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ABSTRACT
Proof systems for verifiable computation (VC) have the po-
tential to make cloud outsourcing more trustworthy. Recent
schemes enable a verifier with limited resources to delegate
large computations and verify their outcome based on suc-
cinct arguments: verification complexity is linear in the size
of the inputs and outputs (not the size of the computation).
However, cloud computing also often involves large amounts
of data, which may exceed the local storage and I/O capa-
bilities of the verifier, and thus limit the use of VC.

In this paper, we investigate multi-relation hash & prove
schemes for verifiable computations that operate on succinct
data hashes. Hence, the verifier delegates both storage and
computation to an untrusted worker. She uploads data and
keeps hashes; exchanges hashes with other parties; verifies
arguments that consume and produce hashes; and selectively
downloads the actual data she needs to access.

Existing instantiations that fit our definition either target
restricted classes of computations or employ relatively ineffi-
cient techniques. Instead, we propose efficient constructions
that lift classes of existing arguments schemes for fixed rela-
tions to multi-relation hash & prove schemes. Our schemes
(1) rely on hash algorithms that run linearly in the size of
the input; (2) enable constant-time verification of arguments
on hashed inputs; (3) incur minimal overhead for the prover.
Their main benefit is to amortize the linear cost for the ver-
ifier across all relations with shared I/O. Concretely, com-
pared to solutions that can be obtained from prior work,
our new hash & prove constructions yield a 1,400x speed-
up for provers. We also explain how to further reduce the
linear verification costs by partially outsourcing the hash
computation itself, obtaining a 480x speed-up when applied
to existing VC schemes, even on single-relation executions.
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1. INTRODUCTION
Cryptographic proof systems let a verifier check that the

computation executed by an untrusted prover was performed
correctly [28]. These systems are appealing in a variety
of scenarios, such as cloud computing, where a user out-
sources computations and wishes to verify their integrity
given their inputs and outputs (I/O) [2, 36, 27, 25], or
privacy-preserving applications, where a user owns sensitive
data and wishes to release partial information with both
confidentiality and integrity guarantees [42, 24]. Typically,
these systems require the prover to perform considerable ad-
ditional work to produce a proof that can be easily checked
by the verifier.

Recent advances in verifiable computations have crossed
an important practical threshold: verifying a proof given
some I/O is faster than performing the computation lo-
cally [40, 7, 43, 45]. While these systems perform well
when delegating computation-intensive algorithms, they do
not help much with data-intensive applications, inasmuch as
verification remains linear in the application’s I/O.

Although some linear work is unavoidable when uploading
data, ideally one would like to pay this price just once, rather
than every time one verifies a computation that takes this
data as input. This is particularly relevant for cloud com-
puting on big data, where the verifier may not have enough
local resources to encode and upload the whole database
each time she delegates a query or, more generally, where
many parties contribute data over a long period of time.

Approaches providing amortized verification do exist for
limited classes of computations, such as data retrieval. For
instance, the user may keep the root of a Merkle hash tree,
and use it to verify the retrieved content. Unfortunately, as
explained below, embeddings of this approach into generic
proof systems incur large overheads for the prover.

Our goal is to enable practical verifiable computation for
data-intensive applications. In particular, we wish to design
schemes where verification time is independent of both the
size of the delegated computations and the size of their I/O.
Moreover, we wish to preserve the expressiveness of existing
VC schemes (e.g., supporting NP relations) without adding
to the prover’s burden, which is already several orders of
magnitude higher than the original computation.

Modelling Hash & Prove (HP) We first propose a
model that captures the idea of hashing and uploading data
once and then using the resulting hashes across multiple
verifiable computations. In this model, the verifier needs
only keep track of hashes, while the prover stores the cor-
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responding data. The prover can use the data to perform
computations and then (selectively) return results in plain-
text to the verifier. As described below, hashes yield several
benefits when delegating verifiable computations.

Flexible Reuse Hashes depend only on the data and are
not tied to any particular computation. Hence, once
a data hash is computed, it can be used to verify any
computation that uses the corresponding data. It can
also be used with different proof systems, as long as
they rely on the same hash format.

Sharing Hashes are a compact representation of the data
that can be easily shared and authenticated. Hence,
verifiers can delegate computations on someone else’s
hashes, or chain multiple computations using interme-
diate hashes, without ever seeing or receiving the cor-
responding data.

Provenance A record of an input hash, an output hash,
and a proof can serve as a succinct provenance token
that can be easily and independently verified.

Confidentiality The verifier checks arguments on hashes
of data that she may never see in plaintext; hence ran-
domized hashes enable zero-knowledge arguments.

Updates If the hash mechanism also supports efficient up-
dates, that is, given hash(x), one can compute hash(x′)
in time that depends only on the difference between x
and x′, then it also enables applications with dynamic
data and streaming. For instance, a hashed database
may be updated by uploading the new data and locally
updating the hash.

Our hash & prove model extends non-interactive proof sys-
tems, with an intermediate hash algorithm between the in-
put and the proof verification, and with the possibility of
proving multiple relations. It is inspired by multi-function
verifiable computation [41, 23], with relations instead of
functions so that we can capture more general use cases,
notably those where the prover provides its own (private)
input to the computation.

Instantiating Hash & Prove Now equipped with a model
for outsourcing multiple computations on authenticated data,
we survey how existing work could be used to instantiate HP
schemes. In particular, we observe that existing solutions
have limitations either in efficiency or in generality.

Some prior work [11, 26, 5, 15] considers the idea of prov-
ing the correctness of a computation on data succinctly rep-
resented by a hash. This approach consists of encoding the
verification of the hash as part of a relation for the under-
lying proof system. Namely, if y = f(x) is the statement to
be proved, then one actually proves an extended statement
of the form y = f(x)∧σ = hash(x), essentially treating x as
an additional witness. We henceforth refer to this method
as an inner encoding. Inner encodings are simple and gen-
eral, and can also be extended to more general data encod-
ings such as Merkle trees or authenticated data structures
(ADS) [44, 21]. On the other hand, inner encodings incur
a significant overhead for the prover—indeed, unless hash is
carefully tuned to the proof system, its verifiable evaluation
on large inputs may dominate the prover costs.

Other works address reusability and succinct data repre-
sentation by using different data encoding approaches that
we will call outer encodings. The basic idea of outer encod-
ings is that proofs are produced for the original statement,

e.g., y = f(x), and are linked to the encoded data x us-
ing some external mechanism. Works that can be explained
under this approach are commit & prove schemes [33, 16,
19] and homomorphic authenticators [4, 17, 29]. While we
discuss them in detail in §7, the main observation is that all
these works fall short in generality; i.e., they limit the class of
computations that can be executed on an hash value. While
commit & prove schemes can achieve greater generality by
using universal relations (as, e.g., in [5, 7, 9]), this typically
entails a significant penalty in concrete efficiency.

New Hash & Prove Constructions Our main technical
contributions are efficient, general HP constructions. Com-
pared to general inner encoding solutions, ours incurs mini-
mal overheads for the prover. Compared to prior outer en-
coding solutions, ours is fully general, in the sense that one
can hash data first, without any restriction on the functions
that may later be executed and verified on it.

We instantiate multi-relation hash & prove schemes both
in the public and designated verifier settings. Our solutions
are built in a semi-generic fashion by combining

(1) a verifiable computation (VC) or succinct non interac-
tive argument (SNARG) scheme, and

(2) an HP scheme for simple, specific computations.

At a high level, our construction uses an outer data encod-
ing, where general computation integrity is handled by (1),
whereas data authentication and linking to the computation
is handled by (2). As expected from an outer approach, this
combination does not add any overhead in the use of (1),
and the overhead introduced by (2) can be very low.

More specifically, for (1) we use any scheme where the
input-processing part of the verification consists of a multi-
exponentiation, that is, anything resembling a Pedersen com-
mitment of the form cx =

∏
i Fi

xi , a property of virtu-
ally all modern, efficient SNARGs [40, 7, 19, 9, 31]. Our
generic construction then outsources to the prover the origi-
nal computation of (1) as well as the input-processing part of
SNARG verification, cx =

∏
i Fi

xi . We then ask the prover
to show the correctness of cx using the auxiliary HP scheme
(2). To this end, we only need a scheme that handles multi-
exponentiation computations. We propose our own efficient
constructions for such HP schemes. For the designated veri-
fier setting, we adapt a multi-function VC scheme from prior
work [23]. For public verifiability, we develop a new scheme,
which requires new techniques to achieve adaptive security.

Our analysis in §6 shows that, in comparison to the inner
encoding solution mentioned earlier, our HP scheme yields
a 1, 400× speed-up for provers, as well as public (proving)
keys that are shorter by the same factor.

