4.1).
Multi-Server PIR. Using multiple non-colluding
servers can improve the efficiency of both information
theoretic and computational solutions [20, 26, 29, 30].
Nonetheless, these response times are still too slow
for data-center workloads, and more importantly, the

data sets we consider (§4.1) are large enough to make
duplication prohibitive and are held by companies with
little incentive to allow others to duplicate their data.
Trusted Hardware PIR. A more practical approach to
PIR is for the user to trust a secure coprocessor installed
at the server. The user sends an encrypted request to
the coprocessor, which uses an Oblivious RAM (ORAM)
protocol to access the requested block and return it to the
user via the secure channel (Fig. 1). This means that the
user employs essentially the same amount of bandwidth
as it would for a non-private request. It is also more effi-
cient than performing the ORAM operations between the
user and the server. Finally, it allows many independent
users to use the same service.

Iliev and Smith first proposed this elegant combination
of trusted hardware and ORAM for PIR [31], though the
notion is implicit in the earlier work of Smith and Saf-
ford [32] and Asonov and Freytag [33].

2.3 Oblivious RAM (ORAM)

Classic. Goldreich and Ostrovsky [11–13] introduced
ORAM as a mechanism by which a trusted processor
could make use of an untrusted RAM. Most existing
ORAM solutions use the basic memory structure sug-
gested by Ostrovsky’s “Hierarchical Scheme” [12, 13].
The ORAM is arranged in a series of progressively larger
caches. Each cache consists of a hash table of buckets.
When a block is requested, the algorithm checks a bucket
at each level of the hierarchy. If the block is found, the
search continues, to hide the location where the block
was found, but looks for a dummy block instead. Finally,
the block is reinserted into the top-level cache. When a
cache is close to overflowing, it is obliviously shuffled
into the cache below it. This scheme and the modern
schemes derived from it require serial operation for se-
curity, making it challenging to leverage a large number
of distributed secure coprocessors.
Modern. Recent ORAM work has explored optimiza-
tions of the classic Hierarchical Scheme [12, 13], includ-
ing the use of cuckoo hashing [16, 18, 19] and Bloom
filters [15]; used incautiously, these optimizations can
leak information [19]. This work has steadily improved
both the asymptotics, constants, and security of earlier
schemes, to the point of achieving O(log2 N/ log logN)
overhead/access, for a data set with N items [19].

Traditional ORAM [13] assumes limited – O(1) – pro-
cessor storage, but a few efforts have improved response
times by assuming more storage, e.g., O(

√
N), on the

processor [17, 34]. Given the capabilities of modern
coprocessors and the size of data center data sets (§4),
schemes requiring O(

√
N) trusted storage are infeasi-

ble. They would require gigabytes of coprocessor mem-
ory, when even high-end secure coprocessors have only
32 MB of memory and low-end ones have only 16 KB.

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 201

User

User

User

Coproc
Coproc

Coproc
Coproc

Coproc

Storage

Storage

Storage

Storage

ORAM

Service
Users

Secure Hardware
Server

Figure 1: Private Data Access Overview. To read and/or
write data, a user establishes a secure channel to a secure co-
processor in the service’s data center. Along with other copro-
cessors, the coprocessor uses an ORAM algorithm to retrieve
or update a block without revealing to the service which block
was accessed. It returns the result via the secure channel.

Very recent work considers practical aspects of
ORAM [17, 35–37], but they perform all operations be-
tween the client and the data center (rather than using
a hardware proxy) and/or run code on the main CPU,
rather than on actual secure hardware. Concurrent work
also adds parallelism [35], but only across multiple re-
quests, rather than within a single request.

For use in a data-center environment, we selected Shi
et al.’s Binary Tree scheme [14] (§5.1). It suits our goals
because it has O(log3 N) worst-case access time, its bi-
nary tree structure lends itself to parallelization, and its
algorithm uses simple primitives that lend themselves to
implementation on a coprocessor. It also uses O(1) stor-
age, making it suited to our limited secure coprocessors.

3 Problem Definition
3.1 Execution Model

At a high level, remote users access data privately
by indirecting their requests through secure coprocessors
running in the service’s data center (Fig.1). A coproces-
sor uses standard attestation techniques [38] to convince
those users that it is a real secure coprocessor running
the expected code. Collectively, using the data center’s
servers as untrusted storage, the secure coprocessors im-
plement an ORAM algorithm, allowing them to answer
requests without leaking information to the server.

In contrast to having the users execute the ORAM
algorithm directly, this model keeps the bandwidth-
intensive ORAM protocol within the data center net-
work. It also allows the users to share a single ORAM,
rather than creating an ORAM per user or forcing the
users to share a secret key.

In this work, we assume each coprocessor has lim-
ited internal trusted storage that can indefinitely store a
few keys and a small amount of state. The coprocessors
are distinct from the server, which is the untrusted com-
ponent that handles storage and communication. The
server may run on multiple processors and/or machines
to achieve parallelism and fault tolerance.

3.2 Threat Model

We assume the attacker physically controls the ser-
vice’s data center and can run arbitrary code on the
servers. The attacker can also submit known queries to
the service and observe the service’s internal operations
in response. However, we assume he cannot violate the
tamper-responding secure coprocessors. We assume this
not because secure coprocessors are absolutely inviolate,
but because they present a high barrier. By defending
against the large class of attackers who cannot subvert
them, we substantially increase security.

We do not consider denial-of-service attacks, since the
attacker can always power off the service or sever the
network connection. We also do not consider attacks that
could be launched by a standard network attacker; e.g.,
the attacker is able to observe that a particular IP address
has submitted three requests today. If desired, users can
mitigate this risk via standard techniques [9].

3.3 Strawman Solutions

Used naı̈vely, parallelism can be problematic.
Replication. One natural approach to using a collec-
tion of secure coprocessors is replicated execution, i.e.,
to have each secure coprocessor maintain an independent
copy of the ORAM data structure. Such a scheme would
trivially improve response throughput, but not latency.
Unfortunately, this also increases storage requirements
enormously. For a database of N items, ORAM schemes
typically require the untrusted server to store between
O(N) and O(N logN) encrypted blocks. The encryp-
tion key is unique to the ORAM scheme, meaning that
each replica of the ORAM scheme would require its own
freshly encrypted copy of the original database. While
storage is indeed growing cheaper, existing data sets are
already hundreds or thousands of terabytes (§4.1), so
replicating them tens of thousands of times is imprac-
tical. It is also unclear how this would support writes.
Distributed Caches. A more practical approach would
have all the secure coprocessors share a key and oper-
ate on the same encrypted data set. Unfortunately, deal-
ing with writes as well as reads is complicated, and even
handling only reads may leak information about whether
two requests are for the same address. Imagine two re-
quests arrive for item v, each routed to a different co-
processor. If neither coprocessor has previously fetched
v, then neither one will find it in their cache, and hence
both will request v from the server. From this, the server
will observe that two different requests were actually for
the same block, undermining ORAM’s obfuscation.

Typical secure coprocessors are I/O-bound (§4.2), so
coordinating coprocessors via explicit messages is too
expensive. Instead, we require new protocols to synchro-
nize the coprocessors and keep the ORAM secure.

202 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Data Set # of Blocks Block Size
Map Tiles 235 10 KB
Twitter Tweets 235 0.14 KB
Facebook Images 236 10 KB
Flickr Photos 232 5 MB

Table 1: Data-Center-Scale Data Sets. Approximate sizes.

4 Operating Constraints
The main practical challenges of using ORAM are the

large size of real data sets used by real web services
(§4.1), and the limitations of secure hardware (§4.2).

