
Using Trustworthy Host-Based Information in the Network∗

Bryan Parno
Microsoft Research
One Microsoft Way

Redmond, WA 98502
parno@microsoft.com

Zongwei Zhou, Adrian Perrig
CyLab / Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

{stephenzhou,perrig}@cmu.edu

ABSTRACT

As hardware support for improved endhost security becomes
ubiquitous, it is important to consider how network security
and performance can benefit from these improvements. If
portions of each endhost can be trusted, then network infras-
tructure no longer needs to arduously and imprecisely re-
construct data already known by the endhosts. Through the
design of a general-purpose architecture we call Assayer, we
explore issues in providing trusted host-based data, includ-
ing the balance between useful data and user privacy, and
the tradeoffs between security and efficiency. We also eval-
uate the usefulness of such information in several case stud-
ies. We implement and evaluate a basic Assayer prototype.
Our prototype requires fewer than 1,000 lines of code on the
endhost. Endhosts can annotate their outbound traffic in a
few microseconds, and these annotations can be checked ef-
ficiently; even packet-level annotations on a gigabit link can
be checked with a loss in throughput of only 13.1%.

Categories and Subject Descriptors

D.4.6 [Software]: Operating Systems—Security & Protec-

tion; C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture & Design

Keywords

Trusted Computing, Network Security, Host Information

1. INTRODUCTION

Why is it difficult to improve network security? One pos-
sible culprit is the fact that network elements cannot trust
information provided by the endhosts. Indeed, network ele-
ments often waste significant resources painstakingly recon-
structing information that endhosts already know. For ex-
ample, a network-level Denial-of-Service (DoS) filter must

∗This work was performed at CyLab, Carnegie Mellon University.
A Technical Report, published in 2009 [22], describes these ideas.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’12, October 15, 2012, Raleigh, North Carolina, USA.

Copyright 2012 ACM 978-1-4503-1661-0/12/10 ...$15.00.

keep track of how many packets each host recently sent, in
order to throttle excessive sending. Researchers have de-
veloped many sophisticated algorithms to trade accuracy for
reduced storage overhead [6, 31], but they all amount to ap-

proximating information that can be precisely and cheaply

tracked by the sender! In other words, the filter’s task could
be simplified if each sender could be trusted to include its
current outbound bandwidth usage in each packet it sent.

Of course, the question remains: Is it possible to trust end-
hosts? We observe that the current widespread deployment
of commodity computers equipped with hardware-based se-
curity enhancements may allow the network to trust some

host-based information. In recent years, over 350 million
computers equipped with a Trusted Platform Module (TPM)
have been deployed [30], and most smartphones include pro-
cessors and software with far more security features than
a standard desktop. As such features become ubiquitous,
can we leverage them to improve network security and effi-
ciency?

As an initial exploration of how endhost hardware secu-
rity features can be used to improve the network, we have
designed a general architecture named Assayer. While As-
sayer may not represent the ultimate way to convey this in-
formation, we see it as a valuable first step to highlight the
various issues involved. For example, can we provide useful
host-based information while also protecting user privacy?
Which cryptographic primitives are needed to verify this in-
formation in a secure and efficient manner? Our initial find-
ings suggest that improved endhost security can improve the
security and efficiency of the network, while simultaneously
reducing the complexity of in-network elements.

In the Assayer architecture, senders employ secure hard-
ware to convince an off-path verifier that they have installed
a small code module that maintains network-relevant infor-
mation. A small protection layer enforces mutual isolation
between the code module and the rest of the sender’s soft-
ware, ensuring both security and privacy. Once authorized
by a verifier, the code module can insert cryptographically-
secured information into outbound traffic. This information
is checked and acted on by in-path filters.

To evaluate the usefulness of trustworthy host-based in-
formation, we evaluate Assayer in three case studies: Spam
Identification, Distributed Denial-of-Service (DDoS) Miti-
gation, and Super-Spreader Worm Detection.

To better understand the performance implications of con-
veying host-based information to the network, we implement
a full Assayer prototype, including multiple protocol imple-
mentations. The size of the protection layer on the client that
protects code modules from the endhost (and vice versa) is
minuscule (fewer than 1,000 lines of code), and our verifier
prototype can sustain 3300 client verifications per second.
Generating and verifying annotations can be done efficiently
using our performance-optimized scheme.
Contributions: (1) An exploration of how we can design
network security mechanisms to leverage endhost-based knowl-
edge and state, (2) The design of an architecture for pro-
viding such information securely and efficiently, and (3) An
implementation and evaluation of the architecture.

2. PROBLEM DEFINITION

2.1 Architectural Goals

We aim to design an architecture to allow endhosts to
share information with the network in a trustworthy and ef-
ficient manner. This requires the following key properties:
Annotation Integrity. Malicious endhosts or network ele-
ments should be unable to alter or forge the data contained
in message annotations.
Stateless In-Network Processing. To ensure the scalabil-
ity of network elements that rely on endhost information, we
seek to avoid keeping per-host or per-flow state on these de-
vices. If per-flow state becomes feasible, we can use it to
cache authentication information carried in packets.
Privacy Preservation. We aim to leak no more user in-
formation than is already leaked in present systems. How-
ever, some applications may require small losses of user pri-
vacy. For example, annotating outbound emails with the av-
erage length of emails the user sent in the last 24 hours leaks
a small amount of personal information, but it can signif-
icantly decrease the probability a legitimate sender’s email
is marked as spam [12]. We can provide additional privacy
by only specifying this information at a coarse granularity,
e.g., “short”, “medium”, and “long”. More research will be
necessary to determine if people accept this tradeoff.
Incremental Deployability. While trustworthy endhost in-
formation would help future networks, we strive for a system
that can bring immediate benefit to those who deploy it.
Efficiency. To be adopted, the architecture must not unduly
degrade network performance.

2.2 Assumptions

Since we assume that our trusted software and hardware
components behave correctly, we aim to minimize the size
and complexity of our trusted components, since software
vulnerabilities are correlated with code size, and smaller code
is more amenable to formal analysis. We assume that clients
can perform hardware-based attestations. In this work, we
focus on TPM-based attestations [29], but other types of se-
cure hardware are also viable [21]. Finally, we make the
assumption that secure-hardware-based protections can only
be violated with local hardware attacks.

3. THE ASSAYER ARCHITECTURE

With Assayer, we hope to explore the intriguing possibil-
ities offered by the advent of improved hardware security
in endhosts. If endhosts can be trusted, how can we sim-
plify and improve the network? What techniques are needed
to extend host-based hardware assurance into the network?
Can trust be verified without significantly reducing network
performance? In general, we focus on the design of a generic
architecture for conveying host-based information to the net-
work, but we also explore application-specific details, in-
cluding deployment incentives in Section 5.

3.1 Overview

Suppose a mail server wants to improve the accuracy of its
spam identification using host-based information. For exam-
ple, one study indicates that the average and standard devia-
tion of the size of emails sent in the last 24 hours are two of
the best indicators of whether any given email is spam [12].
These statistics are easy for an endhost to collect, but hard
for any single mail recipient to obtain.

However, how can the mail server trust such host-provided
information? Naively, the mail server might ask each client
to include a hardware-based attestation [21] of its informa-
tion in every email. The mail server’s spam filter could ver-
ify the attestation and then incorporate the host-provided in-
formation into its classification algorithm. Any legacy traffic
arriving without an attestation could simply be processed by
the existing algorithms. Unfortunately, checking attestations
is time-consuming and requires interaction with the client.
Even if feasible for an email filter, it would be unacceptable
for other applications, such as DDoS mitigation, which re-
quire per-packet checks at line rates.

As a result, the question becomes: how can we make the
average case fast and non-interactive? The natural approach
is to cryptographically extend the trust established during
a single hardware-based attestation over multiple outbound
messages. This amortizes the cost of the initial verification
over subsequent messages.

