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Abstract—The LOCKSS (Lots Of Copies Keep Stuff Safe) system allows users to store and preserve electronic content through a
system of inexpensive computers arranged in an ad hoc peer-to-peer network. These peers cooperate to detect and repair damage by
voting in “opinion polls.” We develop a more accurate view of how the network will perform over time by simulating the system’s
behavior using dynamic models in which peers can be subverted and repaired. These models take into account a variety of
parameters, including the rate of peer subversion, the rate of repair, the extent of subversion, and the responsiveness of each peer’s
system administrator. These models reveal certain systemic vulnerabilities not apparent in our static simulations: A typical adversary
that begins with a small foothold within the system (e.g., 20 percent of the population) will completely dominate the voting process
within 10 years, even if he only exploits one vulnerability each year. In light of these results, we propose and evaluate
countermeasures. One technique, Ripple Healing, performs remarkably well. For models in which all system administrators are equally
likely to repair their systems, it eliminates nearly systemic levels of corruption within days. For models in which some administrators are
more likely to repair their systems, Ripple Healing limits corruption, but proves less effective, since these models already demonstrate

superior performance.

Index Terms—Distributed applications, protection mechanisms, backup/recovery, model development, libraries/information

repositories/publishing, peer-to-peer digital preservation.

1 INTRODUCTION

IN this section, we discuss the general class of peer-to-peer
networks and then give a brief overview of the motiva-
tion and design goals of the LOCKSS system (we discuss
LOCKSS in greater detail in Section 2.1). Finally, we
summarize the motivation and contributions of this paper.

1.1 Peer-to-Peer Networks

The relatively recent emergence of peer-to-peer networks
has introduced a new realm of systems research. Instead of
relying on the traditional client-server model of connectiv-
ity, peer-to-peer systems make all participants in the system
equal and attempt to harness the latent computing power of
computers (particularly PCs) distributed across the Internet.
From a security standpoint, peer-to-peer systems offer
advantages and disadvantages. By removing the concept
of a central server, they eliminate any dependency on a
single point of failure, making it much harder to bring
down the entire system by targeting just one computer
(much to the consternation of the RIAA in its battles with
music piracy [5]). However, the inherent anonymity' and
the distributed trust paradigm of peer-to-peer systems
(which typically requires peers to trust a large majority of
the other peers, rather than one central organization) leave

1. In most peer-to-peer systems, participants use weak identities (such as
IP addresses) to communicate. Without face-to-face exchange of strong
identities (such as public keys) or other offline mechanisms, peers cannot
know exactly who they are talking to in a peer-to-peer system.
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such networks vulnerable to subversion from within. This
class of problems encompasses everything from active
subversion of otherwise legitimate peers to the well-known
Sybil attack, in which a single machine spawns hundreds or
even thousands of identities within the system. In fact,
Douceur has shown that any system without a logically
centralized authority figure will remain vulnerable to Sybil
attacks [9]. Thus, as the development of peer-to-peer
systems continues, it is important to consider the unique
threats posed to such systems.

1.2 LOCKSS: A Digital Preservation System

The LOCKSS system [19] attempts to harness the benefits of
a peer-to-peer network while preventing, detecting, or at
least slowing attacks based on the system’s decentralized
nature. LOCKSS primarily helps libraries cope with the
ongoing digitization of scholarly materials. Traditionally,
libraries have preserved magazines, newspapers, and
journals by purchasing subscriptions and then storing
physical copies of each issue. With the growth of the
Internet, more and more periodicals have moved online,
sometimes even to the exclusion of publishing physical
copies. As publications shift to an electronic medium,
however, libraries often only receive access to material,
rather than possession of the actual bits. This makes them
highly dependent on the publisher. If the publisher
discontinues the archival service, raises its rates, or declares
bankruptcy, the libraries and their patrons lose access to the
periodicals. As an even more insidious threat, the publisher
may decide to revise or delete entire portions of a document
at some later date. While this concern may sound like
Orwellian paranoia, this phenomenon has already occurred
in the real world.

In its March 2nd 1998 issue, Time magazine published an
essay by George Bush Sr. and Brent Scowcroft which
explained the United States” decision not to remove Saddam
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Hussein from power in Iraq during the first Gulf War. They
cite reasons often employed by critics of the invasion
initiated by George W. Bush. While the article originally
appeared on Time’s Web site along with the rest of the issue,
it has since disappeared. In fact, the article has been
expunged from the online table of contents as well, leaving
no hint of its existence. Fortunately, the Memory Hole noted
the omission [30] but it seems reasonable to hope for a
better system of historical preservation than reliance on
observant Web surfers.

LOCKSS’ operation closely mirrors Thomas Jefferson’s
proposal:“..let us save what remains: not by vaults and
locks which fence them from the public eye and use in
consigning them to the waste of time, but by such a
multiplication of copies, as shall place them beyond the
reach of accident” [15]. LOCKSS attempts to achieve long-
term information preservation by constructing a peer-to-
peer system that connects libraries with one another. Given
the perennial budget shortfalls at libraries [4] using large
RAID arrays and redundant power supplies at each of the
libraries is not an option, so LOCKSS is designed with the
constraint that the system will run on cheap PC’s. Instead of
relying on expensive hardware, each LOCKSS peer main-
tains a digital copy of the electronic resource in question
and cooperates in “opinion polls” to detect and repair
damage done to the copy. By limiting the rate at which polls
are conducted, the system generates inertia that resists an
adversary’s rapid attempt to infiltrate the system.

LOCKSS also avoids any dependence on long-term
secrets, thus excluding the use of digital signatures. In
addition to the difficulty that inexperienced administrators
often encounter when using digital signatures, we expect
LOCKSS to operate on sufficiently long time scales that a
determined adversary could extract the secret in question
by corrupting an insider, brute-forcing the algorithm, or
otherwise subverting an individual system. Instead,
LOCKSS relies on its polling mechanism to select random
samples from the entire population of the system, so that
the adversary can only corrupt the archives by subverting
an overwhelming number of peers. LOCKSS also avoids
reputation systems since we cannot allow an adversary to
accumulate a positive reputation, only to cash in on his
efforts with an attack. Since the content preserved by
LOCKSS may be considered offensive to some individuals,
organizations, or even governments, the system’s design
must anticipate attacks from powerful adversaries over
long periods of time. Rosenthal et al. discuss other
characteristics of the expected adversaries, as well as the
rationale behind the various design decisions made in the
original LOCKSS proposal [27].