4.1 Big Data

Modern web services expose vast data sets via public
interfaces; we describe several examples (Table 1).
Map Tiles. Many location-based services ultimately plot
a user’s location, or her friend’s, on a map. Even if
the exchange of location data is strongly protected [39],
retrieving map information may leak the location data.
Thus, a privacy-preserving map service must also ensure
the obliviousness of a user’s tile requests.

To characterize a real-world map service, we sam-
pled Bing Maps tiles on “road” view. This service uses
256× 256-pixel tiles organized by levels of detail, also
known as zoom levels. The number and size of tiles
varies by level, but about half (∼ 235) are at level 19.
The maximum tile size at that level is ∼10 KB.
Twitter. Although Twitter posts or “tweets” are public, a
user may wish to conceal which accounts she follows or
which tweets she is interested in. According to public re-
ports [40], Twitter currently receives one billion tweets
every week. Extrapolating from previously published
metrics [41], we estimate that Twitter has received ap-
proximately 235 tweets throughout its history. Each tweet
is 140 bytes or less.
Facebook Images. Social networks raise many privacy
concerns, but even if they migrate to more decentralized
and privacy-enhancing platforms [5], data retrieval will
still threaten privacy unless it hides access patterns.

An illustrative data set is Facebook’s photo sharing
site, with more than 65 billion photographs consuming
20 petabytes [42]. Each photograph is stored in four im-
age sizes. Extrapolating from published numbers and
images sampled from Facebook, we estimate that these
sizes consume an average of 3 KB, 10 KB, 18 KB, and
71 KB respectively. A site deploying ORAM for these
images would likely use a separate ORAM structure for
each size. Since 84.4% of image requests are for small
images [42], we choose this image size as representative.
Flickr Photos. Flickr is another popular photo sharing
site with over six billion photos as of August 2011 [43].
Like Facebook, it stores versions of each photo in multi-
ple sizes; unlike Facebook, it also makes the original im-
age available. Consumer-grade cameras produce images

Infineon SLE 88 IBM 4764
CPU 66 MHz 266 MHz
Memory 16 KB 32 MB
I/O 12 KB/s 9.85 MB/s
3DES, 1 KB 73 KB/s 1.08 MB/s
SHA-1, 1 KB 155 KB/s 1.42 MB/s
Cost $4 $8,000

Table 2: Secure Coprocessor Performance. Specifications
and measured performance of representative coprocessors.

in the 3–14 MB range, so we arbitrarily choose 5 MB to
represent data sets with larger blocks.

4.2 Secure Hardware Performance

We selected a representative from each end of the co-
processor spectrum and performed microbenchmarks to
characterize their performance (Table 2). Both devices
provide cryptographic accelerators, internal key storage,
active protection against physical tampering, and the
ability to attest to the code they run [38].

At the low end, the Infineon SLE 88 [44] is a small but
surprisingly powerful chip often found in smart cards,
pay TV boxes, and various military applications. For use
in a data center, it can be packaged in a USB dongle.
We use the CFX4001P cards, which come with 400 KB
of EEPROM, 16 KB of RAM, and a 66 MHz CPU. The
chip’s design is EAL5+ certified, and the physical pack-
aging is certified at FIPS 140-2 level 3, meaning that
it has a high probability of detecting and responding to
physical attacks. It includes sensors to detect voltage and
temperature irregularities, and it draws power across a
capacitor to frustrate power analysis. Its biggest appeal
is its price, $4, making it feasible to add one to every
computer in a data center.

In contrast, the IBM 4764 [45] is a high-end secure co-
processor. Each contains a 266 MHz PowerPC 405 CPU,
with 32 MB of RAM and much faster I/O and crypto-
graphic processing. The 4764 is certified at FIPS 140-2
level 4, the highest possible, meaning it includes strong
protections that detect physical tampering and respond
by zeroing its secrets.

5 Scaling Oblivious RAM to Data Centers
In this section, we describe our scheme for achieving

a highly parallel ORAM service. We start by describ-
ing the Binary Tree algorithm [14], then show how to
restructure it to enable parallelism, fault tolerance, and
resilience to a malicious server. Our technical report con-
tains proofs of correctness and security [46].

5.1 Background: The Binary Tree Algorithm

We first describe the Binary Tree ORAM algorithm of
Shi et al. [14] without any of our modifications. Figure 2
summarizes the notation, Figure 3 contains pseudocode,
and Figure 4 depicts a high-level overview.

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 203

Symbol Meaning
N # of block addresses
B Block size in bits
M Maximum # of operations on the ORAM
δ Probability of ORAM failure
R # of stages, typically ≈ 4 for our data sets
c # of designators that can fit into a block

Figure 2: Notation Summary.

5.1.1 Functionality

We assume that the data blocks stored in the ORAM
have virtual addresses ranging from 1 to N. We further
assume that all blocks have size B bits. We assume there
will be a maximum of M operations, and that we can
tolerate a failure probability of δ during that sequence of
operations. Our technical report shows how to remove
the assumption of a bounded number of operations [46].

Users can perform reads or writes. A read takes an
address and returns the block with that address. A write
takes an address and new block, and overwrites the old
block at that address. To prevent the server from distin-
guishing between reads and writes, we treat them identi-
cally; this requires an ignored input block for reads and
an ignored output block for writes.

5.1.2 Operation

The Binary Tree algorithm, as illustrated in Figure 4,
uses a binary tree with N nodes called buckets. Each
bucket contains O(logN) entries, each of which contains
an address and a block. Each bucket is treated as a “triv-
ial ORAM”; it is accessed by examining all entries and
reading or updating the one with the desired address.

To track an entry’s location in the tree, the coprocessor
maintains a mapping from addresses to designators. A
block will always be in an entry of a bucket on the path
from the root to the leaf indicated by the designator.

When a data entry is written to the ORAM, we insert it
into the root bucket of the binary tree. To prevent buck-
ets from overflowing, on each request, we randomly se-
lect two buckets from each level of the tree, for a total of
O(logN) buckets, to evict from (EvictStage in Fig-
ure 3). To evict from a bucket, we remove a valid entry
from it and add that entry to the bucket’s child, along the
path toward the evicted designator’s leaf bucket. If no
empty space exists in that child, the ORAM algorithm
fails, so bucket sizes are chosen so that the probability
this ever happens is ≤ δ.

When a user requests a read or write at an address
(ORequest), we look up the address’s designator in a
table that maps addresses to designators. We then read
all buckets in the tree along the path between the root
and this designator (LookUpAndRemove). When we
find the entry, we remove it from its current bucket and
rewrite it at the top of the tree using a new designator.

ORequest (Address, IsWrite, NewBlock):
For each Stage from 1 to R:

If Stage= 1: Block← the sole stage-1 block
Else:
EvictStage(Stage)
Block← LookUpAndRemove(Address, Stage,

Designator)
If Stage= R:

If IsWrite: Block← NewBlock
Else:
CurDes← designator at Address’s offset in Block
Randomly update des. at Address’s offset in Block
Designator← CurDes if valid, else random

Insert Block into the root bucket for Stage
Return Block

LookUpAndRemove(Address, Stage, Designator):
Result← 0
For each Bucket along tree path toward Designator:

For each entry index in Bucket:
Read the entry from storage into Entry
If Entry’s address field matches Address:

Result← Entry’s contents field
Entry← 0

Re-encrypt Entry and write it to storage
Return Result

EvictStage(Stage)
Compute the set of buckets to evict BucketsToEvict
For each Bucket in BucketsToEvict:
SelectedIndex← index of a valid entry in Bucket
EvictedEntry← entry SelectedIndex of Bucket
Invalidate entry SelectedIndex of Bucket
Re-encrypt other entries of Bucket to obscure access

Designator← designator in EvictedEntry
Child← Bucket’s child on path toward Designator
SelectedIndex← index of an empty entry in Child
Entry SelectedIndex of Child← EvictedEntry
Re-encrypt all entries of Bucket’s children to obscure

Figure 3: Basic Pseudocode for ORAM operations. Overlined
values must be hidden from the server.