Speeding up Hashing and Verification As mentioned
above, VC schemes involve a verification effort linear in the
size of the I/O. Concretely, this verification step is expensive
because it relies on public-key operations (e.g., a few elliptic-
curve multiplications for each word of I/O). With Hash &
Prove, this linear work is first shifted to computing the hash,
and then amortized across multiple computations, but the
hash still has to be computed once.

When using inner encodings, one can choose standard,
very efficient hash functions such as SHA2, which consider-
ably reduces the effort of the verifier, at the expenses of the
prover. Other trade-offs between verifier and prover costs
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are possible, e.g., by using algebraic hash constructions [1,
8, 15]. When using outer encodings, the choice of a hash
function is more constrained. For instance, in Geppetto or
in our HP scheme, the encoding still consists of a multi-
exponentiation (i.e., n elliptic-curve multiplications where n
is the size of the input).

As another contribution, we provide a technique to out-
source such (relatively) expensive data encodings, at a mod-
erate additional cost for the prover, while requiring only
a trivial amount of linear work from the verifier: an ar-
bitrary (fast) hash such as SHA2, and a few cheap field
additions and multiplications, instead of elliptic curve oper-
ations. Concretely, this technique saves two orders of mag-
nitude in verification time. It applies not only to our HP
scheme, but also to existing VC systems [40, 19, 9].

Other Data Encodings In our presentation, we focus on
plain hashes as a simple data encoding for all I/O, but many
alternatives and variations are possible, depending on the
needs of a given application. As a first example, the I/O
can naturally be partitioned into several variables, each in-
dependently hashed and verified, to separate inputs from
different parties, or with different live spans. (In a data-
intensive application, for instance, one may use a hash for
the whole database, and a separate hash for the query and
its response.) More advanced examples include authenti-
cated data structures, and more specific tools such as accu-
mulators. To illustrate potential extensions of our work, we
show that the HP model, and our generic HP construction,
can be extended to work with such outer encodings. Con-
cretely, we consider accumulators [37] and polynomial com-
mitments [32], with set operations [38] and batch openings
as restricted proof systems, respectively. By adapting our
constructions, we obtain a new accumulate & prove system.

Contents The paper is organized as follows: §2 defines our
notations, reviews assumptions we rely on, and recalls defi-
nitions of succinct non-interactive argument systems. §3 de-
fines our hash & prove model, shows that some of the ex-
isting work satisfies it, and discusses their overhead for the
prover. §4 presents our efficient HP construction and instan-
tiates it for public and designated verifier settings. §5 presents
the definition and construction of a hash & prove variant
that supports hash outsourcing. §6 analyze the performance
of our constructions. §7 discusses related work.

The full version [22] also includes auxiliary definitions,
detailed proofs, and an extension of our work from hashes
to cryptographic accumulators.

2. PRELIMINARIES
Notation. Given two functions f, g : N → [0, 1] we write

f(λ) ≈ g(λ) when |f(λ) − g(λ)| = λ−ω(1). In other words,
for all k, there exists an integer n0 such that for all λ > n0,
we have |f(λ) − g(λ)| < 1

λk . We say that f is negligible
when f(λ) ≈ 0.

Algebraic Tools and Complexity Assumptions. All
our constructions make use of asymmetric bilinear prime-
order groups Gλ = (e,G1,G2,GT , p, g1, g2) with an admissi-
ble bilinear map e : G1 × G2 → GT . We use fixed groups
for every value of the security parameter; this lets us com-
pose schemes that use them without requiring a joint setup
algorithm. Even when pairings are not required, we define
schemes for group G1 and generator g1 to anticipate their

usage in later constructions. Our constructions are proven
secure under the following assumptions.

Assumption 1 (Strong External Diffie-Hellman [39]). The
Strong External Diffie-Hellman (SXDH) assumption holds if
every p.p.t. adversary solves the Decisional Diffie-Hellman
(DDH) problems in G1 and G2 only with a negligible advan-
tage.

We introduce the Flexible co-CDH assumption and prove
that it is implied by the above SXDH assumption.

Assumption 2 (Flexible co-CDH). The Flexible co-CDH

assumption holds if, given (g2, g2
a) where g2

$←− G2, a
$←− Zp,

every p.p.t. adversary outputs a tuple (h, ha) ∈ G1
2 such

that h 6= 1 only with negligible probability.

Lemma 2.1. Strong External Diffie-Hellman implies Flex-
ible co-CDH.

Proof. Given A that solves Flexible co-CDH with non-negli-
gible advantage, we show how to build an adversary A′ for
DDH in G2. A′ is given a DDH instance (g, ga, gb, C) ∈ G4

2

and has to decide if C = gab. A′ runs A with input (g, ga).
Let A output (h, ha). Then A′ can check if C = gab by

checking if e(ha, gb)
?
= e(h,C) holds. Hence A′ succeeds in

solving the DDH instance with A’s success probability.

For extractability, we optionally require the following as-
sumption parameterized by hash size n:

Assumption 3 (Bilinear n-Knowledge of Exponent). The
Bilinear n-Knowledge of Exponent assumption holds if, for
every p.p.t. adversary A, there exists a p.p.t. extractor E
such that for all large enough λ and ‘benign’ auxiliary input
aux ∈ {0, 1}poly(λ)

Pr

[
pp = Gλ;Hi

$←− G1;ω
$←− Zp;

(A,B ;(x1, . . . , xn))← (A‖E) (pp, {Hi, Hω
i }ni=1, aux) :

Aω = B ∧A 6=
n∏
i=1

Hxi
i

]
≈ 0

In the game above, (u;w) ← (A‖E) indicates running both
algorithms on the same inputs and random tape, and as-
signing their results to u and to w, respectively. This as-
sumption can been seen as an n-Knowledge of Exponent
Assumption [11] but for the general group model. Indeed
the authors of [11] use the argument by Groth [30] to con-
jecture that their assumption must hold independently of the
bilinear structure. Auxiliary input is required to be drawn
from a ‘benign distribution’ to avoid impossibility of certain
knowledge assumptions [12, 10].

2.1 Online-Offline SNARKs
We recall the definition of succinct non-interactive argu-

ments (SNARG) and arguments of knowledge (SNARK) as
used by our constructions.

Let {Rλ}λ be a sequence of families of efficiently decidable
relations R ∈ Rλ, with R ⊂ UR×WR. For pairs (u ;w) ∈ R,
we call u the instance and w the witness; we are interested in
producing and verifying arguments that ∃w.R(u ;w) holds.
We require that all instances include some data in a fixed
format. That is, for each R ∈ Rλ, we have UR = X × VR
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and instances are of the form u = (x, v). For example, u
may consist of the input x and output y of a function with
domain X, i.e., y = f(x). More generally, u may consist
of the inputs x, y and output z of functions whose domains
include X, i.e., z = f(x, y).

For any sequence of families of efficiently decidable rela-
tions {Rλ}λ as defined above, SNARGs and SNARKs con-
sist of 3 algorithms VC = (KeyGen,Prove,Verify), as follows.

(EK,VK)← KeyGen(1λ, R) takes the security parameter and
a relation R ∈ Rλ and computes evaluation and veri-
fication keys.

Π ← Prove(EK, u ;w) takes an evaluation key for R, an in-
stance u, and a witness w such that R(u ;w) holds,
and returns a proof.

b← Verify(VK, u,Π) takes a verification key and an instance
u, and either accepts (b = 1) or rejects (b = 0) the
proof Π.

(EK,VK) are also referred to as the common reference string.

Definition 2.1 (Soundness). A VC scheme is sound if, for
all sequences {Rλ}λ∈N in {Rλ}λ∈N and for all p.p.t. adver-
saries A, we have

Pr

 EK,VK← KeyGen(1λ, Rλ);
u,Π← A(EK,VK, Rλ);

Verify(VK, u,Π) ∧ ¬∃w.Rλ(u ;w)

 ≈ 0.

Online-Offline Verification 1 The verification algorithm
of many SNARG constructions can be split into offline and
online computations. Specifically, for many SNARGs, there
exists algorithms (Online,Offline) such that:

Verify(VK, u,Π) = Online(VK,Offline(VK, x), v,Π).

The offline phase can be seen as the computation of one or
more Pedersen-like commitments cx (here, cx = Offline(VK,
x)), some of which may be computed by the prover, and pos-
sibly never opened by the verifier. On their own, such com-
mitments are not perfectly binding, so this involves mod-
elling adversaries that do not output (u,w) but still must
‘know’ the value they are committing to. For such cases, we
require the existence of an algorithm E that can extract x
and w from a verifying proof.