1.3 Motivation and Contributions

Previous work on LOCKSS focused on a static subversion
model. At the start of the lifetime of the system, the
adversary subverts some proportion of the peers participat-
ing in the system, and these peers remain under the control
of the adversary for the lifetime of the system. Given the
nature of the Internet, it is unlikely that the subverted peers
will remain subverted forever and even more unlikely that
unsubverted peers will stay unsubverted for their entire
lifetime. In this paper, we develop dynamic models of
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subversion and repair where, throughout the lifetime of the
system, we expect that peers may be repeatedly subverted
by the adversary and subsequently healed by their
administrators. We consider the possibility of multiple
bugs and/or vulnerabilities in the system, affecting differ-
ent peers at different times; we also analyze human factors,
such as the responsiveness of each system administrator,
that influence the rate at which peers are repaired. We
believe these dynamic models more accurately reflect the
unpredictable nature of a distributed system spread across
the Internet.

After exploring multiple models, we find that simula-
tions incorporating a dynamic population generally de-
monstrate significantly worse performance than the
original static simulations. For example, in the static
simulations, an adversary that begins by subverting
30 percent of the population can only achieve an average
corruption level of 65 percent after 40 years, while an
adversary that starts with only 20 percent of the population
but can exploit one vulnerability each year affecting
30 percent of the population can achieve a 90 percent
corruption level within 11 years even in the face of active
recovery efforts. Fortunately, in models where system
administrators are uniform in their ability to detect and
patch vulnerabilities, the use of Ripple Healing can
eliminate virtually all traces of corruption within days,
even when the adversary begins by subverting 65 percent
of the population. In models where different system
administrators exhibit different levels of responsiveness,
the Ripple Healing technique is less effective, although the
system achieves better overall performance. In essence, the
Ripple Healing technique uses a viral healing method to
counter the adversary’s intrusion into the system. If a
system administrator suspects a machine has been com-
promised, he/she alerts all of his/her friends, giving them
the opportunity to cleanse and/or update their systems as
well. Given the important preservation role played by
LOCKSS, libraries have significant motivation to respond
to such alerts, and since the alerts arrive via a human
network, they have an added level of confidence. However,
we recognize that some system administrators cannot or
will not respond to such alerts and, so, we incorporate this
element into our simulations as well.

The remainder of this paper is as follows: In Section 2, we
give a brief overview of the LOCKSS protocol. In Section 3,
we describe related work. In Section 4, we measure the
effectiveness of an adversary that attempts to modify
content without being detected under various models of
dynamic subversion and repair in the system. Finally, in
Sections 5 and 6, we summarize our results and propose
directions for future research.

2 BACKGROUND

2.1 LOCKSS Overview

In the LOCKSS system, peers divide their digital collections
into archival units (AUs), typically consisting of one year’s
run of a journal. For simplicity, we will consider the
system’s operation with only one AU; though, in actual
practice, it would maintain hundreds or even thousands of
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Fig. 1. Voting Protocol. This figure shows the messages exchanged
between LOCKSS peers participating in an opinion poll. The left side
represents an inner-circle peer, and the right side represents an outer-
circle peer. Time flows from top to bottom.

separate AUs. Each library in the LOCKSS system is
assumed to begin with a list of “friends” who also use the
system. These friends represent entities with which the
library maintains out-of-band relations. For instance,
Harvard’s library might include MIT and Stanford on its
list. In general, these relationships might form clusters
within the system, or they might represent a reasonably
random sampling of the population, so that the probability
that MIT has Stanford on its friends list is independent of
the probability that MIT has Harvard on its list. To simplify
our analysis, the simulations presented will assume an
unclustered approach, except where otherwise noted.

Each peer also maintains a “reference list” containing
other peers it has recently discovered. When a peer joins the
LOCKSS system, it initializes its reference list with the
contents of its friends list. Periodically,” at a rate faster than
the rate of natural bit degradation, the peer begins an
“opinion poll” by choosing a random sample of peers from
its reference list. We refer to this sample as the inner-circle
peers. The peer sends a Poll message to each inner-circle
peer, inviting it to participate in the opinion poll (see Fig. 1).
When an inner-circle peer receives a Poll message, it
responds with a PollChallenge message, asking the initiator
for a proof of effort based on a fresh, random challenge
value. The proof of effort requires the use of memory-bound
functions [1] to respond to the challenge, so the protocol
forces the poll initiator to exert a considerable amount of
computational effort, limiting spurious poll initiation.

After the initiator has successfully responded to each of
the inner-circle challenges with a PollProof message, each of
the inner-circle peers returns a vote in the form of a secure
hash of the AU. Each inner-circle peer also nominates a set
of peers from its own reference list. The initiator uses a
randomly selected subset of these nominations to form the
poll’s outer circle. These outer-circle peers are also invited
into the poll, with no indication of their status in the outer
circle. Outer-circle votes are not used to determine the
outcome of the poll. We use the outer circle for discovery
purposes, ie., to expand the list of known peers in the
system.

2. Currently, every three months.

Once the initiator has received all of the votes (and
assuming it has received enough to reach a quorum), it
compares each vote with a hash of its own AU. If an
overwhelming number (set as a system parameter”) of votes
agree with its copy, it assumes the copy remains un-
damaged, sets a refresh timer of three months on the AU,
and goes about its normal activities. If an overwhelming
number of votes disagree, then it assumes its copy has been
damaged and requests a fresh copy from one of the
disagreeing inner-circle peers. That peer will provide a
copy only if the poll initiator has successfully participated
in an earlier poll called on that AU by the disagreeing peer.
This prevents theft since it requires a peer to demonstrate
that it possesses a legitimate copy of the AU before it can
receive a replacement.

If the vote provides an indeterminate result, the poll
initiator suspects either a malfunction or a malicious attack,
since it is unlikely that so many peers are simultaneously
experiencing natural bit degradation. Instead of attempting
to diagnose the problem, the initiating peer raises an
Inconclusive Poll alarm, alerting a human operator to the
discrepancy. This is an expensive operation, so LOCKSS
must carefully balance the importance of security with the
danger that false alarms will discredit the system or make it
impractical.