Thus, repeated reads for the same entry will produce dif-
ferent lookup paths through the tree.

The table mapping addresses to designators must itself
be accessed obliviously. However, it contains O(N) map-
pings, making it far too large to store locally. Fortunately,
each mapping is tiny, about log2 N bits, so the count c of
mappings that fit in a block is large. Thus, we can re-
cursively apply the same ORAM scheme to this smaller
collection of blocks. Each ORAM, or stage, will be pro-
gressively smaller, and the Rth stage where R ≈ logc N
will be a single block. As a result, each access performs
R− 1 lookups on increasingly larger ORAMs to deter-
mine the designator for the requested entry. The entry is
then retrieved from, or written to, stage R. R is generally
quite small; indeed, for the data sets from §4.1, R ≈ 4.

204 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Address Designator
12345

22222

34345

91282.
.
.

LLR

RRR

RLL

LRL.
.
.

1) Lookup
 designator

2) Follow
 designator

R

L

L

Stage R 4) Reinsert
 entry

3) Remove
 entry

Stage R -1 Address Designator
12345

22222

34345

91282.
.
.

LLR

RRR

RLL

LRL.
.
.

Stage R-2 Address Designator
12345

22222

34345

91282.
.
.

LLR

RRR

RLL

LRL.
.
.

...Stage 1

Figure 4: Overview of the Binary Tree Algorithm. Each of the N buckets in the binary tree consists of O(logN) entries. To find
the entry for a given address, we look up the address’s designator, and follow the path through the tree dictated by that designator.
For each bucket on the path, we read all of the entries in that bucket. This continues along the entire path, even if we find the
address we’re looking for, to hide the entry’s actual location from the server. After reading or writing the entry, we remove it from
wherever it was found, assign it a new designator, and reinsert it into the top-level bucket. Since the address-to-designator table is
large, it is itself stored in a recursive version of the ORAM structure. Each stage is smaller than the one it stores designators for.

5.1.3 Storage

The server provides storage to support the ORAM ser-
vice. Since the server is distrusted, coprocessors encrypt
all sensitive data using a symmetric key with an IND-
CPA secure encryption scheme before storing it with the
server. The IND-CPA property ensures that the server
cannot learn anything about the underlying plaintext, not
even whether it has been modified by the coprocessor.
Each encrypted item has a name, like “7th entry in bucket
12 at depth 6 of stage 3,” so that coprocessors can tell the
server which item to store or retrieve.

5.2 Parallelizing ORAM for the Data Center

5.2.1 Initialization

To parallelize the Binary Tree algorithm, we need to
be able to form multiple coprocessors into a coordinated,
mutually-trusting group. We do this by letting any par-
ticipating coprocessor C vet and induct any other copro-
cessor Cnew that wishes to join the service.

To initiate the service, the server connects to a copro-
cessor and asks it to create a new ORAM of size N and
block size B. The coprocessor generates fresh key mate-
rial and outputs a public key, PublicKey.

To join the service, Cnew asks the server for
PublicKey. Via attestation [38, 47, 48], C and Cnew con-
vince each other that they are both running the correct
code in a secure environment. Cnew then uses PublicKey
to create a secure channel to C, and C transmits the ser-
vice’s secret key material to Cnew.

5.2.2 User Requests

A user initiates secure communication with the
ORAM service by requesting a standard attestation from
one of the secure coprocessors [38, 48]. The attestation
certifies that PublicKey is held only by true secure co-
processors running the ORAM code. Using PublicKey,
the user creates a secure channel to a coprocessor. She
uses this channel to convey the operation she wishes to
perform, without revealing it to the server. The copro-

cessor coordinates with the other secure coprocessors in
the data center to perform the Binary Tree algorithm in
parallel, as described below. Eventually, the coprocessor
returns the result over the secure channel.

5.2.3 Parallelism Goals

Our primary aim is to minimize coprocessor reads and
writes of large blocks on the critical path. We also use
parallelism to mitigate computationally taxing steps. We
only worry about expensive computations, such as hash-
ing and encryption. Thus, we treat as O(1) any operation
that is technically O(logN) but actually fast, like an XOR
of two log2(N)-bit numbers. To distinguish expensive
coprocessor operations from relatively cheap server op-
erations, we use OC(·) to summarize coprocessor band-
width and CPU costs, and OS(·) for server overhead.

The main limit to our ability to parallelize is the it-
eration of lookups through the R ≈ logc N stages. Each
iteration produces the designator for the next, so we can-
not perform them in parallel. Fortunately, since c is large,
R is typically small. For our data sets, and for most data
sets we can envision, it is five or less.

The primary bottleneck of the algorithm is the R en-
try lookups, each of which reads B-size entries from the
server in two nested loops: one over the O(logN) buck-
ets in the path, and one over the O(logN) entries in each
bucket. Thus, the overhead is OC(RB log2 N). This is
substantial given how slowly coprocessors operate.

Below, we show how to employ the parallelism of
O(log2 N) coprocessors to reduce the time, including
bandwidth use, to OC(RB). We find that, for the data
sets we consider and expect to see in practice, this allows
us to achieve low latency (§7).

5.2.4 Parallelizing Bucket Accesses

We show how to access entries in a bucket in OC(B).
Parallelizing entry updates is straightforward since

there is no dependency between entries in a bucket. By
assigning one coprocessor to each of the O(logN) entry
indices, we can complete all iterations in the time it takes

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 205

to do one. The dominant cost for this is that of reading,
decrypting, encrypting, and writing an entry: OC(B).

It is more difficult to parallelize entry reads. If we
assign one coprocessor to each entry index examined,
they must all cooperate to collectively produce the out-
put. Fortunately, we know that exactly one of the co-
processors has something to contribute to this compu-
tation, since each is assigned a different index but only
the one assigned index i has anything to contribute to
the computation. Thus, the output can be computed by
XOR’ing the coprocessors’ respective outputs. In §5.2.7,
we present an algorithm called oblivious aggregation for
efficiently (in OC(B) time) and securely computing such
a collective XOR.

Finding a valid or invalid entry index in a bucket uses
a lot of coprocessor bandwidth, since it requires reading
all of the bucket’s entries. Thus, we separate this small,
frequently-accessed validity information from the large
O(B)-size entries containing them. Specifically, we use a
validity vector: a vector of bits, one per entry, indicating
if that entry is valid. Naturally, we must also keep this
vector current whenever we change a bucket.

5.2.5 Parallelizing Lookups

To look for an entry (LookUpAndRemove), we must
look at all O(logN) entries in all O(logN) buckets on the
path to the designator. This takes OC(RB log2(N)) time.
But, if we access all entries in parallel on O(log2(N))
coprocessors, we only use OC(B) bandwidth R−1 times.
The challenge is that these coprocessors must cooperate
to compute the lookup result.

Fortunately, for each of these computations, at most
one of the coprocessors will have something to contribute
to it. This is because an invariant of the algorithm is that
the same virtual address appears in at most one bucket
of the tree [14]. This is ensured by preceding any write
to address v with a removal of the entry with address v
from the tree. Thus, the output (Result) can be computed
by XOR’ing the coprocessors’ respective contributions,
at most one of which is nonzero. This means we can use
oblivious aggregation (§5.2.7) to effect this computation.