Definition 2.2 (Online Knowledge Soundness). A VC scheme
is online knowledge sound if, for all sequences {Rλ}λ∈N in
{Rλ}λ∈N and all p.p.t. adversaries A, there exists a p.p.t. ex-
tractor E such that

Pr

 EK,VK← KeyGen(1λ, Rλ);
(cx, v,Π;x,w)← (A||E)(EK,VK, Rλ);

Online(VK, cx, v,Π) = 1 ∧ ¬∃w.Rλ(x, v;w)

 ≈ 0

Instantiations of Online-Offline SNARKs Many suc-
cinct verifiable-computation constructions [20, 7, 9, 31] can
be presented in a style that make more apparent their re-
liance on commitments on their inputs, outputs, and internal
witnesses. We may instantiate VC using, for example, the
Geppetto construction [19], which explicitly separates (of-
fline) commitments and (online) proofs and provides online
knowledge soundness.

1The offline phase is not to be confused with input-
independent precomputation steps of the verifier in [8, 9].

Instantiation of Offline Verification In our work, we
consider schemes where the offline computations consist pure-
ly of multi-exponentiations in G1 over the instance u, fol-
lowed by online computations that accept or reject the proof.
As mentioned above, we consider the case when UR splits
into X,VR. More specifically, we assume that X = Znp and
Offline(VK, x) =

∏
F xii from X to G1, where the group el-

ements (F1, F2, . . . , Fn) ∈ Gn1 are part of the keys. The VC
schemes discussed above follow this format.

3. MULTI-RELATION HASH & PROVE
SCHEMES (HP)

We define our schemes for efficiently decidable relations
R ∈ Rλ, with R ⊂ UR ×WR. Recall that we are interested
in producing and verifying arguments that ∃w.R(u ;w) holds
for pairs (u ;w) ∈ R, where u is the instance and w the wit-
ness. The witness can often speed up verification by pro-
viding a non-deterministic hint, as verification is often more
efficient than computation, notably in the case of relations
for NP complete languages. We keep the witness implicit
when they can be efficiently computed from the instance.
As in §2.1, we consider relations where UR splits into X,VR.

A multi-relation hash & prove scheme consists of 5 algo-
rithms HP = (Setup,Hash,KeyGen,Prove,Verify), as follows.

pp← Setup(1λ) takes the security parameter and generates
the public parameter for the scheme;

σx ← Hash(pp, x) produces a hash given some data x ∈ X;

EKR,VKR ← KeyGen(pp, R) generates evaluation key EKR
and verification key VKR given a relation R ∈ Rλ;

ΠR ← Prove(EKR, x, v ;w) produces a proof ofR(x, v ;w) given
an instance and a witness that satisfy the relation.

b← Verify(VKR, σx, v,ΠR) either accepts (b = 1) or rejects
(b = 0) a proof of R given a hash of x and the rest of
its instance v.

Note that hashes of inputs and the keys of a relation can
be computed independently. In particular, σx can be com-
puted ‘offline’, before generating keys, proving, or verifying
instances of relations; and can be shared between all these
operations.

3.1 Adaptive Soundness
We describe our intended security properties for an HP

scheme, distinguishing two cases. We first define adaptive
soundness with multiple relations and public verifiability,
then describe a variant with a single relation.

Definition 3.1 (Adaptive Soundness). A multi-relation hash
& prove scheme HP is adaptively sound if every p.p.t. ad-
versary with access to oracle KEYGEN wins the game below
with negligible probability.

Adaptive Forgery Game

pp← Setup(1λ)
R, x, v,Π← AKEYGEN(1λ, pp)
A wins if VERIFY(R, x, v,Π) = 1 and ¬∃w.R(x, v ;w)

KEYGEN(R)

if VK(R) exists, return ⊥
EK,VK← KeyGen(pp, R)
VK(R) := VK;
return (EK,VK)

VERIFY(R, x, v,Π)

if VK(R) undefined, return 0
σ ← Hash(pp, x)
return Verify(VK(R), σ, v,Π)
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The designated-verifier variant of adaptive soundness is ob-
tained by having KEYGEN return only EK, and giving A
oracle access to VERIFY. The single-relation variant is ob-
tained by requesting that the adversary calls KEYGEN once.

Informally, adaptive soundness means that an adversary
that interacts with a verifier on any number of chosen in-
stances of relations supported by HP cannot forge any argu-
ment. Although the VERIFY procedure in the experiment
always recomputes σx, this hash can of course be shared be-
tween verifications of multiple instances that use the same x.

Unfolding the definition, the single-relation, public verifi-
ability game is defined by

Adaptive Forgery Game (single relation, public verifiability)

pp← Setup(1λ)
R, state← A0(1λ, pp)
EK,VK← KeyGen(pp, R)
x, v,Π← A1(state,EK,VK)

A wins if Verify(VK,Hash(pp, x), v,Π) = 1 and ¬∃w.R(x, v ;w)

This simpler, single-relation game is still adaptive, in the
sense that the relation R can be chosen by A with knowledge
of pp, and the instance x, v can depend on EK,VK. Using a
standard hybrid argument, we confirm that adaptive single-
relation soundness implies adaptive soundness.

Theorem 3.1 (Security of multi-relation HP). A HP scheme
that is ε-secure as per Definition 3.1 for a single relation is
qε-secure for multiple relations, where q bounds the number
of calls to KEYGEN made by the adversary.

3.2 Accepting Hashes from the Adversary
In the definition of adaptive soundness, all hash outputs

need to be trusted: at some point, the verifier is given x and
honestly computes its hash σx, or (equivalently) receives σx
from a trusted party. However, there are cases where the ver-
ifier may be given σx but not x. As an example, a composite
argument that there exists an intermediate x ∈ X such that
f(z) = x and g(x) = r may consist of z, σx, r,Πf ,Πg where
Πf and Πg prove the two functional relations above. Passing
an ‘opaque’ hash σx may be more efficient than passing x,
and may enable the prover to keep x secret. Similarly, one
may see σx as a binding commitment to some x, received
from the adversary, then later used in arguments that dis-
close some of its contents. Definition 3.1 does not account
for such arguments.

In order for HP to support arguments on hashes provided
by the adversary, we further require that its Hash algorithm
is an extractable collision-resistant hash function. The ex-
tractability property guarantees that σx was indeed pro-
duced by Hash on some input x. The collision-resistance
property guarantees that it is hard to produce two inputs
for which Hash produces the same output.

Definition 3.2 (Hash Extractability [11]). A hash function
Hash is extractable when, for any p.p.t. adversary A, there
exists a p.p.t. extractor E such that, for a large enough secu-
rity parameter λ and ‘benign’ auxiliary input aux ∈ {0, 1}poly(λ),
the adversary wins the game below with negligible probability.

Hash Extraction Game
pp← Setup(1λ)
(σ;xe)← (A‖E) (pp, aux)
A wins if ∃x.Hash(pp, x) = σ ∧ σ 6= Hash(pp, xe)

and there is a p.p.t. algorithm Check(pp, σ) that returns 1 if
∃x.Hash(pp, x) = σ and 0 otherwise.

(In the game above, (A‖E) indicates running both algo-
rithms on the same inputs and random tape, and assigning
their results to σ and to xe, respectively.) In contrast with
the original definition of [11], we require the existence of
Check so that our verifiers can check the well-formedness of
hashes received from the adversary.

Adaptive soundness for HP schemes guarantees collision-
resistance for Hash as long as, for all x0 6= x1, there exists
a relation R ∈ Rλ and v ∈ VR to separate them, that is,
∃w.R(x1, v;w)∧¬∃w.R(x0, v;w). On the other hand, adap-
tive soundness does not guarantee that σ is unique, nor does
it exclude adversaries able to forge σ that pass verification.

Complementarily, hash extraction enables us to verify ar-
guments that include opaque hashes provided by the adver-
sary by first extracting their content then applying adaptive
soundness. To formalize this idea, we complete our defini-
tions with a more generally useful notion of soundness, called
adaptive hash soundness.

At a high level, an adaptively hash sound HP scheme al-
lows us to verify a composite argument whose instances mix
plaintext values x ∈ X and opaque hashes σ ∈ Σ, where Σ
is a finite set of hashes; importantly, the same σ can occur
in multiple instances. To verify the argument, the verifier
checks each proof using hashes that are either recomputed
from x ∈ X (once for each x, similar to Definition 3.1), or
checked for well-formedness.

Our main result for this property is that any scheme HP
that is both adaptively sound and hash extractable is also
adaptively hash sound. This result relies on soundness of
HP, provided that one has access to preimages of the hash
values σ ∈ Σ; in turn, this requirement is guaranteed by the
hash extractability property. See the full version for details.