After a poll, the initiator updates its reference list to
avoid relying on any one set of peers. First, it removes peers
that voted in the poll, so that the next poll will use a
different sample of the reference list. Second, it replenishes
its reference list by inserting all of the outer-circle peers
whose votes agreed with the final outcome of the poll. An
agreeing vote serves as “payment” to gain entrance into the
reference list of the poll initiator; this gives the entering peer
the opportunity to potentially influence future polls.
Finally, it inserts a small, randomly chosen subset of peers
from its friends list. We call this operation “churning.” The
first two steps limit the long-term accumulation of reputa-
tion. This prevents an adversary from agreeing in a few
polls in order to gain entrance to the reference list, only to
cash in by attacking. The final step, churning, highlights the
tension between using only friends when conducting a poll
and using unknown peers discovered (nominated) in a
previous poll. Churning helps slow the growth of the
adversary’s presence in the reference list since, during an
attack, the friends list tends to remain less corrupt than the
reference list. However, we cannot strictly limit the
reference list to the friends list since this would give the
adversary a static list of target computers and undermine
our goal of taking a random sample from the population.

We have briefly described the LOCKSS protocol here.
Maniatis et al. provide a more detailed explanation and
evaluation of the defenses (such as churning) mentioned
above [18], [19].

2.2 Potential Adversaries

The design of LOCKSS inherently requires the ability to
defend against extremely powerful, patient adversaries
attempting to subvert the system. LOCKSS must preserve

3. Currently, the system uses 70 percent as the threshold for an
“overwhelming” vote.



data for decades, and it takes little imagination to envision
potential attackers. As Orwell notes, “Who controls the past
controls the future” [22]. For example, a tobacco company
might want to alter the results of a study linking smoking
with lung cancer, or a large, powerful company might wish
to eliminate an article establishing a competing researcher’s
patent claim.

Rosenthal et al. present some of the considerations that
went into the development of the current adversary model
[27]. In doing so, they surpass a large percentage of peer-to-
peer systems that assume well-behaved, trustworthy peers
or leave security as an area for future work (see Section 3).
In this paper, we concern ourselves primarily with the
stealth-modification, or “lurking,” adversary who wishes to
alter documents preserved by LOCKSS while remaining
undetected (i.e., without causing an Inconclusive Poll
alarm). To accomplish this, he attempts to infiltrate the
system by compromising peers in the system, but he
continues to vote correctly in all of the opinion polls. When
it comes time to recommend outer-circle peers, every
compromised peer exclusively recommends other compro-
mised peers. Thus, over time and in the absence of
countermeasures, the adversary’s presence in the unsub-
verted peers’ reference lists grows and eventually reaches
the point where he will have sufficient presence in the polls
to convince unsubverted peers that they have a bad copy of
the AU in question. When the unsubverted peer requests a
repair, the adversary will happily supply his own altered
version.

Clearly, LOCKSS may face other types of adversaries as
well. A nuisance adversary might try to cause enough
spurious alarms to discredit the system. An attrition
adversary might use compromised computers to launch a
denial of service attack on the system and prevent peers
from successfully completing polls. With enough interfer-
ence of this sort, the AU will be lost through standard bit rot
and hardware failures. Additionally, a thief might try to
obtain copies of AUs it does not rightfully own. While these
adversaries certainly pose a threat to the system, ultimately
it is the stealth modification adversary who truly under-
mines the essence of LOCKSS and, thus, poses the most
insidious threat.

2.3 Adversary Capabilities

To ensure the long-term viability of LOCKSS, we must
design the system to resist an extremely powerful adver-
sary. While LOCKSS may never experience an attack from
an adversary with such power, this design strategy forces
us to choose conservative techniques that will resist most
forms of attack. Thus, we provide the adversary with
unlimited identities (since LOCKSS bases identity on IP
address, we assume the adversary can purchase or spoof an
unlimited number of addresses), perfect work balancing
between any of the peers he controls and instant commu-
nication between all of the subverted peers in the network.
We also assume that the adversary knows all of the system’s
parameters and can instantly exploit any vulnerability he
discovers. Finally, the original LOCKSS paper assumes that
the adversary can take over a fixed percentage of peers
initially and retain control over them indefinitely [18], [19].
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In Section 4, we will explore the effects of altering this
assumption.

3 RELATED WORK

The original LOCKSS team at Stanford currently supports
the existing deployment of LOCKSS at more than 80 institu-
tions worldwide, with the support of publishers represent-
ing more than 2,000 titles [24]. They are also investigating
stronger measures to combat the attrition adversary, using
effort-balancing and admission-control techniques. At
Harvard, Greenstadt et al. are investigating the security
model of the system, analyzing the trade-offs involved in
adding public-key-based authentication to the LOCKSS
protocol [14]. Bungale et al. are analyzing the trade-offs
between the consensus-based version of LOCKSS studied
here and a conservation-based version [6].

In the peer-to-peer realm, systems such as PAST [28],
OceanStore [16], and Intermemory [13] attempt to provide
decentralized digital storage. However, in general, these
systems provide storage to individual members of the
system, rather than collectively attempting to preserve a
single document. Thus, one peer’s copy of a document in no
way benefits the integrity of another member’s copy. They
also assume that most of the population follows the
protocols properly. Furthermore, none of the systems plan
for the long term, at least not on the scale necessary for
libraries to preserve information for generations to come.

Several papers provide a general survey of security
issues facing peer-to-peer systems. Wallach provides an
overview of such concerns [31] with a focus on routing
and file sharing. Sit and Morris offer a more in-depth
exploration of these issues [29] but they limit their
analysis to a mostly qualitative look at security in
distributed hash tables. These reviews focus on potential
security flaws in various systems, but they do not develop
a comprehensive adversary model that combines motiva-
tion with capabilities.

Wang et al. use an eigenvalue-based approach to study
virus propagation in various network topologies [32]. They
develop a simple yet effective theory to predict the
epidemic threshold for a given network using the network’s
adjacency matrix. The epidemic threshold represents the
critical state beyond which an infection becomes endemic.
They simulate propagation by assuming that at each time
step, an infected peer may spread the infection to some of
its neighbors as well. In our work, we abstract away the
adversary’s method for subverting peers and assume that
he subverts a certain portion of the peers based on the
models described below. We also introduce the notion of
peer-dependent infection and repair, whereas Wang’s work
assumes a universal probability of infection and repair.
Additionally, we look at the effect of infection on the overall
functionality of the peer-to-peer system.

The Wayback Machine, maintained by the Internet
Archive [3] takes periodic snapshots of the Internet, largely
as a way of preserving digital “cultural artifacts” and
providing access to researchers. However, the system
requires hundreds of servers with more than 300 TB of
data storage. The vast majority of the content is not indexed,
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making it difficult to access. Given the vast amount of time
that goes into each crawl, it misses considerable amounts of
ephemeral data. Also, since the site’s spider only accesses
free, publicly available sites and obeys robots.txt files
requesting that sites not be indexed, the collection only
contains the most public of data, not necessarily the
material such as academic magazines and journals that
are of greatest interest to scholars and whose access requires
monetary payment. Finally, the Wayback Machine is
inherently a centralized process, the direct opposite of
LOCKSS’ decentralized approach.