Thus, the Assayer architecture employs two distinct phases:
an infrequent setup phase in which the relying party (e.g.,
the mail server) establishes trust in the client, and the more
frequent usage phase in which the client generates authenti-
cated annotations on outbound messages (Figure 1).

The relying party delegates the task of inspecting clients
to one or more off-path verifier machines. Every T days,
the client convinces a verifier that it has securely installed
a trustworthy code module that will keep track of network-
relevant information (Figure 2), such as the number of emails
recently sent, or the amount of bandwidth recently used.
Section 3.2.1 considers how we can secure this information
while still allowing the user to employ a commodity OS and
preserving user privacy. Having established the trustwor-
thiness of the client, the verifier issues a limited-duration
Sender Token that is bound to the client’s code module. The
duration of the token is a tradeoff between the client’s burden
of renewing it, and the relying party’s flexibility in updating
its verification policies.

Veri�er

Relying

Party
Client

3. A
tte

statio
n

4. Sender Token

5. Message +

 Annotation

{Setup

{Use

1. Client Policy
2. Veri�er Info

Figure 1: System Components. The relying party (e.g., a mail

server or an ISP) delegates the task of inspecting clients to one or

more verifiers. It also configures one or more filters with infor-

mation about the verifiers. Every T days, the client convinces a

verifier via an attestation that its network measurement modules

satisfy the relying party’s policy. The verifier issues a Sender To-

ken that remains valid for the next T days. The client can use the

Sender Token to annotate its outbound messages (e.g., an annota-

tion for each email, flow, or packet). The filter verifies the client’s

annotation and acts on the information in the annotation. For ex-

ample, the filter might drop the message or forward it at a higher

priority to the relying party.

In the usage phase, the client submits outbound messages
to its code module, which uses the Sender Token to authenti-
cate the message annotations it generates. These annotations
are then checked by one or more fast-path filter middleboxes,
which verify and act on the annotations. For instance, a re-
lying party trying to identify spam might feed the authenti-
cated information from the filter into its existing spam clas-
sification algorithms. If the traffic does not contain anno-
tations, then the filter treats it as legacy traffic (e.g., DDoS
filters give annotated traffic priority over legacy traffic).

3.2 Assayer Components

3.2.1 Clients

Client Architecture. At a high level, we aim to collect trust-
worthy data on the client, despite the presence of (potentially
compromised) commodity software. To accomplish this, a
client who wishes to obtain the benefits of Assayer can in-
stall a protective layer that isolates the application-specific
client modules from the rest of the client’s software (Fig-
ure 2(a)). These client modules could be simple counters
(e.g., tracking the number or size of emails sent) or more
complex algorithms, such as Bayesian spam filters. The pro-
tective layer preserves the secrecy and integrity of the mod-
ule’s state, as well as its execution integrity. It also protects
the client’s other software from a malicious or malfunction-
ing module. Untrusted code submits outbound traffic to a
module to obtain an authenticated annotation (Figure 2(b)).

How can a client convince the verifier that it has installed
an appropriate protective layer and client module? With As-
sayer, the client can employ hardware-based attestation [29,
21] to prove exactly that. When the verifier returns a Sender
Token, the protective layer invokes sealed storage [29] to
bind the Sender Token to the attested software state. This can

Module
Module

Hardware

OS

App

1

App

2

MiniVisor
Module

OS
Module

1. Msg

2. Annotation

3. Message +

 Annotation

MiniVisor

(a) Client Configuration (b) Annotation Generation

Figure 2: Client Operations. (a) The client attests to a protec-

tive layer (MiniVisor) that isolates modules from untrusted code

(and vice versa) and from each other. (b) Untrusted code sub-

mits messages (e.g., email or packets) to the modules to obtain

authenticated annotations.

be combined with the TPM’s monotonic counters to prevent
state-replay attacks [20]. Thus, any change in the protective
layer or client module will make the Sender Token inacces-
sible and require a new attestation.

With Assayer, we chose to implement the protective layer
as a minimal hypervisor (dubbed MiniVisor and similar in
spirit to Flicker [19] and TrustVisor [18]) that contains only
the functionality needed to protect the client modules from
the client’s other software (and vice versa). This approach
sacrifices visibility into the client’s software state (e.g., a
client module for web browsing cannot determine which web
browser the client is using), but protects user privacy from
overly inquisitive client modules. Using MiniVisor makes
the Trusted Computing Base tiny and reduces the perfor-
mance impact on the client’s other software.

While it is tempting to give MiniVisor full control over
the client’s network card, this would significantly increase
MiniVisor’s complexity, and it would be difficult to ensure
full control over all outbound traffic on all interfaces. In-
stead, we advocate the use of application-specific incentives
to convince the commodity software to submit outbound traf-
fic to the client modules. Since the resulting annotations are
cryptographically protected for network transmission, these
protections will also suffice while the annotations are han-
dled by the untrusted software. In Section 5, we explore
whether sufficient client incentives exist.
Client Modules. As mentioned above (and explored in more
detail in Section 5), we expect Assayer to support a wide
variety of client modules. For global vantage applications,
such as recording statistics on email volume, we expect a
single client module would be standardized and accepted by
multiple relying parties. MiniVisor’s configuration would
ensure that the client only runs a single copy of the module
to prevent state-splitting attacks. The module could be ob-
tained and installed along with the client’s application soft-
ware (e.g., email client). The application (or a plugin to the
application) would then know to submit outbound emails to
the module via MiniVisor.

For single relying party applications, such as DDoS pre-
vention, a relying party may only care about tracking statis-
tics specific to itself. In this case, the relying party may itself

provide an appropriate client module, for example, when the
client first contacts the verifier. The client’s OS can submit
packets to this module if and only if they are destined to the
particular relying party that supplied the client module.

3.2.2 Verifiers

Verifiers are responsible for checking that clients have in-
stalled a suitable version of MiniVisor and client module and
for issuing Sender Tokens. The exact deployment of verifiers
is application and relying-party specific. We envision three
primary deployment strategies. First, a relying party could
deploy its own verifiers within its domain. Second, a trusted
third party, such as VeriSign or Akamai could offer a veri-
fication service to many relying parties. Finally, a coalition
of associated relying parties, such as a group of ISPs, might
create a federation of verifiers, such that each relying party
trusts the verifiers deployed by the other relying parties.

To instill confidence in verifiers, the relying party periodi-
cally requests a hardware-based attestation from the verifier.
Assuming the attestation is correct, the relying party estab-
lishes the key material necessary to create an authenticated
channel between the verifiers and the filters. On the veri-
fier, this key material is bound (using sealed storage) to the
correct verifier software configuration.

The use of multiple verifiers, as well as the fact that clients
only renew their client tokens infrequently (every T days),
makes the verifiers unlikely targets for Denial-of-Service (DoS)
attacks, since a DoS attacker would need to flood many ver-
ifiers over an extended time (e.g., a week or a month) to
prevent clients from obtaining tokens.

Any distributed and well-provisioned set of servers could
enable clients to locate the verifiers for a given relying party.
While a content distribution network is a viable choice, we
propose a simpler, DNS-based approach to ease adoption.
Initially, each domain can configure a well-known subdo-
main to point to the appropriate verifiers. For example, the
DNS records for company.com would include a pointer to
a verifier domain name, e.g., verifier.company.com.
That domain name would then resolve to a distributed set of
IP addresses representing the server’s verifier machines.

3.2.3 Filters

Filters are middleboxes deployed on behalf of the relying
party to act on the annotations provided by the client. For
instance, a spam filter might give a lower spam score to an
email from a sender who has generated very little email re-
cently. These filters must verify client annotations efficiently
to prevent the filters themselves from becoming bottlenecks.
In addition, to prevent an attacker from reusing old annota-
tions, each filter must only accept a given annotation once.