A minor wrinkle is that, as we will see, oblivious ag-
gregation requires the server to XOR together O(log2 N)
values. Fortunately, the commutativity of XOR makes
it straightforward to parallelize using a modest number
of untrusted server processors. Each of O(logN) server
processors can XOR O(logN) values in parallel, then
one processor can XOR those processors’ results; this
all takes OS(RB logN) time. If increased speed is de-
sired, each of O(log2 N) server processors can do it in
OS(RB log logN) time. Since these XORs take place on
fast server processors at GB/s, orders of magnitude faster
than coprocessor writes, the time spent on this is trivial.

5.2.6 Parallelizing Eviction

Finally, we consider entry eviction (EvictStage).
Naı̈vely, this requires iterating serially through the tree.
For each bucket selected for eviction, we find a valid en-
try, remove it, find an empty space in its child, and up-
date both children so the server cannot tell which child
receives the entry. Since we evict from O(logN) buck-
ets at each stage and evict to twice that many, this takes
OC(RB log2 N) time.

Fortunately, we can parallelize eviction by assigning
a coprocessor to each of the involved entries. We have
already seen how to parallelize access to a bucket across
one entry per coprocessor. Furthermore, eviction opera-
tions for buckets are independent of each other, as long
as we first do all eviction from buckets and then do all
eviction to buckets. As a consequence, eviction takes
OC(RB) time with O(log2 N) coprocessors.

In addition to the parallelism within eviction, we ob-
serve that eviction and lookup can themselves be per-
formed in parallel, given enough coprocessors. This can
be done safely since evict only moves each entry along
the path specified by its designator, while lookup ex-
amines all buckets on that path. Thus, eviction cannot
change whether a lookup will succeed.

5.2.7 Oblivious Aggregation

Sometimes our algorithm requires q secure coproces-
sors to aggregate their individual values, without reveal-
ing these values to the untrusted server. More concretely,
each secure coprocessor m knows some private value
vm ∈ V , and they collectively need to output the com-
bined value S ←

⊕q
m=1 vm without revealing any partic-

ular vm. We could accomplish this by having each secure
coprocessor encrypt and output its value, and then have
one secure coprocessor read in, decrypt, and XOR all of
the values together, but this would take OC(q) I/O opera-
tions, which are quite expensive for the secure coproces-
sors (§4.2). If we use the protocol below, we only need a
single I/O operation from each secure coprocessor. The
server still does OS(q) computation, but the constants are
so small that this is essentially negligible.

In our protocol, we assume that the secure coproces-
sors are given a fresh nonce j and that each secure co-
processor knows its distinct index 1 through q. We also
assume the secure coprocessors share a key for a crypto-
graphically secure pseudorandom function PRF.

Protocol: Given its secret value vm ∈ V , shared key
K, fresh nonce j, and the number of secure coprocessors
q, each secure coprocessor m computes

xm = PRFK(j ‖ m)⊕PRFK(j ‖ (m+1 mod q))

It then outputs zm = xm ⊕ vm. From these, the untrusted
server computes and outputs Z =

⊕q
m=1 zm.

206 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Proof sketch: If an adversary A can distinguish the
set of values {vm} from a random set {wm} with the same
XOR, then A can also be used to distinguish the output
of PRF from random, which contradicts the security of
PRF. A full proof of correctness and security appears in
our technical report [46].

5.3 Dealing with Malicious Servers

Thus far, we have assumed an honest-but-curious
server. But, if we distrust the server enough to use
ORAM to hide our data access patterns, it seems sensi-
ble to treat the server as fully malicious. Since the server
acts as a relay between coprocessors, it has four broad
classes of attack available: attacks on data secrecy, in-
tegrity, freshness, and availability.

Attacks on data secrecy, are, at a high level, handled
by the ORAM protocol itself, and, at a low level, pre-
vented by encrypting all secret values with an IND-CPA
secure scheme. Combined with a MAC, this protects data
secrecy against a malicious server [49]. Data integrity
can largely be addressed by having the coprocessors
MAC their outputs and verify MACs on their inputs. The
oblivious aggregation protocol complicates this, how-
ever, since the server combines the coprocessors’ output,
but cannot produce a MAC on the result (§5.3.1). Data
freshness is generally complicated in ORAM schemes,
since, for efficiency reasons, each request touches only a
portion of the data structure (§5.3.2). Finally, we ignore
data-availability or denial-of-service attacks, since they
are impossible to prevent; the coprocessors are entirely
dependent on the server for communication.

Overall, we defend against malicious servers using
only OC(RB + R logN) time per request, compared to
OC(RB) for honest-but-curious servers. We require no
more coprocessors to perform the necessary validations
than are needed to parallelize the basic algorithm.

5.3.1 Ensuring Data Integrity

As mentioned above, most integrity attacks can be pre-
vented by having each coprocessor MAC its outputs and
check the MAC on its inputs. Coprocessors also check
data from the server, e.g., to check that a given bucket
is indeed scheduled for eviction based on the current re-
quest number.

The use of oblivious aggregation complicates integrity
checks, since the server computes the final output Z and
clearly cannot produce a corresponding MAC. Thus, we
ensure that Z is always self-attesting; i.e., it consists of a
statement and a MAC of that statement’s hash.

5.3.2 Ensuring Data Freshness

The attacker can learn inappropriate information if al-
lowed to present stale state to a coprocessor. By replay-
ing an old state with the same input as before, he may
learn something from the differences in the coprocessors’

Evicted from

Evicted to

Visited during lookup
0

1

2

3

4

Depth

Figure 5: Accessed Buckets. In each half of each level of the
bucket tree, at most four buckets are accessed during a request:
one evictor, two evictees that are children of evictors, and one
that is accessed by the lookup for the specified address. Some-
times these overlap, particularly at the low depths depicted in
this figure; e.g., in the left half of depth 3 (shaded), one bucket
is an evictor and evictee, so only three buckets are accessed.

output. By replaying an old state with a new input, he
may learn something from the differences and similari-
ties between how the coprocessor handles the two inputs.

We prevent attacks in the first class by making co-
processors stateless and deterministic. This ensures that
given the same state with the same input, a coprocessor
will always produce the same output. An exception is
that encryption uses randomness, but since our encryp-
tion scheme is IND-CPA secure, the server gains no in-
formation by making us encrypt the same content repeat-
edly with different randomness.

We prevent attacks in the second class by uniquely
numbering each request and associating each state with
one request, as we will now describe. This way, given
the same state with two different requests, coprocessors
will only act on the request associated with that state.

UNIQUELY NUMBERING REQUESTS. To ensure each
request receives a unique number, we use a master copro-
cessor. §5.4 shows how to replicate the master for fault
tolerance, but for simplicity here we treat it as a single
coprocessor. When the user initially submits a request to
a coprocessor, the coprocessor encrypts it and provides
it to the server, which gives it to the master. The mas-
ter keeps an internal counter of how many requests have
occurred thus far. When a new request arrives, it assigns
it the next request number and increments the counter.
The master binds the request to the assigned number by
outputting a MAC of the two values.

BINDING STATES TO REQUESTS. We use an authenti-
cated data structure to bind each state of the ORAM data
structure to the request that produced it. Thus, coproces-
sors will only act on state for request r+1 if the state is
bound to request r. Giving a coprocessor state r with any
other request will produce an error.

Binding the entire ORAM structure to a request num-
ber is difficult since it is has enormous size, O(BN logN).
To cope with this scale, we use a collection of Merkle

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 207

trees [50]. A Merkle tree is a tree of hashes such that
each leaf is the hash of a component of a data structure,
and each parent is the hash of the concatenation of its
children. A MAC using the root hash is equivalent to a
MAC using a hash of all data structure components.