In a process reminiscent of Byzantine fault-tolerance
(BFT) schemes (e.g., [7], [8], and [17]), LOCKSS relies on the
prevailing opinion of a set of peers, some of which may be
controlled by the adversary. However, the scope of the
LOCKSS project prohibits the high communication costs
entailed by Byzantine fault tolerance. Instead, LOCKSS
relies on its polling mechanism to select random samples
from the population, eliminating global communication,
and knowledge. LOCKSS also uses inertia to slow attacks
and includes mechanisms for intrusion detection. Finally,
the BFT approach assumes that no more than one-third of
the participants are faulty or malicious. In a peer-to-peer
system where peers are spread across the Internet, this one-
third condition is impossible to guarantee. In LOCKSS, as
the number of misbehaving peers increases, the system
performance needs to degrade gracefully rather than
suddenly and completely. This gives system operators time
to detect and deal with a system intrusion.

Approaching the problem from a hardware perspective,
the Rosetta Project [11] is creating a 1,000 language corpus
and using a microetching technique to preserve the corpus
on a nickel disk with an expected life span of 2,000 years.
This technique addresses a niche market and has neither the
flexibility nor the decentralization of the LOCKSS system.
Alternatively, RAID (Redundant Arrays of Inexpensive
Disks) allows system administrators to increase the relia-
bility of commodity hard drives. Unfortunately, adding
RAID capabilities increases costs while providing little
protection from user error, natural disaster, or malicious
attacks.

4 SIMULATING DYNAMIC POPULATIONS
4.1 Motivation

Previous work testing the performance of LOCKSS has
assumed that the system begins in a state in which the
adversary, through a virus or implementation vulnerability,
has compromised a certain proportion of the population
and that the affected peers remain subverted throughout
the simulation [19]. A more accurate model would
incorporate a population with a dynamic number of
compromised peers. When the adversary discovers a new
vulnerability in the system, he can exploit it to subvert an
entire segment of the population, dramatically increasing
his presence in the reference lists of the remaining peers.
Currently, the most common forms of exploitation use
worms and viruses as vectors, so we refer to each of these
instant takeovers as an “infection,” and to the subverted

peers as “infected.” However, over time, we also expect
system administrators to detect problems in their systems,
perform clean installations and patch existing vulnerabil-
ities. To continue the biological metaphor, we refer to this
process as “healing,” and to the unsubverted peers as
“healthy” or “good.” Incorporating these dynamics pro-
vides a more realistic simulation of the system’s behavior in
the real world.

4.2 Experimental Setup

To gather simulation data, we use the Narses discrete-event
simulator [12]. Narses can accurately simulate networks
with a large number of peers over long time periods. It also
models the memory-bound computations that LOCKSS
uses for its proofs of effort. To compare against results of
previous work, we use the same parameters as those used
by previous LOCKSS studies [19]. In the simulations, we
use a population of 1,000 peers. Each peer has 30 friends
and attempts to keep its reference list at a size of
approximately 60 peers. Unless otherwise noted, we use a
churn rate of 10 percent, meaning that after each poll, we
replace 10 percent of the reference list with peers from the
friends list. In each simulation, the adversary begins with
some percentage of the peers under his control. We also
give the adversary as many additional identities (IP
addresses) as he needs to execute his attack. These
additional identities masquerade as legitimate peers in the
system.

The simulations run for 20 years (7,300 days), and the
results represent the average of 10 simulations using
different random seeds. Standard deviations are less than
2 percent. We present the average reference list corruption
as the percentage of a healthy peer’s reference list
composed of subverted peers. Maniatis et al. [18] show
that with a reference list corruption of 65 percent or more,
the adversary is able to cause an inconclusive alarm in the
system in less than a year, so we aim to keep the corruption
well below this level.

In several of the graphs, we plot an average result from
the static simulations as a reference point. The static
simulation has a constant subversion level of 30 percent
and the reference list corruption achieved by the adversary
with this constant level of subversion hovers at a little over
60 percent.

4.3 Infection

Surprisingly, little documentation exists on the frequency of
viruses, worms, and exploits on the Internet. While
OpenBSD boasts of “only one remote hole in the default
install in more than 8 years” [21], Microsoft releases critical
patches on an almost monthly basis. Since LOCKSS is
intended to run on multiple platforms, we can assume that
a given vulnerability will not affect the entire system, but it
becomes difficult to estimate the frequency with which to
expect exploits (see Section 4.4 for further discussion).
However, one would typically expect to see the same
general behavior shown in Fig. 2. This simulation was run
with an initial population of 1,000 peers, with 30 percent
initially subverted. Infections occur twice a year and affect
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Fig. 2. The Effect of Infection. The average reference list corruption
(y-axis) as simulation time moves forward (x-axis). In this simulation, the
adversary exploits a new vulnerability that affects 30 percent of the
unsubverted population every six months (182 days). One sample from
the static simulations is shown for comparison. The heavier line
indicates reference list corruption and the lighter line indicates the
percentage of subverted peers in the system. We will follow this
convention in subsequent graphs as well.

30 percent of the unsubverted® population. In these
simulations, the infected hosts are chosen uniformly at
random. In the real world, virus susceptibility may correlate
with additional variables, such as the quality and abilities of
each peer’s administrator or the operating system running
on the peer. We attempt to model the former effect in
Section 4.7, but we leave more detailed models of the peer
itself to future work.