Filter deployment will be dictated by the application, as
well as by the relying party’s needs and business relation-
ships. For example, a mail server might simply deploy a sin-
gle filter as part of an existing spam classification tool chain,
whereas a web hosting company may contract with its ISP
to deploy DDoS filters at the ISP’s ingress links.

To enable filters to perform duplicate detection, the client
modules include a unique nonce as part of the authenticated

information in each annotation. Filters can insert these unique
values into a rotating Bloom Filter to avoid duplication. Sec-
tion 4 discusses the effectiveness of this approach.

3.3 Protocol Details

Below, we enumerate desirable properties for the autho-
rization scheme used to delegate verifying power to verifiers,
as well as that used by clients to annotate their outbound
traffic. We then describe a scheme based on asymmetric
cryptographic operations that achieves all of these proper-
ties. Since asymmetric primitives often prove inefficient, we
show how to modify the protocols to use efficient symmetric
cryptography, though at the cost of two properties. Hybrid
approaches of these two schemes are possible, but we focus
on these two to explore the extremes of the design space. In
Section 7, we quantify their performance trade-offs.

3.3.1 Desirable Properties

1. Limited Token Validity. Verifier key material is only
valid for a limited time period and is accessible only
to valid verifier software. Sender Tokens should have
similar restrictions.

2. Verifier Accountability. Verifiers should be held ac-
countable for the clients they approve. Thus one veri-
fier should not be able to generate Sender Tokens that
appear to originate from another verifier.

3. Scalability in Filter Count. The verifier’s work, as
well as the size of the Sender Token, should be inde-
pendent of the number of filters.

4. Topology Independence. Neither the verifier nor the
sender should need to know which filter(s) will see the
client’s traffic. In many applications, more than one
filter may handle the client’s traffic, and the number
may change over time. Thus, the sender’s token must
be valid at any filter operated by the same relying party.

5. Filter Independence. A filter should not be able to
create Sender Tokens that are valid at other filters. This
prevents a rogue filter from subverting other filters.

6. Client and Filter Accountability. The relying party
should be able to distinguish between a malicious client
and a malicious filter.

3.3.2 Protocol Specifications

At a high level, after verifying the trustworthiness of a
verifier, the relying party installs the verifier’s public key in
each of the filters. The verifier, in turn, assesses the trustwor-
thiness of clients. If a verification is successful, the verifier
signs the client’s public key to create a Sender Token. The
client includes this token in each annotated message, and the
client module generates annotations by signing its informa-
tion (e.g., count of emails sent) using the client’s private key.
Below, we describe these interactions in more detail.
Verifier Attestation. Before giving a verifier the power to
authorize client annotations, the relying party must ascertain
that the verifier is in a correct, trusted state (Figure 3). It does
so via an attestation. The attestation convinces the relying
party that the verifier is running trusted code, that only the

V Knows KRP

V Launches software CodeV . CodeV recorded in PCRs.

CodeV Generates {KV ,K−1
V }. Seals K−1

V to CodeV .
V Extends KV into a PCR.

RP→V Attestation request and a random nonce n
V → RP KV , TPM Quote = PCRs,SignK−1

AIK
(PCRs||n), CAIK

RP Check cert, sig, n, PCRs represent CodeV and KV

RP
∗
→ Fi KV , SignK−1

RP
(KV)

C Launches software CodeC. CodeC recorded in PCRs.

CodeC Generates {KC,K−1
C }. Seals K−1

C to CodeC.
C Extends KC into a PCR.

C→V Token request
V →C Attestation request and a random nonce n
C→V Kc, TPM Quote = PCRs,SignK−1

AIK
(PCRs||n), CAIK

V Check cert, sig, n, PCRs represent CodeC and KC

V →C TokenC =
[

IDV ,KC,expireC,Hash(CAIK),
SignK−1

V
(V ||KC||expireC||Hash(CAIK))

]

Figure 3: Verifier Attestation. V is the verifier, RP the relying party,
Fi the filters, and CAIK a certificate for the verifier’s AIK.

Figure 4: Client Attestation. C is the client, CodeC is MiniVisor, V is
the verifier, and expireC is an expiration date for the sender’s token.

trusted code has access to the verifier’s private key, and that
the keypair is freshly generated.

To prepare for an attestation, the verifier launches trusted
verifier code. This code is measured by the platform, and the
measurement is stored in the TPM’s Platform Configuration
Registers (PCRs). In practice (see Section 6), we use a late
launch operation to measure and execute a minimal kernel
and the code necessary to implement the verifier. The veri-
fier code generates a new public/private keypair and uses the
TPM to seal the private key to the current software.

After checking the verifier’s attestation, the relying party
instructs its filters to accept the verifier’s new public key
when processing annotated traffic. Since the filter acts on
behalf of the relying party, it can be configured with the re-
lying party’s public key, and thus verify such updates.
Client Attestation. A similar process takes place when a
client requests a Sender Token from a verifier (Figure 4).
The client’s MiniVisor generates a keypair and attests to the
verifier that the private key is bound to the client module
and was generated recently. If the client’s attestation verifies
correctly, the verifier returns a Sender Token consisting of
the verifier’s ID, the client’s public key, an expiration date,
and the verifier’s signature.
Traffic Annotation. To annotate outbound traffic (e.g., an
email or a packet), untrusted code on the client asks the
client module to produce an annotation (Figure 5). The un-
trusted code passes the traffic’s contents to the client mod-
ule. The client module uses its internal state to generate a
digest d containing network relevant information about the
traffic and/or client; i.e., it may indicate the average band-
width used by the host, or the number of emails sent. For
most applications, the digest will include a hash of the traf-
fic’s contents to bind the annotation to a particular piece of
traffic. Finally, the module produces an annotation contain-
ing a unique nonce, the digest, and the client’s signature.
Untrusted code then adds the client’s Sender Token and an-
notation to outbound traffic and sends it to the relying party.
Annotation Checking. Filters that receive annotated traffic
can verify its validity using the filtering algorithm shown in
Figure 6. The filter uses the verifier’s ID to look up the cor-
responding public key provided by the relying party. It uses
the key to verify the authenticity and freshness of the client’s
Sender Token. The filter may decide to cache these results to
speed future processing. It then checks the authenticity and

uniqueness of the annotation. It stores a record of the nonce
to prevent duplication and accepts the validity of the anno-
tation’s digest if it passes all verification checks. However,
if an annotation’s verification checks fail, the filter drops the
traffic. Legitimately generated traffic will only fail to verify
if an on-path adversary modifies the traffic. Such an adver-
sary can also drop or alter the traffic, so dropping malformed
traffic does not increase the adversary’s power.

3.3.3 A Symmetric Alternative

The protocols shown above possess all of the properties
described in Section 3.3.1. Unfortunately, they require the
client to compute a public-key signature for each item of
traffic sent and the filter to verify two public-key signatures
per annotation. The challenge is to improve efficiency while
retaining the properties from Section 3.3.1.

At a high level, instead of giving the verifier’s public key
to the filters, we establish a shared symmetric key between
each verifier and all of the filters. Similarly, the client uses a
symmetric, rather than a public, key to authenticate its anno-
tations. The verifier provides the client with this key, which
is calculated based on the symmetric key the verifier shares
with the filters, as well as the information in the client’s
Sender Token. This makes it unnecessary for the verifier to
MAC the client’s token, since any changes to the token will
cause the filters to generate an incorrect symmetric key, and
hence to reject client’s annotations.
Verifier Attestation. The last step of the protocol in Fig-
ure 3 is the only one that changes. Instead of sending the
verifier’s public key to all of the filters, the relying party gen-
erates a new symmetric key KV F . The relying party encrypts
the key using the verifier’s newly generated public key and
sends the verifier the resulting ciphertext (EncryptKV

(KV F)).
Since the corresponding private key is sealed to the verifier’s
trusted code, the relying party guarantees that the symmet-
ric key is protected. The relying party also encrypts the key
and sends it to each of the filters, establishing a shared secret
between the verifier and the filters.
Client Attestation. The protocol shown in Figure 4 re-
mains the same, except for two changes. First, when the
client sends its token request, it includes a randomly chosen
client identifier IDC. The larger change is in the Sender To-
ken returned by the verifier. To compute the new token, the
verifier first computes a symmetric key that the client uses

C→CodeC Traffic contents p.
CodeC Processes p to produce digest d.
CodeC Generates a random nonce m.