We use one Merkle tree for each combination of stage,
tree half (left or right), and depth. We have a separate
Merkle tree for each combination of half and depth be-
cause, as we will see, it makes it easy to quickly evaluate
whether an entire subtree is unchanged by an operation.
This makes it tractable to generate a new root hash after
each operation, since large swaths of the Merkle tree that
are unchanged do not have to be touched.

Each Merkle-tree leaf is the hash of a bucket’s entry,
with a bucket’s validity vector treated as the zeroth entry.
Intermediate hashes above the leaves represent contin-
uous ranges of entries within the same bucket, and the
topmost of these represent entire buckets. Above that,
Merkle hashes represent continuous ranges of bucket in-
dices within the same depth. The root hash represents all
entries in all buckets, but only in one half of the tree, at a
given depth, and in a given stage.

Because of this structure, it is possible for a copro-
cessor to quickly evaluate whether a Merkle hash is un-
changed by an operation. Each hash corresponds to only
a single side and depth, and a certain bucket index range
within that depth. A coprocessor can be told, using only
O(1) bandwidth, what bucket index was looked up at that
side and depth, and it can compute in O(1) time which
buckets were evicted from a given side and depth. Thus,
a coprocessor can quickly determine whether anything
could have changed in the subtree summarized by the
Merkle hash. If not, it can treat an attestation of the
hash’s value after request r as an attestation of the hash’s
value after request r+1.

We now analyze the time to read or update the Merkle
trees. We have seen that a coprocessor can access a
Merkle node in OC(1) time. For any Merkle depth d,
all Merkle nodes can be handled in parallel, even nodes
from different Merkle trees and even different stages; for
details about how to coordinate these parallel accesses,
see our technical report [46]. Since each Merkle tree has
Merkle depth O(logN), the total time to update all the
Merkle trees is OC(logN).

Next, we analyze the number of coprocessors needed
to achieve this time. Each Merkle tree corresponds only
to buckets from one side and depth, and thus contains at
most four buckets that can change. This is because at
each bucket depth and half there is at most one evictor,
two evictees, and one bucket used for lookup (Fig. 5).
Since each bucket contains O(log2 N) entries, and there
are R stages, there are at most O(R log2 N) nodes at
each Merkle depth that change. Thus, we need at most
O(R log2 N) coprocessors for maximum parallelism.

5.4 Fault Tolerance

Since it is fairly well understood how to make un-
trusted components fault-tolerant through replication, we
discuss only how to tolerate coprocessor failures.

Our system is designed so all of the coprocessors, ex-
cept the master coprocessor, keep no long-term state be-
yond N, B, UHFSeed, and keys (§5.3.2). Thus, if a non-
master fails, its functionality can be duplicated by having
a freshly initialized coprocessor join the ORAM service.

To deal with the failure of the master coprocessor,
the master should actually consist of 2 f + 1 cooperat-
ing master instances. Here, f is the number of mas-
ter coprocessor faults we want to tolerate. A coproces-
sor becomes a master instance by randomly choosing a
fresh, globally-unique instance identifier and storing this
in nonvolatile storage, alongside a counter set to zero.
The counter’s value indicates the highest request number
the instance has assigned using this identifier. The global
uniqueness ensures that if the coprocessor loses its state
and creates a new instance, the new instance will not be
confused with the old one. Thus, the counter associated
with an instance will never roll back.

A master instance will assign, via attestation, any
number higher than its current counter to any request the
server asks it to. A request is considered definitively as-
signed a number when a quorum of the instances, i.e., at
least f +1 of them, have assigned it the same number.

To cope with master instance failures, we replace the
master instances periodically, say once a day, via dele-
gation. To begin delegation, the server selects a new set
of master instances, and asks the existing masters to del-
egate their authority to the new group starting with the
next request number r. A master performs this delegation
if its counter is less than r. It delegates its authority by
deleting its master instance and outputting an attestation
of its delegation that includes r and the new set of master
instances. Once the server collects such attestations from
a quorum of the old master instances, it presents them as
proof that the new master instances are responsible for
requests r and beyond. Our technical report contains a
proof that delegation can never cause two requests to be
assigned the same request number [46].

6 Implementation
Our implementation of Shroud consists of two compo-

nents: the coprocessor and the server.
The coprocessor component runs on Infineon SLE 88

cards. The implementation includes all aspects of our al-
gorithm, including protection from malicious servers as
described in §5.3. It is 2,898 lines of C, as measured by
SLOCCount [51]. Our code uses 3DES for encryption,
since the smart card supports it with hardware acceler-
ation. It uses SHA-1 as its hash function, HMAC for a
MAC, and the NH hash from UMAC [52] as the UHF.

208 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Block size (bytes)

Look up entry
Evict from entry
Evict to entry
First-stage lookup

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

P
re

d
ic

te
d
 t

im
e

(m
s)

Block size (bytes)

Look up entry
Evict from entry
Evict to entry
First-stage lookup

Figure 6: SLE 88 Performance. The effect of block size on the time to perform the most performance-impacting operations in our
ORAM algorithm. The left side shows actual measured performance, and the right side shows our simulator’s predictions. Error
bars, generally too small to see, indicate 95% confidence intervals about the mean of 50 trials.

The server component consists of a worker, a sched-
uler, and a file server. A worker attaches to a coprocessor
and sends it commands. The scheduler parcels out work
among several workers to complete a user’s request. The
file server provides access to items by name and also
facilitates communication between workers. The server
component is 5,000 lines of C#; 932 of these lines are the
scheduler. We have not yet implemented user interaction
or fault tolerance.

To evaluate our system at modest scale, we also built
a coprocessor emulator. It simply runs the coproces-
sor’s code on the worker’s CPU, then waits an additional
amount of time consistent with how much longer a co-
processor would have taken.

Finally, to evaluate our system at large scale, beyond
the number of machines we have available, we built a
simulator. It uses the measurements from our imple-
mentation to extrapolate the performance on thousands
of machines. The simulator is 893 lines of Python.

7 Evaluation
In all experiments, unless stated otherwise, we use

the following parameters: 235 addresses; 10-KB blocks;
10,000 coprocessors; desired lifetime failure probability
2−80; and ORAM lifetime 250 requests. These are mod-
eled after the map tiles data set. Because user interaction
and fault tolerance are not yet implemented, we do not
evaluate their performance impact.

When evaluating a storage system, it is typically vital
to ensure the workload is realistic, e.g., by using traces
of a real system. However, to avoid leaking information
via timing channels, ORAM always has the same perfor-
mance no matter what addresses are accessed and which
accesses are reads or writes. Furthermore, since our algo-
rithm never overlaps multiple accesses, workload bursti-
ness also has no effect on performance. Therefore, work-
load is irrelevant and we use a simple synthetic one.

7.1 Microbenchmarks

We evaluate how long different steps of our ORAM
algorithm take on a real coprocessor, the Infineon SLE
88. We focus on three operations that consume signif-
icant amounts of time and must be repeated more than

 0

 50

 100

 150

 200

 250

 300

 350

 400

Assign
request
number

Merkle
previous

state

Middle
stage
insert

Last
stage
insert

Update
validity
vector

Get
index

to evict

Merkle
next
state

Encrypt
reply

E
x
e
c
u
ti

o
n
 t

im
e
 (

m
s)

Figure 7: Time to Perform Miscellaneous Algorithm Steps
on the SLE 88. Times shown are for 1 KB block sizes. Er-
ror bars, generally too small to see, indicate 95% confidence
intervals about the mean of 50 trials.

once, since these are the primary drivers of performance
and opportunities for use of parallelism. These are look
up entry, evict from entry, and evict to entry.