In Fig. 2, the normal reference list corruption level
plateaus around 63 percent. However, when we give the
adversary the ability to exploit additional bugs and
systemic vulnerabilities, we see a dramatic rise in the level
of reference list corruption that only plateaus when
virtually the entire system has been corrupted. Granted,
this simulation uses extremely pessimistic figures, but
tweaking these parameters will merely extend the system’s
lifetime without fundamentally altering the behavior seen
here. Notice also that the level of reference list corruption
rises faster than the percentage of subverted peers in the
system. This results from the adversary’s lurking strategy.
Since subverted peers always recommend other subverted
peers, while unsubverted peers recommend a mixture of
subverted and unsubverted peers, the overall corruption of
the reference lists should increase even faster than the
number of subverted peers in the system. We can also see
this effect in the static simulation, in which the reference list
corruption rises even when the number of subverted peers
remains constant. To calculate how fast the number of
subverted peers in the system will grow, we assume that a
given vulnerability affects a fixed percentage, virulence, of
the unsubverted peers. We then derive an expected growth

4. As an alternative, we could assume that the exploit affects 30 percent
of the entire population. This would give the adversary a smaller gain since
he would already control some portion of the affected peers. In keeping
with the LOCKSS assumption of an extremely powerful adversary, we
assume the worst-case scenario in which the adversary can actively target
the unsubverted portion of the population.
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rate for the number of subverted peers M; in the system
after ¢t infections using the recurrence relation

M1 = My + virulence x (P — M) (1)

= (1 — virulence) * My + virulence x P, (2)

where P represents the system’s total population. Since a
recurrence relation of the general form

fE+1) =af(t) +k (3)

has a solution of

10 = (50 - 5, ) a4 (@)

—Qa

we expect the growth of subverted peers to follow the
formula

virulence x P

M, = <M0 — )(1 — virulence)'

1 — (1 — virulence)
virulence x P

1 — (1 — virulence)
= P — (P — M) * (1 — virulence)'

= P — Gy * (1 — virulence)',

where M, represents the initial number of subverted peers
and Gy represents the initial number of unsubverted peers
in the system. This indicates that the number of subverted
peers rises exponentially, limited only by the size of the
system.

4.4 Repair

Until recently, few resources existed for tracking either the
speed and extent of Internet viruses and worms or the rate
at which systems are patched and repaired. Projects such as
the Honeynet Project [23] and the Network Telescope [10]
maintained by CAIDA (Cooperative Association for Inter-
net Data Analysis) provide some hints of what we can
expect to see in the future. The Honeynet Project describes
an architecture that masquerades as a normal network
vulnerable to attack. Researchers preserve the ability to
monitor all network and system activity and, thus, can
study the techniques used during an attack. A Network
Telescope, meanwhile, consists of a portion of routed IP
space that does not expect legitimate traffic. Monitoring this
space for unexpected traffic can reveal a network attack in
progress or the beginnings of a new worm.

Based on data collected at CAIDA, Moore et al.
determined that Internet users responded surprisingly
slowly to the Code Red threat [20]. Though a patch was
released two weeks before the Code Red worm struck,
Moore reports that a third of the vulnerable computers
remained unpatched even after the worm spent a month
rampaging across the Internet with a considerable amount
of accompanying publicity. Fortunately, the rate of repair
was front-loaded, so that many systems were patched
within the first few days. Before dismissing this dismal
performance as a Microsoft issue, we should note Rescorla’s
analysis [25] of the response to the OpenSSL remote buffer
overflow exploit announced in July 2002. Although users
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Fig. 3. Healing Rates. The percentage of vulnerable peers (y-axis) as
time (x-axis) moves forward is shown for the optimistic and pessimistic
models of the rate at which computer administrators patch/fix vulnerable
peers.

running OpenSSL tend to be more security-conscious and
overwhelmingly run some variant of Unix, Rescorla’s data
show a sluggish response rate very similar to that for the
Code Red vulnerability. The use of these results from
general “open” systems represents a conservative decision
since LOCKSS is a single-purpose system, with a limited
number of accessible ports.

Based on the data in these reports, we develop a basic
exponential decay function of the form

Percent_Compromised_Peers=A x e~ Prdays-clapsed 4 x5

Percent_Healed_Peers=1— Percent_Compromised_Peers
(6)

to model the rate at which machines are repaired.” We
consider both pessimistic and optimistic versions of the
model. For the pessimistic model, we choose values for A,
B, and C ° so that 33 percent of the peers remain subverted
after a month, with this value tapering off to 20 percent,
meaning that the system never fully recovers. For the more
optimistic model, we choose constants’ that still leave
33 percent of peers vulnerable after one month, but
eventually bring the level of vulnerability close to 0 (see
Fig. 3).

As shown in Fig. 4, the selection of the healing model
makes a significant impact on the system’s performance.
With the pessimistic model, only 80 percent of the infected
peers ever recover from a given infection, so every infection
gives the adversary a net gain in the percentage of
subverted peers in the system, and the quality of the
reference lists degrades rapidly. With the optimistic model,
the system can recover from most of the damage (approxi-
mately 99 percent of infected peers recover) and, thus,
valiantly resists the adversary’s encroachments. We assume

5. We measure Percent_Compromised_Peers and Percent_Healed_Peers
in percentage points, so total compromise corresponds to
Percent_Compromised_Peers = 100.

6. A =80, B=0.0606, and C' = 20.

7. A=99.99, B=0.0369, and C = 0.01.

that sufficient time elapses between infections to allow the
healing to take effect; otherwise, the optimistic model
would merely devolve into the pessimistic model. These
data demonstrate the importance of widespread deploy-
ment of patches and repairs since rapid deployment to a
limited subset of the population provides far less security.
Fortunately, in the current LOCKSS network, a carefully
designed intrusion response plan enabled team members to
patch 95 percent of the deployed systems to fix a
(hypothetical) vulnerability within 48 hours [26] indicating
a pattern closer to the optimistic model. However, as the
system grows and evolves, it will be difficult to maintain
this efficiency. Also, both the optimistic and the pessimistic
models indicate a similar trend towards increased reference
list corruption, due to the growth in the number of
subverted peers in the system. Using an optimistic model
slows this growth, but the system ultimately displays the
same behavior. Taking a conservative stance, the simula-
tions presented will use the pessimistic model unless
otherwise noted.

4.5 Healing Recurring Infections

To examine the effectiveness of healing in the face of
repeated infections, we ran several simulations while
varying the percentage of the population affected by each
exploit (Fig. 5), the rate at which exploits occur (Fig. 6), and
the initial level of systemic subversion (Fig. 7). Since the
authors of the original LOCKSS paper [19] note the
importance of churning, we also ran simulations to analyze
the extent to which churning helped resist the effects of
infection (Fig. 8). The primary results concerning the
average corruption of the reference lists are presented in
Table 1, and we discuss the results in detail below.

Increasing, the percentage of the population affected by
each exploit clearly accelerates the overall reference list
corruption of the system, particularly after the first few
years. The simulations in Fig. 5 were run with an initial
subversion level of 30 percent, a 10 percent churn rate, the
pessimistic healing model, and an infection once a year. At
first, due to the healing of the initial subversion, the system
outperforms the static population simulation. However, as
the infections recur, the percentage of subverted peers
increases, since the healing process never quite eradicates
all traces of subversion. Thus, the average corruption of the
reference lists catches and then surpasses the static model,
with a moderate amount of variation based on the actual
percentage of peers affected by each infection. All of the
reference list corruption levels eventually slow their growth
rate as they approach saturation level.