CodeC→C AnnoteC = (m,d,SignK−1
C

(m||d))

C→ RP p,TokenC,AnnoteC

1: if p contains TokenC,AnnoteC then
2: (IDV ,KC,expireC,H,SigV)← TokenC

3: Verify SigV using KV .
4: Use expireC to check that TokenC has not expired.
5: (m,d,SigC)← AnnoteC

6: Verify SigC using KC.
7: Check that pair (KC,m) is unique.
8: Insert (KC,m) into Bloom Filter.
9: if All verifications succeed then

10: Accept d as an authentic annotation of p
11: else
12: Drop p

Figure 5: Traffic Annotation. C is the client, CodeC is the client
module from Section 3.2.1 and RP is the relying party. The digest
d represents the module’s summary of network-relevant information
about the client and/or traffic. The client sends the traffic to the relying
party, but it will be processed along the way by one or more filters.

Figure 6: Filtering Annotations. Processing traffic p

to authorize annotations: KCF = PRFKV F
(V ||IDC||expireC),

where PRF is a secure pseudo-random function. The verifier
then sends the client: EncryptKC

(KCF), Token = (V, IDC,

expireC). The attestation convinces the verifier that K−1
C is

bound to trusted code; i.e., only trusted code can obtain KCF .
Without knowing KV F , no one can produce KCF .
Traffic Annotation. Traffic annotation is the same as be-
fore, except that instead of producing a signature over the
traffic’s contents, the code module produces a Message Au-
thentication Code (MAC) using KCF , an operation that is or-
ders of magnitude faster.
Annotation Checking. The algorithm for checking anno-
tations remains similar. Instead of checking the verifier’s
signature, the filter regenerates KCF using its knowledge of
KV F . Instead of verifying the client’s signature on the an-
notation, the filter uses KCF to verify the MAC. As a result,
instead of verifying two public key signatures, the filter cal-
culates one PRF application and one MAC, operations that
are three orders of magnitude faster.

3.4 User Privacy and Client Revocation

To encourage adoption, Assayer must preserve user pri-
vacy, while still limiting clients to one identity per machine
and allowing the relying party to revoke misbehaving clients.
The Direct Anonymous Attestation (DAA) protocol [4] was
designed to provide exactly these properties. However, avail-
able TPMs do not yet implement this protocol, so until DAA
becomes available on TPMs (or whatever secure hardware
forms the basis for Assayer), Assayer must imperfectly ap-
proximate it using structured AIK certificates. We empha-
size that this is a temporary hack, not a serious limitation of
Assayer, since DAA demonstrates that we can achieve both
privacy and accountability.

TPM-equipped clients sign attestations using randomly
generated attestation identity keys (AIKs). A Privacy CA is-
sues a limited-duration certificate that vouches for the bind-
ing between an AIK and the original TPM Endorsement Key
(EK). With Assayer, clients obtain AIK certificates that spec-
ify that the AIK is intended for communicating with a spe-
cific relying party. Using a different AIK for each relying
party prevents the relying parties from tracking the client
across sites. However, since all of the AIKs are certified by
the same EK, they can all be bound to a single installation
of MiniVisor, preventing an attacker from using a separate
MiniVisor for each destination.

Of course, similar to issuing multiple DNS lookups using

the same source IP address, this approach allows the Privacy
CA to learn that some client intends to visit a particular set
of relying parties. The DAA protocol eliminates both this
linkage and the reliance on the Privacy CA.

To preserve user privacy with respect to a single relying
party, the client can generate a new AIK and request a new
certificate from the Privacy CA. However, Privacy CAs may
only simultaneously issue one AIK certificate per relying
party per TPM EK. Thus, a client could obtain a 1-day cer-
tificate for an AIK, but it could not obtain another one for the
same relying party until the first certificate expires. This pre-
vents a client from generating multiple simultaneous identi-
ties for communicating with a particular relying party.

Since each client token contains a hash of the client’s AIK
certificate, if the relying party decides a client is misbehav-
ing, it can provide the hash to the Privacy CA and request
that the Privacy CA cease providing relying party-specific
AIK certificates to the EK associated with that particular
AIK. This would prevent the client from obtaining new AIKs
for communication with this particular relying party, though
not for other relying parties. Similarly, the relying party can
instruct its verifiers and filters to cease accepting attestations
and annotations from that AIK.

4. POTENTIAL ATTACKS

4.1 Exploited Clients

Code Replacement. An attacker may exploit code on re-
mote, legitimate client machines. If the attacker replaces
MiniVisor or the client module with malware, the TPM will
refuse to unseal the client’s private key, and hence the mal-
ware cannot produce authentic annotations. Without physi-
cal access to the client’s machine, the attacker cannot violate
these hardware-based guarantees.
Code Exploits. An adversary who finds an exploit in trusted
code (i.e., in MiniVisor or a client module) can violate As-
sayer’s security. This supports our argument that trusted
client code should be minimized as much as possible.
Flooding Attacks. Since an attacker cannot subvert the an-
notations, she might instead choose to flood Assayer com-
ponents with traffic. As we explained in Section 3.2.2, the
verifiers are designed to withstand DoS attacks, so flooding
them will be unproductive. Since filters must already check
annotations efficiently to prevent bottlenecks, flooding the
filters (with missing, invalid, or even valid annotations) will
not hurt legitimate traffic throughput.

Annotation Duplication. Since MiniVisor does not main-
tain control of the client’s network interface, an attacker could
ask the client module to generate an annotation and then re-
peatedly send the same annotation, either to the same filter or
to multiple filters. Because each authorized annotation con-
tains a unique nonce, duplicate annotations sent to the same
filter will be dropped. Duplicates sent to different filters will
be dropped as soon as the traffic converges at a single filter
downstream. Section 6.4 discusses our Bloom Filter imple-
mentation for duplicate detection.

4.2 Malicious Clients

Beyond the above attacks, an attacker might use hardware-
based attacks to subvert the secure hardware on machines
she physically controls. For example, the adversary could
physically attack the TPM in her machine and extract its pri-
vate keys. This would allow her to create a fake attestation,
i.e., convince the verifier that the adversary’s machine is run-
ning trusted Assayer code, when it is not.

However, the adversary can only extract N TPM keys,
where N is the number of machines in her physical posses-
sion. This limits the attacker to N unique identities. Contact-
ing multiple verifiers does not help, since sender identities
are tracked based on their AIKs, not on their Sender Tokens.
As discussed in Section 3.4, at any moment, each TPM key
corresponds to exactly one AIK for a given relying party.
Furthermore, to obtain a Sender Token from the verifier, the
attacker must commit to a specific relying-party-approved
client module. If the attacker’s traffic deviates from the an-
notations it contains, it can be detected, and the attacker’s
AIK for communicating with that relying party will be re-
voked. For example, if the attacker’s annotations claim she
has only sent X packets, and the relying party detects that the
attacker has sent more than X packets, then the relying party
knows that the client is misbehaving and will revoke the AIK
the client uses to communicate with this relying party (see
Section 3.4). Since the Privacy CA will not give the attacker
a second AIK for the same relying party, this AIK can only
be replaced by purchasing a new TPM-equipped machine,
making this an expensive and unsustainable attack.