The left graph of Figure 6 shows the results of 50 trials
for each step at each of five block sizes. We observe that,
as expected, the dominant cost in all steps is proportional
to block size.

The right graph of Figure 6 shows the predictions
made by our simulator for these times. We see that they
are in close agreement, and never off by more than 3%.
Since we have few coprocessors, when we later perform
simulations of data-center scale deployments we will use
our validated simulator instead of real hardware.

For completeness, in Figure 7 we show the time taken
by other algorithm steps implemented on the SLE 88.

7.2 Benefits of Parallelism

To evaluate the parallelism Shroud can achieve, we
employ a cluster of machines; each has 24 GB of RAM,
two 10 Gbps NICs, and two quad-core Intel E5410,
2.33 GHz processors. As Figures 8 and 9 show, the se-
cure coprocessors are the dominant bottleneck.

First, we measure parallelism on our full system. Due
to limited budget, we only use eight coprocessors: Co-
processors are inexpensive when bought by the thou-
sands, but expensive when bought individually. Figure 8
shows the results of these experiments; because of the
modest scale, we use 1024-byte blocks and set N = 220,
M = 220, and δ = 2−20 to make it finish in a reasonable
amount of time. We see that by far the biggest compo-

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 209

 0

 500

 1000

 1500

 2000

 2500

2 4 6 8

R
eq

u
es

t
la

te
n
cy

 (
se

c)

Number of coprocessors

Eviction

Lookup

Merkle

Non-coprocessor

Figure 8: Request Latency of Shroud. Total time per request
for a 1 KB block, including defense against a fully malicious
adversary. Non-coprocessor overhead is the part of average
request time not accounted for by coprocessor run time.

 0

 200

 400

 600

 800

 1000

 1200

4 8 16 32 64 128

R
eq

u
es

t
la

te
n
cy

 (
se

c)

Number of coprocessors

Eviction

Lookup

Merkle

Non-coprocessor

Figure 9: Request Latency of Server with Emulated Co-
processors. Total time per request for a 1 KB block, including
defense against a fully malicious adversary.

nent of operation time is time spent running on copro-
cessors, over 98% in all cases. Operation is highly par-
allelizable with this few coprocessors, so we see near-
linear scaling with number of coprocessors.

Since the data set easily fits in memory, we do not in-
cur disk latency. We expect that, under normal condi-
tions, reading all the entries needed for request process-
ing will incur only modest disk latency with careful disk
scheduling, since it is amenable to bulk prefetching. The
disk-scheduling element, however, is future work.

To evaluate on a larger scale, we use our coprocessor
emulator in a cluster with 139 machines. We run one
scheduler, 10 file servers, and up to 128 workers. Fig-
ure 9 shows the results of this experiment; again, we
use 1024-byte blocks and set N = 220, M = 220, and
δ = 2−20. For small numbers of coprocessors, the em-
ulated results match their real counterparts to within 6%.
We see, as before, that most of the time is spent by copro-
cessors, and that performance scales essentially linearly.
This is not surprising since, thanks to the high parallelism
of our design, there is nearly always parallel work avail-
able to keep all coprocessors busy.

To evaluate parallelism on a massive scale, we now
use our simulator. We vary the number of coprocessors
used for ORAM and measure the time to perform a re-
quest. Recall that the algorithm treats reads and writes
identically, so it does not matter which we do.

Figure 10 shows the effect of varying the number of
coprocessors for various workloads using SLE cards.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000

R
eq

u
es

t
la

te
n
cy

 (
se

c)

Number of coprocessors

Flickr Photos
Map Tiles

Twitter Tweets

Figure 10: Varying Number of Infineon SLE 88 Coproces-
sors. The effect of number of coprocessors on ORAM request
latency for various workloads using simulated SLE 88 copro-
cessors. X-axis and Y-axis are log-scale.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

R
eq

u
es

t
la

te
n
cy

 (
se

c)
Number of coprocessors

Flickr Photos
Map Tiles

Twitter Tweets

Figure 11: Varying Number of IBM 4764 Coprocessors.
The effect of number of coprocessors on ORAM request latency
for various workloads using simulated IBM 4764 coprocessors.
X-axis and Y-axis are log-scale.

We see that parallelism is quite effective, reducing the
time by over three orders of magnitude. For the Twit-
ter tweets workload, it reduces the time from 13,000 sec
to 8.6 sec, and for the map tiles workload, it reduces it
from 160,000 sec to 44 sec. For the Flickr photos work-
load, it also reduces it substantially, from 16,000 hours
to 4.1 hours, but this is still an unreasonably long period
of time. This is due to the large block size, 5 MB; re-
call that our ideal performance is O(RB) even without
defense against malice.

Latency reduction is essentially linear in the number
of coprocessors, since thanks to our restructuring, most
of the expensive operations are highly parallelizable. A
notable exception is the transition from one to two copro-
cessors, which reduces cost by much less than a factor of
two because of the additional requirements for communi-
cation between the coprocessors. Also, effectiveness of
parallelism stops after a certain number of coprocessors
as we no longer have enough tasks to distribute among
them. This occurs when we have about 19,000 coproces-
sors, enough to handle all entries in all buckets evicted to
during the final stage.

Figure 11 shows the same experiment conducted with
simulated IBM 4764 coprocessors. We see the same
trend of highly effective parallelism, albeit with much
lower latencies. However, since these cost $8,000 each,
the low latencies shown are not practically attainable, at
least until technology trends make HSMs with this per-
formance more affordable.

210 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000 1e+06

R
eq

u
es

t
la

te
n
cy

 (
se

c)

Total cost of coprocessors ($)

Infineon SLE 88
IBM 4764

FPGA (estimated)

Figure 12: Latency as a Function of Budget. Request la-
tency as a function of money spent on coprocessors, for differ-
ent coprocessor types. X-axis and Y-axis are log-scale. FPGA
line assumes 1.4 Gb/s for all operations and $100 per FPGA.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

2 3 4

M
ax

 c
o
p
ro

cs
 u

sa
b
le

Stage

Evict to entry
Merkle previous or next state
Evict from entry
Look up entry

Figure 13: Available Parallelism. How many coprocessors
each step of the algorithm can make use of.

To fairly compare these two coprocessors, we conduct
another experiment where we hold total coprocessor cost
budget fixed and see how fast ORAM is with each copro-
cessor type. Figure 12 shows the results. We see that for
low budgets, the inexpensive Infineon SLE cards offer
better performance per unit cost. Only with more than
about $100,000, when the SLE cards exhaust available
parallelism, do the IBM 4764 coprocessors become suit-
able for use in our parallel ORAM. Finally, we estimate
the performance of an FPGA-based implementation (§8).

To understand which steps of the algorithm are most
amenable to parallelism, Figure 13 shows, for each par-
allelizable step, how many coprocessors it can make use
of. We see that later stages can make use of more copro-
cessors, as they have larger ORAMs and thus more buck-
ets. The step that can make most use of extra coproces-
sors is evict to entry, which updates all entries in evictee
buckets. In contrast, evict from entry only touches entries
of evictor buckets, of which there are half as many. The
step that can make the least use of them is look up entry,
which only updates entries of buckets along the designa-
tor path, of which there are half again as many.

7.3 Effect of Block Size and Count

In our next experiments, we look at the effect of vary-
ing workload characteristics on parallel ORAM perfor-
mance. Specifically, we look at the effect of varying the
size of blocks stored and the number of such blocks.