Varying the rate at which compromises occur also has a
serious impact on the system’s performance. The simula-
tions in Fig. 6 were run with an initial subversion level of
30 percent, a 10 percent churn rate, the pessimistic healing
model, and infections that affected 30 percent of the
population. The frequency of infection was varied from
twice a year to once every two years, though some results
have been omitted for clarity. Once again, the percentage of
subverted peers in the system grows in a stepwise fashion.
While the frequency of infection clearly has an impact on
the system, even the system with infections occurring only
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comparison.
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Fig. 7. Varying Initial Subversion. (a) Varying initial subversion. Varying the initial subversion of the population has little effect on the overall growth
of reference list corruption (to the extent that the various lines merge). Unfortunately, all of the dynamic simulations tend toward systemic reference
list corruption. One sample from the static simulations is shown for comparison. (b) Varying initial subversion—zoomed in. On a smaller time scale
(the first 60 days of the simulation), we see that despite varying levels of initial subversion, all simulations converge toward the same level of

reference list corruption by the 60th day.

once every two years surpasses the static population’s
reference list corruption level after eight years, and by the
end of the simulation (20 years), the corruption has
completely overwhelmed the system.

Interestingly, varying the level of initial subversion in the
system has little impact on a dynamic population (see
Fig. 7a). For these simulations, we held the rate of infection
and the percentage of the population affected constant (at
once a year and 30 percent affected per exploit, respec-
tively) and varied the initial subversion from 20 percent to
50 percent without much noticeable effect. The reason for
this behavior becomes clear when we examine the initial
behavior of the system on a smaller time scale, specifically
looking at the first 60 days (see Fig. 7b). Since the first new
infection does not hit immediately (until the 365th day), the
system has plenty of time to heal most of the initially
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subverted peers, giving each simulation a more or less
identical starting point once the infections begin recurring
in earnest.

As shown in Fig. 8, increasing the percentage of peers
that are churned into the reference list from the friends list
reduces the average level of corruption in the reference list.
We used an initial subversion of 30 percent, infections that
affected 30 percent of the unsubverted population and a
pessimistic healing model. Churning has a smaller absolute
effect when the rate of infection is increased (from once
every two years to once a year in the figure) since the
churning effect is drowned out by frequent infestations.
Overall, churning certainly helps the system, but it cannot
prevent systemic reference list corruption; instead, it merely
slows its growth.
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Fig. 8. Varying Churn Rate. (a) Corruption. (b) % Subverted Peers. Increasing the percentage of peers churned into the reference list from the
friends list reduces the average level of corruption in the reference list. Unfortunately, all configurations tend toward almost total corruption.
Increasing the churn rate slows the growth of corruption, but it also makes the friends list a tempting static target for the adversary. One sample from

the static simulations is shown for comparison.
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TABLE 1
Summary of Simulation Results for Varying Parameters

Figure | Percent | # Infections | Initial Level | Churn Reference List Corruption
Affected | Per Year | of Subversion 1Yr |5 Yrs| 10 Yrs | 15 Yrs | 20 Yrs
5 20 1 30 10 19 58 81 91 97
5 30 1 30 10 19 64 86 96 99
5 40 1 30 10 19 70 90 99 100
5 50 1 30 10 19 73 94 99 100
6 30 2 30 10 26 85 99 100 100
6 30 1 30 10 19 64 86 96 99
6 30 0.5 30 10 19 45 69 81 87
7 30 1 20 10 23 65 88 96 99
7 30 1 30 10 19 64 86 96 99
7 30 1 40 10 15 64 87 95 99
8 30 0.5 30 10 19 45 69 81 87
8 30 1 30 10 19 64 86 96 99
8 30 0.5 30 5 23 60 87 91 94
8 30 1 30 5 23 78 94 98 100

This tables illustrates the average reference list corruption over time for various parameter choices. Values in bold indicate the parameter varied in
that experiment. For a more detailed graph, see the corresponding figure.

4.6 Fighting Infection

The results above indicate that even when we allow system
administrators to patch their systems, the average level of
reference list corruption still reaches unacceptable heights.
To combat the general trend toward systemic reference list
corruption, we examine the effects of two variants of the
usual healing protocol.

4.6.1 Clean Start

In the Clean Start variant, whenever a peer is healed, we
alter its reference list to include only unsubverted peers.
This simulates a system administrator realizing his system
has been compromised, fixing it, and then removing any
suspicious peers from his reference list. As illustrated in
Fig. 9, Clean Start creates drastic variations in the level of
reference list corruption in the system, as the healing efforts
battle with the repeated infections. In these simulations, we
begin with 30 percent subversion and assume infections
occur once a year and affect 30 percent of the unsubverted
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population each time. All of the good peers use a 10 percent
churn rate. Overall, the corruption rises much more slowly
than in comparable non-Clean-Start simulations and gen-
erally maintains a curve similar to that of the static
population, indicating that this technique does help provide
an edge to the good peers in the system. The technique has
a smaller impact when using the optimistic healing model,
largely because the optimistic model keeps the level of
corruption so tightly constrained on its own that the Clean
Start mechanism can only offer marginal improvements. In
practice, it would be difficult for a system administrator to
completely purify the reference list. However, by eliminat-
ing peers with whom he/she does not have an offline
relationship (e.g., by reverting to the peers on the friends
list), the administrator will effectively reduce the corruption
of the reference list. More importantly, the success of the
Clean Start technique provides inspiration for the Ripple
Healing technique described below.
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Fig. 9. Effect of the Clean Start Technique. (a) Corruption. (b) % Subverted Peers. Giving each healed peer a purified reference list improves
performance, despite oscillations. Simulations were run with 30 percent initial subversion and assumed that infections occur once a year and affect
30 percent of the population. All the good peers use a 10 percent churn rate.
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4.6.2 Ripple Healing

The other modification we investigate, Ripple Healing,
initially seems quite similar. A peer that discovers it has
been compromised keeps the same reference list as before,
but sends an alert to all of the peers on its friends list. The
next day, each of these peers also heals itself if it has been
subverted, but it does not continue to propagate the alert to
its set of friends. This simulates a system administrator
realizing his system has been compromised and alerting his
friends that they should investigate their systems too. This
could take the form of standard forensic techniques like
examining logs or it might cause the friends to apply the
latest patches, upgrade their systems to the latest version, or
simply reboot the host computer. Regardless of the actual
techniques employed, we expect this technique to reduce
the number of peers under the adversary’s control. Indeed,
we omit a graph for this case since, even with 60 percent
initial subversion and the pessimistic healing model, the
Ripple Healing cured 100 percent of the peers within three
days of an infection, leaving the adversary without any
foothold within the system. On the one hand, this approach
exaggerates the communicativeness and responsiveness of
system administrators (we explore more realistic models in
Section 4.7). On the other hand, it offers a powerful
argument in favor of distributed, automated threat detec-
tion systems that would allow computer networks to
recognize an incursion and instantly alert the rest of the
network to it. However, any system of this sort must guard
against manipulation by the adversary, particularly in the
form of false alarms. Convincing one or more peers that a
vulnerability exists, even if it does not, could set off a flood
of warnings and updates throughout the network. The
nonautomated version proposed suffers from the relatively
slow and unreliable responses of system administrators, but
it has the benefit of providing a higher level of authentica-
tion that prevents an adversary from manipulating the
Ripple Healing system since we expect the alerts to take the
form of an email or even a phone call from a known and
trusted friend.