4.3 Rogue Verifiers

A rogue verifier can authorize arbitrary clients to create
arbitrary annotations. However, the verifier’s relatively sim-
ple task makes its code small and easy to analyze. The attes-
tation protocol shown in Figure 3 guarantees that the relying
party only approves verifiers running the correct code. Since
verifiers are owned by the relying party or by someone with
whom the relying party has a contractual relationship, local
hardware exploits should not be a concern. Since verifiers
cannot imitate each other, a relying party that detects incor-
rect traffic coming from clients approved by a verifier can re-
voke that verifier. Revocation can be performed by refusing
to renew the verifier’s key material, or by actively instructing
the filters to discard the rogue verifier’s public key.

5. CASE STUDIES

We consider the usefulness of Assayer in three diverse ap-

plications (see Figure 7). While we present evidence that
Assayer-provided information can help in each application,
it is beyond the scope of this work to determine the optimal
statistics Assayer should provide or the optimal thresholds
that relying parties should set.

5.1 Spam Identification

Motivation. Numerous studies [12, 24] suggest that spam
can be distinguished from legitimate email based on the sender’s
behavior. For example, one study found that the time be-
tween sending two emails was typically on the order of min-
utes [33], whereas the average email virus or spammer gen-
erates mail at a much higher rate (e.g., in the Storm bot-
net’s spam campaigns, the average sending rate was 152
spam messages per minute, per bot [16]). Another study [12]
found that the average and standard deviation of the size of
emails sent over the last 24 hours were two of the best indi-
cators of whether any individual email was spam.

While host-based statistics are not sufficient to definitively
identify spam, by combining these statistics with existing
spam classification techniques [14, 24], spam identification
can be significantly improved for most senders.
Instantiation. To aid in spam identification, we can design
a client module for annotating outbound email with relevant
statistics, e.g., the average size of all emails generated during
the last 24 hours. Each time the client generates a new email,
it submits the email to the client module. The client module
creates an authenticated annotation for the email with the
relevant statistics, which the untrusted client email software
can add as an additional email header.

The relying party in this case would be the email recipi-
ent’s mail provider, which would designate a set of verifiers.
The filter(s) could simply be added as an additional stage
in the existing spam identification infrastructure. In other
words, the filter verifies the email’s annotation and confirms
the statistics it contains. These statistics can then be used to
assess the probability that the message is spam.
Client Incentives. Legitimate clients with normal sending
behavior will have an incentive to deploy this system, since
it will decrease the chance their email is marked as spam.
Some mail domains may even require endhosts to employ
Assayer before accepting email from them.

Malicious clients may deploy Assayer, but either they will
continue to send email at a high rate, which will be indicated
by the emails’ annotations, or they will be forced to reduce
their sending behavior to that of legitimate senders. While
not ideal, this may represent a substantial reduction in spam
volume. Finally, malicious clients may send non-annotated
spam, but as more legitimate senders adopt Assayer, this will
make spam more likely to be identified.

5.2 DDoS Mitigation

Motivation. A Distributed Denial-of-Service (DDoS) at-
tack, like spam, typically requires adversaries to behave quite
differently from benign users. To maximize the effectiveness
of a network-level attack, malicious clients need to gener-
ate as much traffic as possible, whereas a recent study indi-
cates that legitimate clients generate much less traffic [3]. To

Policy Creator

Recipient Network
F

o
cu

s Concentrated Spam DDoS
Diffuse Spam Super Spreaders

Figure 7: Case Studies. Our case studies can be divided based

on who determines acceptable policies and how focused the attack

traffic is.

confirm this, we analyzed eight days (135 GB of data rep-
resenting about 1.27 billion different connections) of flow-
level network traces from a university serving approximately
9,000 users. If we focus, for example, on web traffic, we find
that 99.08% of source IP addresses never open more than 6
simultaneous connections to a given destination, and 99.64%
never open more than 10. Similarly, 99.56% of source IP
addresses send less than 10 KBps of aggregate traffic to any
destination. This is far less than the client links permit (10-
1000 Mbps). Since the traces only contain flow-level infor-
mation, it is difficult to determine whether the outliers repre-
sent legitimate or malicious traffic. However, other applica-
tion traffic, such as for SSL or email, shows similar trends;
the vast majority of users generate very little outbound traf-
fic. This suggests that it is indeed possible to set relatively
low thresholds to mitigate DDoS activity while leaving vir-
tually all legitimate users unaffected.

Assayer enables legitimate hosts to annotate their traffic
with additional information to indicate that their traffic is
benign. For example, the client module might annotate each
packet with the rate at which the client is generating traffic.
By prioritizing packets with low-rate annotations, filters en-
sure that legitimate traffic will be more likely to reach the
server. A few non-standard legitimate clients may be hurt by
this policy, but the vast majority will benefit.

Of course, this approach will only prevent attackers from
sending large floods of traffic from each machine they con-
trol. They can still have each machine send a low rate of
traffic, and, if they control enough machines, the aggregate
may be enough to overwhelm the victim. Nonetheless, this
will reduce the amount of traffic existing botnets can use for
attack purposes and/or require attackers to build much larger
botnets to have the same level of effect on the victim.
Instantiation. On the client, we modify the untrusted net-
work stack to submit outbound packets to the Assayer client
module. The client module generates an annotation indicat-
ing the number or size of packets generated recently. In this
case, the relying party is the server the client is attempting to
access (e.g., a website or software update server). The filters
can prioritize annotated packets with “legitimate-looking”
statistics over other traffic. To avoid hurting flows destined
to other servers, filters give preference to annotated packets
relative to other packets destined to that same server. This
could be implemented via per-destination fair-queuing, with
the Assayer-enabled server’s queue configured to give prior-
ity to approved packets.

To combat network-level DDoS attacks, we need to pri-
oritize annotated packets as early as possible. Initially, the
server operator may simply deploy a single filter in front of

the server. However, to combat network-level attacks, the
server’s operator may contract with its ISP to deploy filters
at the ISP’s ingress links. As we show in Section 7.4, partial
deployment can provide significant protection from attacks.
Client Incentives. The client proves that it is generating
traffic at a moderate rate in return for elevated service from
the network and server. This allows the client to access the
web services it desires, even during DDoS attacks.

5.3 Super-Spreader Worm Detection

A super-spreader worm exploits a host and then rapidly
scans thousands of additional hosts. Studies show this be-
havior is quite unlike typical user behavior [32]. For this
application, the client software submits packets to the client
module, which produces annotations indicating the number
of destinations recently contacted. The relying party could
be a backbone ISP hoping to avoid worm-based congestion,
or a stub ISP protecting its clients from worm infections.

While a next-generation clean-slate network could sim-
ply mandate the use of Assayer, bootstrapping Assayer in a
legacy environment is a challenge. Unlike in the DDoS ap-
plication, it is not sufficient to simply prioritize annotated
traffic over non-annotated traffic, since lower-priority traf-
fic will still spread the worm. Instead, non-annotated traf-
fic must be significantly delayed or dropped. However, ISPs
cannot slow or drop legacy traffic until most users have started
annotating their traffic, but users will not annotate their traf-
fic unless motivated to do so by the ISPs. A non-technical
approach would be to hold users liable for any damage done
by non-annotated packets, thus incentivizing legitimate users
to annotate their packets.

6. IMPLEMENTATION

6.1 Client Architecture

We implemented the client configuration shown in Fig-
ure 2 employing a tiny hypervisor called MiniVisor that we
developed using hardware-virtualization support provided by
both AMD and Intel. Since MiniVisor does not interact with
any devices, we were able to implement it in 841 lines of
code and still (as shown in Section 7) offer excellent perfor-
mance. It supports a hypercall that allows untrusted code to
submit traffic to a client module and receive an annotation.

We employ a late launch operation [13, 19] to simplify
client attestations by removing the early boot code (e.g., the
BIOS and bootloader) from the set of trusted code. When
MiniVisor is launched, it uses shadow page tables to isolate
its private memory area and then boots the Linux kernel for
normal client usage. The client attestations consist of the
protection layer (MiniVisor), a client module, and the fact
that the protection layer properly isolates the module.