Figure 14 shows the effect of varying block size on
ORAM performance, with all other parameters set to de-
faults. Below about 0.5 KB, request latency is under

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000 1e+06 1e+07

R
eq

u
es

t
la

te
n
cy

 (
se

c)

Block size (bytes)

Figure 14: Variable Block Size. Effect on parallel ORAM
latency of varying block size. Simulation assumes 235 blocks
and 10,000 coprocessors. X-axis and Y-axis are log-scale.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2
10

2
15

2
20

2
25

2
30

2
35

2
40

2
45

2
50R

eq
u
es

t
la

te
n
cy

 (
se

c)
Number of block addresses (log base 2)

Figure 15: Variable Block Count. Effect on parallel ORAM
latency of varying number of addresses where blocks can be
stored. Simulation assumes 10-KB blocks and 10,000 copro-
cessors. X-axis is log-scale and starts at 210 blocks.

10 sec, and below about 11 KB, it is under one minute.
Thus, while ORAM may be feasible for workloads like
Twitter tweets, Facebook images, and map tiles, it is un-
reasonable for the Flickr workload’s 5-MB block size.

Another thing to observe is that at low block sizes,
below about 1 KB, the effect of constant overheads dom-
inates, and block size does not have much effect. After
about 1 KB, each additional KB adds about 4.9 sec; af-
ter about 10 KB, each additional KB adds about 3.6 sec;
and, after about 600 KB, each additional KB adds about
3.2 sec. The overhead drops at these points because
larger block sizes allow more designators to be packed
into a block, eventually reaching a tipping point where
the number of stages R drops. Recall that our algorithm
is O(RB+R logN).

Figure 15 shows the effect of varying number of ad-
dresses on ORAM performance. We see that, unlike
block size, address count has a less dramatic effect on
request latency: in most cases, doubling it has no effect
on performance. For some doublings, there is a large
jump, due to the number of stages increasing by one; for
other doublings, there is a small increase as the number
of coprocessors required for a step goes above the next
multiple of 10,000. For the range of block counts seen
in our data sets, 232 to 236, request latency is between
51 and 60 sec, but even data sets containing substantially
more blocks than this would have comparable latency.

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 211

 0

 10

 20

 30

 40

 50

 60

 70

Twitter Tweets Map Tiles Facebook Images

R
eq

u
es

t
la

te
n
cy

 (
se

c)

Workload

Assume server is honest-but-curious

Ensure data integrity

Ensure data
integrity and
freshness

Figure 16: Cost of Defense Against Malicious Servers. How
ORAM latency increases due to defenses against malice.

7.4 Cost of Defense Against Malice

Next, we evaluate the cost of defending against mali-
cious servers by running experiments in which we turn
off integrity and freshness checks. Figure 16 shows the
results. The cost of these defenses is noticeable, demon-
strating the importance of making their performance rea-
sonable via parallelism and Merkle trees. For the Twit-
ter tweets workload, the small block size means that the
cost of communication dominates, and thus integrity and
freshness checks are significant. Time increases by 21%
for integrity, due to the need to compute and transmit
MACs; adding freshness increases it by a further 278%,
primarily due to Merkle tree maintenance. For the other
workloads, where block sizes dominate hash sizes, in-
tegrity checks increase latency by only 6% and freshness
checks by only 13–14%.

7.5 Comparison to the Hierarchical Scheme

To emphasize the importance of worst-case perfor-
mance analysis, we simulate the traditional hierarchi-
cal algorithm [12, 13], which has O(log3 N) amortized
latency, but Ω(N) worst-case performance. Since the
scheme is not parallelizable, for fairness we assume it
runs on the fast IBM 4764. With 235 blocks of 10 KB
each, the average response time is 127 seconds. But,
much more troubling are the slow responses. Every
10,000 requests, a request takes almost 92 minutes to
complete, and every 10,000,000 requests, a request takes
a week to complete! Since the entire service must wait
for these requests to complete before serving the next re-
quest, this scheme is unsuited to the data center.

7.6 Summary

Using parallelism substantially reduces the cost of
ORAM, e.g., from 13,000 sec to nine seconds in the case
of Twitter tweets. However, the resulting latency is still
substantially more than that of a non-oblivious access.
Such an access would have latency primarily caused by
WAN latency and SSL overhead, and so would be only
tens to hundreds of milliseconds. Clearly, more work is
needed to bring ORAM latencies to full practicality.

8 Future Work
There are many avenues for extending Shroud. Most

importantly, since we found secure coprocessor band-
width to be the limiting factor, it would be useful to
explore higher-bandwidth coprocessors, such as secure
FPGAs, which may be able to offer multiple Gb/s of
bandwidth. To estimate the potential of this approach,
the “FPGA” line in Figure 12 simulates ORAM perfor-
mance using estimates of FPGA capabilities.

If we can overcome the coprocessor bandwidth bot-
tleneck, an important next consideration will be server
storage latency. One way to reduce it is to use solid-state
drives. However, it may be possible to just use disks and
schedule requests so as to reduce seek time. After all,
most disk accesses are due to eviction, which can be an-
ticipated well in advance. By providing these access re-
quests to the disk early, we may enable bulk prefetching.

Another concern is to improve not only latency but
throughput of ORAM operations. One technique, which
takes advantage of our approach of using many copro-
cessors in parallel, is to batch requests together and look
them up in parallel. Note, however, that if requests in a
batch use the same address, we must replace all but one
with a random address so an adversary does not learn of
the match. Also, after a batch is complete, we must re-
place the result of each modified request with that of the
corresponding unmodified one.

9 Conclusion
Securing user data within the data center requires more

than encryption; hiding data access patterns adds addi-
tional protection against malicious employees and hack-
ers. We showed how to achieve this with Shroud, a dis-
tributed storage system that hides all information about
block accesses. We show that deploying such oblivious
storage in the data center creates new challenges and op-
portunities, including issues of scale, parallelism, mali-
ciousness, fault tolerance, and worst-case performance.
Our evaluation shows the usefulness of our approach,
particularly our use of many secure coprocessors in par-
allel, in scaling ORAM to data-center-scale workloads.

Acknowledgments
The authors thank Sumeet Bajaj and Radu Sion for

providing information about the IBM 4764, Barry Bond
and Shrinath Eswarahally for helping us with the Infi-
neon SLE 88 cards, and Jeremy Elson for assisting us
with the FDS cluster. We are especially grateful to our
shepherd, Ethan Miller, and the anonymous reviewers for
their helpful comments.

212 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

References
[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The

Google File System,” ACM SIGOPS Operating
Systems Review, vol. 37, no. 5, pp. 29–43, 2003.

[2] D. Beaver, S. Kumar, H. Li, J. Sobel, and P. Vajgel,
“Finding a needle in Haystack: Facebooks photo
storage,” in Proceedings of the USENIX Symposium
on Operating System Design and Implementation
(OSDI), Oct. 2010.

[3] J. Guynn, “Google fires employee for snooping on
users,” Los Angeles Times, Sept. 16, 2010.

[4] W. Andrews, “China leadership ’orches-
trated Google hacking’.” BBC News.
http://www.bbc.co.uk/news/
world-asia-pacific-11920616, Dec. 4,
2010.

[5] R. Baden, A. Bender, N. Spring, B. Bhattacharjee,
and D. Starin, “Persona: An online social network
with user-defined privacy,” in Proceedings of ACM
SIGCOMM, Aug. 2009.

[6] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access
pattern disclosure on searchable encryption: Ram-
ification, attack and mitigation,” in Proceedings of
the Network and Distributed System Security Sym-
posium (NDSS), 2012.

[7] C. Troncoso, C. Diaz, O. Dunkelman, and B. Pre-
neel, “Traffic analysis attacks on a continuously-
observable steganographic file,” in In the Interna-
tional Information Hiding Workshop, 2007.