To gain further insight into this technique, we develop a
mathematical model to describe the number of subverted
peers in the system. We define the following variables:

M; = number of subverted peers at time ¢.

P = total population.

F' = size of friends list.

H = number of peers healed in the normal healing
model in one unit of time.

Each of the H peers to be healed has F' friends, and
assuming an even distribution of subverted peers, I 2 of
the friends have been subverted. Ripple Healing will heal
them all, so we can create a recurrence relation such that:

Fx M,
M,y = M, — H ’; f:(

1 —?) M,. (7)

For this analysis, we focus on the impact of Ripple Healing,
so we ignore the effects of the normal healing process
(which would subtract an additional H peers from the
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Fig. 10. Effect of Ripple Healing. The impact of Ripple Healing
depends on the number of friends each peer has, as well as on the
number of peers healed each day.

right-hand side of (7)). Drawing on our work from
Section 4.3, we know that a recurrence relation of this form
has the solution:

HF\'

Using the standard approximation that (1 —1)" ~ e, we
can rewrite this as:

M, = My« e 7. (9)

For a fixed population size, this equation indicates that,
when the system uses Ripple Healing, the number of
subverted peers decays exponentially, with a speed based
both on the number of peers healed each day and on the
number of friends the average peer possesses. Fig. 10
illustrates the effect of varying these two parameters. All of
the variations shown heal virtually the entire system in less
than three weeks. Given that in the real system each peer
has an average of 30 friends, and that even in the
pessimistic model, the system heals an average of 30 peers
per day for the first three weeks, we can begin to
understand the dramatic impact of Ripple Healing. Intui-
tively, Ripple Healing mimics the technique used by the
worms and viruses to spread the original infection, so the
technique can repair the damage almost as quickly as it can
be inflicted.

4.7 An Alternate System Model

In the preceding simulations, we have assumed that both
the probability of becoming infected and the probability of
being healed are independent of the peers involved. In
other words, at each stage, we decide a certain portion of
the peers will be infected /healed and then randomly select
those peers from the appropriate portion of the population.
However, this system may not provide the best model of
real-world behavior. In practice, some system administra-
tors remain constantly vigilant, checking on the latest
system patches and monitoring their systems’ behavior for
suspicious activity. Presumably peers with such active
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Fig. 11. System Administrator Abilities. A few peers have highly
skilled system administrators, but the majority have mediocre ratings.
The x-axis shows the distribution of skill ratings, indicating for example
that in the pessimistic model, approximately 9 percent of the population
has a rating of 10 or above.

administrators will prove less susceptible to virus attacks
and more likely to detect and repair infections when they
occur. Conversely, those administrators lacking the time,
interest, or skill to properly administer their systems will
have peers that become infected more often and remain
infected for longer periods of time. Unfortunately, as
Rescorla [25] and Arbaugh [2] note, the vast majority of
system administrators tend to fall into the latter category.
Systems with known vulnerabilities remain unpatched for
months or even years after the initial announcement, even
when features like Microsoft’s Automatic Update attempt to
download and install patches in the background. We might
choose to further group peers according to their operating
system and assign infection and healing rates to each
operating system. However, we choose to focus on the
system-administrator model and leave further exploration
to future work.
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In our new model of the world, we assign each peer a
system-administrator rating (with a high rating represent-
ing a skilled administrator), following a distribution that
gives a few peers a high rating and the vast majority a
relatively low rating (see Fig. 11). In other words, we assign
a skill level for each peer by randomly selecting a value on
the x-axis and then assigning the corresponding rating
from the y-axis. To test the impact of these ratings, we
repeated the previous experiments with both optimistic
and pessimistic models. Initially, we used the system-
administrator rating only to determine the probability on
any given day that a subverted peer discovers it has been
infected, using the formula:

sys_admin_rating
100 '

This means that in our optimistic model, most peers have a
probability of discovering they have been infected within
5 days of infection (since they have a rating of 20 on
average, they will have Pyiscovery = %). Given the preceding
discussion, this figure seems closer to an ideal world than
the real one. The pessimistic model comes closer to reality
as noted in recent studies [27] since most peers have a rating
of 0.274 ~ 1% and, thus, heal only once a year (since this
rating provides Piscovery = Wls on any given day).

We then ran further simulations in which the probability
of infection during a given attack also depended on the
system administrator’s rating, such that:

(10)

P, discovery =

100 — sys_admin_rating

100 (11)

Fig. 12 shows a sampling of the results. We ran the
simulations with infections occurring once per year. The
system started with 30 percent of the population subverted
and used a 10 percent churn rate. Some simulations used
the system-administrator model to determine the probabil-
ity of both infection and healing, while others only used it to
determine the peers to heal, while continuing to use the
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Fig. 12. Infection and Healing Based on System Administrator Abilities. (a) Corruption. (b) % Subverted Peers. This graph illustrates the effects
of the optimistic and pessimistic system-administrator-based infection and healing models, as well as the performance of models that used system-
administrator-based healing with randomized infection. Removing the spoofed IDs improves the corruption level, but both optimistic simulations have
the same percentage of subverted peers since we do not count the spoofed IDs as subverted peers.
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Fig. 13. Effects of Ripple Healing. (a) Corruption. (b) % Subverted Peers. Ripple Healing provides only a marginal improvement when used with the
system-administrator model, unlike the huge gains it gives the randomized model. In the simulations shown here, we illustrate the difference
between using the randomized infection/healing model with and without Ripple Healing, and using the system-administrator model with and without

Ripple Healing.

randomized infection model. For runs that did not use the
system administrator’s rating to determine infections, each
infection randomly affected 30 percent of the unsubverted
population. Once again, we show the average reference list
corruption level of a static population as a baseline. Looking
at the optimistic cases, we see that the reference list
corruption remains extremely low, which makes sense
given that in this case even the worst system administrators
heal their peer every five days.