Stronger Security Notions for HP Our security defi-
nitions for HP schemes model adaptive soundness and ex-
tractability of hash inputs, but not extractability of wit-
nesses, i.e., an equivalent of knowledge soundness for HP
schemes. While adaptive soundness is sufficient for appli-
cations such as verifiable computation in which the input
data is supplied by the verifier, knowledge soundness can be
useful when using HP schemes in larger cryptographic proto-
cols and in applications where the prover also provides some
input. Elaborating such a definition of knowledge sound-
ness for HP schemes (and proving a construction using it)
raises subtleties related to defining an extractor for an ad-
versary that has adaptive access to the KEYGEN oracle. We
believe this is an interesting direction, which we leave for
future work. Another useful security notion that may be
considered is zero-knowledge, which intuitively guarantees
that proofs do not reveal any non-trivial information about
the witnesses. A zero-knowledge definition for HP schemes
is provided in the full version of this paper.

3.3 Hash & Prove Scheme via Inner Encoding
In the introduction, we distinguished between two ways

of embedding data representation inside VC schemes: in-
ner and outer encodings. Here we describe a construction
proposed in [11, 26, 5, 15] which serves as an example of in-
ner encoding. We call this scheme HPinn. The construction
is presented for completeness (to show that it formally ad-
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heres our new definitions), and to facilitate the comparison
with our new constructions of §4.

The construction uses a keyed, collision-resistant hash scheme
with domainX, consisting of two algorithms k ← keygen(1λ)
and σ ← hashk(x), together with a succinct argument VC
for a family of relations R′, defined next.

Intuitively, we check the computation σ = hashk(x) within
the proof system: to argue on a relation R in HPinn, our
construction uses VC on a relation R′:

R′(σx, v ;x,w) = R(x, v ;w) ∧ (σx = hashk(x)).

Compared with R, the relation R′ uses σx instead of x in
the instance, and takes x as an additional witness. (Pre-
sumably, σx is smaller than x and easier to process in proof
verifications.) We define HPinn as follows:

Setup(1λ) samples k ← keygen(1λ) and returns k as pp;

Hash(pp, x) computes σx ← hashpp(x);

KeyGen(pp, R) generates (EKR,VKR)← VC.KeyGen(1λ, R′);

Prove(EKR, x, v ;w) returns Π← VC.Prove(EKR, v, σx ;x,w)
for σx = hashpp(x);

Verify(VKR, σx, v,Π) returns VC.Verify(VKR, σx, v,Π).

Theorem 3.2. If VC is knowledge-sound and hash is collision-
resistant, then HPinn is adaptively sound (Definition 3.1 for
multiple relations).

Hash Extractability. The above construction naturally
extends to extractable hashes, by applying VC to the relation
that checks the hash computation, defined by

Rk(σ ;x) = (σ = hashk(x)).

We write HPE for the resulting scheme, obtained from
HPinn above by extending the Setup and Hash algorithms
and adding a Check algorithm:

SetupE(1
λ) samples k ← keygen(1λ); generates EKpp,VKpp ←

VC.KeyGen(pp, Rk); and returns pp = (k,EKpp,VKpp);

HashE(pp, x) computes σx ← hashk(x); Π← VC.Prove(EKpp,
σx ;x) and returns σ = (σx,Π).

Check(pp, σ) parses σ as (σx,Π) and returns VC.Verify(VKpp,
σx, v,Π).

Theorem 3.3. If VC is knowledge-sound, then HPE is hash
extractable (Definition 3.2).

The proof of Theorem 3.3 follows from the existence of the
VC extractor.

By using a separate VC scheme on a new relation Rk,
rather than re-using a VC scheme on one of the relations R′,
we can use knowledge soundness in a completely standard
manner, taking only the key k as ‘benign’ auxiliary input.

Discussion. The HPinn construction is simple, and can be
extended to Merkle trees [15] to provide logarithmic random
access in data structures. Its main practical drawback is that
the relation to be verified now includes a hash computation,
which adds tens of thousands of cryptographic operations
to the prover’s workload for each block of input when us-
ing standard algorithms such as SHA2 (§6). To lower this
considerable cost for the prover, one pragmatically chooses
custom, algebraic hash functions, which in turn increases
the cost for the verifier that computes the digest. In the
following sections we present constructions that are efficient
for both the prover and the verifier.

4. HASH & PROVE CONSTRUCTIONS
In this section we present our main technical contribution:

two efficient multi-relation hash & prove schemes for families
of relationsRλ. We let R(x, v ;w) range over these relations.

Our two schemes are obtained via a generic hash & prove
construction that relies on two main building blocks: (i)
any SNARK scheme that has offline/online verification al-
gorithms (cf. §2.1) and where the offline verification con-
sists of a multi-exponentiation in a group G1; (ii) any HP
scheme that allows to prove the correctness of such multi-
exponentiations.

Before presenting our generic construction in full detail,
we provide some intuition. We start from the observation
that in offline/online SNARKs the verifier already computes
an element cx =

∏
i Fi

xi . Although cx can be seen as a
hash of the input x, such hash is relation-specific because
the elements Fi depend on the relation R that was used in
the SNARK’s KeyGen. Our main idea is to outsource the
computation of cx to the prover in order to obtain an HP
scheme where x can be hashed in a relation-independent
manner. Then, we ask the prover to show the correct-
ness of cx using an HP scheme (where hashes are indeed
relation-independent) that supports relations of the form
(x, cx) : cx =

∏
i Fi

xi .
Building an HP scheme from another HP scheme may

look silly at first, however the key point is that we require
an HP that supports a specific class of relations: only multi-
exponentiations. Conversely, our method can be seen as a
way to bootstrap, via SNARKs, an HP scheme that supports
one specific class of computations into another one that can
support arbitrary computations.

Following the generic HP construction from a hash & prove
scheme for multi-exponentiation, we propose new construc-
tions to instantiate the latter. The first, called XP1, is pub-
licly verifiable, whereas the second one, called XP2, is in
the designated verifier model but enjoys better efficiency.
The two new schemes are significantly more efficient than
what could be obtained using known techniques (e.g., the
construction based on inner encoding in §3.3).

As a result, the instantiation of our generic construction
with state-of-the-art SNARKs and our new HP for multi-
exponentiation yields an HP system that, compared to the
solution in §3.3, is at least 1, 400× times faster for the prover
and the key generator (cf. §6).

The rest of the section is organized as follows. In §4.1
we describe the generic construction; in §4.2 we give our
publicly verifiable HP scheme for multi-exponentiation, and
in §4.3 we give the designated verifier one. Finally, in §4.4 we
outline additional properties of our constructions, including
data updates and extension of HP to accumulators.

4.1 Generic Hash & Prove Scheme (HPgen)
Let VC = (KeyGen,Prove,Verify) be a SNARG scheme

that supports a sequence of relations {Rλ}λ and that has
offline/online verification, as described in §2.1: we assume
that every verification key VK of VC includes group elements
F1, . . . , Fn ∈ G1 and that Offline(VK, x) =

∏n
i=1 Fi

xi com-
putes a commitment cx.

Let XP = (Setup,Hash,KeyGen,Prove,Verify) be an HP
scheme that supports relations F ⊂ U×∅ where u is Znp×G1,
every F ∈ F is defined by a vector F = (F1, . . . , Fn) ∈ Gn1 ,
and a pair (x, cx) ∈ Znp ×G1 is in F iff

∏n
i=1 Fi

xi = cx.
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We use XP and VC to construct a scheme HPgen that sup-
ports any combination of relations R(x, v ;w) supported by
VC. The only requirement is that both schemes have com-
patible (or identical) public parameters. Namely, they share
the same bilinear group setting, and the number of inputs
in x, n, should be the same as in XP.

HPgen is defined as follows:

Setup(1λ) runs XP.Setup(1λ) and returns its public param-
eters pp.

Hash(pp, x) returns σx := XP.Hash(pp, x).

KeyGen(pp, R) takes a relation R and runs

EK,VK← VC.KeyGen(1λ, R);
Let F := (F1, F2, . . . , Fn) be the ‘offline’ elements in VK;
EKF ,VKF ← XP.KeyGen(pp, F );
return EKR := (EK,VK,EKF ),VKR := (VK,VKF ).

Prove(EKR, x, v ;w) parses EKR as (EK,VK,EKF ) then runs

cx ← VC.Offline(VK, x);
Π← VC.Prove(EK, (x, v) ;w);
Φx ← XP.Prove(EKF , x, cx);
return ΠR := (cx,Π,Φx).