6.2 Client Verification

We developed generic client software to produce the at-
testations, as well as a verifier server program to check the
attestations and produce client tokens. Together, they imple-
ment the protocol shown in Figure 4. Since the code that
allows the relying party to check verifier attestations (Fig-

Unused(12)m(2)

Sig(50)

VID(1) CID(6)Len(2) Hash(12) E(2)

m(2)MAC(20) Unused(10)

Token

Annotation

Asymmetric Symmetric
Len(2) Hash(12) Sig(50)

VID(1)

KeyC (41)

E(2) Unused(20)

Figure 8: Token and Annotation Layout. Byte-level layout for

Sender Tokens and traffic annotations. The two are shown sepa-

rately for clarity, but in practice, would be packed together. E is

an expiration date, and m is a randomly-chosen nonce.

ure 3) is very similar (and less performance-sensitive), we
describe and evaluate only the former.
Client Attestations. Before it can create an attestation, our
client code first generates an AIK and obtains an AIK certifi-
cate from a Privacy CA. To create an attestation, the client
contacts the verifier and requests a nonce. Given the veri-
fier’s nonce, the client invokes a TPM Quote operation. It
sends the verifier the public key created by its code module,
the contents of the PCRs, the list of the code described by
the PCRs, the TPM’s signature and the AIK certificate. The
verifier checks the validity of the attestation. Assuming the
check succeeds, it returns an appropriate Sender Token.
Verifier Implementation. Our verifier prototype is imple-
mented as a simple user-space server program. The imple-
mentation is based on a Unix/Linux preforked server library
(spprocpool), and the client and the verifier communicate
using UDP. The verifier pre-forks several worker processes
and waits for client connections. When it receives a con-
nection, the verifier passes this connection to an idle worker
process. The worker process chooses a random nonce for the
client and verifies the resulting attestation. A more sophis-
ticated server architecture would undoubtedly improve our
system’s performance, but this simple prototype gives us a
lower-bound on a verifier’s potential performance.

6.3 Traffic Annotation

To evaluate their relative performance, we implemented
both the asymmetric and symmetric protocols for generating
annotations (Section 3.3). Figure 8 illustrates the layout of
the Sender Tokens and traffic annotations for each scheme.

With both schemes, we add the Sender Token and the an-
notation to the payload itself, and then adjust the appropriate
header fields (length, checksum, etc.). This provides com-
patibility with legacy network devices. The traffic recipient
needs to remove this information before handing the payload
to applications, but this is simple to implement. Of course,
legacy traffic will not contain annotations, and hence is easy
to identify and handle in an application-specific manner.

With the asymmetric scheme, we use elliptic curve cryp-
tography to minimize the size of the client’s public key. We
use the secp160k1 curve, which provides approximately 80
bits of cryptographic strength. The verifier uses ECDSA to
sign the client’s token, and the client also uses ECDSA to
sign the contents of authorized packets. In sum, the client’s
token takes 108 bytes, and the annotation requires 52 bytes.

With the symmetric scheme, if we use a 160-bit key with

SHA1-HMAC, then the client’s token only requires 23 bytes,
and the annotation requires 22 bytes.

6.4 Filter

We implemented the filter’s functionality (Figure 6) both
in userspace (for applications such as spam filtering), and as
a module for the Click router [15] (for applications such as
DDoS mitigation and super-spreader detection).

To detect duplicate annotations, we use a Bloom Filter.
We only insert an annotation into the Bloom Filter after ver-
ifying the Sender Token and the annotation. The Bloom Fil-
ter ensures that a valid annotation is unique in a given time
period t with a bounded false positive probability γ. To pre-
vent malicious pollution of the filter, we use a pseudorandom
function (AES) with a secret key known only to the filter to
randomize the input to the Bloom Filter.

As an extreme case, consider filtering annotated packets
on a 1 Gbps link. Assuming the worst case, in which pack-
ets carry only annotations (and no payloads), the maximum
arrival rate is less than 1.3M packets/sec. In this case, a 2MB
Bloom Filter with 20 hash functions will suffer a false posi-
tive for fewer than one in a million packets each second.

7. EVALUATION

To identify potential performance bottlenecks in the As-
sayer architecture, we evaluated the performance of each
prototype component and compared our two authentication
schemes. In the interest of space, and since our spam detec-
tion application is far less latency-sensitive than our packet-
level applications (DDoS and worm mitigation), we focus
our evaluation on Assayer’s packet-level performance. We
also developed an Internet-scale simulator to evaluate how
Assayer performs against DDoS attacks by large botnets.

Our clients and verifier run on Dell Optiplex 755s, each
equipped with a 3 GHz Intel Core2 Duo and 2 GB of RAM.
The filter has two 2 GHz AMD Opteron(tm) 2350 CPUs with
4 GB of memory. All network links are 1 Gbps.

7.1 Client Verification

We measure the time it takes a client to generate an attesta-
tion and obtain a Sender Token from a verifier. We also eval-
uate how many simultaneous clients our verifier supports.

7.1.1 Client Latency

Since clients request new Sender Tokens infrequently (e.g.,
once a week), the latency of the request is unlikely to be no-
ticed during normal operation. Nonetheless, for complete-
ness, we measured this time using our prototype client and
verifier and found that the client takes an average of 795.3 ms
to obtain a Sender Token. The vast majority (99.7%) of the
time is spent obtaining a quote from the TPM, since the
quote computes a 2048-bit RSA signature on a resource-
impoverished TPM processor. The verifier spends 1.75 ms
processing the client’s request using the symmetric scheme
and 3.58 ms using the asymmetric scheme.

7.1.2 Verifier Throughput

To test the throughput of the verifier, we developed a min-
imal client program that requests a nonce and responds with

a pre-generated attestation as soon as the verifier responds.
The client employs a simple timeout-based retransmission
protocol. We launch X clients per second and measure the
time it takes each client to receive its Sender Token. In our
tests, each of our 50 test machines simulates 20-500 clients.

In 10 trials, we found that a single verifier using the sym-
metric scheme can serve a burst of up to 5700 clients with-
out any UDP retransmission, and can sustain an average rate
of approximately 3300 clients/second. With the asymmetric
scheme, a verifier can serve 3800 clients in a burst, and can
sustain about 1600 clients/second. This implies that our sim-
ple, unoptimized verifier prototype could, in a day, serve ap-
proximately 285 million clients with the symmetric scheme
and 138 million clients with the asymmetric scheme.

7.2 Client Annotations

With Assayer, clients must compute a signature or MAC
for each annotation. Annotating traffic adds computational
latency and reduces effective bandwidth, since each traffic
item (e.g., email or packet) carries fewer bytes of useful data.

To evaluate the latency penalty, we generated symmetric
and asymmetric tokens for annotations ranging in size from
100 to 100,000 bytes. Averaged over 20 trials, the symmet-
ric scheme’s latency grew linearly from 3.15µs to 247.55µs.
The performance is clearly dominated by the cost of hash-
ing the annotation. With the asymmetric scheme, the perfor-
mance for most annotations is dominated by the generation
of the ECDSA signature, and hence annotations less than
100,000 bytes require ∼1.3ms. Thanks to MiniVisor’s use
of hardware support for virtualization, context switching to
the client module is extremely fast (0.5µs).