However, while the reference list corruption level with
optimistic healing remains remarkably low, it does slowly
increase, which seems surprising in light of the fact that the
entire population heals itself within 5 days. The explanation
lies in the adversary’s ability to spoof additional identities.
Recall that in addition to starting with control of a portion
of the peers in the population (30 percent in this case), we
also give the adversary additional identities that can
masquerade as legitimate peers. To confirm this explana-
tion, we repeated the optimistic simulation without the
extra identities and, in this case, the reference list corruption
level did indeed go to zero (except for the spurious spikes
near an infection). This emphasizes the importance of
designing a system to defend against a Sybil attack [9] since
even if the adversary cannot control any other peer in the
system, he can still subvert the process by using multiple
identities to influence the voting.

In the pessimistic case, it takes the peers much longer to
heal after an infection, so the spikes become larger and
more pronounced, no longer a transitory phenomenon.
Obviously, the pessimistic case performs worse than the
optimistic (though still better than the static case), but more
interestingly, the simulation that bases infection on the
system administrator’s abilities shows more reference list
corruption than the randomized model of infection. Intui-
tively, this makes sense since in the system-administrator
model, the peers most vulnerable to infection are also the
ones least likely to heal themselves, so each successive
infection should have a larger impact on the system’s level

of subversion and hence on the average level of reference
list corruption.

Finally, given the extremely successful use of Ripple
Healing in the randomized healing model (Section 4.5), we
ran experiments using the system administrator’s rating to
determine the effect of the Ripple Healing. We followed the
same procedure outlined above, but when the newly healed
peer cycles through its friends list alerting his friends about
the infection, the friends respond with a probability based
on their system administrator’s rating. In other words, good
system administrators will immediately respond to such an
alert, whereas poor system administrators may simply
ignore it. The results differ significantly in comparison with
the randomized-infection model (see Fig. 13). Indeed, in the
system-administrator model, the Ripple Healing technique
provides a marginal improvement at best. In the rando-
mized-infection model, every peer responds instantly,
whereas in the system-administrator model, the average
peer will typically ignore the warning. Furthermore, the
peers most likely to respond to an alert (those with high
system administrator ratings) will also be the ones most
likely to have already healed themselves and, similarly, the
peers least likely to have healed themselves are also those
least likely to respond to an alert.

4.8 Implications

The results described in the previous two sections illustrate
the importance of accounting for human factors in analyz-
ing the behavior of systems in the real world. Assuming a
universal pattern of behavior for the entire population of
users in a peer-to-peer network may not necessarily create
an accurate model of the world. Furthermore, the choice of
model creates significant changes in the system’s observed
behavior. In addition to its more realistic configuration, the
system-administrator model generally tends to perform
better than the randomized model. Fig. 14 shows the
average corruption of the reference lists for varying rates of
infection in both models, starting with an initial subversion
level of 30 percent and using a 10 percent churn rate. In the
simulations using the randomized model, each infection
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Fig. 14. Randomized versus System Administrator Systems. (a) Corruption. (b) % Subverted Peers. A comparison of the randomized and
system-administrator models for various rates of infection. In general, the system-administrator model demonstrates better performance (i.e., less
average reference list corruption). In the legend, the entries indicate which model of healing/infection the system used (static population, randomized
or system-administrator) and the frequency of the infections. For the randomized model, the infections affected 30 percent of the unsubverted peers.

affected 30 percent of the unsubverted peers. This clearly
results from the targeted nature of the system-administrator
model. The core group of competent system administrators
continues to resist or heal the infections indefinitely,
whereas in the randomized model, everyone eventually
succumbs. On the other hand, the Ripple Healing technique
is less effective in the system-administrator model, for the
reasons given above. Thus, selecting an appropriate model
for the system will help predict its behavior and the
techniques that may successfully combat reference list
corruption. Furthermore, these results emphasize one of
the more unique aspects of peer-to-peer networks: the
inherently interdependent nature of the peers within the
system. Unlike traditional systems in which a system
administrator can concern himself or herself exclusively
with his or her own machine’s defenses, in a peer-to-peer
network each peer necessarily depends on the other
members of the network, so a system administrator must
worry about the security of all of the other peers in the
system. As illustrated above, failure to widely deploy
patches for known vulnerabilities can lead to systemic
subversion, making the network unreliable even for peers
who have successfully patched the vulnerability.

5 FuTurRE WORK

Clearly, additional data on the frequency and severity of
viruses, worms and other system compromises in the real
world will allow us to improve our models and provide
better predictions of LOCKSS’ performance. We would also
like to explore more detailed models that assign each host
an operating system and a particular version of the LOCKSS
software and then base each peer’s probability of infection
on its particular configuration. In addition, the remarkable
success of the Ripple Healing mechanism suggests that
further investigation into distributed and automated exploit
tracking and repair could significantly improve the perfor-
mance of LOCKSS. The proposed system relies on the
human operators to spread the Ripple Healing alerts. This

has the advantage of providing a reasonable level of
authentication, but the disadvantage that humans tend to
react slowly or sometimes not at all. An automated system
could speed reaction time, but we would have to secure the
healing mechanism itself.

6 CONCLUSION

In this work, we have developed more realistic simulations
that incorporate the dynamic nature of real-world systems
and, hence, provide more realistic results. While we have
focused on the LOCKSS protocol, many of our results can
be extended to other peer-to-peer systems. Our data
indicate that any peer-to-peer system in which the
adversary can exploit multiple vulnerabilities will tend to
break down. In LOCKSS, the average reference list corrup-
tion skyrockets, allowing the stealth-modification adversary
to dominate the system. Furthermore, our experiments with
the system-administrator model indicate that users of a
peer-to-peer network must concern themselves not only
with the security of their own system but also with the
security of the other computers in the network. In a peer-to-
peer network, no peer is an island.

The concept of using automated patch and/or repair
systems also offers significant security benefits for peer-to-
peer systems. While models of human behavior are
necessarily inexact, our rough model for system-adminis-
trator responsibility indicates that patches and repairs need
additional automation to ensure widespread distribution.
As one possibility, the Ripple Healing technique draws on
the same viral infection pattern employed to attack the
network and uses it to drastically improve the security of
the system. Such distributed repair techniques fit naturally
with the peer-to-peer philosophy.
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