Verify(VKR, σx, v,ΠR) parses VKR as (VK,VKF ) and ΠR as
(cx,Π,Φx), and returns

VC.Online(VK, cx, v,Π) ∧ XP.Verify(VKF , σx, cx,Φx).

Hence, proofs ΠR in HPgen carry three representations of x:
its portable hash σx; its offline relation-specific commit-
ment cx; and a multi-exponentiation proof Φx that binds
the two. Compared with VC proofs, and using our instan-
tiations of XP described later in this section, the communi-
cation overhead for HPgen proofs is two group elements (or
three if we want hash extractability).

The following theorem states the security of HPgen.

Theorem 4.1. If XP is adaptively sound in the publicly ver-
ifiable (resp. designated verifier) setting, and VC is sound,
then the HPgen construction in §4.1 is adaptively sound in
the publicly verifiable (resp. designated verifier) setting.

The idea is rather simple: any adversary which breaks
HPgen has to either break the security of the underlying VC
scheme, or cheat on the value of cx, thus breaking the secu-
rity of XP. Our proof shows a reduction for each case.

We also give a corollary that essentially says that, by in-
stantiating our generic construction with a hash extractable
XP scheme, we can handle arguments with untrusted hashes.
It follows by construction of HPgen, observing that this scheme
uses the hashing algorithm of XP.

Corollary 4.1. If XP is hash extractable, then the HPgen

construction in §4.1 is also hash extractable.

4.2 Our Publicly Verifiable HP Scheme for
Multi-Exponentiation (XP1)

We present our second key technical contribution: a hash
& prove scheme, called XP1, for the class of multi-exponen-
tiation relations F described above.

For clarity, we write Φ instead of Π for restricted proofs.

Setup(1λ) samples Hi
$←− G1 for i ∈ [1, n] and returns pp =

(Gλ, H) where H = (H1, . . . , Hn).

Hash(pp, (x1, . . . , xn)) returns σx ←
∏
i∈[1,n]Hi

xi .

KeyGen(pp, F ) samples u, v, w
$←− Z∗p and computes U ←

g2
u, V ← g2

v,W ← g2
w; samples Ri

$←− G1 and com-
putes Ti ← Hi

uRi
vFi

w for i ∈ [1, n]; and returns
EKF = (F, T,R) and VKF = (U, V,W ) where R =
(R1, . . . , Rn) and T = (T1, . . . , Tn).

Prove(EKF , (x1, . . . , xn), cx) computes Tx ←
∏
i∈[1,n] Ti

xi and

Rx ←
∏
i∈[1,n]Ri

xi ; and returns Φx = (Tx, Rx).

(Implicitly we require that cx =
∏
i∈[1,n] Fi

xi , though
the cx part of the instance is not used in the compu-
tation of the proof.)

Verify(VKF , σx, cx,Φx) parses Φx = (Tx, Rx) and returns

e(Tx, g2)
?
= e(σx, U) e(Rx, V ) e(cx,W ).

The following theorem states that XP1 scheme is secure.
Correctness follows by inspection.

Theorem 4.2 (Adaptive Soundness of XP1). If the Strong
External DDH Assumption holds, then the XP1 scheme above
is adaptively sound (Definition 3.1 for multiple relations).

Proof Outline. The proof works by considering the case of
a single relation as the extension to multiple relations is
obtained by applying Theorem 3.1.

Below we provide the outline of the security proof via a
sequence of game hops.

Game 0: this is the adaptive soundness game of Defini-
tion 3.1 restricted to a single relation.

Game 1: this is a modification of Game 0 as follows. When
answering the (single) KEYGEN(F ) oracle query, the

challenger sets w = γv + δ for random γ, δ
$←− Zp (in-

stead of sampling w
$←− Zp). Next, when the adversary

returns the proof (x∗, c∗,Φ∗), with Φ∗ = (T ∗, R∗),

the challenger computes T̂ ←
∏
i∈[1,n] Ti

x∗i and ĉ ←∏
i∈[1,n] Fi

x∗i . Then, if (T ∗/T̂ )(ĉ/c∗)δ = 1 the outcome
of the game is changed so that the adversary does not
win.

We claim that Game 0 and Game 1 are statistically in-
distinguishable. The intuition is that δ is information
theoretically hidden from the adversary, which implies
that the only event which changes the game’s outcome
happens with negligible probability.

Game 2: this is a modification of Game 1 as follows. When
answering the (single) KEYGEN(F ) oracle query, the

challenger sets u = αv + β for random α, β
$←− Zp

(instead of sampling u
$←− Zp). Second, the challenger

computes Ri ← H−αi F−γi and Ti ← Hβ
i F

δ
i .

This game is essentially changing the distribution of
the evaluation keys returned to the adversary. The
distribution in this game however is computationally
indistinguishable from the one in Game 1 under the
Strong External DDH (SXDH) assumption. Finally,
once accounted for this game difference it is possible to
show that any p.p.t. adversary has negligible probabil-
ity of winning in Game 2, under the Flexible co-CDH
assumption (which in turn reduces to SXDH).

1310



Detailed proofs for the indistinguishability of the three
games as well as a reduction from winning in Game 2 to
breaking Flexible co-CDH are in the full version.

We can make the XP1 construction hash extractable by
adding a knowledge component. The resulting scheme, XPE ,
consists of algorithms KeyGen and Prove from XP1 together
with the following additional algorithms.

SetupE(1
λ,F) samples Hi

$←− G1 for i ∈ [1, n] and ω
$←− Zp

and returns pp = (Gλ, gω2 , {Hi, Hω
i }i∈[1,n]).

HashE(pp, (x1, . . . xn)) computes Ax ←
∏
i∈[1,n]Hi

xi and

Bx ←
∏
i∈[1,n](Hi

ω)xi . Returns σx = (Ax, Bx).

Check(pp, σx) takes g2 and gω2 from pp; parses σx as (Ax, Bx);

and checks that e(Ax, g
ω
2 )

?
= e(Bx, g2).

VerifyE(VKF , σx, cx,Φx) returns

e(Tx, g2)
?
= e(Ax, U) e(Rx, V ) e(cx,W ) ∧ Check(pp, σx)

?
= 1.

Lemma 4.1 (Hash Extractability of XPE). If the Bilinear
n-Knowledge of Exponent Assumption holds, then the XPE
scheme above is hash extractable.

Proof. The existence of an extractor for the Bilinear n-Know-
ledge of Exponent Assumption implies the existence of an
extractor for the XPE construction.

4.3 Our Designated Verifier HP Scheme for
Multi-Exponentiation (XP2)

We present another hash & prove scheme for multi-expon-
entiation, called XP2, which works in the designated verifier
setting. XP2 works similarly to XP1 but has the advantage
of requiring one less element in the proof and one less multi-
exponentiation for the prover.

The XP2 scheme works for the same class of relations F
supported by XP1, and the construction is obtained by adapt-
ing a multi-function verifiable computation scheme by Fiore
and Gennaro [23], which works for a similar restricted class
of functions, (f1, . . . , fn) ∈ Znp . In the full version we define
XP2 more generically based on homomorphic weak pseudo-
random functions [23]. For simplicity, we describe below the
instantiation of the scheme based on the SXDH assumption.

The scheme XP2 works as follows:

Setup(1λ) samples Hi
$←− G1 for i ∈ [1, n] and returns pp =

(Gλ, H) where H = (H1, . . . , Hn).

Hash(pp, (x1, . . . , xn)) returns σx ←
∏
i∈[1,n]Hi

xi .

KeyGen(pp, F ) generates δ, k
$←− Z∗p; computes Ti ← Fi

δHi
k

for i ∈ [1, n]; and returns EKF = (F, T ),VKF = (δ, k)
where T = (T1, . . . , Tn).

Prove(EKF , (x1, . . . , xn), cx) computes Φx ←
∏
i∈[1,n] Ti

xi ;

and returns Φx. (Implicitly we require that cx =∏
i∈[1,n] Fi

xi , though the cx part of the instance is not

used in the computation of the proof.)

Verify(VKF , σx, cx,Φx) returns Φx
?
= cx

δ · σxk.

Theorem 4.3 (Adaptive Soundness of XP2). If the SXDH
assumption holds in G1, then the XP2 construction above is
adaptively sound (Definition 3.1 for multiple relations and a
designated verifier).

We outline the intuition behind the proof of the Theo-
rem. The values (Hk

i )i are pseudorandom (by SXDH), and
thus so are (Ti)i. After making a hybrid step where their
distribution is changed to random, the value of δ becomes
information-theoretically hidden from the adversary, making
its probability of cheating negligible.