For macrobenchmarks, since email is designed to be delay
tolerant, we focus on quantifying Assayer’s effect on packet-
level traffic. Thus, we evaluate the effect of annotating each
outbound packet with the number of packets sent, along with
a hash of the packet’s contents. We first ping a local host
(Ping L), as well as a host across the country (Ping R). This
quantifies the computational latency, since each ping only
uses a single packet and bandwidth is not an issue. We then
fetch a static web page (8 KB) (Req L/R) and download a
large (5 MB) file from a local web server and from a web
server across the country (Down L/R). These tests indicate
the performance impact a user would experience during an
average web session. They require our client module to an-
notate the initial TCP handshake packets, the web request,
and the outbound ACKs. To quantify the impact of Assayer’s
bandwidth reduction, we also measure the time to upload a
large (5 MB) file (Up L/R). This test significantly increases
the number of packets annotated.

We performed these experiments using both the asymmet-
ric and the symmetric schemes described in Section 3.3. Fig-
ure 10 summarizes our results. The symmetric scheme adds
less than 12% overhead, even in the worst-case tests that in-
volve uploading a large file. Often, the difference between
the symmetric scheme and native Linux is statistically in-
significant. The asymmetric scheme, on the other hand, adds
significant overhead, though the effects are mitigated for re-
mote hosts, when round-trip times dominate the test.

Throughput %
(Mbps) of Click

Basic Click (user) 577 -
Sym Filter (user) 373 64.6%
AsymFilter (user) 36 6.2%
Basic Click (kernel) 756 -
Sym Filter (kernel) 468 61.9%
Sym Filter (kernel, no dup) 513 67.8%
Sym Filter (kernel, UMAC) 657 86.9%

Figure 9: Packet Filtering Performance. “User” and “kernel”

denote user-level and kernel-level mode. “Sym” and “asym” de-

note the symmetric scheme and the asymmetric scheme. “Ba-

sic Click” is the basic click router which simply forwards each

packet. “no dup” means no duplicate detection operations are

performed. All tests employ 512-byte packets.

7.3 Filter Throughput

In order to evaluate the filter’s throughput inspecting packet-
level annotations, we use the Netperf tools running on a
client machine to saturate the filter’s inbound link with anno-
tated packets. To compare our various schemes, we launch
the Netperf TCP STREAM test using 512-byte packets, which
is close to the average packet size on the Internet [28]. We
then experiment with varying packet sizes.

In our experiments (Figure 9), a user-level basic Click
router, which simply forwards all packets, could sustain a
throughput of approximately 577 Mbps. A user-level filter
implementing our symmetric annotation scheme has about
373 Mbps throughput, while a filter using the asymmetric
scheme can only sustain about 36 Mbps.

By implementing the filter as a Click kernel module, we
improve the performance of the filter using the symmetric
scheme to about 468 Mbps, while the performance of a kernel-
level basic Click router is approximately 756 Mbps. The
filter using the symmetric scheme performs two major oper-
ations: verifying packet annotations and detecting duplicate
annotations (see Section 3.3.3). Eliminating the duplicate
detection operation slightly improves the filter’s throughput
(up to 513 Mbps), indicating that verifying the packet anno-
tation is the significant performance bottleneck.

To confirm this, we modify our packet annotation imple-
mentation to use UMAC [17] instead of SHA1-HMAC. To
improve UMAC’s performance, we implement a key cache
mechanism that only generates and sets up a UMAC key for
the first packet of every network flow, since all of the packets
in a network flow will have the same Sender Token. Mea-
surements indicate that the average Internet flow consists of
approximately 20 packets [28]. Using this measurement as
a rough estimate of our key cache’s effectiveness, our fil-
ter’s performance improves to 657 Mbps. This represents
a 13.1% performance loss relative to the performance of a
kernel-level basic Click router.

Finally, we vary the packet size used. Our UMAC-based
symmetric filter undergoes a 26% performance loss vs. Click
with 100 byte packets, whereas it comes within 8.4% of
Click with 1500 byte packets.

Native Linux Assayer Symmetric Assayer Asymmetric
Ping L 0.817±0.32 0.811±0.13 (-0.1%) 2.104±0.31 (+157.5%)
Ping R 11.91 ±1.90 11.99 ±3.24 (+0.1%) 14.03 ±3.67 (+17.8%)
Req L 3.129±0.03 3.48 ±0.26 (+11.3%) 12.27 ±4.18 (+292.1%)
Req R 45.83 ±12.3 44.07 ±6.93 (-0.4%) 51.35 ±12.1 (+12.0%)
Down L 1339. ±348 1427. ±382 (+6.6%) 2634. ±114 (+96.7%)
Down R 5874. ±1000 5884. ±990 (+0.2%) 6631. ±721 (+12.8%)
Up L 706.5 ±61.4 777.4 ±153 (+10.0%) 5147. ±177 (+628.5%)
Up R 3040. ±568 3078. ±1001 (+0.1%) 6234. ±961 (+105.1%) 0.1 1 10

Time (s)

0

20

40

60

80

100

%
 S

u
cc

es
sf

u
l

R
eq

u
es

t

Full Deployment
ISP Deployment
No Deployment

Figure 10: Client Annotations: Symmetric Vs. Asymmetric. L represents a local

request, and R represents a remote request. All times are shown in milliseconds rounded

to four significant figures. Values in parentheses represent the change versus native.

Figure 11: Time for 1,000 senders

to contact the server in the presence of

100,000 attackers. Note the log scale.

7.4 Internet-Scale Simulation

Finally, to evaluate Assayer’s effectiveness for DDoS mit-
igation, we developed an Internet-scale simulator. The sim-
ulation’s topology was developed from the CAIDA Skitter
probes of router-level topology. The Skitter map forms a
rooted tree at the trace source and spans out to over 174,000
endpoints scattered largely uniformly around the Internet.
We make the trace source the DDoS victim and then ran-
domly select 1,000 endpoints to be legitimate senders and
100,000 endpoints to be attackers. We assume that legiti-
mate senders have obtained Sender Tokens, whereas the at-
tackers simply flood (since flooding with Sender Tokens will
result in the revocation of the attacker’s keys – Section 3.4).

Since the Skitter map does not include bandwidth mea-
surements, we use a simple bandwidth model in which each
endhost has a small uplink that connects to a well-provisioned
core that narrows down at the victim.

We run our simulations with no Assayer deployment, with
Assayer filters deployed at the victim’s ISP, and with ubiqui-
tous (full) Assayer deployment. Figure 11 shows the amount
of time it takes legitimate senders to contact the server. With
no deployment, less than 6% of legitimate clients can con-
tact the server, even after 10 seconds. With a full deploy-
ment of Assayer, most clients contact the server within one
RTT, which is unsurprising given that legitimate traffic en-
joys priority over the attack traffic throughout the network.
However, even with partial deployment at the victim’s ISP,
more than 68% of legitimate clients succeed in less than a
second, and 95% succeed within 10 seconds.

8. RELATED WORK

Conveying Generic Host Information. Garfinkel et al. ob-
serve that trusted hardware could be used to mitigate network-
based attacks [8]. Shi et al. propose to use trusted computing
to build secure distributed systems, for example to secure
BGP routing [26].

Baek and Smith describe an architecture for prioritizing
traffic from privileged applications [2]. Clients use trusted
hardware to attest to the execution of an SELinux kernel
equipped with a module that attaches Diffserv labels to out-
bound packets based on an administrator’s network policy.
Assayer uses a much smaller TCB (MiniVisor vs. SELinux)
and does not require universal deployment to be effective.

Feng and Schluessler propose, at a high level, using Intel’s

Active Management Technology to provide information on
the machine’s state to network elements by introspecting on
the main CPU’s activities [7]. Unlike Assayer, they do not
focus on conveying this information efficiently, nor do they
provide a full system design and implementation.

Dixon et al. propose pushing middle-box functionality,
e.g., NAT or QoS, to endhosts, using trusted computing [5].
This is orthogonal, but potentially complementary, to our
goal of conveying host-based information to the network.