[8] R. Kumar, J. Novak, B. Pang, and A. Tomkins., “On
anonymizing query logs via token-based hashing,”
in Proceedings of the World Wide Web Conference
(WWW), 2007.

[9] R. Dingledine, N. Mathewson, and P. Syverson,
“Tor: The second-generation onion router,” in Proc.
of the USENIX Security Symposium, Aug. 2004.

[10] E. Lee and C. Thekkath, “Petal: Distributed virtual
disks,” SIGOPS Operating Systems Review, vol. 30,
Sept. 1996.

[11] O. Goldreich, “Towards a theory of software pro-
tection and simulation by oblivious RAMs,” in Pro-
ceedings of the ACM Symposium on Theory of
Computing (STOC), 1987.

[12] R. Ostrovsky, “Efficient computation on oblivious
RAMs,” in Proceedings of the ACM Symposium on
Theory of Computing (STOC), 1990.

[13] O. Goldreich and R. Ostrovsky, “Software protec-
tion and simulation on oblivious RAMs,” Journal
of the ACM (JACM), vol. 43, no. 3, 1996.

[14] E. Shi, H. Chan, E. Stefanov, and M. Li, “Oblivious
RAM with O((logN)3) worst-case cost,” in Pro-
ceedings of AsiaCrypt, Dec. 2011.

[15] P. Williams, R. Sion, and B. Carbunar, “Building
castles out of mud: Practical access pattern pri-
vacy and correctness on untrusted storage,” in Pro-
ceedings of the ACM Conference on Computer and
Communications Security (CCS), 2008.

[16] B. Pinkas and T. Reinman, “Oblivious RAM revis-
ited,” in Proceedings of CRYPTO, 2010.

[17] E. Stefanov, E. Shi, and D. Song, “Towards prac-
tical oblivious RAM,” in the Network and Dis-
tributed System Security Symposium, 2012.

[18] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia, “Oblivious RAM simulation with
efficient worst-case access overhead,” in Proceed-
ings of the ACM Cloud Computing Security Work-
shop (CCSW), Oct. 2011.

[19] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the
(in)security of hash-based oblivious RAM and a
new balancing scheme,” in Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2012.

[20] F. Olumofin, Practical Private Information Re-
trieval. PhD thesis, University of Waterloo, 2011.

[21] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou, “SCOPE: Easy
and Efficient Parallel Processing of Massive Data
Sets,” in Proceedings of VLDB, Aug. 2008.

[22] E. Nightingale, J. Elson, O. Hofmann, Y. Suzue,
J. Fan, and J. Howell, “Flat Datacenter Storage,” in
Proceedings of the USENIX Symposium on Oper-
ating System Design and Implementation (OSDI),
Oct. 2012.

[23] D. Borthakur, “The Hadoop Distributed File
System: Architecture and Design,” 2009.
http://hadoop.apache.org/common/
docs/current/hdfs_design.html.

[24] Amazon, “Amazon Simple Storage Service,” 2012.
http://aws.amazon.com/s3/.

[25] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk
File System for Large Computing Clusters,” in Pro-
ceedings of FAST, Jan. 2002.

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 213

[26] B. Chor, O. Goldreich, E. Kushilevitz, and M. Su-
dan, “Private information retrieval,” in Proceedings
of the Symposium on the Foundations of Computer
Science (FOCS), Oct. 1995.

[27] R. Sion and B. Carbunar, “On the practicality of
private information retrieval,” in Network and Dis-
tributed System Security Symposium, 2007.

[28] C. Aguilar-Melchor and P. Gaborit, “A lattice-
based computationally-efficient private information
retrieval protocol,” in the Western European Work-
shop on Research in Cryptology (WEWoRC), 2007.

[29] F. Olumofin and I. Goldberg, “Revisiting the com-
putational practicality of private information re-
trieval,” in Proceedings of the Financial Cryptog-
raphy and Data Security Conference, Feb. 2011.

[30] R. Ostrovsky and V. Shoup, “Private information
storage (extended abstract),” in Proceedings of the
ACM Symposium on Theory of Computing, 1997.

[31] A. Iliev and S. Smith, “Protecting user privacy via
trusted computing at the server,” IEEE Security and
Privacy, vol. 3, no. 2, 2005.

[32] S. W. Smith and D. Safford, “Practical server pri-
vacy with secure coprocessors,” IBM Systems Jour-
nal, vol. 40, no. 3, 2001.

[33] D. Asonov and J.-C. Freytag, “Almost optimal pri-
vate information retrieval,” in the Privacy Enhanc-
ing Technologies Symposium, 2003.

[34] P. Williams and R. Sion, “Usable PIR,” in the Net-
work and Distributed System Security Symposium
(NDSS), 2008.

[35] P. Williams and R. Sion, “PrivateFS: A parallel
oblivious file system,” in the ACM Conference on
Computer and Communications Security, 2012.

[36] P. Williams and R. Sion, “Single round access pri-
vacy on outsourced storage,” in ACM Conference
on Computer and Communications Security, 2012.

[37] M. Backes, A. Kate, M. Maffei, and K. Pecina,
“ObliviAd: Provably secure and practical online
behavioral advertising,” in Proceedings of the IEEE
Symposium on Security and Privacy, May 2012.

[38] S. W. Smith, “Outbound authentication for pro-
grammable secure coprocessors,” Journal of Infor-
mation Security, vol. 3, 2004.

[39] A. Narayanan, N. Thiagarajan, M. Lakhani,
M. Hamburg, and D. Boneh, “Location privacy via
private proximity testing,” in the Network and Dis-
tributed System Security Symposium (NDSS), 2011.

[40] Twitter, “#numbers.” http://blog.
twitter.com/2011/03/numbers.html,
Mar. 2011.

[41] Twitter, “Measuring tweets.” http:
//blog.twitter.com/2010/02/
measuring-tweets.html, Feb. 2010.

[42] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Va-
jgel, “Finding a needle in Haystack: Facebook’s
photo storage,” in Proceedings of the USENIX Sym-
posium on Operating System Design and Imple-
mentation (OSDI), Oct. 2010.

[43] Flickr, “6,000,000,000.” http://blog.
flickr.net/en/2011/08/04/
6000000000/, Aug. 2011.

[44] Infineon Technologies, “Security & chip
card ICs, SLE 88CFX4000P.” http:
//www.datasheetcatalog.org/
datasheets/228/339421_DS.pdf, 2006.

[45] IBM, “CCA basic services reference and guide for
the IBM 4758 PCI and IBM 4764 PCI-X crypto-
graphic coprocessors.” 19th Ed., 2008.

[46] J. R. Lorch, B. Parno, J. Mickens, M. Raykova,
and J. Schiffman, “Toward practical private access
to data centers via parallel ORAM.” Cryptology
ePrint Archive, Report 2012/133, Mar. 2012.

[47] K. Goldman, R. Perez, and R. Sailer, “Linking re-
mote attestation to secure tunnel endpoints,” Tech.
Rep. RC23982, IBM, 2006.

[48] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki, “Flicker: An execution infrastruc-
ture for TCB minimization,” in Proceedings of the
ACM European Conference on Computer Systems
(EuroSys), Apr. 2008.

[49] R. Canetti and H. Krawczyk, “Analysis of key-
exchange protocols and their use for building se-
cure channels,” in Proceedings of EuroCrypt, 2001.

[50] R. C. Merkle, “A digital signature based on a con-
ventional encryption function,” in Proceedings of
CRYPTO, 1987.

[51] D. A. Wheeler, “SLOCCount.” http://www.
dwheeler.com/sloccount/.

[52] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and
P. Rogaway, “UMAC: Fast and secure message au-
thentication,” in Proceedings of CRYPTO, 1999.