A publicly verifiable variant in the generic group.
Interestingly, the above scheme can be modified to become
publicly verifiable as follows: we publish (gδ2, g

k
2 ) as part of

VKF , and use these elements with a pairing in the verifica-
tion algorithm. The resulting scheme has the advantage of
being more efficient than XP1. As a drawback, we can only
argue its security in the generic group model, and leave this
analysis for the full version of this work.

Hash Extractability. We note that we can make the con-
struction XP2 hash extractable by incorporating a knowl-
edge component, in the same way as we show for XP1.

4.4 Additional Properties of Our Instantiation
By plugging XP1 (or XP2) into the generic HPgen construc-
tion of §4.1 we obtain an efficient HP scheme that can handle
any relation supported by the underlying SNARK system.

A useful property of the hash function of both our con-
structions XP1 and XP2 is its (additive) homomorphism, i.e.,
Hash(x1) · Hash(x2) = Hash(x1 + x2). This property turns
out to have several applications, which we summarize below.

Incremental hashing for data streaming applications.
The hash of our construction can be computed incremen-
tally as σi ← σi−1 ·Hxi

i (with σ0 = 1). This is particularly
useful in applications where a resource-constrained device
outsources a data stream x1, x2, . . . to a remote server while
keeping locally only a small digest σi computed as above.
Later, at any point, the client will be able to verify a com-
putation on the stream x1, . . . , xi by only using σi. Fur-
thermore, when hash extractability is not needed, the XP1

construction can be modified by letting Hi = RO(i) where
RO is a hash function that in the security proof is modeled
as a random oracle (we omit a proof for this case which is
straightforward: simply simulate RO(i) as the Hi in the cur-
rent proof). This simple trick allows for constant-size public
parameters and, more interestingly, to work with a poten-
tially unbounded input size n—a feature particularly useful
in streaming scenarios.

Efficient hash updates. Another application of the ho-
momorphic property is efficient hash updates. Given a hash
σx =

∏
iHi

xi on a vector x = (x1, . . . , xn), one can easily
update the i-th location from xi to x′i. Instead of recom-
puting the hash from scratch (which would require work
linear in n), one simply does a constant-time computation

σx′ = σx · Hix
′
i−xi . This trick also generalizes to updat-

ing multiple locations in time linear only in the number of
locations that require an update.

Multiple data sources. The homomorphic property also
implies that the hash can be computed in a distributed man-
ner. For instance, one user computes σx,k =

∏
i∈[1,k]H

xi
i , a

second user computes σx,` =
∏
i∈[k+1,`]H

xi
i , and then a ver-

ifier who receives σx,k and σx,` can reconstruct the full digest
on (x1, . . . , x`) with a single multiplication. This feature is
useful in those applications where the data is provided by
multiple trusted sources, in which case only small digests
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have to be communicated. (For example, consider training
a machine learning model using different datasets.)

Randomizing hash values. If one of the xi inputs of
the hash is uniformly random in Zp, then the output of
Hash(pp, x) is a uniformly random element in G1. Show-
ing that SNARK systems randomized in this fashion do not
leak anything about their hashed data is less trivial as the
same randomness is reused by σx and the cx values of dif-
ferent relations. This is akin to randomness reuse in El-
Gamal encryption, which is permissible. However, in most
SNARK systems the group elements used for commitment
randomization have structure, precluding a straightforward
reduction to DDH. A detailed analysis of a multi-relation
zero-knowledge property for specific VC schemes is thus an
interesting open problem.

From hashes to accumulators. Accumulators are often
used as succinct representations of sets that enable fast, lim-
ited, verifiable processing. For example, one can efficiently
prove and verify arguments on set operations by exploiting
the structure of accumulators [38], with better performance
than by relying on a general-purpose VC scheme. To this
end, we offer schemes that allow one to transition between
proof systems that operate on hashes and accumulators. In
particular, we introduce Accumulate & Prove scheme which
is a variant of HP that operates on accumulators and builds
on HP and XP (to verify that the hash and the accumulator
were computed from same data). See the full version.

5. OUTSOURCING HASH COMPUTATIONS
In our efficient HP constructions of §4, the Hash algorithm

computes a succinct digest σx using one exponentiation for
every element of x. Hence, when using instantiations with
XP1 or XP2, an HPgen verifier that wishes to relate computa-
tions verified using σx to their actual inputs x must still per-
form |x| exponentiations, or trust some data provider that
associates σx to x. Though the same σx could be used to
verify many computations that involve x, thereby amortiz-
ing the cost of hash computation, we are looking to further
optimize this cost.

In this section, complementarily, we describe a technique
to outsource hash computations to an untrusted party such
that the verifier (or its trusted data provider) only needs
to perform |x| field multiplications and one efficient crypto-
graphic hash on x, say SHA2, typically saving two orders of
magnitude.

We present our construction, called HP∗, as a generic ex-
tension of any HP system to which it adds support for ver-
ifiable outsourcing of hash computations. The main benefit
of this extension is that the verifier does not need to run the
Hash algorithm: instead, it can upload x to the untrusted
prover; obtain its hash σx together with a proof of hashing
Πh, verify them; and finally keep σx. Intuitively, the verifier
can then use σx to refer to x as if it had computed it itself.

5.1 Definition
We define HP∗ as an extension of a given hash & prove

scheme HP. In particular, the functionality of the trusted
Hash algorithm is supplemented with a pair of new algo-
rithms, HashProve and HashVerify, run respectively by the
untrusted prover and by the verifier. HashProve computes
a hash of data x and augments it with a proof that the

hash is computed correctly (that is, it is computed accord-
ing to Hash algorithm). HashVerify then accepts σx as the
hash if the proof verifies correctly.

Formally, HP∗ is a multi-relation hash & prove scheme
that supports hash outsourcing and consists of 7 algorithms
HP∗ = (Setup,Hash,HashProve,HashVerify,KeyGen,Prove,
Verify). We omit a description of Setup, Hash, KeyGen, Prove
and Verify, as they are defined identically to those in HP (§3).

Πh ← HashProve(pp, x, σx) produces a proof ofRHash(x, σx) =

(σx
?
= Hash(pp, x)) given some data x ∈ X and hash σx;

bh ← HashVerify(vp, x, σx,Πh) either accepts (bh = 1) or re-
jects (bh = 0) a proof that σx is a hash of data x.

In addition to being a Hash & Prove scheme (i.e., satisfying
adaptive soundness or adaptive hash soundness), HP∗ must
be secure with regards to outsourcing, as defined below.

Definition 5.1 (Sound Hash Outsourcing). Outsourcing of
HP∗ hash computation is secure if every p.p.t. adversaries
wins the game below only with negligible probability.

Outsourced Hash Game
pp, vp← Setup(1λ)
x, σ∗x,Πh ← A(1λ, pp, vp)

A wins if HashVerify(vp, x, σ∗x,Πh) = 1 and σ∗x 6= Hash(pp, x)

This game is similar to the Hash Extraction game, but it
does not involve extraction, as the verifier is given both x
and σ∗x. (The designated-verifiability variant is obtained by
keeping vp private and, instead, giving the adversary oracle
access to HashVerify.)

Hash outsourcing ensures that, when verifying compos-
ite arguments as in adaptive hash sound schemes (cf. §3.2),
one can safely replace calls to Hash with calls to HashVerify.
In particular, with HP∗, an argument can be passed to a
relation either as data x, as a hash σ or as (x, σ∗). Our def-
inition can be trivially satisfied by ignoring Πh and setting

HashVerify(pp, x, σ,Πh) = (σ
?
= Hash(pp, x)) but of course

we are looking for more efficient constructions.

5.2 Efficient Construction (HP∗)
We build HP∗ out of any hash & prove scheme HP, and

two additional tools: an almost universal hash function h
(recalled below) and a regular hash function H (that will be
modeled as a random oracle).

Almost Universal Hash Functions. An ε-almost uni-
versal hash function h is such that, for all x 6= x′ chosen
before h is sampled, we have Prh[h(x) = h(x′)] ≤ ε [13].
We will use such functions from Znp to Zp, instantiated by

hα(x) =
∑n
i=1 xiα

i−1 and keyed with a random α ∈ Zp.
These functions can be computed as hα(x) = x1 + α(x2 +
. . . α(xn−1 + αxn))) using n additions and n − 1 multipli-
cations by α, which is particularly efficient in verifiable-
computation schemes for arithmetic circuits.

Lemma 5.1. hα is (n− 1)/p-almost universal.

Proof. Expanding the collision equality, we get
∑n
i=1 xiα

i−1 =∑n
i=1 x

′
iα
i−1, that is,

∑n
i=1(xi − x′i)αi−1 = 0. If x 6= x′, we

have a non-zero polynomial in α of degree at most n−1, with
at most n − 1 roots, so this equality holds with probability
at most (n− 1)/p.
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Before delving into the details of the construction, let us
describe its main ideas. The first idea is to build HP∗ by ex-
tending any HP with algorithms HashProve and HashVerify

that allow to prove and verify the correctness of σx
?
= Hash(x).