Shieh et al. propose NetQuery [27], a network infrastruc-
ture to collect, disseminate, and analyze information from
both end-hosts and network elements. Assayer shares sim-
ilar goals with NetQuery, but focuses on efficient and trust-
worthy end-host design and implementation, as well as seam-
less integration with current networks.
Conveying Specific Host Information. Gligor proposes a
network rate-control service in which a client includes an au-
thorization ticket in each server request; an in-path verifier
checks the ticket’s validity [10]. Tickets are issued only to
clients that pass a reverse Turing test or that possess human-
activated, hardware-implemented trusted paths [34], whereas
Assayer supports services that are not human-driven.

Ramachandran et al. propose to imbue packets with the
provenance of the hosts that generated them [23]. Combin-
ing this idea with Assayer (e.g., as an Assayer client mod-
ule) would provide secure provenance data, even in networks
with hostile elements or partial deployment.

Gummadi et al. propose the Not-A-Bot system [11] that
tries to distinguish human traffic from bot traffic. They attest
to a small client module that tags outgoing packets generated
within one second of a keystroke or mouse click. However,
the system only provides a single-bit of information, and it
considers application-level attacks; i.e., the network is as-
sumed to be uncongested. The server is also responsible for
verifying client attestations, which is impractical for many
applications, including combating network-level DDoS at-
tacks or super-spreader worms.

The AIP architecture [1] assigns each host an IP address
based on the hash of its public key. This provides an alter-
nate mechanism to bind a key to a network sender. The AIP
authors also propose equipping clients with “smart” network
cards that will obey signed shut-off requests from servers.
This functionality could easily be incorporated in MiniVisor
by taking control of the client’s network card, though we be-
lieve that a cryptographic approach offers better guarantees.

Saroiu and Wolman [25] and Gilbert et al. [9] propose
equipping mobile devices with trusted hardware to attest to
the sensor data collected. This aim complements Assayer’s
and would benefit from Assayer’s efficient verification.

9. CONCLUSION AND FUTURE WORK

Host-based properties are often difficult to calculate ex-
ternal to the host. The growing ubiquity of trusted hardware
on endhosts offers a powerful opportunity: a small amount
of software on the endhosts can be trusted to provide infor-
mation to receivers and network elements. This enables fun-
damentally different network security mechanisms for con-
fronting network attacks, such as spam, DDoS, and worms.
Additional work is needed to determine how to incorporate
legacy and mobile devices into an Assayer-based network,
perhaps based on secure proxies run by ISPs. Mobile de-
vices should prove easier, since they already incorporate se-
cure hardware (e.g., SIM cards).

10. ACKNOWLEDGEMENTS

We thank David Anderson, David Brumley, Nicolas Christin,
Colin Dixon, James Hendricks, Jonathan McCune, Jeffrey
Pang, Diana Parno, Vyas Sekar, and Dan Wendlandt for stim-
ulating discussions and feedback. We also thank Ning Qu
and Michael Stroucken for their help with experiments.

This research was supported by CyLab at Carnegie Mel-
lon under grants DAAD19-02-1-0389, W911NF-09-1-0273,
and MURI W 911 NF 0710287 from ARO, and by NSF
awards CNS-0831440 and CNS-1040801. The views and
conclusions contained here are those of the authors and should
not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of ARO,
CMU, NSF or the U.S. Government or any of its agencies.

11. REFERENCES
[1] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,

D. Moon, and S. Shenker. Accountable Internet Protocol
(AIP). In Proc. ACM SIGCOMM, 2008.

[2] K.-H. Baek and S. Smith. Preventing theft of quality of
service on open platforms. In Proc. Workshop on Security
and QoS in Communication Networks, 2005.

[3] K. Borders and A. Prakash. Web tap: Detecting covert web
traffic. In Proc. ACM CCS, 2004.

[4] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous
attestation. In Proc. ACM CCS, 2004.

[5] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderson,
and A. Krishnamurthy. ETTM: A scalable fault tolerant
network manager. In Proc. USENIX NSDI, 2011.

[6] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. ACM Trans. on Computer
Systems, 21(3), 2003.

[7] W. Feng and T. Schluessler. The case for network witnesses.
In Proc. NPSec, 2008.

[8] T. Garfinkel, M. Rosenblum, and D. Boneh. Flexible OS
support and applications for trusted computing. In Proc.
HotOS, 2003.

[9] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall. Toward
trustworthy mobile sensing. In Proc. ACM HotMobile, 2010.

[10] V. D. Gligor. Guaranteeing access in spite of distributed
service-flooding attacks. In Proc. Security Protocols
Workshop, 2003.

[11] R. Gummadi, H. Balakrishnan, P. Maniatis, and
S. Ratnasamy. Not-a-bot: Improving service availability in
the face of botnet attacks. In Proc. USENIX NSDI, 2009.

[12] S. Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser.
Detecting spammers with SNARE: Spatio-temporal
network-level automatic reputation engine. In Proc. USENIX
Security Symposium, 2009.

[13] B. Kauer. OSLO: Improving the security of Trusted
Computing. In Proc. USENIX Security Symposium, 2007.

[14] A. Khorsi. An overview of content-based spam filtering
techniques. Informatica, 31:269–277, 2007.

[15] E. Kohler. The Click modular router. PhD thesis, MIT, 2000.
[16] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. M.

Voelker, V. Paxson, and S. Savage. On the spam campaign
trail. In Proc. USENIX LEET Workshop, 2008.

[17] E. T. Krovetz. UMAC: Message authentication code using
universal hashing. RFC 4418, 2006.

[18] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor,
and A. Perrig. TrustVisor: Efficient TCB reduction and
attestation. In Proc. IEEE Symp. on Security and Privacy,
2010.

[19] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for TCB
minimization. In Proc. ACM EuroSys, 2008.

[20] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune. Memoir: Practical state continuity for protected
modules. In Proc. IEEE Symp. on Security and Privacy,
2011.

[21] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust
in commodity computers. In Proc. IEEE Symp. on Security
and Privacy, 2010.

[22] B. Parno, Z. Zhou, and A. Perrig. Help me help you: Using
trustworthy host-based information in the network. Technical
Report CMU-CyLab-09-016, Carnegie Mellon, 2009.

[23] A. Ramachandran, K. Bhandankar, M. B. Tariq, and
N. Feamster. Packets with provenance. Technical Report
GT-CS-08-02, Georgia Tech, 2008.

[24] A. Ramachandran and N. Feamster. Understanding the
network-level behavior of spammers. In Proc. ACM
SIGCOMM, 2006.

[25] S. Saroiu and A. Wolman. I am a sensor, and I approve this
message. In Proc. ACM HotMobile, 2010.

[26] E. Shi, A. Perrig, and L. van Doorn. BIND: A time-of-use
attestation service for secure distributed systems. In Proc.
IEEE Symp. on Security and Privacy, 2005.

[27] A. Shieh, E. G. Sirer, and F. Schneider. NetQuery: A
knowledge plane for reasoning about network properties. In
Proc. ACM SIGCOMM, 2011.

[28] K. Thompson, G. J. Miller, and R. Wilder. Wide-area Internet
traffic patterns and characteristics. IEEE Network, 11, 1997.

[29] Trusted Computing Group. Trusted Platform Module Main
Specification. Version 1.2, Revision 116, 2011.

[30] Wave Systems. Trusted Computing. http://www-
.nist.gov/itl/upload/Wave-Systems Cyber-

security-NOI-Comments 9-13-10.pdf, 2010.
[31] N. Weaver, S. Staniford, and V. Paxson. Very fast

containment of scanning worms. In Proc. USENIX Security
Symposium, 2004.

[32] M. M. Williamson. Throttling viruses: Restricting
propagation to defeat malicious mobile code. In Proc.
ACSAC, 2002.

[33] M. M. Williamson. Design, implementation and test of an
email virus throttle. In Proc. ACSAC, 2003.

[34] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune.
Building verifiable trusted path on commodity x86
computers. In Proc. IEEE Symp. on Security and Privacy,
2012.