Notably, HashVerify must be significantly faster than re-
computing Hash(x). To this end, our second idea is to let
HashProve compute a (freshly sampled) universal hash func-
tion hα(x) and generate a proof Πh that links hα(x) to the
correct σx. Then our HashVerify simply checks Πh (in con-
stant time) and recomputes the universal hash hα(x), which
is much faster than the multi-exponentiation Hash. The se-
curity of universal hash functions relies on their input being
chosen before hα is sampled. To this end, we require that
hα depend on the input x by setting α = H(x, σx) where H
is a hash function.

We are now ready to give our HP∗ construction. Let Rh

be the relation defined by Rh(x, α, µ) = (µ
?
= hα(x)), and

let H be a hash function. We build HP∗ using any HP that
supports relation Rh and is hash-extractable.

Setup(1λ) runs setup and generates keys for outsourcing h:

pp′ ← HP.Setup(1λ);
EKh,VKh ← HP.KeyGen(pp′, Rh);
return pp = (pp′,EKh) and vp = VKh;

HashProve(pp, x, σx) computes α = H(x, σx); µ = hα(x);
Πh ← HP.Prove(EKh, x, (α, µ)) and returns Πh;

HashVerify(vp, x, σx,Πh) computes α = H(x, σx); µ = hα(x)
and checks HP.Verify(VKh, σx, (α, µ),Πh).

We omit Hash, KeyGen, Prove and Verify algorithms as they
are simply calls to their counterparts in the HP scheme (for
example, HP∗.KeyGen calls HP.KeyGen(pp′, R)).

We stress that, even if asymptotically our new construc-
tion is not better than the original one (the verifier performs
Θ(n) operations), in practice, the operations performed by
the verifier in HP∗.HashVerify are orders of magnitude faster
than those in HP.Hash.

Discussion. Applying HP∗ to our efficient constructions
of §4 (either public or designated verifier), our proofs now
carry a fourth representation µ = hα(x) of x in addition to
its hash σx, its commitment cx, and a proof Φx. Note that
we rely on extraction only for the witnesses x of the fixed
relation Rh.

To avoid random oracles, we can use an interactive, des-
ignated verifier variant of HP∗, whereby (1) the prover com-
mits to x and σx; (2) the verifier sends a fresh random α;
(3) the prover produces a proof of Rh; (4) the verifier checks
the proof against x and σx, as above.

Security. We finally state the security of hash outsourcing:

Theorem 5.1. In the random oracle model for H, if hα is
an ε-almost universal hash function, HP is adaptively sound
and hash extractable in publicly verifiable (resp. designated
verifier) setting, then HP∗ is sound for outsourcing of hash
computations as per Definition 5.1 in publicly verifiable (resp.
designated verifier) setting.

We note that all HP constructions in §4 can be made hash
extractable (meeting requirements of Theorem 5.1) and can
be used for secure hash outsourcing.

6. EVALUATION
In this section, we analyze and measure the performance

of our new HP constructions compared to previous solutions.
Our evaluation is twofold. First we analyze the efficiency

of our scheme HPgen from §4 (instantiated with Geppetto [19]
and XP1) and we compare it against the inner encoding con-
struction HPinn of §3.3 (also instantiated with Geppetto and
various choices of the hash function). Second, we report
on the impact of our hash outsourcing technique of §5 in
speeding up hashing and verification time.

6.1 Microbenchmarks
We performed a series of microbenchmarks on a single

core of a 2.4 GHz Intel Xeon E5-2620 with 32 GB of RAM.
The table below gives the time for individual operations on
the fields and elliptic curves used by Geppetto. The cost of
multi-exponentiation and for SHA-256 is reported for each
254-bit word of input.

operation time
field addition 45.2 ns
field multiplication 316.7 ns
multi-exponentiation 231.2 µs
pairing 0.7 ms
SHA-256 193.6 ns

6.2 Inner vs. Outer Encodings
We compare the asymptotic performance of inner and

outer encodings and summarize the results in Figure 1.
In our evaluation, we make a distinction between different

types of verifier effort, depending on whether the verifier’s
input to the computation is passed by value or by reference
via a hash (referred to as an opaque hash for HP schemes
in §3.2). In the figure, they are denoted as “Verify IO” and
“Verify Intermediate Commitments”, respectively.

When the verifier’s input is passed by value, she (or some-
one she trusts) must directly handle each IO value, so the
cost depends on the size, n, of the IO. Note that for any
particular verifier, such computation is required only once
for a given IO value, as the computed commitment (or hash)
can be reused in subsequent computations.

When a verifier uses IO values passed by reference, she
verifies a proof using a commitment or hash of the IO values
without handling them directly. Since the commitment/hash
values are constant size, the verification effort is also con-
stant. A verifier may use IO values passed by reference when
the corresponding hash comes from a trusted source (e.g.,
the verifier herself), or when it represents intermediate val-
ues in a computation (e.g., between mappers and reducers in
a MapReduce computation) where the verifier merely needs
to check the consistency of the IO, rather than the values
themselves.

HPinn. We consider the construction HPinn given in §3.3 in-
stantiated with Geppetto and either SHA-1, SHA-256, or
Ajtai’s [1] hash function. On the positive side, HPinn has the
same number of elements in the proof as Geppetto; its on-
line verification cost is the same as in Geppetto, while offline
verification consists of one hash computation plus a multi-
exponentiation on a fixed size word. On the negative side,
to support a relation R, HPinn forces Geppetto to work with
a relation R′ which (on top of encoding R) encodes hash
computations. The latter adds significantly to the evalu-
ation key size and the prover’s work, which scale linearly
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Verify Verify Verify Prover Proof Size
Generality proof IO Interm. Commit Effort (group elts.)

HPinn (Ajtai) Yes 12 pairings Ajtai(n) + 1 MultiExp 1 MultiExp O(D logD) 8
Geppetto [19] No 12 pairings 3n MultiExp 5 pairings O(d log d) 8
HPgen Yes 12 pairings n MultiExp 4 pairings O(d log d) + 2n MultiExp 10
HPgen (extract) Yes 12 pairings n MultiExp 6 pairings O(d log d) + 3n MultiExp 11
HP∗ Yes 12 pairings SHA(n) + n MulAdd +

16 pairings + 6 MultiExp
4 pairings O(d log d) + 2n MultiExp

+ UHash(n)
20

Figure 1: Asymptotic Performance. Comparison of our schemes and prior work. For our schemes, we assume the use

of our publicly verifiable XP1 scheme, and HP∗ is instantiated with HPgen. We use n for the size of the inputs/outputs (IO),

d � n for the degree of the QAP used for the outsourced computation, and D = d + 350n. MultiExp is the cost of a multi-

exponentiation, and MulAdd is the cost of a simple field multiplication and addition. Ajtai(x) and SHA(x) is the time needed

to compute an Ajtai (resp. SHA-256) hash on x words of input, and UHash(x) is O(x log x), i.e., the time necessary to compute

and prove correct a universal hash.

and quasilinearly respectively in the number of quadratic
equations needed to represent the computation. Concretely,
Geppetto includes libraries for verifiably computing SHA-1
and SHA-256 hashes. For each 254-bit I/O element, these
libraries require approximately 22,400 equations for SHA-1
or 35,000 for SHA-256. Similar libraries for Ajtai require
only 300–400 equations per word of input, but they increase
the cost for the verifier and may not suffice for privacy ap-
plications that require stronger randomness properties from
the hash function [15].

Geppetto. Geppetto is an example of an outer encoding
scheme which avoids the expenses incurred by inner encod-
ings. For example, compared with the hundreds or thou-
sands of equations used for inner encodings, Geppetto only
adds one equation per word of input, and hence they report
improving prover performance by two orders of magnitude
for processing I/Os [19]. However, Geppetto’s approach re-
quires the verifier to compute commitments using a multi-
exponentiation (versus a hash in HPinn) that is linear in the
I/O size. Furthermore, Geppetto must specify which com-
putations will be supported at setup time, before data is
selected for said computations.

Our HPgen Scheme. Unlike Geppetto, which fixes at setup
which computations will be supported for committed data,
our HPgen scheme offers full generality; i.e., data can be
hashed completely independently of the computations to be
performed, and indeed, new and fully general computations
can be verified over previously hashed data.

HPgen’s new generality comes at a modest computational
cost relative to Geppetto. In terms of communication, HPgen

proofs include two more elements (three with hash extract-
ability); the evaluation key and the verification key of ev-
ery relation contain, respectively, 2n and 3 extra elements.
In terms of computation, our prover has to perform two
additional n-way multi-exponentiations. The verifier’s on-
line cost is the same as in Geppetto, whereas offline ver-
ification requires one hash computation (i.e., one n-multi-
exponentiation) plus four pairings. If we wish to support
hash extractability, then this adds an additional group ele-
ment to the proof, an additional multi-exponentiation for the
prover, and an additional pairing for the verifier. Overall,
the additional burden (linear in the I/O size n) that HPgen

adds relative to Geppetto is quite small, since both the size
of the evaluation key and the prover’s effort are typically
dominated by the complexity of the outsourced computa-
tion, which, in most applications, is much larger than n.

Compared with inner encodings like HPinn, however, HPgen

saves the prover significant effort. Concretely, if we instanti-
ate HPinn with Ajtai’s hash, then HPgen is 1, 400× faster per
I/O word (e.g., for n = 1, 000, HPinn takes 10 minutes while
HPgen takes half a second), while for SHA-256, the difference
is closer to 140, 000× (e.g., HPinn takes 18 hours).

Our HP∗ Scheme: Outsourcing Hash Computations.
Compared with HPgen, HP∗ drastically improves the veri-
fier’s I/O processing time. For the verifier, whereas HPgen

required a multi-exponentiation linear in the I/O, with HP∗,
the linear costs consist of (1) a symmetric, fast SHA-256
hash computation to compute the key α; and (2) for each
word, n additions and n−1 multiplications over Zp. A con-
servative comparison based on the results from §6.1 shows
that (2) is 654× cheaper per I/O word than a multi-exponen-
tiation, and that (1) using SHA-256 is even cheaper than
(2). Overall, compared with its current I/O processing,
HP∗ thus reduces the linear costs of the Geppetto verifier
by two orders of magnitude. As a concrete example, with
n = 1, 000, 000, HPgen takes 4 minutes to process the I/O,
while HP∗ needs half a second. Compared with Pantry, (2)
takes one multiplication per word, which is also significantly
cheaper than computing Ajtai’s algebraic hash function on
each word. An additional benefit of HP∗ is that the veri-
fier’s key becomes constant size (a few group elements for
encoding α and µ) rather than linear in n.

These benefits come at a low cost: HP∗ increases the size
of the proof from 11 to 20 elements. For the prover, the
proof cost increases by just 2n field operations and a SHA-
256 hash computation, plus the cost of generating Πh, which
only depends on n and is independent of the overall relation
to be proven.

6.3 Application Performance
To evaluate the impact of our schemes at the application

level, we evaluated them on two applications.
Statistics has a data generator commit to n 64-bit words.

Later, clients can outsource various statistical calculations
on that data; for example, we experiment with computing
K-bucket histograms.

DNA matching creates a commitment to a string of n nu-
cleotides, against which a client can then outsource queries,
such as looking for a match for a length K substring.

The performance results for both applications appear in
Figure 2. As expected, IO verification in HPinn is more ef-
ficient compared to the outer encodings schemes. Among
outer encodings, our HP∗ outperforms others as the size of
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Verify Verify Prover
proof IO Effort

Statistics (n = 256,K = 8)
HPinn (Ajtai) 17ms 0.070ms 117s
Geppetto [19] 17ms 1380ms 113s
HPgen 17ms 557ms 114s
HP∗ 17ms 31ms 114s

Statistics (n = 1024,K = 8)
HPinn (Ajtai) 17ms 0.3ms 2,100s
Geppetto [19] 17ms 6,267ms 2,084s
HPgen 17ms 2,096ms 2,085s
HP∗ 17ms 30ms 2,092s

DNA Search (n = 600,K = 4)
HPinn (Ajtai) 17ms 0.079ms 13.64s
Geppetto [19] 17ms 1611ms 5.00s
HPgen 17ms 574ms 5.01s
HP∗ 17ms 31ms 6.07s

DNA Search (n = 60, 000,K = 4)
HPinn (Ajtai) 17ms 6.4ms 1,695s
Geppetto [19] 17ms 46,980ms 706s
HPgen 17ms 15,636ms 710s
HP∗ 17ms 104ms 931s

Figure 2: Application Performance. Comparison of our

schemes and prior work for two example applications.

the input grows and n multi-exponentiations start dominat-
ing the cost of verifying hash outsourcing in HP∗. On the
other hand, the outer encodings schemes are more prover-
friendly. In particular, the prover’s total effort (IO plus
computation) is 1.02-2.3x higher for HPinn than for HP∗

(note that even though our schemes significantly reduce the
prover’s burden for IO, they do not affect the effort for the
computation itself, and hence Amdahl’s law limits the over-
all impact). Finally, the results for HP∗ show that the addi-
tional computation the scheme imposes on the prover pays
off: verification is 18-150x more efficient than for HPgen with
at most a 30% increase in the prover’s efforts.

7. RELATED WORK
Cryptographic proof systems come in a variety of shapes,

with inherent trade-offs between the efficiency of their provers
and verifiers and the expressiveness of the statements be-
ing proven. One particularly interesting point in the de-
sign space are computationally-sound non-interactive proof
systems, also known as argument systems [14], that can
be verified faster than by directly checking NP witnesses.
Starting with the work of Micali [36], there has been much
progress [11, 30, 6, 26, 20, 31] leading to succinct non-
interactive argument systems often referred to as SNARKs
or SNARGs, depending on whether they establish knowledge
rather than just existence of the NP witness. Significant the-
oretical improvements have been complemented with nearly-
practical general-purpose implementations [40, 7, 19, 9, 47].

As noted in §1 and §3.3, some prior work fits our hash &
prove model with data verification embedded via inner and
outer encodings. Here we review other solutions that follow
the outer encoding approach.

In commit & prove schemes [33, 16], one can create a com-
mitment to the data, and use it in multiple proofs. Costello et
al. [19] and implicitly Lipmaa [35] use this idea for verifiable
computation to efficiently share data between proofs. How-
ever, in this approach all computations have to be fixed be-
fore one creates commitments to data. In other words, one
has to know a-priori which computations will be executed

on the data, which may not be the case in applications like
MapReduce. This issue can be mitigated by fixing a univer-
sal relation, i.e., a relation which contains all relations that
can be executed within a fixed time bound. However, this
generality comes at a performance cost.

Several works by Ben-Sasson et al. investigate how to ef-
ficiently build universal relations for predicates described as
random-access machine algorithms [5, 7, 9]. For instance,
they describe a SNARK scheme [9] supporting bounded-
length executions on a universal von Neumann RISC ma-
chine with support for data dependent memory access, but
this generality comes at a cost [19]. To achieve full general-
ity, the bound on the execution length can be removed via
proof bootstrapping [46]. Despite recent improvements and
innovation [8], such bootstrapping is costly.

Memory delegation [18] also models a scenario where one
outsources memory and only later chooses computations (in-
cluding updates) to be executed on it in a verifiable way. In
this model, after a preprocessing phase whose cost is linear
in the memory size, the verifier’s work in the online verifica-
tion phase is sublinear in the memory size. In contrast, with
HP schemes the verifier also needs to do linear work once
to hash the input, but then the verification cost is constant
with respect to the the input size.

Another possibility to address computation on previously
outsourced data is to use homomorphic message authentica-
tors [4] or signatures [17, 29]. With the former, data is flex-
ibly authenticated when uploaded and then multiple func-
tions can be executed and proved on it. Homomorphic au-
thenticators share the limitation of commit & prove schemes:
the class of computations has to be fixed before the data
can be authenticated. Moreover, homomorphic authentica-
tor constructions that offer more practical efficiency [4] work
only for quite restricted classes of computations (low degree
polynomials). The approach based on leveled homomorphic
signatures [29] is more expressive but still very expensive in
practice, as the size of the proof (i.e., evaluated signature)
is polynomial in the depth of the computation’s circuit.

AD-SNARKs [3] provide a functionality similar to ho-
momorphic authenticators, working efficiently for arbitrary
computations, but even in their case the set of computations
has to be fixed a priori. As a further restriction, the model
of both homomorphic authenticators and AD-SNARKs re-
quires a secret key for data outsourcing, and it only supports
append-only data uploading (i.e., it does not support chang-
ing the uploaded data). In contrast, the hash & prove model
considered by this work supports delegating computation on
public data, since hashes are publicly computable.

Finally, TRUESET [34] uses a Merkle hash tree over I/O
commitments in a VC scheme to support computations on
a subset of committed inputs (namely, a collection of sets).
While this adds flexibility as to which inputs can be used in
the computation, these inputs still have to be fixed a-priori.
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